

ulm university universität

Jun.-Prof. Dr. D. Mugnolo R. Pröpper WiSe 2011/2012

Blatt 6 zu

Funktionalanalysis

bis 05.12.

- 1. Sei X ein Banach-Raum und $K(X) \subset \mathcal{L}(X)$ die Menge der kompakten Operatoren auf X. Zeige, K(X) ist ein beidseitiges Ideal in $\mathcal{L}(X)$, d.h. K(X) ist ein Unterraum von $\mathcal{L}(X)$ und $TS \in K(X)$ und $ST \in K(X)$ für alle $T \in K(X)$ und alle $S \in \mathcal{L}(X)$. Zeige weiter, dass das Ideal K(X) eine abgeschlossene Teilmenge von $\mathcal{L}(X)$ ist.
- 2. Sei A eine Banach-Algebra. Ein Element $x \in A$ heißt topologischer Teiler der Null, falls eine Folge $(y_n)_{n \in \mathbb{N}} \subset A$ mit $||y_n|| = 1$, $n \in \mathbb{N}$, existiert, so dass $\lim_{n \to \infty} xy_n = 0 = \lim_{n \to \infty} y_n x$.

Zeige, dass jeder Randpunkt der Gruppe der invertierbaren Elemente, $x \in \partial G(A)$, ein topologischer Teiler der Null ist.

(Hinweis: Wähle $y_n := x_n^{-1}/\|x_n^{-1}\|$, wobei $x_n \to x$.)

In welchen Banach-Algebren ist 0 der einzige topologische Teiler der Null?

- 3. Sei A Banach-Algebra mit Einselement e und $x, y, z \in A$.
 - Nutze die Identität $(xy)^n = x(yx)^{n-1}y$, um zu zeigen, dass xy und yx stets denselben Spektralradius haben.
 - \bullet Zeige: Sind x und xy invertierbar, so auch ist auch y invertierbar.
 - Zeige: Sind xy und yx invertierbar, so ist sowohl x als auch y invertierbar.
 - Zeige, dass xy = e, aber $yx \neq e$ in einer Banach-Algebra möglich ist (Hinweis: Links- und Rechts-Shift).
- 4. Sei A Banach-Algebra mit Einselement e und $x, y \in A$.
 - Zeige, dass (e yx) invertierbar ist, falls (e xy) invertierbar ist.
 - Zeige: $\sigma(xy) \cup \{0\} = \sigma(yx) \cup \{0\}$, aber $\sigma(xy) \neq \sigma(yx)$ ist möglich.