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KAPITEL 1

Partial differential equations and what they are good for

A partial differential equation (PDE) is an equation whose unkwnown is a function (say, u) of two or
more variables (say, x1, x2, . . . , xN ) and in which two or more of whose partial derivatives (of first or higher
order) appear. (PDEs involving real functions of real variables are most commonly considered, although PDEs
involving functions acting on other differential structures and/or taking values in other general fields also exist.)

Generally speaking, a PDE of m-th order takes the form

F

(
x1, . . . , xN , u,

∂u

∂x1
, . . . ,

∂u

∂xN
, . . . ,

∂mu

∂xm1
, . . . ,

∂mu

∂xmN

)
= 0,

for a given function F . Such a PDE is called linear if it can be written as

f0(x1, . . . , xn)u+
N∑
k=1

f1k(x1, . . . , xN )
∂u

∂xk
+

N∑
j,k=1

f2jk(x1, . . . , xN )
∂2u

∂xk∂xj
+ . . . = 0

for suitable functions f0, f11, . . . , f1N , . . . , fm1...1, . . . , fmN...N .
For example, the transport equation

∂u

∂t
(t, x) =

∂u

∂x
(t, x),

the wave equation
∂2u

∂t2
(t, x) =

∂2u

∂x2
(t, x),

or the Korteweg–de Vries equation

∂u

∂t
(t, x) +

∂3u

∂x3
(t, x) = u(t, x)

∂u

∂x
(t, x),

are partial differential equations of first, second, and third order, respectively. The transport and wave equations
are linear, while de Korteweg–de Vries equation is nonlinear.

Differential equations involving only a function of one variable (or, which is the same, only the partial
derivatives with respect to one specific variable of a function of several variables) are well-known ordinary
differential equations and will not be treated in this course.

Just like ordinary differential equations, partial ones arise in many different contexts as one tries to describe
the behaviour of a system ruled by some law. Typically, this has to do with some physical process, like heat
diffusion in a conductor material, vibrations of a bridge, circulation of fluids in thin channels, distribution of
electric charge on the surface of a metallic sphere... However, in the last century modelling by means of partial
differential equations has proved successful also in non-physical disciplines, like in the case of the Hodgkin–Huxley
equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x)− 1

2
u(t, x)

(
u(t, x)− 1

)(
u(t, x)− α

)
, (1.1)
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6 KAPITEL 1. PDES AND WHAT THEY ARE GOOD FOR

and of the Black–Scholes equation1

∂u

∂t
(t, x) +

1

2
σ2x2∂

2u

∂x2
(t, x) + rx

∂u

∂x
(t, x)− ru(t, x) = 0. (1.2)

The Hodgkin–Huxley equation models the firing patterns of a neuron while the Black–Scholes describes the
price of an European stock-option. Both were eventually celebrated with a Nobel Prize: in 1961 (Medicine) and
1997 (Economics), respectively.

Modelling a well-understood process by a mathematical law is often a demanding task, called derivation
of an equation. Just like in the ordinary case, the derivation of a partial differential equation is often a rough
work. Usually, many approximations and simplifications have to be made. In some cases, the resulting PDE
gives little insight in the corresponding motivating problem: the PDE can nevertheless be highly interesting at
a purely mathematical level.

1 Here, as in many cases, α, σ, r are constant that have to be determined taking into account the properties of the model
specifically considered.



KAPITEL 2

Hyperbolic equations and the method of characteristics

We want a model a transport process (of some incompressible fluid and neglecting turbulences: for instance
neutrons in a reactor) inside a (thin) tube of constant section A (such that the transport is forced to take place
along the axis of the tube only). We consider a coordinate system such that the x-axis is parallel to the tube.
We denote by u(t, x) the density of transported matter at point x and time x. The quantity of matter contained
in the tube between the points x and x+ ∆x at time t is∫ x+∆x

x
u(t, ξ)Adξ.

The difference between the quantity of matter leaving this piece of tube at time t+ ∆t and that engering it at
time t is given by∫ x+∆x

x
u(t+ ∆t, ξ)Adξ −

∫ x+∆x

x
u(t, ξ)Adξ =

∫ x+∆x

x
(u(t+ ∆t, ξ)− u(t, ξ))Adξ.

The flow of matter (i.e., the quantity of matter crossing a certain section of the tube in unitary time) is described
by a function ψ. Between times t and t+ ∆t and at the section corresponding to the point x, it is measured by∫ t+∆t

t
Aψ(τ, x)dτ.

Assuming that there are neither sources nor sinks in the tube, the matter has to be conserved: the difference
between the matter contained in the piece of tube between times t+∆t and t agrees with the difference between
the matter that has been flowing through the tube at times t to t+ ∆t between the sections at x and x+ ∆x;
in other words, ∫ x+∆x

x
A (u(t+ ∆t, ξ)− u(t, ξ)) dξ =

∫ t+∆t

t
A (ψ(τ, x)− ψ(τ, x+ ∆x)) dξ.

It is a reasonable physical assumption that the density and flow functions u and ψ are continuosly differentiable,
so that dividing by ∆t and passing to the limit ∆t→ 0 we obtain∫ x+∆x

x
A
∂u

∂t
(t, ξ)dξ = lim

∆t→0

1

∆t

∫ t+∆t

t
A (ψ(τ, x)− ψ(τ, x+ ∆x)) dξ

A (ψ(t, x)− ψ(t, x+ ∆x)) dξ.

Now, dividing again (this time by ∆x) and passing to the limit

lim
∆x→0

1

∆x

∫ x+∆x

x
A
∂u

∂t
(t, ξ)dξ = A

∂u

∂t
(t, x)

= −A∂ψ
∂x

(t, x).
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8 KAPITEL 2. HYPERBOLIC EQUATIONS AND THE METHOD OF CHARACTERISTICS

It is possible to see that if a source or sink modeled by a function f : R+ × (a, b) → R are present1, then the
above differential equation can be generalized to

A
∂u

∂t
(t, x) = −A∂ψ

∂x
(t, x) + f(t, x).

In the special case of transport of matter with constant velocity and small density, flow and density can be
assumed to be proportional, say, ψ(t, x) = cu(t, x), and we finally obtain the partial differential equation

∂u

∂t
(t, x) = −c∂u

∂x
(t, x) + f(t, x), t ≥ 0, (2.1)

where x denotes a coordinate along the transport axis. This is the (inhomogeneous) transport equation,
obtained under the assumptions that

• the tube is thin enough that the only transport processes take place in the longitudinal direction,
• the density and flow functions are continuously differentiable,
• the velocity of the matter inside the tube is constant, and
• flow and density are proportional by the above velocity constant.

This model can be generalized to the higher-dimensional case: the tranport of a matter inside a d-dimensional
container Ω in the direction given by a vector b ∈ Rd with space-dependent velocity c is given by

∂u

∂t
(t, x) = −c(x)b · ∇u(t, x) + f(t, x), t ≥ 0, x ∈ Ω, (2.2)

where ∇u(t, x) denotes the gradient of u at point x and time t.
Generally speaking, this equation does not determine a unique solution: e.g., it is clear that any function

that is constant (that is, constant in both time and space) solves (2.2) if f ≡ 0. Since the partial differential
equation is first order in the time variable, it is still necessary to impose an initial condition

u(0, x) = u0(x), x ∈ Ω, (2.3)

for some u0 : Ω→ R. Since the equation is also first order in the space variable, one can expect that a boundary
condition is also necessary, say

u(t, z) = φ(z), t ≥ 0, z ∈ Γ, (2.4)
for some φ : Γ→ R, where Γ is a subset of the topological boundary ∂Ω of Ω2.

Definition 2.1. A solution of the initial-boundary value problem associated with the transport equation is a
function u : R+ × Ω→ R such that

• u is continuously differentiable in both variables (one often writes u ∈ C1,1(R+ × Ω)),
• u satisfies (2.2) for all t ≥ 0 and all x ∈ Ω,
• u satisfies (2.3) for all x ∈ Ω,
• u satisfies (2.4) for all t ≥ 0 and all z ∈ Γ.

