

ulm university universität

Kinetic maximal L^p-regularity

and applications to quasilinear kinetic equations

Lukas Niebel, joint work with Rico Zacher

Institute of Applied Analysis

Kolmogorov equation

Interested in solutions u = u(t, x, v): $[0, T] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ of

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = -(-\Delta_v)^{\beta/2} u + f \\ u(0) = g. \end{cases}$$
(1)

with data f, g and $\beta \in (0, 2]$. Key points:

- Studied first by Kolmogorov in 1934 ($\beta = 2$).
- The transport operator $\partial_t + v \cdot \nabla_x$ is called kinetic term.
- Degenerate as the Laplacian acts in half of the variables.
- Unbounded coefficient in front of the lower order term.
- Prototype for the Boltzmann equation.

Motivation - Particle Physics

Particles at position x with velocity v. We describe the movement of the particles with the SDE

 $\begin{cases} \mathrm{d}X(t) = V(t)\mathrm{d}t\\ \mathrm{d}V(t) = \mathrm{d}W(t), \end{cases}$

where $(W(t))_{t\geq 0}$ is the Wiener process. \rightsquigarrow Kolmogorov equation with $\beta = 2$.

The Boltzmann equation models the particle collision, i.e. the change of velocity, more precisely.

Boltzmann equation

The Boltzmann equation can be written as

$$\partial_t u + \mathbf{v} \cdot \nabla_x u = Q(u, u) + \text{l.o.t.},$$

where

$$Q(u,g) = \text{p.v.} \int_{\mathbb{R}^n} \frac{u(t,x,v+h) - u(t,x,v)}{|h|^{n+\beta}} m(g)(t,x,v,h) \mathrm{d}h$$

with

$$m(g)(t, x, v, h) = \int_{w\perp h} g(t, x, v + w) |w|^{\gamma+\beta+1} \,\mathrm{d}w$$

and $\beta \in (0, 2)$, $\gamma > -n$ depend on physical assumptions. For fixed g the operator Q(u, g) is the fractional Laplacian in velocity with variable density.

Maximal regularity

Let us consider a PDE of the form

$$\begin{cases} \partial_t u = Au + f, t > 0\\ u(0) = g, \end{cases}$$

where A is an operator on a Banach space B and u a function of time with values in B.

General Principle:

Find a function space Z for the solution u, a function space X for the inhomogeneity f and a function space X_{γ} for the initial value g such that the equation admits a unique solution $u \in Z$ if and only if $f \in X$ and $g \in X_{\gamma}$.

Here: Maximal L^{p} -regularity, i.e. $X = L^{p}(B)$ for some base space B.

Maximal L^p-regularity

Example - Heat equation

For all $p \in (1,\infty)$ the heat equation

$$\begin{cases} \partial_t u = \Delta u + t \\ u(0) = g \end{cases}$$

admits a unique solution

 $u \in Z = H^{1,p}((0,\infty); L^p(\mathbb{R}^n)) \cap L^p((0,\infty); H^{2,p}(\mathbb{R}^n))$ if and only if

- $f \in X = L^{p}((0, \infty); L^{p}(\mathbb{R}^{n})),$ - $g \in X_{\gamma} = B_{pp}^{2(1-1/p)}(\mathbb{R}^{n})$ (Besov space). Moreover, $u \in C([0, \infty); B_{pp}^{2(1-1/p)}(\mathbb{R}^{n})).$

Towards kinetic maximal regularity *Which is the right choice for the solution space Z?*

For simplicity $\beta = 2$, every result presented here holds true for $\beta \in (0, 2)$.

We choose $X = L^{p}(\mathbb{R}; L^{p}(\mathbb{R}^{2n}))$. Singular integral theory on homogeneous groups developed by Folland and Stein in 1974 allows to prove the following. If $f \in L^{p}(\mathbb{R}; L^{p}(\mathbb{R}^{2n}))$, then the solution *u* of the Kolmogorov equation satisfies

$$\left\|\partial_t u + v \cdot \nabla_x u\right\|_p + \left\|\Delta_v u\right\|_p \lesssim \left\|f\right\|_p.$$

No control of the time-derivative. We prove classical maximal L^p -regularity is not applicable. Our choice of function space for the solution is:

 $\overline{Z} = \{ u: \overline{u, \Delta_v u, \partial_t u + v \cdot \nabla_x u} \in L^p((0, T); L^p(\mathbb{R}^{2n})) \}.$

Singular integrals on homogeneous groups

Three important underlying structures of the Kolmogorov equation, $\mathcal{K}(u) = \partial_t u + v \cdot \nabla_x u - \Delta_v u$.

