Exercise Sheet 2 – Analysis III

(Homework solutions will be handed in and discussed at 10:00-12:00, 12.11.18, O27-H20)

1. Consider the vector field \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) given by

\[
(f_1(x, y), f_2(x, y)) = (e^{xy} + xye^{xy}, x^2 e^{xy} - 2y)
\]

(a) Prove that this vector field admits a potential.

(b) Determine this potential \(F \).

Hint: From the relation \(\frac{\partial F}{\partial x}(x, y) = f_1(x, y) \), we can determine the function \(h : \mathbb{R}^2 \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) such that \(F(x, y) = h(x, y) + g(y) \).

(c) Calculate the line integral \(\int_{\gamma} f(u) \cdot d\vec{u} \) where the curve \(\gamma : [0, 1] \rightarrow \mathbb{R}^2 \) given by \(\gamma(t) := (t, 1-t^2) \).

2. (a*) Prove that every convex subset of \(\mathbb{R}^n \) is simply connected. [3*]

(b) Let \((X_1, d_1)\) and \((X_2, d_2)\) be metric spaces and \(g : X_1 \rightarrow X_2 \) a homeomorphism, i.e. \(g \) is a continuous bijection whose inverse is also continuous. Prove that if \(A \subseteq X_1 \) is simply connected, then \(g(A) \) is simply connected. [5]

(c) Apply (a) and (b) to prove that:

for \(0 < r < R \), the set \(\{ x \in \mathbb{R}^2 : r < |x| < R \} \) \(\backslash \{ (0, x_2) \in \mathbb{R}^2 : x_2 \leq 0 \} \) is simply connected.

3. For \(f, h \in C(\mathbb{R}^n) \) and \(g \in C_0(\mathbb{R}^n) \), i.e. \(g \) is a continuous function with compact support. Remind that the convolution of \(f \) with \(g \) is defined by:

\[
(f * g)(x) := \int_{\mathbb{R}^n} f(x - y) g(y) dy.
\]

Show the following properties:

(a) \(f * g \) is continuous. [5]

(b) \(f * g = g * f \) and \((f + h) * g = f * g + h * g \). [5]

(c) if \(f \in C^k(\mathbb{R}^n) \), \(0 \leq k \leq \infty \), then we have \(f * g \in C^k(\mathbb{R}^n) \) and for every \(|\alpha| \leq k \), \(D^\alpha(\varphi_\varepsilon * f) \rightarrow D^\alpha f \) uniformly on every compact subset of \(\mathbb{R}^n \) as \(\varepsilon \rightarrow 0 \),

where the family of functions \(\{ \varphi_\varepsilon, \varepsilon > 0 \} \) is a mollifier, i.e. \(\varphi_\varepsilon(x) := \varepsilon^{-n}\varphi(x/\varepsilon) \) with \(\varphi \in C^\infty_0(\mathbb{R}^n) \) satisfying: \(\varphi \geq 0 \) on \(\mathbb{R}^n \), \(\text{supp}(\varphi) \subseteq \overline{B_1}(0) \) and \(\int_{\mathbb{R}^n} \varphi dx = 1 \).

(d) Is there a suitable condition on \(f \in C(\mathbb{R}^n) \) s.t. \(\varphi_\varepsilon * f \rightarrow f \) uniformly on \(\mathbb{R}^n \)? [3*]