In order to solve the transport equation, a common tool is the so-called method of characteristics. For the
sake of simplicity we restrict to the 1-dimensional case. Let first f = 0 and consider a curve Γ parametrised by
a continuously differentiable function γ : R+ → R, i.e.,

Γ := {(s, γ(s)) ∈ R+ × R}
1 We parametrise the tube as an interval (a, b), with −∞ ≤ a < b ≤ +∞.
2 This is issue is delicate: in fact, one can see that a boundary condition has to be imposed in the region of the boundary

where the transport process begins, and only there. No boundary condition is necessary if the spacial region is unbounded in the
direction the transport comes from, cf. Exercise 2.9.
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inside the space-time region where the transport equation is considered – e.g., R+ × R for a (thin) tube of
infinite length or R+ × [0, `] for a tube of length `. Such a curve Γ is called a characteristic of (2.2) if each
solution to (2.2) is constant along Γ, i.e., whenever u(s, γ(s)) ≡ const for all s ≥ 0.

Restricting ourselves for the sake of simplicity to the case of f ≡ 0, this means that Γ is a characteristic if
and only if

0 =
du

ds
(s, γ(s)) =

∂u

∂t
(s, γ(s)) + γ′(s)

∂u

∂x
(s, γ(s)), (2.5)

i.e., taking into account (2.2), if
γ′(s) ≡ c(γ(s)), s ≥ 0. (2.6)

This is the ordinary differential equation defining the characteristic of (2.2). We assume that a solution u satisfies
u(t, x) ≡ u(t, γ(t)), i.e., that k is chosen in such a way that the curve Γ given by γ(s) = cs + k crosses (t, x).
More explicitly, we are looking for the solution to (2.6) with initial data

γ(t) = x.

In the case of constant c, this yields

γ(s) = cs+ k, s ∈ R,

for some k ∈ R. That is, in the 1-dimensional case each characteristic of (2.2) is a line of slope c. The initial
condition is then satisfied if and only if

γ(s) = x+ c(s− t), s ≥ 0, (2.7)

(and hence for k = x− ct). Since u is constant along characteristics, we deduce that

u(t, x) = u(0, γ(0)) = u0(γ(0)).

In the above discussed special case, this means that a solution u is given by

u(t, x) = u0(γ(0)) = u0(x− ct),

whenever this expression makes sense.
Similarly, if we consider a d-dimensional transport process defined by (2.2) one can see that for f ≡ 0 a

solution is given by
u(t, x) = u0(γ(0)) = u0(x− ct b), (2.8)

since the d-dimensional characteristic is given by

γ(s) = x+ c(s− t)b. (2.9)

The above formula (2.8) is quite explicit. Examining it shows that the given solution is a wave that propagates
to the right (if c > 0) or to the left (if c < 0) with speed c and whose profile is constantly that of u0: one sometimes
refers to it as a shift of u0.

We finally consider the case of inhomogeneous transport equations, i.e., of (2.1) with f 6= 0. A general
principle allows to obtain a solution, in a way that resembles the variation of constant formula of ordinary
differential equations. Namely, the solution is given by

u(t, x) = u0(γ(0)) +

∫ t

0
f(τ, γ(τ))dτ,
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where Γ = {(t, γ(t))} is a characteristic of the associated homogeneous problem. This is due to the fact that
du

ds
(s, γ(s)) =

∂u

∂t
(s, γ(s)) +

∂u

∂x
(s, γ(s))γ′(s)

=
∂u

∂t
(s, γ(s)) + c(γ(s))

∂u

∂x
(s, γ(s))

= f(s, γ(s)).

Accordingly, by the fundamental theorem of calculus

u(t, x) = u(t, γ(t)) = u0(γ(0)) +

∫ t

0

du

ds
(s, γ(s))ds = u0(γ(0)) +

∫ t

0
f(s, γ(s))ds.

Summing up, we have proved the following.

Theorem 2.2. Let u0 ∈ C1(Rd) and f ∈ C0,1(R+ ×Ω), i.e., such that f is continuous with respect to the first
variable and continuously differentiable with respect to the second one. If the velocity function c is constant, then
the initial value problem (2.2)–(2.3) has a solution given by

u(t, x) = u0(x− ct) +

∫ t

0
f(τ, x+ c(τ − t)b)dτ, (2.10)

for all t ≥ 0 and x ∈ Ω such that this expression makes sense. If u0 ∈ Ck(Rd) and f ∈ Ch,k(R+ ×Ω), then this
solution is in fact of class Ch+1,k(R+ × Ω). If f ≡ 0, then u0(x) ≥ 0 for all x ∈ Ω if and only if u(t, x) ≥ 0 for
all t ≥ 0 and all x ∈ Ω. If f(t, x) for all t ≥ 0 and all x ∈ 
 and u0(x) ≥ 0 for all x ∈ Ω, then u(t, x) ≥ 0 for
all t ≥ 0 and all x ∈ Ω.

Positivity of the solution is an important property. Physically speaking, positivity of the density function
in dependence on positivity of the initial density is a feature that heuristically confirms the modelling qualities
of the transport equation.

Remark 2.3. Let us check that the formula provided in (2.10) is actually a solution. First of all, u ∈ C1,1 due
to the regularity properties of u0, f . Moreover,

−1

c

∂u

∂t
(t, x) = −1

c

∂u0

∂t
(x− ct) = u′0(x− ct) =

∂u0

∂x
(x− ct) =

∂u

∂x
(x− ct).

By construction,
u(0, x) = u0(x− c · 0) = u0(x), t ∈ R.

Corollary 2.4. Let u0 ∈ C1(Rd) and f ∈ C0,1(R+×Ω). Then the initial value problem (2.2)–(2.3) has at most
one solution.

Beweis. If the initial value problem admits a solution u, then by definition u is regular enough that the
computation in (2.5) can be repeated along a characteristic curve parametrised by γ. Thus, γ is necessarily a
solution to the ordinary differential equation (2.6) with initial data γ(t) = x. Since such a Cauchy problem
has at most one solution (under suitable regularity assumptions on γ, say, γ is Lipschitz continuous) on some
maximal solvability interval J , the solution u is uniquely determined by the formula (2.10). �

Remark 2.5. This shows that Theorem 2.2 can be easily generalised and yields solutions to transport equations
with arbitrary coefficients, under the sole assumption that (2.6) with initial condition γ(t) = x admits a solution.
In other words, we have transformed a partial differential equation into an ordinary differential equation.

Exercise 2.6. Repeat the arguments leading to the g to (2.2) in the general d-dimensional case.
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Exercise 2.7. The method of characteristics is also suitable for dealing with transport equations with non-
constant coefficients. Consider the transport equation (2.2) on Ω = R with f ≡ 0 and velocity function c defined
by c(x) := x.

(1) Solve the differential equation defining the characteristic γ and determine γ(0).
(2) Find the solution to the initial value problem associated with (2.2).

May it happen that for some special c the initial value problem has no solution?

Remark 2.8. In fact, one sees that the formula in Theorem 2.2 for the solution to (2.2) makes perfectly sense
also if we extend it to a function defined on R× R, provided that also u0 and f are extended accordingly. This
means that the transport equation on R is uniquely solvable backward as well as forward in time. This is in sharp
contrast to the case of a transport equation on a bounded domain – say, on (0, 1).

On a bounded domain, boundary conditions necessarily have to be imposed: intuitively, since (for f ≡ 0) the
solution is a wave shifting the profile of u0 to the right (if c > 0) or to the left (if c < 0), then we should impose
a rule on completing this waveform after it has left the left or right boundary, respectively. Possible boundary
conditions include

• the periodic one – u(1) = u(0) – which effectively provides an extension of the solution by prescribing
that what is flowing out has to flow in again (it is just like considering the transport equation on a
circle, or a torus);
• the Dirichlet one – u(0) = 0 (if c > 0) or u(1) = 0 (if c < 0) – which prescribes that the wave has to
be completed by 0.

Observe that the solution is continuous in space if and only if the initial data satisfies the boundary condition.
Observe finally that although the boundary conditions are a delicate issue, the formula for the solution to the

transport problem shows the profile of a function (the initial data) moving (towards the boundary) with finite
speed c. Therefore, if the initial data are given by a function concentrated in a ball far from the boundary, this
formula keeps its complete validity as long as the travelling initial density function does not reach the boundary.