- Scaling: For $\delta_{\lambda} u = u(\lambda^2 t, \lambda^3 x, \lambda v)$ we have $\mathcal{K}(\delta_{\lambda} u) = \delta_{\lambda} \mathcal{K}(u)$.
- Translation For $z_0 = (t_0, x_0, v_0), (t, x, v) \in \mathbb{R}^n$ we define

 $(t, x, v) \circ (t_0, x_0, v_0) = (t + t_0, x + x_0 + tv_0, v + v_0).$

Then, $\mathcal{K}(u((t, x, v) \circ z_0)) = \mathcal{K}(u)((t, x, v) \circ z_0)).$

- Fundamental solution: There exists a $\gamma \in C^{\infty}(\mathbb{R}^{2n+1} \setminus \{0\})$ such that

$$u = \int_{\mathbb{R}^{2n+1}} \gamma(z^{-1} \circ x) f(z) \mathrm{d}z$$

solves $\mathcal{K}u = f$ for suitable f. The pair (\mathbb{R}^{2n+1} , \circ) defines a homogeneous group. \rightsquigarrow CZO theory $_{7/27}$

Towards kinetic maximal regularity *Divide and conquer*

We can split the characterization of solutions in Z in two separate problems.

Inhomogeneous eq. with zero intial-value X

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \Delta_v u + f \\ u(0) = 0 \end{cases}$$

Classical Method: *L^p*-estimates, singular integrals,... Done, Folland/Stein. Homogeneous eq. with non-zero intial-value X_{γ}

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \Delta_v u \\ u(0) = g \end{cases}$$

Classical Method: Studying the trace space of *Z*.

TODO!

Towards kinetic maximal regularity *The trace space of Z - 1*

Does a function $u \in Z$ admit a trace? Yes!

Sketch of the proof

Define

 $[\Gamma u](t, x, v) = u(t, x + tv, v)$ and $[\Gamma(t)w](x, v) = w(x + tv, v)$ on functions $u: [0, T] \times \mathbb{R}^{2n} \to \mathbb{R}$ and $w: \mathbb{R}^{2n} \to \mathbb{R}$. Then, $\partial_t \Gamma u = \Gamma(\partial_t u + v \cdot \nabla_x u).$ If $u \in Z$, then $\Gamma u \in H^{1,p}((0, T); L^p(\mathbb{R}^{2n}))$, whence $\Gamma u \in C([0, T]; L^p(\mathbb{R}^{2n})).$ As $(\Gamma(t))_{t \in \mathbb{R}}$ is a C_0 -group, it follows $u = \Gamma^{-1}(t)\Gamma(t)u \in C([0, T]; L^{p}(\mathbb{R}^{2n})).$

Consequently, $\operatorname{Tr}(Z)$ well-defined and $Z \hookrightarrow C([0, T]; \operatorname{Tr}(Z))$.

Towards kinetic maximal regularity *The trace space of Z - 2*

The trace space of Z cannot be characterized by classical interpolation theory. Recalling the heat equation we expect atleast

$$\operatorname{Tr}(Z) \hookrightarrow B^{2(1-1/p)}_{\rho p, v}(\mathbb{R}^{2n}).$$

Is there any control of regularity in x? Yes!

Towards kinetic maximal regularity *The phenomenon of regularity transfer from v to x.*

Theorem (Bouchut 2002)

Let $u \in L^{p}((0, T); L^{p}(\mathbb{R}^{2n}))$ with $\partial_{t}u + v \cdot \nabla_{x}u \in L^{p}((0, T); L^{p}(\mathbb{R}^{2n}))$ and $u \in L^{p}((0, T); H^{2,p}_{v}(\mathbb{R}^{2n}))$, then $u \in L^{p}((0, T); H^{2/3,p}_{x}(\mathbb{R}^{2n})).$

In words: If u is the solution of a kinetic equation and u has two derivatives in velocity we obtain 2/3 of a derivative in space, too. Very useful and powerful result! It is proven by Fourier analytic methods. For p = 2 one can see how the characteristics (i.e. Γ) transfer the regularity.

