Übungen Elemente der Funktionentheorie: Blatt 4

23. (a) Show that $f(z)=\bar{z}$ is nowhere complex differentiable.
(b) Determine all the points $z \in \mathbb{C}$ such that $f(z)=z^{3}+|z|^{2}$ is complex differentiable
24. Let $D \subset \mathbb{C}$ be an open set and $f: \mathbb{D} \rightarrow \mathbb{C}$ holomorphic on D. Define for (x, y) satisfying $x+i y \in D$ $u(x, y)=\operatorname{Re}(f(x+i y))$ and $v(x, y)=\operatorname{Im}(f(x+i y))$.
(a) If u and v are twice continuously partially differentable on D, then the identity $u_{x x}+u_{y y}=0$ is satisfies. Functions that satisfy this identity are called harmonic.
(b) For the sake of simplicity we will assume in this exercise that $D=\mathbb{C}$. Define $g(r, \theta):=u\left(r e^{i \theta}\right)$ and $h(r, \theta)=v\left(r e^{i \theta}\right)$ for $r>0$ and $\theta \in \mathbb{R}$. Show that the following version of the Cauchy-Riemann-equation holds:

$$
\begin{equation*}
g_{r}=\frac{1}{r} h_{\theta}, \quad h_{r}=-\frac{1}{r} g_{\theta} \tag{3}
\end{equation*}
$$

(c) Let $G \subset D$ be a domain, such that $|f(z)|=$ const for each $z \in G$. Show: f is constant on G.
25. (a) Compute for $r>0$

$$
\int_{|z|=r} \bar{z} d z, \quad \int_{|z|=r} \frac{1}{z^{2}} d z
$$

(b) Let E be an ellipse, the semiminor f which has length a and the semimajor of which has length b. Let γ_{E} be the curve that runs counterclockwise around E. Compute (just using the parametrization)

$$
\int_{\gamma_{E}} \frac{1}{|z|} d z
$$

(c) This task justifies the fact that the velocity in which we run through the curve is an invariant of the curve integral. Let $\phi:[0,1] \rightarrow[0,1]$ be a continuously differentiable bijection fulfilling $\phi^{\prime}(x)>0$ for each $x \in(0,1)$ and $\gamma:[0,1] \rightarrow \mathbb{C}$ a continuously differentiable curve. Define $\widetilde{\gamma}(t):=\gamma(\phi(t))$ for $t \in[0,1]$. Show that for every function $f: \mathbb{C} \rightarrow \mathbb{C}$ it holds that

$$
\int_{\gamma} f d z=\int_{\widetilde{\gamma}} f d z
$$

(d) Show for arbitrary $x_{0} \in \mathbb{R},\left|x_{0}\right|<1$

$$
\begin{equation*}
\int_{|z|=1} \frac{\bar{z}}{z-x_{0}} d z=\int_{|z|=1} \frac{1}{1-x_{0} z} \tag{2}
\end{equation*}
$$

(e) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be continuous such that the is a complex differentiable g satisfying $g^{\prime}=f$. Show: In this case we find that

$$
\int_{\gamma} f d z=0
$$

for each closed curve $\gamma:[a, b] \rightarrow \mathbb{C}$.
(f) For $R>2$ let γ_{R} be the closed curve, that runs along a straight line from $-R+0 i$ to $R+0 i$, and goes back on a half circle that lies above the x - axis. Show that for even $n \in \mathbb{N}, n \geq 2$ we have the approximation

$$
\int_{-\infty}^{\infty} \frac{e^{-x}}{1+x^{n}} d x=\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{e^{-z}}{1+z^{n}} d z
$$

Extra credit: Find a family of closed curves γ_{R} such that

$$
\int_{-\infty}^{\infty} \frac{e^{x}}{1+x^{n}} d x=\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{e^{z}}{1+z^{n}} d z
$$

