

[13]

Exercise Sheet 2 – Analysis II

(Homework solutions should be submitted at 08:00, before the class on 05.11.2018, N24 - H12) (Please submit only the exercises 1, 2a, 4a).

1. Let a > 0 and $I := [0, 1 + a] \subset \mathbb{R}$. Let $f : I \to \mathbb{R}$ be the function defined by

$$f(x) := \begin{cases} ax & \text{for } 0 \le x \le 1, \\ a - (x - 1) & \text{for } 1 \le x \le a + 1. \end{cases}$$

For $k \in \mathbb{N}$, we devide the intervals [0,1] und [1, a+1] into k sub-intervals by the partition:

$$\pi_k : 0 = x_0 < \frac{1}{k} = x_1 < \ldots < \frac{k-1}{k} = x_{k-1} < 1 = x_k < 1 + 1 \cdot \frac{a}{k} = x_{k+1} < \ldots < 1 + k \cdot \frac{a}{k} = x_{2k} = 1 + a.$$

Prove that f is Riemann integrable on I by calculating the upper and lower Riemann-Darboux sums $s(\pi_k, f)$ und $S(\pi_k, f)$. Determine the Riemann integral of f on I.

2. Let a > 1. Calculate the following intergrals by making use of Riemann sum $\sigma(\pi, f)$: [12+0]

(a)
$$\int_{1}^{a} \frac{1}{x} dx$$
 (b) $\int_{1}^{a} \log x \, dx$.

Hint: Choose the partition $\pi : 1 = x_0 < x_1 < x_2 < \ldots < x_n = a$ with $x_k := a^{k/n}$ and choose ξ_k in the k-th sub-interval as follows: $\xi_k = x_{k-1}$ für $k \in \mathbb{N}, 1 \le k \le n$.

3. Let a < b and let $f : [a, b] \to \mathbb{R}$ be bounded, Riemann integrable on [a, b] with $\int_{a}^{b} f(x)dx > 0.$ [4*] Prove that there exists an interval $[c, d] \subset (a, b)$, such that f(x) > 0 for all $x \in [c, d]$. Hint: You can prove by contradiction. Consider the upper Riemann-Darboux integral of f on [a, b]

in order to get $s(\pi, f) \leq 0$ for some partition π .

- 4. Let a < b and I = [a, b] be a compact interval. Prove the following statements:
 - (a) If f: I → ℝ is Lipschitz continuous or monotone or continuously differentiable, then f is a function of bounded variation (a BV function). [15] *Hint:* Consider any partition π : a = x₀ < x₁ < ... < x_n = b of I and prove that there is a constant M ∈ ℝ, such that V(π, f) ≤ M for every partition π.
 - (b) If f is a BV function, then f is bounded.
 - (c) The following function is continuous in [0, 1], but it is not a BV function:

$$f(x) := \begin{cases} x \sin \frac{1}{x} & \text{ for } x \neq 0, \\ 0 & \text{ for } x = 0. \end{cases}$$

- Please see the definition of a BV function on the next page!

- 4* in Exercise 3 means bonus points.

Definition 8.3.2 (Bounded Variation):

Let a < b and $f : [a, b] \to \mathbb{R}$. Let $\pi : a = x_0 < x_1 < \cdots < x_n = b$ be a partition of I. Then, the following quantities

$$V(\pi, f) := \sum_{k=1}^{n} |f(x_k) - f(x_{k-1})|$$

 and

$$V_f = V_a^b(f) := \sup_{\pi} V(\pi, f)$$

are called the *variation* of f with respect to π and the *total variation* of f on I, respectively.

If $V_f < +\infty$ on I, then f is said to be of bounded variation and we denote $f \in BV = BV(I)$.