Funktionalanalysis Lösung zu Blatt 2

1. a) $\|\cdot\|_p \le \|\cdot\|_q$, $1 \le q : Der Fall <math>p = \infty$ ist klar.

Wir zeigen zuerst $\sum_{i=1}^{n} |a_i|^p \leq (\sum_{i=1}^{n} |a_i|)^p$, $1 \leq p$, für beliebige $a_1, \ldots, a_n \in \mathbb{R}$. Der Fall n=1

ist offensichtlich. Per Induktion gilt $F(x) := \sum_{i=1}^{n} |a_i|^p + x^p - (\sum_{i=1}^{n} |a_i| + x)^p \le 0$ für x = 0, und

 $\frac{d}{dx}F(x) = px^{p-1} - p(\sum_{i=1}^{n}|a_i| + x)^{p-1} \le 0 \text{ für alle } x \ge 0, \text{ woraus wegen } \sum_{i=N}^{\infty}|a_i|^p \to 0 \text{ mit } N \to \infty$ die Behauptung folgt.

Für beliebiges $q \leq p$ schreibe $\sum_{i=1}^{n} (|a_i|^q)^{p/q} \leq (\sum_{i=1}^{n} |a_i|^q)^{p/q}$. Es folgt $\|\cdot\|_p \leq \|\cdot\|_q$.

Die Inklusionen $c_{00} \subseteq l^q \subseteq l^p \subseteq c_0 \subseteq c \subseteq l^{\infty}, \ 1 \leq q , sind jetzt trivial. Um <math>l^q \subsetneq l^p$ einzusehen, nehme man z.B. die Folge $x_q := (1/n^{1/q})_{n \in \mathbb{N}}$, für $c_{00} \subsetneq l^q$ die Folge $x_{q/2}$ und für $l^q \subsetneq c_0 \text{ die Folge } (1/\ln n)_{n \in \mathbb{N}}.$ $1 \le q < \infty$

Ferner liegt c_{00} dicht in c_0 , weil für jede Folge $a:=(a_n)_{n\in\mathbb{N}}\in c_0$, die Folge $b_i:=(b_n^i)_{n\in\mathbb{N}}\in c_{00}$, definiert durch $b_n = a_n$ für $n \le i$ und $b_n = 0$ sonst, gegen a konvergiert.

Es bleibt noch $\lim_{p\to\infty} \|x\|_p = \|x\|_\infty$ für alle $x\in l^1$ zu zeigen.

Sei $x := (x_n)_{n \in \mathbb{N}} \in l^1$. Dann existiert zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$, so dass $\sum_{n=0}^{\infty} |x_n| \leq \epsilon$. Definiere

 $y := (y_n)_{n \in \mathbb{N}}$ durch $y_n = x_n$ für n < N und $y_n = 0$ sonst und $z := (z_n)_{n \in \mathbb{N}}$ durch $z_n = 0$ für n < Nund $z_n = x_n$ sonst. y und z sind in l^p für alle $1 \le p \le \infty$ und x = y + z. Setze $m := \max_{n \in \mathbb{N}} |x_n|$. Es folgt

$$m \le ||x||_p \le ||y||_p + ||z||_p \le ||y||_p + ||z||_1 \le (Nm^p)^{1/p} + \epsilon,$$

also wegen $\lim_{n\to\infty} N^{1/p} = 1$ die Behauptung.

