Exercise Sheet 1 - Analysis II

(Homework solutions will be handed in and discussed at 14:00-16:00, 25.10.2018, N24 - H15) (Please submit only the exercises $1 \boldsymbol{a}, 2 a-b, 3 a-b, 4,5 a-b)$.

1. Prove the following identities:
(a) $\cos (\arcsin x)=\sin (\arccos x)=\sqrt{1-x^{2}}$ für alle $x \in \mathbb{R},|x| \leq 1$,
(b) $2 \arctan x=\arcsin \frac{2 x}{1+x^{2}}$ für alle $x \in \mathbb{R},|x|<1$.
2. Determine the antiderivatives of the following functions by integration by parts:
(a) $\arctan x$ für $|x|<1$,
(b) $e^{-x} \cos (5 x)$
(c) $\frac{x}{\sin ^{2} x}$ für $x \neq k \pi, k \in \mathbb{Z}$.
3. Determine the antiderivatives of the following functions by substitution:
(a) $\frac{x \arcsin x}{\sqrt{1-x^{2}}}$ for $|x|<1$,
(b) $x^{2} \sqrt{a^{2}-x^{2}}$ for $a \in \mathbb{R}, a>0,|x|<a$.
(c) $\frac{1}{x^{2}} \sin \frac{1}{x}$ for $x>\frac{2}{\pi}$,
(d) $\frac{1}{x \log x \cdot \log (\log x)}$ for $x>1, x \neq e$.
4. Let $P(x)=\sum_{k=0}^{n} a_{k} x^{k}$ be a polynomial of degree n and $a \in \mathbb{R} \backslash\{0\}$.
(a) Prove that there exists a polynomial $Q(x)=\sum_{k=0}^{n} b_{k} x^{k}$ also of degree n such that

$$
\int P(x) e^{a x} d x=Q(x) e^{a x} \text { for all } x \in \mathbb{R}
$$

(b) Determine a recursion formula to calculate b_{k} from a_{k}.
(c) Use the results above to calculate

$$
\int\left(13 x^{4}+5 x-3\right) e^{2 x} d x .
$$

5. Determine the antiderivatives of the following functions:
(a) $\frac{x^{6}+1}{x^{4}-x^{2}-2 x+2}$ for $x \neq 1$,
(b) $\frac{x+\sqrt{1+x^{2}}}{x-\sqrt{1+x^{2}}}$,
(c) $\frac{1}{x \sqrt{1-x^{2}}}$ for $|x|<1, x \neq 0$, Hint: Integral (b) is of Type 1 (see Page 270)

BEMERKUNGEN:

1. The 1st exercise class takes place on 25.10.
2. Your solutions must be submitted individually before the exercise class (14:00-14:15 every Thursday).
3. If you have multiple sheets, you should staple them together.
