Exercise Sheet 2 - Analysis II

(Homework solutions should be submitted at 08:00, before the class on 05.11.2018, N24-H12)
(Please submit only the exercises 1, 2a, 4a).

1. Let $a>0$ and $I:=[0,1+a] \subset \mathbb{R}$. Let $f: I \rightarrow \mathbb{R}$ be the function defined by

$$
f(x):= \begin{cases}a x & \text { for } 0 \leq x \leq 1 \\ a-(x-1) & \text { for } 1 \leq x \leq a+1\end{cases}
$$

For $k \in \mathbb{N}$, we devide the intervals $[0,1]$ und $[1, a+1]$ into k sub-intervals by the partition:
$\pi_{k}: 0=x_{0}<\frac{1}{k}=x_{1}<\ldots<\frac{k-1}{k}=x_{k-1}<1=x_{k}<1+1 \cdot \frac{a}{k}=x_{k+1}<\ldots<1+k \cdot \frac{a}{k}=x_{2 k}=1+a$.
Prove that f is Riemann integrable on I by calculating the upper and lower Riemann-Darboux sums $s\left(\pi_{k}, f\right)$ und $S\left(\pi_{k}, f\right)$. Determine the Riemann integral of f on I.
2. Let $a>1$. Calculate the following intergrals by making use of Riemann sum $\sigma(\pi, f)$:
(a) $\int_{1}^{a} \frac{1}{x} d x$
(b) $\int_{1}^{a} \log x d x$.

Hint: Choose the partition $\pi: 1=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=a$ with $x_{k}:=a^{k / n}$ and choose ξ_{k} in the k-th sub-interval as follows: $\xi_{k}=x_{k-1}$ für $k \in \mathbb{N}, 1 \leq k \leq n$.
3. Let $a<b$ and let $f:[a, b] \rightarrow \mathbb{R}$ be bounded, Riemann integrable on $[a, b]$ with $\int_{a}^{b} f(x) d x>0$. Prove that there exists an interval $[c, d] \subset(a, b)$, such that $f(x)>0$ for all $x \in[c, d]$. Hint: You can prove by contradiction. Consider the upper Riemann-Darboux integral of f on $[a, b]$ in order to get $s(\pi, f) \leq 0$ for some partition π.
4. Let $a<b$ and $I=[a, b]$ be a compact interval. Prove the following statements:
(a) If $f: I \rightarrow \mathbb{R}$ is Lipschitz continuous or monotone or continuously differentiable, then f is a function of bounded variation (a BV function).
Hint: Consider any partition $\pi: a=x_{0}<x_{1}<\ldots<x_{n}=b$ of I and prove that there is a constant $M \in \mathbb{R}$, such that $V(\pi, f) \leq M$ for every partition π.
(b) If f is a BV function, then f is bounded.
(c) The following function is continuous in $[0,1]$, but it is not a BV function:

$$
f(x):= \begin{cases}x \sin \frac{1}{x} & \text { for } x \neq 0 \\ 0 & \text { for } x=0\end{cases}
$$

- Please see the definition of a BV function on the next page!
- 4* in Exercise 3 means bonus points.

Definition 8.3.2 (Bounded Variation):

Let $a<b$ and $f:[a, b] \rightarrow \mathbb{R}$. Let $\pi: a=x_{0}<x_{1}<\cdots<x_{n}=b$ be a partition of I. Then, the following quantities

$$
V(\pi, f):=\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|
$$

and

$$
V_{f}=V_{a}^{b}(f):=\sup _{\pi} V(\pi, f)
$$

are called the variation of f with respect to π and the total variation of f on I, respectively. If $V_{f}<+\infty$ on I, then f is said to be of bounded variation and we denote $f \in B V=B V(I)$.

