

Exercise Sheet 4 – Analysis III

(Homework solutions will be handed in and discussed at 10:00, 10.12.18, O27-H20)

1. Let us denote $E_m \in \mathbb{R}^n$ the *m*-dimensional plane:

$$E_m := \{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_{m+1} = \dots = x_n = 0 \}.$$

Prove that: A non-empty subset $M \subset \mathbb{R}^n$ is an *m*-dimensional submanifold of class C^l if and only if for every $x_0 \in M$ there exists an open neighborhood $U \subset \mathbb{R}^n$ of x_0 , an open set $V \subset \mathbb{R}^n$ and a C^l -diffeomorphism $F: U \to V$ such that $F(M \cap U) = E_m \cap V$.

2. Let
$$M = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1^2 + x_2^2 - x_3^2 - x_4^2 = 0 \text{ and } x_1^2 + x_2^2 + x_3^2 + x_4^2 = 4\}.$$
 [6+6]

- (a) Prove that M is a 2-dimensional submanifold of \mathbb{R}^4 .
- (b) Prove that there exists a smooth function $g : \mathbb{R}^2 \to \mathbb{R}^2$ such that g(1,-1) = (1,-1)and $(g_1(x_2,x_3), x_2, x_3, g_2(x_2,x_3)) \subset M$ for (x_2,x_3) sufficiently close to the point (1,-1). Calculate Dg(1,-1). *Hint*: Use the implicit function theorem.
- 3. Let \mathbb{S}^n be a unit sphere in \mathbb{R}^{n+1} .
 - (a) Prove that \mathbb{S}^n is an *n*-dimensional C^{∞} -submanifold of \mathbb{R}^{n+1} .
 - (b) Let N, S be the north and resp. south poles of S^n , i.e. N = (0, ..., 0, 1), S = (0, ..., 0, -1). Consider the map π_N , called the stereographic projection from the north pole N, defined by

$$\pi_N: \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$$

which maps the point $P \in \mathbb{S}^n \setminus \{N\}$ to the intersection of the line NP with the hyperplane $\{x \in \mathbb{R}^{n+1} : x_{n+1} = 0\} \cong \mathbb{R}^n$. The stereographic projection π_S from S is defined similarly. Determine $\pi_N(x)$ for $x \in \mathbb{S}^n \setminus \{N\}$ and $\pi_S(x)$ for $x \in \mathbb{S}^n \setminus \{S\}$.

(c) Show that π_N , π_S are bijective and the inverse maps π_N^{-1} , π_S^{-1} are C^{∞} -smooth charts (parameterisations) of the submanifold \mathbb{S}^n .

[10]

[4+8+6]