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Abstract

Let τΩ denote the lifetime of Brownian motion in a domain Ω ⊂ Rm.
We obtain the asymptotic behaviour of its expected lifetime Ey

x [τΩ] as
y → x, where the Brownian motion is conditioned to start at x and to
exit at y.

2000 Mathematics Subject Classification: 60J65, 58J35, 35K20.

1



1 Introduction

Let Ω be an open and connected set in Euclidean space Rm with m ≥ 2
and let ∆ be the Dirichlet Laplacian for Ω acting in L2(Ω). Let pΩ(x, y; t)
denote the Dirichlet heat kernel on Ω×Ω×(0,∞) associated to the parabolic
operator −∆+ ∂

∂t . It is well known that the resolvent of −∆ has an integral
kernel GΩ(x, y) on Ω× Ω given by

GΩ(x, y) =
∫ ∞

0
pΩ(x, y; t)dt, (1)

whenever the integral in the right hand side of (1) converges. This is always
the case if m ≥ 3 since by monotonicity of the Dirichlet heat kernel

0 < pΩ(x, y; t) ≤ p(x, y; t), (2)

where
p(x, y; t) = pRm(x, y; t) =

1
(4πt)m/2

e−|x−y|2/(4t). (3)

Hence we have that

0 < GΩ(x, y) ≤ G(x, y) =
Γ(1

2m− 1)
4πm/2

|x− y|2−m. (4)

In Proposition 6 below we will see that the integral in (1) converges for
planar sets under very mild conditions.

The main subject of this paper is the function HΩ : Ω × Ω → [0,∞]
defined by

HΩ(x, y) =
∫

Ω

GΩ(x, z)GΩ(z, y)
GΩ(x, y)

dz. (5)

For Ω in R2 we assume that R2\Ω contains a compact set with strictly
positive logarithmic capacity. See also Proposition 6. For sufficiently smooth
domains the function HΩ(x, y) can be extended to Ω × Ω. Estimates for
HΩ(x, y) with x ∈ ∂Ω are discussed in Theorem 4.

The function HΩ shows up in analysis when studying positivity preserv-
ing properties of systems of second order elliptic partial differential equations
[13, 15, 12]. In probability, see [9, 10], HΩ(x, y) for Ω ⊂ Rm with m ≥ 2 and
x ∈ Ω is the expectation of the lifetime τΩ of Brownian motion {X(t)}t≥0

killed on exiting Ω, starting in x, and conditioned to exit at y:

HΩ(x, y) = Ey
x [τΩ] . (6)

We may extend this formula for y ∈ Ω ⊂ Rm with m ≥ 2 to find

HΩ(x, y) = lim
ε↓0
Ex

[
τΩ\Bε(y)|X(τΩ\Bε(y)) ∈ ∂Bε(y)

]
, (7)
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where Bε(y) = {x ∈ Rm; |x − y| < ε}. Many authors have investigated the
behaviour of HΩ in terms of the geometry of Ω. See [5–8,11]. It is well
known that HΩ is continuous on Ω×Ω whenever HΩ is finite and HΩ(x, y)
is positive for x 6= y. Moreover, if m ≥ 2 then limy→x HΩ(x, y) = 0 for any
x ∈ Ω.

The main results of this paper concern the behaviour of HΩ near this
minimum and are stated in Section 2. The proofs of the Theorem 1 and
Proposition 6 are deferred to Sections 3 and 5 respectively. In Section 4 we
give sketch of the proof of Theorem 4 .

2 Main results

The function HΩ contains GΩ and its iterate GΩ ◦ GΩ. Note that the con-
dition

λ := inf spec(−∆) > 0 (8)

guarantees that both these terms are well defined. Indeed, GΩ is defined by
the now convergent integral in (1). Its iterate is also well defined since by
(1), Fubini’s theorem and the semigroup property for heat kernels

∫

Ω
GΩ(x, z)GΩ(z, y) dz

=
∫ ∞

0
dt1

∫ ∞

0
dt2

∫

Ω
pΩ(x, z; t1) pΩ(z, y; t2) dz

=
∫ ∞

0
dt1

∫ ∞

0
dt2 pΩ(x, y; t1 + t2) =

∫ ∞

0
t pΩ(x, y; t) dt. (9)

Our first result states the precise asymptotic behaviour of HΩ(x, y) for
y near an interior point x.

Theorem 1. Let Ω be an open and connected set in Rm, and let x ∈ Ω.

