Dr. Jonas Tölle Dr. Kim-Hang Le WS 2018/2019 Total point: 40

[8]

Exercise Sheet 1 – Analysis III

(Homework solutions will be handed in and discussed at 10:00, 29.10.18, O27-H20)

- 0. Please pay attention to the following points!
 - (a) Sign in in Moodle (moodle.uni-ulm.de) for this lecture.
 - (b) Submit the solutions individually before the exercise class (10:00-10:15).
 - (c) To obtain 50 % of the total points in the homework assignments is a precondition for participating in the final exam.
- 1. Let ϕ be a function given by

 $\phi: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \phi(x) := \begin{cases} e^{-\frac{1}{x}}, & x > 0, \\ 0, & x < 0. \end{cases}$

Show that $\phi \in \mathcal{C}^{\infty}(\mathbb{R})$. *Hint*: Prove by induction that for x > 0 and $k \geq 0$, the k^{th} derivative of ϕ is given by the formula $\phi^{(k)}(x) = P_k(\frac{1}{x}) e^{-\frac{1}{x}}$ where P_k is some polynomial.

- 2. Suppose $f: \mathbb{R}^k \to \mathbb{R}^n$ (k < n) is a C^r function $(r \ge 1)$ such that $\det \left(\frac{\partial f_i}{\partial x_j}(a)\right)_{i,j=1}^k \ne 0$. Let $\Pi: \mathbb{R}^n \to \mathbb{R}^k$ be the projection $\Pi(x,y) = x$, where $x \in \mathbb{R}^k$, $y \in \mathbb{R}^{n-k}$. [5+5]
 - (a) Prove that there exist open subsets U and V of \mathbb{R}^k and a C^r function $g:V\to U$ such that $a\in U$ and $(g\circ\Pi)(f(x))=x$ for all $x\in U$. $(G=g\circ\Pi)$ is called a "local left inverse" of f).

Hint: Use the inverse function theorem.

- (b) Give a "local left inverse" at x = 0 of the function $f : \mathbb{R} \to \mathbb{R}^2$ defined by $f(x) := (\cos x, \sin x)$.
- 3. Let $\alpha:[a,b]\to\mathbb{R}^n$, $\alpha(t)=(x_1(t),...,x_n(t))$, be a regular parametrized C^1 -curve (i.e. a continuously differentiable curve). The arc length of α is defined by: [3×4]

$$s(t) = \int_{a}^{t} \left| \alpha'(\tau) \right| d\tau$$

where $|\alpha'(\tau)| = \sqrt{(x_1'(\tau))^2 + ... + (x_n'(\tau))^2}$.

- (a) Show that $s:[a,b] \to [0,\mathcal{L}(\alpha)]$ is a C^1 -diffeomorphism.
- (b) Let γ be the reparametrization of α by arc length (i.e. $\gamma = \alpha \circ s^{-1}$). Prove that $|\gamma'(t)| = 1 \ \forall t \in [0, \mathcal{L}(\alpha)] \ (\gamma \text{ is called a unit speed curve}).$
- (c) Is the path $\alpha:[0,2]\to\mathbb{R}^3$ with $\alpha(t)=\left(t\sqrt{2},e^t,1-e^{-t}\right)$ regular? If so, determine the arc length s(t).
- 4. Consider the vector field $F: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $F(x,y) := \left(xy, \frac{2-2y^2}{1+x^2+y^2}\right)$ and two regular parametrized differentiable curves $\gamma_1: [-1,1] \to \mathbb{R}^2$ and $\gamma_2: [0,\pi] \to \mathbb{R}^2$ defined by $\gamma_1(t) = (0,t), \gamma_2(t) = (\sin t, \cos t)$. Calculate $\int_{\gamma_1} F(u) \cdot d\overrightarrow{u}$ and $\int_{\gamma_2} F(u) \cdot d\overrightarrow{u}$. [5+5]