Exercise 2.9. 1) Derive a formula for the transport equation on [0, 1] with periodic boundary condition.
2) Let c > 0. Derive a formula for the transport equation on [0, 1] with Dirichlet boundary condition in

x = 0.
3) Is it possible to impose a Dirichlet boundary condition in x = 0 and also in x = 1? Explain your answer.

Exercise 2.10. Find a solution to (2.2) on R for c ≡ 2 and f(t, x) := tx2, t ≥ 0, x ∈ R.

2.1. The 1-dimensional wave equation

Another important application of the method of characteristics is the discussion of the following important
class of partial differential equations.

Consider a string of linear density ρ. Assume the string to have horizontally constant tension T , i.e.,
∂T
∂x (t, x) ≡ 0 (but T can depend on time). We want to model the vertical oscillations of the string, assu-
ming that they are small enough that the horizontal extension can be neglected. We denote by u(t, x) the
vertical extension at each time t and each point x of the string, with respect to a reference level which can be
set at 0 without loss of generality. At each point x and time t the row undergoes an acceleration

∂2u

∂t2
(t, x).
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By Newton’s second law (F = m · a) the force applied to each “infinitesimally small” piece of string of length
∆x (which has mass ρ∆x, by assumption) is

ρ(x)∆x
∂2u

∂t2
(t, x).

Since the tension is assumed to be constant in the horizontal direction, the force acting on the considered piece
is given by the difference of the vertical component of the tension at x+ ∆x and x, i.e.,

T (t) sin θ(t, x+ ∆x)− T (t) sin θ(t, x),

where θ(t, x) denotes the angle of the string at each point x at time t. We also ought to add external forces (like
the gravity) acting vertically, whose net magnitude we denote by Φ(t, x)∆x. All in all the balance equation is

ρ(x)∆x
∂2u

∂t2
(t, x) = T (t) sin θ(t, x)− T (t) sin θ(t, x) + Φ(t, x)∆x,

i.e.,

ρ(x)
∂2u

∂t2
(t, x) =

T (t) sin θ(t, x+ ∆x)− T (t) sin θ(t, x)

∆x
+ Φ(t, x).

Passing to the limit for ∆x→ 0 we obtain

ρ(x)
∂2u

∂t2
(t, x) =

∂

∂x
(T (t) sin θ(t, x)) + Φ(t, x)

= T (t)
∂

∂x
sin θ(t, x) + Φ(t, x)

= T (t) cos θ(t, x)
∂θ

∂x
(t, x) + Φ(t, x).

Moreover, the vertical extensions are supposed to be small, and accordingly cos θ(t, x) ∼= 1 and θ(t, x) ∼=
sin θ(t, x) ∼= ∂u

∂x(t, x), whence
∂θ

∂x
(t, x) ∼=

∂2u

∂x2
(t, x)

for all t, x. Neglecting the gravity we obtain

ρ(x)
∂2u

∂t2
(t, x) = T (t)

∂2u

∂x2
(t, x),

which can be (approximately) written as

∂2u

∂t2
(t, x) =

T

ρ(x)

∂2u

∂x2
(t, x) + F (t, x),

provided T does not depend on time. Here

F (t, x) :=
1

ρ(x)
Φ(t, x), t ≥ 0, x ∈ I.

One usually calls the constant

c(x) :=

√
T

ρ(x)

the wavespeed. We are thus led to
∂2u

∂t2
(t, x) = c2(x)

∂2u

∂x2
(t, x) + F (t, x), t ≥ 0, x ∈ I, (2.11)
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which is the most common form of the 1-dimensional wave equation on a (possibly unbounded) open interval
I ⊂ R: we recall that it has been obtained under the assumptions that

• the horizontal tension T does not depend on space and on time,
• the gravity is ignored and
• the vertical extensions are small and the horizontal ones negligible.

If the above argument is repeated in a second or a third (or dth) spacial dimension, we formally arrive to
the 2- or 3- (or d-) dimensional wave equation

∂2u

∂t2
(t, x) = c2(x)∆u(t, x), t ≥ 0, x ∈ Ω, (2.12)

in domains Ω ⊂ Rd representing membranes or eleastic bodies. Here we have introduced the common notation

∆u(t, x) :=
∑
k

∂2u

∂x2
k

(t, x),

for the Laplacian ∆u of the function u, where the sum is taken over the spacial dimensions.
Since the differential equation is of second order, in analogy with the case of ODEs of second order we are

led to introduce two boundary conditions

u(0, x) = u0(x),
∂u

∂t
u(0, x) = u1(x), x ∈ Ω. (2.13)

We will see that these two boundary conditions are indeed necessary in order to solve the problem. Moreover, if
Ω is bounded, also a boundary condition is necessary. In the 1-dimensional case, common boundary conditions
include

u(t, a) = u(t, b) ≡ 0, t ≥ 0, (Dirichlet b.c.),

∂u

∂x
(t, a) =

∂u

∂x
(t, b) = 0, t ≥ 0, (Neumann b.c.),

∂2u

∂x2
(t, a) =

∂2u

∂x2
(t, b) = 0, t ≥ 0. (Wentzell b.c.).

Definition 2.11. A solution of the initial-boundary value problem associated with the wave equation is a
function u : R+ × Ω→ R such that

• u ∈ C2,2(R+ × Ω)),
• u satisfies (2.11) for all t ≥ 0 and all x ∈ Ω,
• u satisfies (2.13) for all x ∈ Ω,
• u satisfies the imposed boundary condition for all t ≥ 0 and al z ∈ ∂Ω.

A possible and common approach to solve the 1-dimensional wave equations is based on the method of
characteristics. The basic idea is the formal factorisation(

∂2

∂t2
− c2 ∂

2

∂x2

)
u =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c ∂

∂x

)
u

of the wave equation (observe that this solely holds if c is a constant), which suggests to introduce the unknown
v defined by

v(t, x) :=

(
∂

∂t
− c ∂

∂x

)
u(t, x), t ≥ 0, x ∈ R,
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and to study the PDE (
∂

∂t
+ c

∂

∂x

)
v(t, x) = 0, t ≥ 0, x ∈ R,

in the unknown v. The latter equation is just a linear transport equation. The solution to this equation has
been obtained in Chapter 2: it is given by

v(t, x) = γ̃(x− ct), t ≥ 0 x ∈ R,

where γ̃(·) is the (not explicitly known) function defining the initial data of v, i.e., v(0, ·). In particular, by
definition of v we get

v(t, x) = γ̃(x− ct) =
∂u

∂t
− c∂u

∂x
, t ≥ 0, x ∈ R,

which is an inhomogeneous transport equation in the unknown u with inhomogeneous term γ̃. By Theorem 2.2
we obtain (due to b = −1)

u(t, x) = u0(x+ ct) +

∫ t

0
v(τ, x+ c(t− τ))dτ

= u0(x+ ct) +

∫ t

0
γ̃(x+ c(t− τ)− cτ)dτ

= u0(x+ ct) +

∫ t

0
γ̃(x+ ct− 2cτ)dτ

= u0(x+ ct) +
1

2c

∫ x+ct

x−ct
γ̃(y)dy.

We still have to determine γ̃: the second boundary condition and the definition of v imply

γ̃(x) = v(0, x) =
∂u

∂t
(0, x)− c∂u

∂x
(0, x) = u1(x)− cu′0(x),

whence

u(t, x) = u0(x+ ct) +
1

2

∫ x+ct

x−ct

(
u1(y)− u′0(y)

)
dy.

Accordingly, we have proved the following.

Theorem 2.12. Let u0 ∈ C2(R) and u1 ∈ C1(R). If the wavespeed c is constant, then the initial value problem
for the 1-dimensional wave equation on R has a solution: this is given by

u(t, x) =
1

2
(u0(x+ ct) + u0(x− ct)) +

1

2c

∫ x+ct

x−ct
u1(y)dy, t ≥ 0, x ∈ R.

