

Exercise Sheet 1 – Analysis II

(Homework solutions will be handed in and discussed at 14:00-16:00, 25.10.2018, N24 - H15) (Please submit only the exercises 1a, 2a-b, 3a-b, 4, 5a-b).

- 1. Prove the following identities:
 - (a) $\cos(\arcsin x) = \sin(\arccos x) = \sqrt{1 x^2}$ für alle $x \in \mathbb{R}, |x| \le 1,$ [4]
 - (b) $2 \arctan x = \arcsin \frac{2x}{1+x^2}$ für alle $x \in \mathbb{R}, |x| < 1$.
- 2. Determine the antiderivatives of the following functions by integration by parts: [4+5]
 - (a) $\arctan x \text{ für } |x| < 1$, (b) $e^{-x} \cos(5x)$ (c) $\frac{x}{\sin^2 x} \text{ für } x \neq k\pi, \ k \in \mathbb{Z}$.
- 3. Determine the antiderivatives of the following functions by substitution:
 - (a) $\frac{x \arcsin x}{\sqrt{1-x^2}}$ for |x| < 1, (b) $x^2 \sqrt{a^2 x^2}$ for $a \in \mathbb{R}, a > 0, |x| < a$. [5+5]

c)
$$\frac{1}{x^2} \sin \frac{1}{x}$$
 for $x > \frac{2}{\pi}$, (d) $\frac{1}{x \log x \cdot \log(\log x)}$ for $x > 1, x \neq e$.

4. Let $P(x) = \sum_{k=0}^{n} a_k x^k$ be a polynomial of degree n and $a \in \mathbb{R} \setminus \{0\}$. [3+3+2]

(a) Prove that there exists a polynomial $Q(x) = \sum_{k=0}^{n} b_k x^k$ also of degree *n* such that

$$\int P(x)e^{ax}dx = Q(x)e^{ax} \text{ for all } x \in \mathbb{R}.$$

- (b) Determine a recursion formula to calculate b_k from a_k .
- (c) Use the results above to calculate

$$\int (13x^4 + 5x - 3)e^{2x} dx.$$

5. Determine the antiderivatives of the following functions:

- (a) $\frac{x^6 + 1}{x^4 x^2 2x + 2}$ for $x \neq 1$, (b) $\frac{x + \sqrt{1 + x^2}}{x \sqrt{1 + x^2}}$, [5+4]
- (c) $\frac{1}{x\sqrt{1-x^2}}$ for |x| < 1, $x \neq 0$, *Hint*: Integral (b) is of Type 1 (see Page 270)

BEMERKUNGEN:

- 1. The 1st exercise class takes place on 25.10.
- 2. Your solutions must be submitted individually before the exercise class (14:00-14:15 every Thursday).
- 3. If you have multiple sheets, you should staple them together.