(i) If m ≥ 5 then for y → x

HΩ(x, y) = 1
2(m−4) |y − x|2 + O(|y − x|m−2). (10)

(ii) If m = 4 and λ > 0 then for y → x

HΩ(x, y) = 1
2 |y − x|2 log

1
|y − x| + O(|y − x|2). (11)

(iii) If m = 3 and λ > 0 then
∫ ∞

0
t pΩ(x, x; t)dt < ∞, (12)

and for y → x

HΩ(x, y) = 4π

(∫ ∞

0
t pΩ(x, x; t)dt

)
|y − x|+ o(|y − x|). (13)
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(iv) If m = 2 and λ > 0 then (12) holds, and for y → x

HΩ(x, y) = 2π

(∫ ∞

0
t pΩ(x, x; t)dt

) −1
log |y − x| + o(

−1
log |y − x|). (14)

Remark 2. It follows from the proof of Theorem 1 that the remainder es-
timates in (10) and (11) are uniform on compact subsets of Ω.

Remark 3. Note that, by (9), (12) is equivalent with
∫

Ω
GΩ(x, z)2dz < ∞. (15)

Note that
∫
Ω GΩ(x, z)2dz = ∞ for any Ω ⊆ Rm with m ≥ 4.

The next result concerns the asymptotic behaviour of HΩ when one of
the points lies on the boundary. It is well known that if ∂Ω is sufficiently
smooth and if x0 ∈ ∂Ω then

H̃Ω(x0, y) := lim
x→x0

HΩ(x, y) (16)

exists and is non-trivial. Indeed, one has GΩ(x0, y) = 0 and ∂
∂νx

GΩ(x0, y) =
KΩ(x0, y), where KΩ(x0, y) is the Poisson kernel at x0 ∈ ∂Ω. It follows that

H̃Ω(x0, y) =
∫

Ω

GΩ(x0, z)KΩ(z, y)
KΩ(x0, y)

dz. (17)

For general domains the asymptotic behaviour of limx→x0 HΩ(x, y) as
y → x0 will depend on the particular subsequence. We have the following
in the case where y − x0 is perpendicular to the tangent plane at x0.

Theorem 4. Let Ω be an open and connected set in Rm with ∂Ω of class
C2. Suppose that λ0 > 0 for m = 2, 3, 4. Then H̃Ω(x0, y) in (16) exists for
any y0 ∈ ∂Ω . For m ≥ 3 and η → 0

H̃Ω (x0, x0 + n(x0)η) = 1
2m−4η2(1 + o(1)), (18)

and for m = 2 and η → 0

H̃Ω (x0, x0 + n(x0)η) = 1
2η2

(
log η−1

)
(1 + o(1)). (19)

Here n(x0) is the inward pointing unit normal vector at x0.

Remark 5. It is possible to weaken the hypothesis λ0 > 0 in Theorems 1
and 4 for the cases m = 2, 3, 4. However, this will not change the asymptotic
formulae in (11) and in (13)-(19) respectively.
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Proposition 6. Let Ω be an open and connected set in R2. The integral
in (1) converges if and only if R2\Ω contains a compact set with strictly
positive logarithmic capacity.

In the above we have always assumed that m > 1. However, H(x, y)
is well defined for an open interval in R. A direct computation yields for
Ω = (0, 1) that

GΩ(x, y) = (x ∧ y)− xy, (20)∫

Ω
GΩ(x, z)GΩ(z, y) dz = 1

3xy(1− x)(1− y)− 1
6(x− y)2 ((x ∧ y)− xy) ,

(21)

and
HΩ(x, y) = 1

3 (x ∨ y)− 1
6x2 − 1

6y2. (22)

The probabilistic interpretation of HΩ is different from the one given for
m > 1 since one dimensional Brownian motion has a positive probability of
hitting any points of Ω. The exit time should be replaced by the quitting or
last exit time γ{y} as defined by Chung in [3, page 209].

3 Proof of Theorem 1

The proof of Theorem 1 is based on some estimates for the Dirichlet heat
kernel, which in turn imply precise estimates for the Green function.

Lemma 7. Let Ω an open and connected set in Rm(m ≥ 1). Then for
x, y ∈ Ω and t > 0

p(x, y; t) ≥ pΩ(x, y; t) ≥ p(x, y; t)− 2m

(4πt)m/2
e−c2(δ(x)∨δ(y))2/(4t), (23)

where δ is the distance to the boundary

δ(x) = inf {|x− y| : y ∈ Rm\Ω} , (24)

and
c =

(
2
√

2− 2
)

m−1/2. (25)

Proof. The heat kernel estimates obtained in [1, Theorem 1] for −1
24+ ∂

∂t ,
yield (20), by scaling.

Lemma 8. Let Ω be an open and connected set in Rm,m ≥ 3. Then for
x, y ∈ Ω

G(x, y) ≥ GΩ(x, y) ≥ G(x, y)− mΓ(1
2m− 1)

2πm/2
c2−m (δ(x) ∨ δ(y))2−m . (26)
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Proof. Integrate inequality (23) with respect to t over [0,∞).

