Cheat Sheet

Der Laplace-Operator

\[\Delta u = \sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} \]

u heißt auf \(\Omega \) harmonisch, falls
\(u \in C^2(\Omega) \) und \(\Delta u = 0 \) auf \(\Omega \).

Green's Identitäten

\[\Delta = \text{div}(\text{grad} u) \]

\(u \in C^2(\Omega), v \in C^2(\Omega) \) \(\Omega \) \(C^1 \)-glatt bezeichnet

(1) \[\int_{\Omega} \Delta u \, dv = \int_{\Omega} \frac{\partial u}{\partial n} \, dv - \int_{\Omega} u \Delta v \, dv \]

(2) \[\int_{\Omega} (\Delta u v - \Delta v u) \, dv = \int_{\Omega} (\frac{\partial u}{\partial n} v - \frac{\partial v}{\partial n} u) \, dv \]

Weyl's Lemma

\(u \in C^1(\Omega) : \forall \phi \in C^0(\Omega) \)

\[\int_{\Omega} \Delta \phi \, dv = 0 \]

\(\Rightarrow u \in C^\infty(\Omega) \) und \(\Delta u = 0 \)

Dirichlet-Problem

(1) \(\text{Klassisch} \):

\(\begin{cases} \Delta u = 0 \\ u|_{\partial \Omega} = g \end{cases} \)

\(u \in C^2(\Omega), g \in C(\partial \Omega) \)

\(\text{Mittelwert-Eigenschaft}, \Delta u = 0 \) auf \(\Omega \)

\(\Rightarrow u(x) = \frac{1}{|\partial \Omega|} \int_{\partial \Omega} u(y) \, ds(y) \)

\(\forall x : \exists r > 0 : B_r(x) \subseteq \Omega \)
(2) \(u \in H^1(\Omega) \)
\[
\sum_{i=1}^n \int_{\Omega} \nabla u_i \nabla v_i \, dx = 0 \quad \forall \, v \in \mathcal{C}_0^0(\Omega).
\]
\[
(u - g) \in W^{1,2}(\Omega).
\]

\[\Rightarrow\] Weyl's Lemma: Jede schwache Lösung ist \(C^0(\Omega) \)
aber nicht jede schwache Lösung ist \(C^2(\Omega) \).

Satz 6.74 Arnold, Urban

Äquivalent

(i) In jedem \(g \in C(\partial \Omega) \) gibt es eine wasserrige Lösung
\(u \in C^2(\Omega) \cap C(\overline{\Omega}) \)

(ii) In jedem Punkt \(z \in \partial \Omega \) gibt es \(r > 0 \) und
\(b \in C(\overline{\Omega} \cap B_r(z)) \):
- \(\forall \, \phi \in \mathcal{C}^0(\Omega \cap B_r(z)) \)
\[
\int_{\partial \Omega} b(x) \, \Delta \phi(x) \, dx = 0
\]
- \(b(x) > 0 \quad \forall \, x \in \overline{\Omega \cup B_r(z)} \)
- \(b(\partial \Omega) = 0 \)