We will see that the possibility of writing the solution as the sum of two terms, each depending only on one
of the initial conditions, is a typical feature of the wave equation. These are often referred to as “cosine” and
“sine” term, respectively. This is known as D’Alembert formula. Sometimes one writes it as

u(t, x) :=
(
C(t)u0

)
(x) +

(
S(t)u1

)
(x),

where (in this 1-dimensional case) the transformations C(t) and S(t), t ≥ 0, are function-valued functions
defined by (

C(t)u0

)
(x) :=

1

2
(u0(x+ ct) + u0(x− ct))
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and (
S(t)u1

)
(x) :=

1

2c

∫ x+ct

x−ct
u1(y)dy.

In other words, we can represent all solutions as the sum of solutions to the wave equation with initial data
u0, u1 ≡ 0 (given by u(t, x) =

(
C(t)u0

)
(x)) and u0 ≡ 0, u1 (given by u(t, x) =

(
S(t)u1

)
(x)), respectively. We

will see that this is a general feature of the wave equation.

Exercise 2.13. Show that C(0)f ≡ f and moreover 2C(t) (C(s)f) ≡ (C(t + s)f) + (C(t − s)f) as well as
(S(t + s)f) ≡ C(s)(S(t)f) + (S(s)C(t)f) for all t, s ≥ 0 and all functions f ∈ C1. Why are C and S called
“cosine” and “sine”, respectively?

Exercise 2.14. Let A, k, ω ∈ R. Show that both functions u, v defined by

u(t, x) := A sin(kx− ωt) and v(t, x) := A sin(kx+ ωt), t, x ∈ R
are solutions to the 1-dimensional wave equation on R. They are called travelling waves. Due to linearity,
their sum is also a solution to the wave equation. Show that, however u+ v is not a travelling wave, and that in
fact it can be written as a product η · ξ of two functions, where η only depends on time and ξ only depends on
space. Such a solution is called a stationary wave.

Exercise 2.15. One may try to apply the method of characteristics directly. In this case, one should introduce
a change of variables setting λ := x− ct and µ := x+ ct and consider those curves along which the solutions to
the wave equation are not constant (like in the case of the transport equation), but rather satisfy

∂2u

∂λ∂µ
≡ 0.

Work out the details.

Exercise 2.16. Discuss the wave-type partial differential equation

∂2u

∂t2
(t, x) =

∂2u

∂x2
(t, x)− x∂u

∂x
(t, x), t ≥ 0, x ∈ R,

with wavespeed given by c(x) = x.
(Hint: try to perform a factorisation similar to that crucial in order to solve the standard wave equation.)

Remark 2.17. Observe that even if we were only looking for a forward solution of the wave equation, the
solution we have derived is also a backward one, i.e., it is a function that solves the wave equation also for
negative times: knowing the state of a wave at a certain time t0, it is possible to reconstruct the state of the wave
at any given previous time t < t0.

We have derived an explicit solution. Would it be possible to have more solutions, at least for some special
initial data? No, it would not. This is the first application of the so-called variational method, which we will
more extensively discuss later on.

Theorem 2.18. Let I be a (possibly unbounded) open interval of R. Let u0 ∈ C2(I) and u1 ∈ C1(I). Then the
initial value problem for the 1-dimensional wave equation on I has at most one solution in the class of those
functions that are such that are unifomly bounded on any compact domain, provided that

• either I = R
• or the boundary condition is of Dirichlet or Neumann type (possibly inhomogeneous), if I 6= R has a
boundary.



16 KAPITEL 2. HYPERBOLIC EQUATIONS AND THE METHOD OF CHARACTERISTICS

Beweis. Assume u, v to be two solutions to the equation. Due to linearity, also w := u − v solves the
1-dimensional wave equation with initial conditions

w(0, x) = 0,
∂w

∂t
(0, x) = 0, x ∈ I.

Moreover, since u and v agree at the boundary, their difference (or the difference of their normal derivatives)
vanishes identically at the boundary (if there is a boundary), constantly in time. We introduce a function
E : R+ → R by

E(t) :=
1

2

∫ 1

0

∣∣∣∣∂w∂t (t, x)

∣∣∣∣2 +

∣∣∣∣c∂w∂x (t, x)

∣∣∣∣2 dx.
We differentiate this expression and obtain (integrating by parts)

E′(t) =

∫ 1

0

∂w

∂t
(t, x)

∂2w

∂t2
(t, x)dx+

∫ 1

0
c2∂w

∂x
(t, x)

∂2w

∂x∂t
(t, x)dx

=

∫ 1

0

∂w

∂t
(t, x)

∂2w

∂t2
(t, x) + c2∂w

∂x
(t, x)

∂w

∂t
(t, x)

∣∣∣∣x=1

x=0

−
∫ 1

0
c2∂

2w

∂x2
(t, x)

∂w

∂t
(t, x)dx

=

∫ 1

0

∂w

∂t
(t, x)

(
∂2w

∂t2
(t, x)− c2∂

2w

∂x2
(t, x)

)
+ c2∂w

∂x
(t, x)

∂w

∂t
(t, x)

∣∣∣∣x=1

x=0

= 0.

The last identity holds because, as observed above, the boundary term vanishes identically at the boundary.
We conclude that E is a constant function, i.e., E(t) = E(0) = 0, and therefore∣∣∣∣∂w∂t (t, x)

∣∣∣∣ =

∣∣∣∣∂w∂x (t, x)

∣∣∣∣ = 0

for all t ≥ 0 and all x ∈ I, i.e., w is constant in time and in space. Because w vanishes constantly at the
boundary and also everywhere for t = 0, we deduce that w ≡ 0 everywhere and at any time. This concludes the
proof. �

The above proof motivates the introduction of the following.

Definition 2.19. The total energy of a wave on a domain Ω ⊂ Rd is given at any time t by the sum

E := Ep + Ek

of its potential energy

Ep(t) :=

∫
Ω
|∇u(t, x)|2dx

and its kinetic energy

Ek(t) :=

∫
Ω

∣∣∣∣∂u∂t (t, x)

∣∣∣∣2 dx,
where u denotes the solution to the wave equation on Ω.

We conclude this section by discussing an extension of the D’Alembert formula to the case of the semi-
bounded domain (0,∞). This explains the method of reflections that is typical for the wave equation. It will be
used in the next chapter. For the sake of simplicity we consider only the case of unitary wavespeed, the general
one being analogous.
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Theorem 2.20. Let c = 1. For u0 ∈ C2([0,∞)) and u1 ∈ C1([0,∞)) the solution to the wave equation for
(t, r) ∈ R+ × (0,∞) with Dirichlet boundary condition

u(t, 0) = 0, t ≥ 0,

is given by

u(t, x) :=

{
1
2 (u0(x+ t) + u0(x− t)) + 1

2

∫ x+t
x−t u1(y)dy, x ≥ t ≥ 0,

1
2 (u0(x+ t)− u0(t− x)) + 1

2

∫ x+t
t−x u1(y)dy, t ≥ x ≥ 0.

Observe that the above formula yields a function u that is twice continuously differentiable everywhere apart
from t = x. However, if one is interested in the classical notion of solution, continuous differentiability in t = x
becomes an issue and we have to impose the Wentzell boundary condition on u0 at 0. In particular, the second
derivative (both with respect to space and to time) of u has a jump equal to 2u′′0(0).

Beweis. Since we have a solution formula at hand for the wave equation on R, it is natural to try to extend
the wave equation on (0,∞) to the whole line. This is simply done by introducing the odd extension of u

ũ(t, x) :=

{
u(t, x), t ≥ 0, x ≥ 0,
−u(t,−x), t ≥ 0, x ≤ 0,

i.e., for all t ≥ 0 ũ(t, ·) is the unique odd function that agrees with u on R. Similarly, we introduce the odd
functions

ũ0(x) :=

{
u0(x), x ≥ 0,
−u0(−x), x ≤ 0,

and

ũ1(x) :=

{
u1(x), x ≥ 0,
−u1(−x), x ≤ 0.

Let us prove that if u is a solution to the 1-dimensional wave equation on (0,∞) with Dirichlet boundary
condition, then ũ solves the 1-dimensional wave equation on R (clearly, without boundary conditions). This is
due to the fact that ũ satisfies the differential equation on (0,∞), where it agrees with u, and that moreover
for all x̃ := −x, x ≥ 0, there holds

∂2ũ

∂t2
(t, x̃) = −∂

2u

∂t2
(t, x)

= −∂
2u

∂x2
(t, x)

=
∂2u

∂x2
(t, x̃)

∂x̃

∂x

=
∂2u

∂x̃2
(t, x̃),

i.e., ũ solves the wave equation on the whole line. Moreover

u(0, x̃) = −u(0, x) = −u0(x) = −ũ0(x̃)

and likewise
∂u

∂t
(0, x̃) = −u(0, x) = −u1(x) = −ũ1(x̃).

