

Universität Ulm

Abgabe: Dienstag, 04.07.2017

Prof. Dr. Friedmar Schulz Marius Müller Sommersemester 2017 Punktzahl: 24

Übungen Elemente der Funktionentheorie: Blatt 4

23. (a) Show that $f(z) = \overline{z}$ is nowhere complex differentiable.

(2)

(2)

(2)

- (b) Determine all the points $z \in \mathbb{C}$ such that $f(z) = z^3 + |z|^2$ is complex differentiable (3)
- **24.** Let $D \subset \mathbb{C}$ be an open set and $f : \mathbb{D} \to \mathbb{C}$ holomorphic on D. Define for (x, y) satisfying $x + iy \in D$ u(x, y) = Re(f(x + iy)) and v(x, y) = Im(f(x + iy)).
 - (a) If u and v are twice continuously partially differentiable on D, then the identity $u_{xx} + u_{yy} = 0$ (3) is satisfies. Functions that satisfy this identity are called harmonic.
 - (b) For the sake of simplicity we will assume in this exercise that $D = \mathbb{C}$. Define $g(r, \theta) := u(re^{i\theta})$ (3) and $h(r, \theta) = v(re^{i\theta})$ for r > 0 and $\theta \in \mathbb{R}$. Show that the following version of the Cauchy-Riemann-equation holds:

$$g_r = \frac{1}{r}h_{\theta}, \quad h_r = -\frac{1}{r}g_{\theta}$$

- (c) Let $G \subset D$ be a domain, such that |f(z)| = const for each $z \in G$. Show: f is constant on G. (3)
- **25.** (a) Compute for r > 0

 $\int_{|z|=r} \overline{z} \, dz, \quad \int_{|z|=r} \frac{1}{z^2} dz,$

(b) Let E be an ellipse, the semiminor f which has length a and the semimajor of which has (2) length b. Let γ_E be the curve that runs counterclockwise around E. Compute (just using the parametrization)

$$\int_{\gamma_E} \frac{1}{|z|} dz$$

(c) This task justifies the fact that the velocity in which we run through the curve is an invariant (1) of the curve integral. Let $\phi : [0, 1] \to [0, 1]$ be a continuously differentiable bijection fulfilling $\phi'(x) > 0$ for each $x \in (0, 1)$ and $\gamma : [0, 1] \to \mathbb{C}$ a continuously differentiable curve. Define $\widetilde{\gamma}(t) := \gamma(\phi(t))$ for $t \in [0, 1]$. Show that for every function $f : \mathbb{C} \to \mathbb{C}$ it holds that

$$\int_{\gamma} f dz = \int_{\widetilde{\gamma}} f dz.$$

(d) Show for arbitrary $x_0 \in \mathbb{R}$, $|x_0| < 1$

$$\int_{|z|=1} \frac{\overline{z}}{z-x_0} dz = \int_{|z|=1} \frac{1}{1-x_0 z}$$

(e) Let $f : \mathbb{C} \to \mathbb{C}$ be continuous such that the is a complex differentiable g satisfying g' = f. (2) Show: In this case we find that

$$\int_{\gamma} f dz = 0$$

for each closed curve $\gamma:[a,b]\to\mathbb{C}$.

(f) For R > 2 let γ_R be the closed curve, that runs along a straight line from -R + 0i to R + 0i, $(3+2^*)$ and goes back on a half circle that lies above the x- axis. Show that for even $n \in \mathbb{N}, n \ge 2$ we have the approximation

$$\int_{-\infty}^{\infty} \frac{e^{-x}}{1+x^n} dx = \lim_{R \to \infty} \int_{\gamma_R} \frac{e^{-z}}{1+z^n} dz$$

Extra credit: Find a family of closed curves γ_R such that

$$\int_{-\infty}^{\infty} \frac{e^x}{1+x^n} dx = \lim_{R \to \infty} \int_{\gamma_R} \frac{e^z}{1+z^n} dz.$$

Übungsblätter sowie aktuelle Informationen unter https://www.uni-ulm.de/mawi/analysis/lehre/veranstaltungen/sose2017/elemente-der-funktionentheorie/