Towards kinetic maximal regularity *The initial value problem - 1*

Consequently:

$$Z = Z \cap L^{p}((0, T); H^{2/3,p}_{x}(\mathbb{R}^{2n})).$$

Similar to Bouchut we also get some regularity in x for the trace space.

Theorem (N., Zacher, 2020) Let $p \in (1, \infty)$, then $\operatorname{Tr}(Z) \cong B_{pp,x}^{2/3(1-1/p)}(\mathbb{R}^{2n}) \cap B_{pp,v}^{2(1-1/p)}(\mathbb{R}^{2n})$

An anisotropic Besov spaces with a kinetic scaling.

Towards kinetic maximal regularity *The initial value problem*

Proof - Part 1/3

We prove that the inclusion mapping

$$\iota \colon \mathrm{Tr}\,(\mathbb{E}_{\mu}(0,\,T)) \to B^{2/3(1-1/p)}_{pp,x}(\mathbb{R}^{2n}) \cap B^{2(1-1/p)}_{pp,v}(\mathbb{R}^{2n})$$

is a well-defined linear, bounded and surjective operator. It follows that ι defines an isomorphism.

Towards kinetic maximal regularity *The initial value problem*

Proof - Part 2/3

The norm of the kinetic Besov space can be equivalently characterized by

$$\left\|\varphi_0 \ast g\right\|_{\rho} + \left(\int_0^1 \left(\frac{\left\|\varphi_t \ast g\right\|_{\rho}}{t^{1-1/\rho}}\right)^{\rho} \frac{\mathrm{d}t}{t}\right)^{\frac{1}{\rho}},$$

where $\varphi_t(x, v) = t^{-2n}\varphi(t^{-3/2}x, t^{-1/2}v)$ for a suitable function φ whose Fourier transform admits compact support in an ellipsoid and is positive in its interior.

We choose φ related to the fundamental solution of the Kolmogorov equation. Let $g \in \text{Tr}(Z)$ then w.l.o.g. we may choose $u \in Z$ is a solution of the Kolmogorov equation with u(0) = g. It follows that ι is bounded.

14/27

Towards kinetic maximal regularity *The initial value problem*

Proof - Part 3/3

Regarding the surjectivity of ι let g be an element of the kinetic Besov space. In Fourier variables (ξ for v and k for x) the solution of the Kolmogorov equation is given by

$$\hat{u}(t,k,\xi) = \hat{g}(k,\xi+tk) \exp\left(-\left|\xi\right|^2 t - \xi \cdot kt^2 - \left|k\right|^2 \frac{t^3}{3}\right).$$

Using the Littlewood-Paley decomposition of u we can directly show that $\Delta_v u \in L^p((0, T); L^p(\mathbb{R}^{2n}))$, i.e. $u \in Z$, under the assumption that $B_{pp,x}^{2/3(1-1/p)}(\mathbb{R}^{2n}) \cap B_{pp,v}^{2(1-1/p)}(\mathbb{R}^{2n})$.

Kinetic maximal L^p-regularity for the (fractional) Kolmogorov equation

Theorem (N., Zacher, 2020)

Let
$$T \in (0, \infty)$$
. For all $p \in (1, \infty)$ the Kolmogorov equation
$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \Delta_v u + f \\ u(0) = g \end{cases}$$

admits a unique solution $u \in Z$ if and only if

$$\begin{array}{l} - \ f \in X = L^p((0, \, T); \, L^p(\mathbb{R}^n)), \\ - \ g \in X_\gamma = B^{2/3(1-1/p)}_{pp, \chi}(\mathbb{R}^{2n}) \cap B^{2(1-1/p)}_{pp, \nu}(\mathbb{R}^{2n}). \\ \text{Areover, } u \in C([0, \, T]; X_\gamma). \end{array}$$

We say the operator $A = \Delta_v$ admits kinetic maximal L^p -regularity.

Extensions *Change of base space*

So far we have only considered the base space $X = L^p(\mathbb{R}^{2n})$.