Thus, ũ is given by the D’Alembert formula, from where the claimed identities hold. �
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Remark 2.21. A relevant consequence of the above D’Alembert formula is that even for positive-valued u0 and
u1 ≡ 0 the solution needs not be positive for all t ≥ 0. This is in sharp contrast to the behaviour of the transport
equation – and, as we will see, of the heat equation, too.

Exercise 2.22. A similar strategy can also be applied to find the solution to the wave equation on a bounded
interval, say, on (0, 1), with Dirichlet boundary condition

u(t, 0) = u(t, 1) = 0, t ≥ 0.

The idea is that the initial conditions have to be reflected and extended by periodicity. Work out the details.

Exercise 2.23. While odd extensions are useful to solve the 1-dimensional wave equation with the Dirichlet
boundary condition, even extensions come into play when the Neumann boundary condition

u′(t, 0) = u′(t, 1) = 0, t ≥ 0,

is considered. Deduce an explicit formula for the solution to this wave equation. Is the solution positive-valued,
provided the initial data are?



KAPITEL 3

The wave equation in higher dimensions and the method of descent

In this chapter we discuss the d-dimensional generalization of the wave equation, which appears in several
problems of theoretical acoustics or electromagnetism. We follow the classical approach as presented, e.g., in [5,
§2.4]. In order to obtain an explicit formula for the solutions to such wave equations, our strategy will be the
following:

• We show that certain spherical means w of any solution u to the d-dimensional (d odd!) wave equa-
tion solve a modified 1-dimensional wave equation – the so-called Euler–Poisson–Darboux equation
(Lemma 3.5.
• While w only solves the Euler–Poisson–Darboux equation, one can rescale it and introduce a function
U that solves the (classical) 1-dimensional wave equation (Lemma 3.8).
• Because the explicit solution to the 1-dimensional wave equation is known given (locally) by the
D’Alembert formula, we deduce a formula for U that, in turn, yields a formula for u in terms of
spherical means of the initial data (Theorem 3.9).
• The case of d even is solved by the method of descent: any solution u to the (d− 1)-dimensional wave
equation (d even) is embedded in a solution ũ to the d-dimensional wave equation in a suitable way,
and then the above mentioned results yield a formula for ũ and thus, in turn, for u. The details are
carried out for the 2-dimensional case only (Theorem 3.11).

In the above strategy there is a hidden assumption, namely that to each initial value problem for the heat
equation there is at most one solution (hence exactly one in the special cases where an explicit formula is
known): in the 1-dimensional case this assumption is justified by Theorem 2.18, but an analogous assertion also
holds in the general d-dimensional case.

Theorem 3.1. Let Ω ⊂ Rd be a (possibly unbounded) domain such that the Gauß–Green formulae hold. Let
u0 ∈ C2(Ω) and u1 ∈ C1(Ω). Then the initial value problem for the d-dimensional wave equation on Rd has at
most one solution (in the class of those solutions that are uniformly bounded on compact domains) provided that

• either Ω = Rd
• or the boundary condition is of Dirichlet or Neumann type (possibly inhomogeneous), if Ω has a boun-
dary.

Exercise 3.2. Prove Theorem 3.1.

In order to solve the wave equation in Rd for d ≥ 2 we first discuss a modification of the 1-dimensional wave
equation. Here and in the following we denote by Br(x) the d-dimensional ball of radius r centered at x, by
∂Br(x) its surface (i.e., its topological boundary), and by |Br| := |Br(x)| and |∂Br| := |∂Br(x)| their respective
measures, i.e.,

|Br| =
π
d
2

Γ
(
d
2 + 1

)rd and |∂Br| =
dπ

d
2

Γ
(
d
2 + 1

)rd−1,

19
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where Γ denotes the gamma-function. Here and in the following, dσ denotes the (d− 1)-dimensional Hausdorff
(surface) measure. An important feature of the above formulae is that

d

dr
|Br| = |∂Br| and

d

dr

1

|∂Br|
=

1− d
d

1

|Br|
, r > 0. (3.1)

Lemma 3.3. Let u ∈ C2(Rd). Then for all x ∈ Rd the function φ defined by

φ(r) :=
1

|∂Br|

∫
∂Br(x)

u(y)dσ(y)

is continuously differentiable and
∂φ

∂r
(r) =

r

d

1

|Br|

∫
Br(x)

∆u(y)dy.

Beweis. Substituting y 7→ ỹ := x+ rz yields

φ(r) =
1

|∂B1|

∫
∂B1(0)

u(x+ rz)dσ(z).

Now, the chain rule yields

φ′(r) =
1

|∂B1|

∫
∂B1(0)

∇u(x+ rz) · zdσ(z)

=
1

|∂Br|

∫
∂Br(x)

∇u(y) · y − x
r

dσ(y)

=
1

|∂Br|

∫
∂Br(x)

∂u

∂n
(y)dσ(y)

=
r

d

1

|Br|

∫
Br(x)

∆u(y)dy,

where the last identity follows from Green’s formula. This completes the proof. �

Exercise 3.4. Let u ∈ C∞(Rd) and x ∈ Rd. Determine

• ∂
∂r

(
1
|Br|

∫
∂Br(x) u(y)dσ(y)

)
,

• ∂
∂r

(
1
|∂Br|

∫
Br(x) u(y)dy

)
, and

• ∂
∂r

(
1
|Br|

∫
Br(x) u(y)dy

)
,

for r > 0. Are you able to find a general formula for

∂k

∂rk
φ(r)?

Lemma 3.5. Let u0 ∈ C2(R) and u1 ∈ C1(R). Let u ∈ Cm([0,∞) × Rd) be a solution to the d-dimensional
wave equation (2.12) with initial conditions

u(0, x) = u0(x) and
∂u

∂t
(0, x) = u1(x), x ∈ R.

Then, for any x ∈ Rd

w(t, r, x) :=
1

|∂Br|

∫
∂Br(x)

u(t, y)dσ(y), t ≥ 0, x ∈ R,
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defines a solution to the so-called Euler–Poisson–Darboux equation

∂2w

∂t2
(t, r, x) =

∂2w

∂r2
(t, r, x) +

d− 1

r

∂w

∂r
(t, r, x), t ≥ 0, r ≥ 0,

with initial data defined for all x ∈ R by

w(0, r, x) = w0(r, x) :=
1

|∂Br|

∫
∂Br(x)

u0(y)dσ(y)

and
∂w

∂t
(0, r, x) = w1(r, x) :=

1

|∂Br|

∫
∂Br(x)

u1(y)dσ(y).

Moreover, w(·, ·, x) ∈ Cm([0,∞)× [0,∞)) for all x ∈ Rd.

Beweis. The definition of w does not modify the dependence on t of u, and we conclude that w is m-times
continuously differentiable in its first variable, provided that u is.

Now, apply Lemma 3.3 and observe that for all r > 0

∂w

∂r
(t, r, x) =

∂

∂r

1

|∂Br|

∫
∂Br(x)

u(t, y)dσ(y) =
r

d

1

|Br|

∫
Br(x)

∆u(t, y)dy =
1

|∂Br|

∫
Br(x)

∆u(t, y)dy. (3.2)

Hence, w(·, ·, x) ∈ C1([0,∞)× (0,∞)). Passing to the limit for r → 0, by Lebesgue’s differentiation theorem we
obtain

lim
r→0

∂w

∂r
(t, r, x) = 0 :

thus, w(·, ·, x) ∈ C1([0,∞)× [0,∞)). One can further differentiate and apply (3.2) and (3.1) in order to obtain

∂2w

∂r2
(t, r, x) =

∂2

∂r2

1

|∂Br|

∫
∂Br(x)

u(t, y)dσ(y)

=
∂

∂r

(
1

|∂Br|

∫
Br(x)

∆u(t, y)dy

)

=
1− d
d

1

|Br|

∫
Br(x)

∆u(t, y)dy +
1

|∂Br|
∂

∂r

∫ r

0

∫
∂Bs(x)

∆u(t, y)dσ(y)

=
1− d
d

1

|Br|

∫
Br(x)

∆u(t, y)dy +
1

|∂Br|

∫
∂Br(x)

∆u(t, y)dσ(y).

