

Exercise Sheet 3 – Analysis III

((Homework solutions will be handed in and discussed at 10:00, 26.11.18, O27-H20)

1. (a) (Polar coordinate transformation) Let $U := B_R(0) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < R^2\}$, for R > 0 or $R = +\infty$, and let $f \in C^0(U)$ with $\iint_U |f(x, y)| \, dx \, dy < +\infty$. Use the transformation rule (Theorem A.4.2 in the appendix) to prove that [5]

$$\iint_{U} f(x,y) \, dx \, dy = \int_{-\pi}^{\pi} \int_{0}^{R} f(r \cos \varphi, r \sin \varphi) \, r \, dr \, d\varphi.$$

(b) Use the formula in Part (a) to prove that $\int_{\mathbb{R}^n} \varphi(x) dx = 1$, where the function φ is given by [5]

$$\varphi\left(x\right) := \frac{1}{\left(\sqrt{2\pi}\right)^{n}} e^{-\frac{|x|^{2}}{2}}$$

2. Let $U := B_R(0) = \{x \in \mathbb{R}^n : |x| < R\}$, for R > 0 or $R = +\infty$, and let $f \in C^0(U)$ with $\int_U |f(x)| \, dx < +\infty$. Write $x = (x_1, ..., x_n) \in \mathbb{R}^n$ as follows: $x = r\xi$ where r = |x| and $\xi = \frac{x}{|x|} = (\xi_1, ..., \xi_{n-1}, \xi_n)$ with $\xi_n = \pm \sqrt{1 - \sum_{j=1}^{n-1} \xi_j^2}$. Prove that [10]

$$\int_U f(x)dx = \int_0^R r^{n-1} \int_{\mathbb{S}^{n-1}} f(r\xi)dS_\xi dr,$$

where $\mathbb{S}^{n-1} := \partial B_1(0) = \{x \in \mathbb{R}^n : |x| = 1\}$ and the integral of a function $g \in C^0(\mathbb{S}^{n-1})$ on the sphere \mathbb{S}^{n-1} is defined by :

$$\int_{\mathbb{S}^{n-1}} g\left(\xi\right) dS_{\xi} = \int_{|\xi'| < 1} \frac{g\left(\xi', \sqrt{1 - |\xi'|^2}\right) + g\left(\xi', -\sqrt{1 - |\xi'|^2}\right)}{\sqrt{1 - |\xi'|^2}} d\xi',$$

where $\xi' = (\xi_1, ..., \xi_{n-1}) \in \mathbb{R}^{n-1}$ (the general definition of the surface integral will be given later). *Hint:* Apply the transformation rule by considering

$$I = \left\{ (\xi', r) \in \mathbb{R}^n \left| 0 < r < R, \ \xi' = (\xi_1, \dots, \xi_{n-1}) \in \mathbb{R}^{n-1}, \ \left| \xi' \right|^2 = \sum_{j=1}^{n-1} \xi_j^2 < 1 \right\},\$$

and maps $T^{\pm} = x^{\pm} : I \to U_R^{\pm} := \{x = (x_1, \dots, x_n) \in U_R | x_n \ge 0\}$ defined by

$$\begin{cases} x_j^{\pm}(\xi', r) := r\xi_j, & \text{for } j = 1, \dots, n-1, \\ x_n^{\pm}(\xi', r) := \pm r\sqrt{1 - |\xi'|^2}. \end{cases}$$

- 3. Prove that
 - (a) if $M \subset \mathbb{R}^n$ is open, then M is an n-dimensional C^{∞} submanifold of \mathbb{R}^n .
 - (b) $M = \{(3x, -x^2), x \in \mathbb{R}\}$ is a 1-dimensional C^{∞} submanifold of \mathbb{R}^2 .
 - (c) $M = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$ is not an 1-dimensional submanifold of \mathbb{R}^2 .
 - (d) if $M = M_1 \times M_2$ where M_i is a k_i -dimensional submanifold of \mathbb{R}^{n_i} , for i = 1, 2, then M is $(k_1 + k_2)$ -dimensional submanifold of \mathbb{R}^n with $n = n_1 + n_2$.
 - (e) The set $SL(n,\mathbb{R}) := \left\{ A \in M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^2} : \det A = 1 \right\}$ is a $(n^2 1)$ -dimensional C^{∞} submanifold of \mathbb{R}^{n^2} .

 $[5 \times 4]$