Lemma 9. Let Ω be an open and connected set in Rm, m ≥ 5. Then for
x, y ∈ Ω

∣∣∣∣
∫ ∞

0
t pΩ(x, y; t)dt− Γ( 1

2
m−2)

16πm/2 |x− y|4−m

∣∣∣∣

≤ mΓ( 1
2
m−2)

8πm/2 c4−m (δ(x) ∨ δ(y))4−m . (27)

Proof. Multiply inequality (23) by t and integrate the resulting inequality
with respect to t over [0,∞).
Proof of Theorem 1. (i) The proof of Theorem 1 for m ≥ 5 follows
directly from (4), (9), Lemma 8 and Lemma 9.
(ii) The proof of Theorem 1 for m = 4 is more delicate. First note that by
the semigroup property for heat kernels and Cauchy-Schwarz’s inequality

pΩ(x, y; t) =
∫

Ω
dz pΩ(x, z; 1

2 t)pΩ(z, y; 1
2 t)

≤
(∫

Ω
dz pΩ(x, z; 1

2 t)2
)1/2 (∫

Ω
dz pΩ(z, y; 1

2 t)2
)1/2

=
(
pΩ(x, x; t) pΩ(y, y; t)

)1/2
. (28)

It is elementary that

pΩ(x, x; t) ≤ e−tλ/2pΩ(x, x; 1
2 t). (29)

Let T = λ−1. By (28), (29) and (2), (3) we have that for x, y ∈ Ω
∫ ∞

T
dt t pΩ(x, y; t) ≤

∫ ∞

T
dt t e−tλ/2(2πt)−2 ≤ 1. (30)

Moreover for all x, y ∈ Ω with |x− y|2 ≤ 4T we have that

∫ T

0
dt t pΩ(x, y; t) ≤

∫ T

0
dt t p(x, y; t)

= 1
16π2

∫ ∞

|x−y|2/(4T )
ds s−1 e−s

≤ 1
16π2

(∫ 1

|x−y|2/(4T )
ds s−1 +

∫ ∞

1
ds e−s

)

≤ 1
16π2 log

(
4T

|x− y|2
)

+ 1. (31)
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By (30–31) we have for x, y ∈ Ω with |x− y|2 ≤ 4T

∫ ∞

0
dt t pΩ(x, y; t) ≤ 1

16π2 log
(

4T

|x− y|2
)

+ 2. (32)

On the other hand we have by Lemma 7 that for m = 4 and |x− y|2 ≤ 4T

∫ ∞

0
dt t pΩ(x, y; t) ≥

∫ T

0
dt t pΩ(x, y; t)

≥ 1
16π2

∫ 1

|x−y|2/(4T )
ds s−1e−s − 1

2π2

∫ ∞

c2(δ(x)∨δ(y))2/(4T )
ds s−1e−s

≥ 1
16π2 log

(
4T

|x− y|2
)
− 1− Tc−2(δ(x) ∨ δ(y))−2. (33)

Combining inequalities (32), (33), (26) with (9) and the expression for HΩ

we arrive at the conclusion of Theorem 1 (ii).
(iii) To prove Theorem 1 for m = 3 we first note that by (29) and (2)

∫ ∞

0
dt t pΩ(x, x; t) ≤

∫ ∞

0
dt t e−tλ/2p(x, x; 1

2 t)

=
1

(2π)3/2

∫ ∞

0
dt t−1/2e−tλ/2 ≤ λ−1/2. (34)

This proves (12). To prove (13) we note that y → pΩ(x, y; t) is continuous
and

∫ ∞

0
dt t |pΩ(x, y; t)− pΩ(x, x; t)|

≤
∫ ∞

0
dt t

(
pΩ(x, x; t)pΩ(y, y; t)

)1/2
+

∫ ∞

0
dt t pΩ(x, x; t)

≤ 2λ−1/2, (35)

by the estimate in (34). Hence by Lebesgue’s dominated convergence theo-
rem we have for y → x

∫ ∞

0
dt t pΩ(x, y; t) =

∫ ∞

0
dt t pΩ(x, x; t) + o(|x− y|). (36)

The proof of (13) follows directly from (36) and (26).
(iv) Finally to prove Theorem 1 for m = 2 we first note that

∫ ∞

0
dt t pΩ(x, x; t) ≤

∫ ∞

0
dt t e−tλ/2p(x, x; 1

2 t)

= 1
2π

∫ ∞

0
dt e−tλ/2 ≤ λ−1. (37)
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This proves that (12) holds for m = 2. To prove (14) we note that
∫ ∞

0
dt t |pΩ(x, y; t)− pΩ(x, x; t)|

≤
∫ ∞

0
dt t

(
pΩ(x, x; t)pΩ(y, y; t)

)1/2
+

∫ ∞

0
dt t pΩ(x, x; t)

