Prof. Dr. Friedmar Schulz Dr. Kim-Hang Le WS 2018/2019

Gesamt: 40+5* Punkte

Übungen zur Vorlesung Analysis II – Blatt 6

Abgabe und Besprechung: 14:00-16:00, 29.11.2018, N24 - H15

1. Sei a > 0. Untersuchen Sie die folgende Funktion auf Stetigkeit:

[12]

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) \coloneqq \begin{cases} \frac{|x|^a |y|^a}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

2. Sei $D \subset \mathbb{R}^n$ und seien $f,g:D \to \mathbb{R}^m$ Abbildungen. Zeige:

[5x3]

- (a) f ist genau dann stetig in D, wenn das Urbild jeder abgeschlossenen Menge $A \subset \mathbb{R}^m$ relativ abgeschlossen in D ist, das heißt, es gibt eine abgeschlossene Menge $B \subset \mathbb{R}^n$ mit $f^{-1}(A) = B \cap D$.
- (b) Ist $D \subset \mathbb{R}^n$ abgeschlossen und sind f, g stetig, so ist $M := \{x \in D \mid f(x) = g(x)\} \subset \mathbb{R}^n$ abgeschlossen.
- (c) Sind f, g stetig und liegt $A \subset D$ dicht in D, so liegt $f(A) \subset f(D)$ dicht in f(D), und aus f(x) = g(x) für alle $x \in A$ folgt, dass f(x) = g(x) für alle $x \in D$.
- 3. Sei $A = (a_{jk})_{j,k=1...n} \in \mathbb{R}^{n \times n}$ eine reelle $n \times n$ -Matrix und $b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \in \mathbb{R}^n$. [6]

Betrachte die Abbildung $f: \mathbb{R}^n \to \mathbb{R}^n$, $f(x) := A \circ x + b$, d.h. $f_j(x) = \sum_{k=1}^n a_{jk} x_k + b_j$, $j = 1, \ldots, n$.

Folgere mit Hilfe der Cauchy-Schwarzschen Ungleichung aus dem Kontraktionssatz:

Gilt $\sum_{j,k=1}^{n} a_{jk}^2 < 1$, so besitzt f genau einen Fixpunkt, d.h. die Gleichung f(x) = x besitzt genau eine Lösung.

4. Sei $n \in \mathbb{N}$ und sei die Funktion f definiert durch:

[7]

$$f: \mathbb{R}^n \to U_1(0) = \{ x \in \mathbb{R}^n \mid |x| < 1 \}, \ f(x) := \frac{x}{1 + |x|}.$$

Zeige, dass f ein Homöomorphismus ist (d.h. f ist bijektiv; f und f^{-1} sind stetig).

5. Seien $A, B \subset \mathbb{R}^n$ abgeschlossen und nicht-leer mit $A \cap B = \emptyset$. Zeige, dass es eine in \mathbb{R}^n stetige Funktion $f : \mathbb{R}^n \to \mathbb{R}$ gibt mit f(x) = 1 für $x \in A$, f(x) = 0 für $x \in B$ und 0 < f(x) < 1 für $x \in \mathcal{C}(A \cup B)$.

Hinweis: Betrachte die Funktion $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) := \frac{\rho_B(x)}{\rho_A(x) + \rho_B(x)}$ mit der Funktion $\rho_E: \mathbb{R}^n \to \mathbb{R}$, $\rho_E(x) := d(x, E)$ für $\emptyset \neq E \subset \mathbb{R}^n$. Zeige zunächst, dass $|\rho_E(x) - \rho_E(a)| \le |x - a|$ für alle $a, x \in \mathbb{R}^n$ und $\overline{E} = \{x \in \mathbb{R}^n | \rho_E(x) = 0\}$.