- b) Sei $x := (x_n)_{n \in \mathbb{N}} \in c$ und $a := \lim_{n \to \infty} x_n$; definiere einen beschränkten, linearen Operator T von cnach c_0 durch $Tx=(y_n)_{n\in\mathbb{N}}\in c_0$, wobei $y_1=a$ und $y_{n+1}=x_n$ für $n\geq 1$. Sei jetzt $x=(x_n)_{n\in\mathbb{N}}\in$ c_0 ; definiere einen beschränkten, linearen Operator S von c_0 nach c durch $Sx=(y_n)_{n\in\mathbb{N}}\in c$, wobei $y_n = x_{n+1} - x_1$. Dann sieht man leicht, dass $TS = Id_{c_0}$ und $ST = Id_{c_0}$ d.h. T ist ein Isomorphismus.
- 2. $\mathcal{P} = \bigcup_{n \in \mathbb{N}} P_n$, wobei $P_n := \{ f \in \mathcal{P} : \operatorname{grad} f \leq n \text{ ein } (n+1) \text{-dimensionaler Vektorraum ist und damit } respectively.$ ein abgeschlossener Unterraum von \mathcal{P} (Äquivalenz aller Normen auf \mathbb{R}^{n+1}). Ein abgeschlossener Unterraum eines Banachraums ist aber entweder der ganze Raum oder nirgends dicht. Also ist $(\mathcal{P}, \|\cdot\|)$ $\|$) von erster Kategorie in sich. Insbesondere ist auch \mathcal{P} , aufgefasst als Unterraum von $(C[0,1],\|\cdot\|_{\infty})$, von 1. Kategorie.
- 3. Sei $1 \le q . Es gilt <math>l^q = \bigcup_{n \in \mathbb{N}} F_n = \bigcup_{n \in \mathbb{N}} \{x \in l^q | \|x\|_q \le n\}$. Wir zeigen, F_n ist abgeschlossen. Dann folgt, da es zu jedem $\epsilon > 0$ ein $y \in l^p \setminus l^q$ gibt mit $\|y x\|_p \le \epsilon$, dass F_n nirgends dicht ist. Sei $x_m = (x_i^m)_{i \in \mathbb{N}} \in F_n$, $m = 1, 2, \ldots$, eine Cauchy-Folge bezüglich der l^p -Norm und $y = (y_i)$ deren

Grenzwert. Dann gilt für alle $N \in \mathbb{N}$, wegen $\sum_{i=1}^{N} |x_i^m|^q \le n^q$ für alle $m \in \mathbb{N}$, auch $\sum_{i=1}^{N} |y_i|^q \le n^q$ und

damit $\sum_{i=1}^{\infty} |y_i|^q \le n^q$, d.h. $y \in F_n$.

Der zweite Aussage folgt aus $\bigcup_{1 \le q < p} l^q = \bigcup_{n \in \mathbb{N}} l^{p-1/n}$.

4. a) Sei $T^n: X \mapsto X$ eine Kontraktion. Dann hat T^n genau einen Fixpunkt y. Wegen $T^n x = x$ für

1

Funktionalanalysis Lösung zu Blatt 2

alle Fixpunkte von T hat auch T höchstens einen Fixpunkt und wegen $T^n(Ty) = T(T^ny) = Tx$ ist Ty Fixpunkt von T^n also Ty = y.

b) Der Fall $\lambda=0$ ist trivial. Sei o.B.d.A. [a,b]=[0,1]

Definiere $T:C[0,1]\mapsto [0,1]$ durch $Tf(x)=\lambda\int_0^x K(x,y)f(y)dy+\phi(x)$. Existenz und Eindeutigkeit der Lösung der Volterra-Gleichung ist dann mit Teil a) äquivalent zur Existenz und Eindeutigkeit eines Fixpunktes von T^n für ein $n\in\mathbb{N}$.

Sei
$$M := \max_{(x,y)\in[0,1]^2} |K(x,y)|$$
. Es ist

$$|Tf(x) - Tg(x)| = |\lambda| \int_0^x K(x, y)(f(y) - g(y))dy| \le |\lambda| M ||f - g||_{\infty} x$$

und per Induktion

$$\begin{split} |T^{n+1}f(x)-T^{n+1}g(x)| &= |\lambda| \int_0^x K(x,y) (T^nf(y)-T^ng(y)) dy| \\ &\leq \frac{|\lambda|^{n+1}M^{n+1}}{n!} \|f-g\|_\infty \int_0^x y^n \, dy = \frac{|\lambda|^{n+1}M^{n+1}}{(n+1)!} \|f-g\|_\infty x^{n+1}. \end{split}$$

Aus $\lim_{n\to\infty}\frac{|\lambda|^nM^n}{n!}=0$ folgt, dass T^n für n groß genug eine Kontraktion ist.