- We also consider the case $X = L^q(\mathbb{R}^{2n})$ for some $q \in (1, \infty)$ different from p and prove kinetic maximal $L^p(L^q)$ -regularity.

Extensions From $L^{p}(L^{p})$ to $L^{p}(L^{q})$

The operator $f \mapsto \Delta_v u$ is bounded in $L^p((0, T); L^p(\mathbb{R}^{2n}))$. In Fourier variables it can be written as

$$\hat{f} \mapsto |\xi|^2 \int_0^t \exp\left(-|\xi|^2 s - \xi \cdot ks^2 - |k|^2 \frac{s^3}{3}\right) \hat{f}(t-s,k,\xi+sk) \mathrm{d}s$$

Calderón-Zygmund theory for operator valued problems yields the $L^p(L^q)$ -boundedness. This idea is inspired by the same result for the maximal regularity of non-autonomous PDE. Note that if u is a solution of the Kolmogorov equation, then $w = \Gamma u$ solves the non-autonomous degenerate PDE

$$\partial_t w = (\nabla_v - t \nabla_x) \cdot (\nabla_v - t \nabla_x) w.$$

Extensions *Change of base space*

So far we have only considered the base space $X = L^p(\mathbb{R}^{2n})$.

- We also consider the case $X = L^q(\mathbb{R}^{2n})$ for some $q \in (1, \infty)$ different from p and prove kinetic maximal $L^p(L^q)$ -regularity.
- For $p \in (1, \infty)$, q = 2 we characterize the regularity of weak solutions to the fractional Kolmogorov equation. Here, we again use the solution formula and the availability of the theorem of Plancherel for the x and v variables as q = 2.

Extensions *Temporal weights*

Instead of $L^{p}((0, T); X)$ we consider a Lebesgue space with temporal weight of the form $t^{1-\mu}$ for some $\mu \in (1/p, 1]$ defined as

$$L^p_{\mu}((0, T); X) = \{ u \colon (0, T) \to X \colon \int_0^T t^{p-p\mu} \| u(t) \|_X^p \, \mathrm{d}t < \infty \}.$$

We write Z_{μ} for Z with temporal weight in the L^p-spaces. Key features:

- Kin. max. L^{p} -reg. \iff Kin. max. L^{p}_{μ} -reg. for any $\mu \in (1/p, 1]$
- The trace space of Z_{μ} is given by $\operatorname{Tr}(Z_{\mu}) = X_{\gamma,\mu} = B_{\rho\rho,x}^{2/3(\mu-1/\rho)}(\mathbb{R}^{2n}) \cap B_{\rho\rho,y}^{2(\mu-1/\rho)}(\mathbb{R}^{2n}).$
- Instantaneous regularization $Z_{\mu}(0, T) \hookrightarrow Z(\delta, T) \hookrightarrow C([\delta, T]; X_{\gamma,1})$ for all $\delta > 0$.

Extensions Kinetic maximal $L^{p}_{\mu}(L^{q})$ -regularity

Theorem (N., Zacher, 2020)

Let $T \in (0,\infty)$. For all $p,q \in (1,\infty)$ and any $\mu \in (1/p,1]$ the Kolmogorov equation

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \Delta_v u + f \\ u(0) = g \end{cases}$$

admits a unique solution

$$u \in Z_{\mu} = \{u: u, \Delta_{v}u, \partial_{t}u + v \cdot \nabla_{x}u \in L^{p}_{\mu}((0, T); L^{q}(\mathbb{R}^{2n}))\}.$$

if and only if

$$\begin{array}{l} - \ f \in X = L^p_{\mu}((0, \, T); \, L^q(\mathbb{R}^n)), \\ - \ g \in X_{\gamma, \mu} = B^{2/3(\mu - 1/p)}_{qp, x}(\mathbb{R}^{2n}) \cap B^{2(\mu - 1/p)}_{qp, v}(\mathbb{R}^{2n}). \end{array}$$

Moreover, $u \in C([0, \, T]; X_{\gamma, \mu}).$

Extensions Different Operators

Question: Do other operators admit kinetic maximal L^{p} -regularity? Yes.