Therefore, using (3.2) and the fact that u solves the wave equation we deduce

∂2w

∂r2
(t, r, x) = −d− 1

d

d

r

1

|∂Br|

∫
Br(x)

∆u(t, y)dy +
1

|∂Br|

∫
∂Br(x)

∂u

∂t2
(t, y)dσ(y)

= −d− 1

r

∂w

∂r
(t, r, x) +

∂2w

∂t2
(t, r, x).

Thus, w is actually a solution to the Euler–Poisson–Darboux equation.
It remains to check that ∂2w

∂r2
is continuous up to the boundary, i.e., up to r = 0. Just like before, passing to

the limit for r → 0 yields

lim
r→0

∂2w

∂r2
(t, r, x) = ∆u(t, x) +

(
1

d
− 1

)
∆u(t, x) =

1

d
∆u(t, x).
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One can further differentiate and obtain recursively that in the radial direction w is as regular as u. �

Remark 3.6. The Euler–Poisson–Darboux is a wave equation whose energy increases in time, cf. Remark 3.16,
since the damping term d−1

x
∂w
∂x has a positive-valued coefficient. It probably gives more insight to observe that

the term ∂2w
∂x2

+ d−1
x

∂w
∂x that appears in the Euler–Poisson–Darboux equation agrees with the radial compoonent

of ∆w, whenever we write it in spherical coordinates.

In the following we are going to transform the odd- and even-dimensional wave equation into the 1-
dimensional wave equation, via the formalism introduced to study the Euler–Poisson–Darboux equation. Since
a solution to the 1-dimensional wave equation is known, we will be able to find general solutions in these
higher-dimensional cases. Explicit formulae are also known for the general d-dimensional case.

To begin with, we consider the case of d odd, i.e., d = 2k + 1. In the following, n!! denotes the double
factorial of an integer n, i.e.,

n!! :=

{
n · (n− 2) · . . . 2 if n is even,
n · (n− 2) · . . . 1 if n is odd.

Lemma 3.7. Let k ∈ N. Then the following identities hold for all φ ∈ Ck+1(R).

(1)
(

1
r
d
dr

)k−1 (
r2k−1φ(r)

)
= (2k − 1)!! rφ(r) +

∑k−1
j=1 β

k
j r
j+1 djφ

drj
(r), for some constants βkj independent on

φ.
(2) d2

dr2

(
1
r
d
dr

)k−1 (
r2k−1φ(r)

)
=
(

1
r
d
dr

)k (
r2k dφ

dr (r)
)
.

Here (
1

r

d

dr

)0

f = f,

(
1

r

d

dr

)1

f =
1

r
f ′,

(
1

r

d

dr

)2

f =
1

r

(
1

r
f ′
)′

= − 1

r3
f ′ +

1

r2
f ′′

and so on.

Beweis. Both identities are proven by induction on k.
1) The assertion is clearly true for k = 1, since both left and right hand sides agree with rφ(r). If the

assertion holds for k, then we see that(
1

r

d

dr

)k (
r2k+1φ(r)

)
=

(
1

r

d

dr

)k−1(1

r

d

dr

)(
r2k+1φ(r)

)
=

(
1

r

d

dr

)k−1(
r2k−1

(
(2k + 1)φ(r) + r

dφ

dr
(r)

))
:=

(
1

r

d

dr

)k−1 (
r2k−1φ̃(r)

)
.

Apply the induction assumption to φ̃(r) and obtain(
1

r

d

dr

)k (
r2k+1φ(r)

)
= (2k − 1)!! φ̃(r) +

k−1∑
j=1

βkj r
j+1 d

j

drj
φ̃(r)

= (2k + 1)!! rφ(r) + (2k − 1)!!r2dφ

dr
(r) +

+

k−1∑
j=1

(2k + 1)βkj r
j+1d

jφ

drj
(r) +

k−1∑
j=1

βkj r
j+1 d

j

drj

(
r
dφ

dr
(r)

)
.
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Now, it is immediate (induction!) that for any function f ∈ Cj there holds

dj

drj
(rf(r)) = r

djf

drj
(r) + j

dj−1f

drj−1
(r), j ∈ N.

Therefore, for f = ∂φ
∂r we obtain(

1

r

d

dr

)k (
r2k+1φ(r)

)
= (2k + 1)!! rφ(r) + (2k − 1)!!r2dφ

dr
(r) +

+
k−1∑
j=1

(2k + 1)βkj r
j+1d

jφ

drj
(r) +

k−1∑
j=1

βkj r
j+1

(
r
dj+1φ

drj+1
(r) + j

djφ

drj
(r)

)
= (2k + 1)!! rφ(r) + (2k − 1)!!r2dφ

dr
(r) +

+
k−1∑
j=1

(2k + 1)βkj r
j+1d

jφ

drj
(r) +

k∑
j=2

βkj−1r
j+1d

jφ

drj
(r) +

k−1∑
j=1

jβkj r
j+1d

jφ

drj
(r)

= (2k + 1)!! rφ(r) +
k∑
j=1

βk+1
j rj+1d

jφ

drj
(r),

where the explicit definition of the constants βk+1
j is left as an easy exercise.

2) The assertion is true for k=1, because

d2

dr2
(rφ(r)) =

d

dr

(
φ(r) + r

dφ

dr
(r)

)
= 2

dφ

dr
(r) + r

d2φ

dr2
(r) =

1

r

d

dr

(
r2dφ

dr
(r)

)
, r ∈ R.

Let now assume that the assertion holds for k. Then
d2

dr2

(
1

r

d

dr

)k (
r2k+1φ(r)

)
=

d2

dr2

(
1

r

d

dr

)k−1(1

r

d

dr

)(
r2k+1φ(r)

)
=

d2

dr2

(
1

r

d

dr

)k−1(
(2k + 1)r2k−1φ(r) + r2k dφ

dr
(r)

)
= . . .

=

(
1

r

d

dr

)k+1(
r2k+2dφ

dr
(r)

)
The missing step is left as an exercise to the reader. �

Lemma 3.8. If u is a solution to the initial value problem
∂2u
∂t2

(t, x) = ∆u(t, x), t > 0, x ∈ R2k+1,
u(0, x) = u0(x), x ∈ R2k+1,
∂u
∂x(0, x) = u1(x), x ∈ R2k+1,

(3.3)

then for all x ∈ R2k+1 the function U defined by U(t, r, x) :=
(

1
r
∂
∂r

)k−1 (
r2k−1w(t, r, x)

)
, i.e.,

U(t, r, x) :=

(
1

r

∂

∂r

)k−1
(
r2k−1

|∂Br|

∫
∂Br(x)

u(t, y)dσ(y)

)
, (3.4)
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solves the 1-dimensional wave equation for (t, r) ∈ (0,∞)× (0,∞) with Dirichlet boundary condition

U(t, 0, x) = 0, t > 0,

and with initial data

U(0, r, x) = G(r, x),
∂U

∂t
(0, r, x) = H(r, x), r ∈ (0,∞),

where

G(r, x) :=

(
1

r

∂

∂r

)k−1 (
r2k−1w0(r, x)

)
=

(
1

r

∂

∂r

)k−1
(
r2k−1

|∂Br|

∫
∂Br(x)

u0(r, y)dσ(y)

)
and

H(r, x) :=

(
1

r

∂

∂r

)k−1 (
r2k−1w1(r, x)

)
=

(
1

r

∂

∂r

)k−1
(
r2k−1

|∂Br|

∫
∂Br(x)

u1(y)dσ(y)

)
.

