

Exercise Sheet 2 – Analysis III

(Homework solutions will be handed in and discussed at 10:00-12:00, 12.11.18, O27-H20)

1. Consider the vector field $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$f(x,y) := (f_1(x,y), f_2(x,y)) = (e^{xy} + xye^{xy}, x^2e^{xy} - 2y)$$

- (a) Prove that this vector field admits a potential.
- (b) Determine this potential F. *Hint*: From the relation $\frac{\partial F}{\partial x}(x, y) = f_1(x, y)$, we can determine the function h: $\mathbb{R}^2 \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ such that F(x, y) = h(x, y) + g(y).
- (c) Calculate the line integral $\int_{\gamma} f(u) \cdot d\vec{u}$ where the curve $\gamma : [0,1] \to \mathbb{R}^2$ given by $\gamma(t) := (t, 1 t^2).$
- 2. (a*) Prove that every convex subset of \mathbb{R}^n is simply connected.
 - (b) Let (X₁, d₁) and (X₂, d₂) be metric spaces and g : X₁ → X₂ a homeomorphism, i.e. g is a continuous bijection whose inverse is also continuous. Prove that if A ⊆ X₁ is simply connected, then g (A) is simply connected.
 - (c) Apply (a) and (b) to prove that: for 0 < r < R, the set $\{x \in \mathbb{R}^2 : r < |x| < R\} \setminus \{(0, x_2) \in \mathbb{R}^2 : x_2 \le 0\}$ is simply connected.

$$f * g : \mathbb{R}^n \to \mathbb{R}$$
 mit $(f * g)(x) := \int_{\mathbb{R}^n} f(x - y) g(y) dy.$

Show the following properties:

- (a) f * g is continuous.
- (b) f * g = g * f and (f + h) * g = f * g + h * g.
- (c) if $f \in C^k(\mathbb{R}^n)$, $0 \le k \le \infty$, then we have $f * g \in C^k(\mathbb{R}^n)$ and for every $|\alpha| \le k$, [5]
 - $D^{\alpha}(\varphi_{\varepsilon} * f) \longrightarrow D^{\alpha}f$ uniformly on every compact subset of \mathbb{R}^{n} as $\varepsilon \to 0$,

where the family of functions $\{\varphi_{\varepsilon}, \varepsilon > 0\}$ is a mollifier, i.e. $\varphi_{\varepsilon}(x) := \varepsilon^{-n}\varphi(x/\varepsilon)$ with $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ satisfying: $\varphi \ge 0$ on \mathbb{R}^n , $\operatorname{supp}(\varphi) \subset \overline{B_1(0)}$ and $\int_{\mathbb{R}^n} \varphi dx = 1$.

(d) Is there a suitable condition on $f \in C(\mathbb{R}^n)$ s.t. $\varphi_{\varepsilon} * f \longrightarrow f$ uniformly on \mathbb{R}^n ? [3*]

[3x5]

 $[3^*]$

5

[5]

[5]

X1