≤ 2
∫ ∞

0
dt t e−tλ/2(2πt)−1 ≤ 2λ−1. (38)

Hence by Lebesgue’s dominated convergence theorem we have that (36) also
holds for m = 2 and y → x. It remains to find the asymptotic behaviour of
GΩ(x, y) as y → x. By Lemma 7 we have for |x− y|2 ≤ 4T

GΩ(x, y) =
∫ ∞

0
dt pΩ(x, y; t)

≥
∫ T

0
dt(4πt)−1(e−|x−y|2/(4t) − 4e−c2(δ(x)∨δ(y))2/(4t))

≥ 1
4π log

(
4T

|x− y|2
)
− 1− 4T/(c2(δ(x) ∨ δ(y))2). (39)

Secondly

GΩ(x, y) ≤
∫ T

0
dt 1

4πt e−|x−y|2/(4t) +
∫ ∞

T
dt

(
pΩ(x, x; t)pΩ(y, y; t)

)1/2

≤ 1
4π log

(
4T

|x− y|2
)

+ 3. (40)

This concludes the proof of Theorem 1 (iv) by (36), (39) and (40).

4 Sketch of the proof of Theorem 4

The main idea in the proof of Theorem 4 is to approximate the domain by
a half space. The cases m = 2 and m = 3 will be considered in Lemmas 11
and 10 respectively.

Lemma 10. Let Ω+ ⊆ Rm be given by

Ω+ = {(x1, . . . , xm) : x1 > 0}. (41)

Then for m ≥ 3 and x1 > 0

lim
x1→0

HΩ+((x1, 0, . . . , 0), (y1, 0, . . . , 0)) = 1
2m−4y2

1. (42)

Proof. By the reflection principle

pΩ+((x1, 0, . . . , 0), (y1, 0, . . . , 0); t) =
e−(y1−x1)2/(4t) − e−(y1+x1)2/(4t)

(4πt)m/2
. (43)
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Hence

lim
x1→0

∂

∂x1

∫ ∞

0
dt t pΩ+((x1, 0, . . . , 0), (y1, 0 . . . , 0); t) = Γ( 1

2
m−1)

4πm/2 y3−m
1 . (44)

Moreover, by (1) and (43)

GΩ+((x1, 0, . . . , 0), (y1, 0, . . . , 0))

= Γ( 1
2
m−1)

4πm/2

(|y1 − x1|2−m − |y1 + x1|2−m
)
.

(45)

Hence

lim
x1→0

∂

∂x1
GΩ+((x1, 0, . . . , 0), (y1, 0, . . . , 0)) = (m−2)Γ( 1

2
m−1)

2πm/2 y1−m
1 , (46)

and Lemma 10 follows by L’ Hospital’s rule with (44) and (46).

Lemma 11. Let m = 2 and let Ω+ be given by (41). Then for y1 → 0 and
T > 0

lim
x1→0

∂

∂x1

∫ T

0
dt t pΩ+((x1, 0), (y1, 0); t) = 1

2πy1

(
log

1
y1

)
(1 + o(1)), (47)

and
lim

x1→0

∂

∂x1
GΩ+((x1, 0), (y1, 0)) = 1

πy−1
1 . (48)

Proof. By (1) and (43)

GΩ+((x1, 0), (y1, 0)) =
∫ ∞

0
(4πt)−1(e−(y1−x1)2/(4t) − e−(y1+x1)2/(4t))dt

= 1
2π log

(
y1 + x1

y1 − x1

)
, (49)

and (48) follows from (49).
To prove (47) we note that we may change the order of differentiation

and limit with the integral. Hence the left hand side of (47) equals

1
4πy1

∫ T

0
dt t−1e−y2

1/(4t) = 1
2πy1

(
log

1
y1

)
(1 + o(1)), (50)

as y1 → 0.
The main idea in the proof of Theorem 4 is to replace ∂Ω by the plane

tangent to ∂Ω at x0. This is justified by the fact that the main contributions
to the integrals in (1) and in (9) for y near x come from small t (see [2] for
similar approximations). The formulae in Theorem 4 can be read-off from
(42) for m ≥ 3 and from (47) and (48) for m = 2 respectively.
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5 Proof of Proposition 6

In [4] it was shown that if R2\Ω is non-polar and compact then

pΩ(x, y; t) =
1

πt(log t)2
u(x)u(y)(1 + o(1)), (51)

where u : Ω → R is the unique non-trivial harmonic function which is 0 on
the regular points of ∂Ω and which satisfies lim|x|→∞ u(x)/ log |x| = 1. The
integral in (1) converges near 0 by (2) and (3). The case where R2\Ω is non-
polar and non-compact follows by monotonicity of the Dirichlet heat kernel.
Conversely, if R2\Ω is polar then pΩ(x, y; t) = p(x, y; t) almost everywhere
and (1) diverges.
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