Beweis. For fixed x ∈ R2k+1, let r > 0 and t ≥ 0. Then it is possible to apply Lemma 3.7.(2) and obtain

∂2U

∂r2
(t, r, x) =

∂2

∂r2

(
1

r

∂

∂r

)k−1 (
r2k−1w(t, r, x)

)
=

(
1

r

∂

∂r

)k (
r2k ∂w

∂r
(t, r, x)

)
=

(
1

r

∂

∂r

)k−1(1

r

∂

∂r

)(
r2k ∂w

∂r
(t, r, x)

)
=

(
1

r

∂

∂r

)k−1(
r2k−1∂

2w

∂r2
(t, r, x) + 2kr2k−2∂w

∂r
(t, r, x)

)
=

(
1

r

∂

∂r

)k−1(
r2k−1

(
∂2w

∂r2
(t, r, x) +

2k

r

∂w

∂r
(t, r, x)

))
=

(
1

r

∂

∂r

)k−1(
r2k−1∂

2w

∂t2
(t, r, x)

)
=

∂2U

∂t2
(t, r, x),

where of course the last step is due to the fact that w solves the Euler–Poisson–Darboux equation.
Finally, the fact that U satisfies the initial conditions is a direct consequence of the fact that w satisfies the

initial conditions of the Euler–Poisson–Darboux equation, which in turn is just an application of the definition
of w. �

We are finally in the position to solve the initial value problem associated with the odd-dimensional wave
equation, in a suitable sense.
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If u is a solution to the (2k + 1)-dimensional wave equation, then U defined in (3.4) is a solution to the
1-dimensional one. Thus, by the D’Alembert formula (suitably localised in time), we deduce that U is given by

U(t, r, x) =
1

2
(G(t+ r, x)−G(t− r, x)) +

1

2

∫ t+r

t−r
H(y, x)dy, t ≥ 0, r ∈ [0, t].

It remains to re-write this expression in terms of u, u0 and u1. To this aim, we want to consider the above
formula in the limit r → 0+. Then, by Lebesgue’s differentiation theorem, Lemma 3.7.(1) yields

u(t, x) = lim
r→0+

w(t, r, x)

= lim
r→0+

w(t, r, x) + lim
r→0+

k−1∑
j=1

βkj
(2k − 1)!!

rj
∂jw

∂rj
(t, r, x)

= lim
r→0+

1

(2k − 1)!! r

(
1

r

∂

∂r

)k−1 (
r2k−1w(t, r, x)

)
= lim

r→0+

U(t, r, x)

(2k − 1)!! r

=
1

(2k − 1)!!
lim
r→0+

(
G(t+ r, x)−G(t− r, x)

2r
+

1

2r

∫ t+r

t−r
H(y, x)dy

)
=

1

(2k − 1)!!

(
G′(t) +H(t)

)
.

Thus, if the (2k + 1)-dimensional wave equation has a solution, it must have the above form. In order to check
that u defined above actually solves the equation, we proceed as follows.

Theorem 3.9. Let k ∈ N. For u0 ∈ Ck+2(R2k+1) and u1 ∈ Ck+1(R2k+1), define a function u by

u(t, x) :=
1

(2k − 1)!!

∂

∂t

(
1

t

∂

∂t

)k−1
(
t2k−1

|∂Bt|

∫
∂Bt(x)

u0(z)dσ(z)

)

+
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
t2k−1

|∂Bt|

∫
∂Bt(x)

u1(z)dσ(z)

)
, t > 0, x ∈ R2k+1.

Then u ∈ C2,2(R+ × R2k+1). Moreover, u is a solution to the (2k + 1)-dimensional wave equation away from
t = 0 (where u is not defined). However, limt→0+ u(t, x0) and limt→0+

∂u
∂t (t, x0) exist for all x0 ∈ R2k+1, and in

fact

lim
(t,x)→(0,x0)

u(t, x) = u0(x0) and lim
(t,x)→(0,x0)

∂u

∂t
(t, x) = u1(x0)

for all x0 ∈ R2k+1.

Beweis. We exploit linearity of the wave equation: in fact, we check separately the two cases

• u0 ≡ 0 and u1 arbitrary,
• u0 arbitrary and u1 ≡ 0.
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In the former case we obtain that

∂2u

∂t2
(t, x) =

1

(2k − 1)!!

∂2

∂t2

(
1

t

∂

∂t

)k−1
(
t2k−1

|∂Bt|

∫
∂Bt(x)

u1(z)dσ(z)

)

=
1

(2k − 1)!!

(
1

t

∂

∂t

)k(
t2k

∂

∂t

1

|∂Bt|

∫
∂Bt(x)

u1(z)dσ(z)

)

=
1

(2k − 1)!!

(
1

t

∂

∂t

)k( t2k

|∂Bt|

∫
Bt(x)

∆u1(y)dy

)
where the second-last equality follows from Lemma 3.7.(2) and the last one from Lemma 3.3. Observe that

αk :=
t2k

|∂Bt|
only depends on k, but not on t, hence

∂2u

∂t2
(t, x) =

αk
(2k − 1)!!

(
1

t

∂

∂t

)k(
αk

∫
Bt(x)

∆u1(y)dy

)

=
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
αk
t

∂

∂t

∫
Bt(x)

∆u1(y)dy

)

=
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
αk
t

∂

∂t

∫ t

0

∫
∂Bs(x)

∆u1(y)dσ(y)ds

)

=
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
αk
t

∫
∂Bt(x)

∆u1(y)dy

)

=
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
αk
t

∫
∂Bt(0)

∆u1(x+ y)dy

)

= ∆

(
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
αk
t

∫
∂Bt(0)

u1(x+ y)dy

))

= ∆

(
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
t2k−1

|∂Bt|

∫
∂Bt(x)

u1(y)dy

))
= ∆u(t, x).

The second case is similar. We left as an exercise to check that the claimed solution also satisfies the initial
data. �

Exercise 3.10. Check that the function u defined in Theorem 3.9 is actually a solution to the (2k + 1)-
dimensional wave equation.

Let us now consider the case of even dimension. The main idea is that if d = 2k + 1, then the solution for
the wave equation in Rd−1 = R2k can be obtained by extending each function on R2k to a function on R2k+1

in a trivial way, i.e., simply prescribing no dependence on xd. We explain the details only for the case of d = 2
and refer to [5, §2.4.d] for the general even-dimensional case.
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Theorem 3.11. Let k ∈ N. For u0 ∈ Ck+2(R2k) and u1 ∈ Ck+1(R2k), define a function u by

u(t, x) :=
1

(2k)!!

∂

∂t

(
1

t

∂

∂t

)k−1
(

t2k

|∂Bt|

∫
∂Bt(x)

u0(y)√
t2 − |y − x|2

dy

)

+
1

(2k)!!

(
1

t

∂

∂t

)k−1
(

t2k

|∂Bt|

∫
∂Bt(x)

u1(y)√
t2 − |y − x|2

dy

)
, t > 0, x ∈ R2k.

Then u ∈ C2,2(R+ × R2k+1). Moreover, u is a solution to the (2k)-dimensional wave equation away from t = 0
(where u is not defined). However, limt→0+ u(t, x0) and limt→0+

∂u
∂t (t, x0) exist for all x0 ∈ R2k+1, and in fact

lim
(t,x)→(0,x0)

u(t, x) = u0(x0) and lim
(t,x)→(0,x0)

∂u

∂t
(t, x) = u1(x0)

for all x0 ∈ R2k.

Beweis. As already announced, we are only going to prove this theorem in the case of k = 1. Let a function
u : R+ × R2 → R solve the 2-dimensional wave equation and define a function ũ : R+ × R3 → R by

ũ(t, x1, x2, x3) := u(t, x1, x2), t ≥ 0 , x1, x2, x3 ∈ R.
Extending similarly u0 and u1 to ũ0, ũ1 : R3 → R we immediately see that u is a solution to the 3-dimensional
wave equation with initial condition given by ũ0 and ũ1. Thus, by Theorem 3.1 the function ũ necessarily agrees
with the solution defined in Theorem (3.9), i.e.,

ũ(t, x) =
∂

∂t

(
t

4πt2

∫
∂B

(3)
t (x)

ũ0(z)dσ(z)

)
+

t

4πt2

∫
∂B

(3)
t (x)

ũ1(z)dσ(z), t > 0, x ∈ R3. (3.5)

(Here B(3)
t (x) and B(2)

t (x) denote, for the sake of clarity, the 3- and 2-dimensional balls of radius t centered at
x, respectively.) By construction, the same formula also holds for u. We want to make it handlier by simplifying
the term containing the spherical mean of u0 by some elementary tools of vector analysis. Observe that

{(y,
√
t2 − |y − x|2) : y ∈ B(2)

t (x)}

is the (upper) (3-dimensional) halfsphere of radius t constructed over the 2-dimensional ball B(2)
t (x). Hence, we

introduce the parametrising function γ : B
(2)
t (x)→ R defined by γ(y) :=

√
t2 − |y − x|2, so that the integral of

ũ0 over the sphere ∂B(3)
t (x), hence over the two halfspheres, agrees with
2

4πt2

∫
B

(2)
t (x)

u0(y)
√

1 + |∇γ(y)|2dy =
1

2πt2

∫
B

(2)
t (x)

u0(y)t√
t2 − |y − x|2

dy.