Examples:

$$-Au = a(t, x, v) \colon \nabla_v^2 u + b \cdot \nabla_v u + cu$$

$$Au = -(-\Delta_{v})^{rac{eta}{2}}u$$
 with $eta \in (0,2)$.

 non-local integro-differential operators acting in velocity with possibly time, space and velocity dependent density of the form

$$Au = \text{p.v.} \int_{\mathbb{R}^n} \frac{u(t, x, v+h) - u(t, x, v)}{|h|^{n+\beta}} m(t, x, v, h) \mathrm{d}h$$

Extensions Different Operators

Theorem (N., Zacher, 2020)

Let $p, q \in (1, \infty)$, $\mu \in (1/p, 1]$, $a \in L^{\infty}([0, T] \times \mathbb{R}^{2n}; \operatorname{Sym}(n))$, $b \in L^{\infty}([0, T] \times \mathbb{R}^{2n}; \mathbb{R}^n)$ and $c \in L^{\infty}([0, T] \times \mathbb{R}^{2n}; \mathbb{R})$. If $a \ge \lambda \operatorname{Id}$ for some $\lambda > 0$ and if the function $(t, x, v) \mapsto a(t, x + tv, v)$ is uniformly continuous, then the family of operators

$$A(t)u = a(t, \cdot) \colon \nabla_v^2 u + b(t, \cdot) \cdot \nabla_v u + c(t, \cdot)u$$

admits kinetic maximal $L^{p}_{\mu}(L^{q})$ -regularity.

Quasilinear kinetic diffusion problem *Short-time existence*

We prove short-time existence of strong L^{p}_{μ} -solutions to the following quasilinear kinetic diffusion equation

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \nabla_v \cdot (a(u) \nabla_v u) \\ u(0) = g \end{cases}$$

for $a \in C_b^2(\mathbb{R}; \operatorname{Sym}(n))$ with $a \ge \lambda Id$ for some $\lambda > 0$, $\mu - 1/p > 2n/p$ and $g \in X_{\gamma,\mu}$.

Method: Freeze the equation at the initial value and use kinetic maximal L^p -regularity for the frozen equation. Here, we need the kinetic maximal regularity of $A = a(g(x, v)): \nabla_v^2 u$.

Quasilinear kinetic diffusion problem *Short-time existence*

Another interesting quasilinear Problem is

$$\begin{cases} \partial_t u + v \cdot \nabla_x u = \left(\int_{\mathbb{R}^n} u \mu \mathrm{d} v \right) \Delta_v u \\ u(0) = g \end{cases}$$

with $\mu \in L^1(\mathbb{R}^n)$.

The more particles there are at a position x the more diffusion there is. If $\mu - 1/p > 2n/p$ and $g \in X_{\gamma,\mu}$ we can show the existence of a strong L^p_{μ} -solution for a possibly short time.

Models of this type are an important step towards more complicated equations such as the Landau and the Boltzmann equation.

Further research

Possible directions:

- weak L^p-solutions
- study quasilinear kinetic problems from physics/economics/biology
- qualitative study of quasilinear problems such as large time behavior
- conditions on the operator A such that it admits kinetic maximal L^p-regularity
- different first order terms, for example $\partial_t + \langle x, B\nabla \rangle$ or the relativistic kinetic term $\partial_t + \frac{v}{\sqrt{1+|v|^2}}\nabla_x$

Bibliography

- [1] F. Bouchut, *Hypoelliptic regularity in kinetic equations*, JMPA, 2002.
- [2] G. B. Folland and E. M. Stein, *Estimates for the* $\bar{\partial}_b$ *Complex and Analysis on the Heisenberg group*, Comm. on Pure and Appl. Math., 1974.
- [3] L. Huang, S. Menozzi, E. Priola, *L^p-estimates for degenerate* non-local Kolmogorov operators, JMPA, 2019
- [4] L. N., R. Zacher, Kinetic maximal L²-regularity for the (fractional) Kolmogorv equation. arXiv, 2020.
- [5] L. N., R. Zacher, Kinetic maximal L^p-regularity with temporal weights and application to quasilinear kinetic diffusion equations. arXiv, 2020.
- [6] L. N., Kinetic maximal $L^{p}_{\mu}(L^{p})$ -regularity for the fractional Kolmogorov equation with variable density, arXiv 2021.