Accordingly,
t

4πt2

∫
∂B

(3)
t (x)

ũi(z)dσ(z) =
1

2|B(2)
t |

∫
B

(2)
t (x)

ui(y)t√
t2 − |y − x|2

dy, i = 0, 1. (3.6)

We therefore have

u(t, x) = ũ(t, x) =
∂

∂t

(
1

2|B(2)
t |

∫
B

(2)
t (x)

u0(y)t2√
t2 − |y − x|2

dy

)
(3.7)

+
1

2|B(2)
t |

∫
B

(2)
t (x)

u1(y)t2√
t2 − |y − x|2

dy, t > 0, x ∈ R3. (3.8)
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This concludes the proof. �

In the 2-dimensional case it is possible to further simplify the solution formula. In order to reduce the first
term on the RHS we perform a change of variable y 7→ x+ tz and obtain

∂

∂t

(
t2

2|B(2)
t |

∫
B

(2)
t (x)

u0(y)√
t2 − |y − x|2

dy

)
=

∂

∂t

(
t

2|B(2)
1 |

∫
B

(2)
1 (0)

u0(x+ tz)√
1− |z|2

dz

)

=
1

2|B(2)
1 |

∫
B

(2)
1 (0)

u0(x+ tz)√
1− |z|2

dz

+
t

2|B(2)
1 |

∫
B

(2)
1 (0)

∇u0(x+ tz) · z√
1− |z|2

dz

Back-substituting finally yields

∂

∂t

(
t2

2|B(2)
t |

∫
B

(2)
t (x)

u0(y)√
t2 − |y − x|2

dy

)
=

t

2|B(2)
t |

∫
B

(2)
t (x)

u0(y)√
t2 − |x− y|2

dy

+
t

2|B(2)
t |

∫
B

(2)
t (x)

∇u0(y) · (y − x)√
t2 − |y − x|2

dy

Combining this identity with (3.7) we finally arrive at the formula

u(t, x) =
1

2πt

∫
B

(2)
t (x)

u0(y) +∇u0(y) · (y − x) + tu1(y)√
t2 − |y − x|2

dy, t ≥ 0, x ∈ R2,

which is easily seen to be the special case of the general formula for d = 2.

Remark 3.12. In other words, if we consider two functions u0 and ũ0 that only differ inside a bounded set, say
B1(0), then the solutions to the wave equations with initial data u0 and ũ0 are seen to differ at points outside
the ball only after a certain time. One refers to this behaviour by saying that the wave equations enjoys finite
speed of propagation. Equations – like the wave equations – with finite speed of propagation and such that
their solutions are not more regular than the initial data are referred to as hyperbolic equations.

Remark 3.13. The above formulae for the solution to the wave equation are often interpreted as a heuristic
explanation for (or rather, recognition of) the fact that the world we are living in is odd-dimensional (with respect
to the space). This is due to the fact that, by the formulae just obtained (and their generalizations to arbitrary
natural numbers), in the 3- (and, more generally, odd-)dimensional case any variation of the initial data at,
say, x ∈ Rd only affect the solution on the surface of the sound cone

{y ∈ Rd : |x− y| ≤ t},

in accordance with of theHuygens’ principle of acoustics, whereas in 2- (and, more generally, even-)dimensional
case any such variation should also affect the solution in the interior of the sound cone, against experimental
observations (think of a jet fighter’s sonic boom).

Theorem 3.14. Let Ω ⊂ Rd be a domain with C1-boundary (and in particular such that the Gauß–Green
formulae hold). Then the total energy Ep(t) + Ek(t) is constant for all times t, i.e.,

Ep(t) + Ek(t) =

∫
Ω

∣∣∣∣∂u∂t (0, x)

∣∣∣∣2 dx+

∫
Ω
|∇u(0, x)|2dx, t ≥ 0.
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where u is any solution to the wave equation on Ω with either Neumann or Dirichlet boundary conditions such
that (in the case of Ω unbounded) u is unifomly bounded on any compact domain.

Beweis. We observe that by the Gauß–Green formulae

d

dt
(Ep(t) + Ek(t)) =

1

2

d

dt

∫
Ω

∣∣∣∣∂u∂t (t, x)

∣∣∣∣2 dx+
d

dt

∫
Ω
|∇u(t, x)|2dx

=

∫
Ω

d

dt

(
∂u

∂t
(t, x)|∂u

∂t
(t, x)

)
dx+

∫
Ω

d

dt
(∇u(t, x)|∇u(t, x)) dx

=
d

dt

∫
Ω

(
∂2u

∂t2
(t, x)|∂u

∂t
(t, x)

)
dx+

∫
Ω

(
∇u(t, x)|∇∂u

∂t
(t, x)

)
dx

=
d

dt

∫
Ω

(
∂2u

∂t2
(t, x)|∂u

∂t
(t, x)

)
dx−

∫
Ω

(
∆u(t, x)|∂u

∂t
(t, x)

)
dx+

∫
∂Ω

(
∂u

∂n
(t, z)|∂u

∂t
(t, z)

)
dσ(z)

=
d

dt

∫
Ω

(
∂2u

∂t2
(t, x)−∆u(t, x)|∂u

∂t
(t, x)

)
dx,

where the boundary term disappears owing to the imposed boundary conditions. However, since u solves the
wave equation on Ω, the identity ∂2u

∂t2
(t, x) = ∆∂u

∂t (t, x) holds pointwise and for any time t. It follows that

d

dt
(Ep(t) + Ek(t)) =

d

dt

∫
Ω

(
∂2u

∂t2
(t, x)−∆u(t, x)|u(t, x)

)
dx = 0.

This concludes the proof. �

Exercise 3.15. Consider the (undamped) 1-dimensional wave equation and show that if the initial data u0, u1

have compact support, then there exists T > 0 such that

Ek(t) = Ep(t) for all t > T.

Remark 3.16. Of course, this feature is not very realistic. All the wave phenomena we can commonly observe
are not eternal: due to internal frictions and possibly to the influence of external forces (like the gravity) the
wave fades away and the system eventually comes to quiet. In other words, the system dissipates energy. This
would only be possible if the computations in the proof of Theorem 3.14 could be shown to eventually yield an
estimate which is less than 0, say, less than

∫
Ω |α(x)∂u∂t (t, x)|2dx for some function α : Ω→ (−∞, 0) and any t.

In other words, we would like to have

d

dt

∫
Ω

(
∂2u

∂t2
(t, x)−∆u(t, x)− α(x)

∂u

∂t
(t, x)|∂u

∂t
(t, x)

)
dx ≤ 0.

This is surely the case if u does not solve the original wave equation, but rather

∂2u

∂t2
(t, x) = ∆u(t, x) + α(x)

∂u

∂t
(t, x).

Since energy is absorbed throughout the process, this is called a damped wave equation. If on the other hand
α(x) > 0, x ∈ Ω, then the system’s energy increases during time (in absence of external force such a behaviour
is of course unrealistic).
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Exercise 3.17. Another way to force a vibrating model to have decaying energy is to apply a so-called closed
feedback. This means that the system is controlled by some gadget that is able to modify the boundary conditions
in real time. Mathematically speaking, this amounts to considering a modified boundary condition – e.g.,

∂u

∂n
(t, z) =

∂u

∂t
(t, z), t ≥ 0, z ∈ ∂Ω.

Check that the wave equation endowed with this boundary condition actually enjoys energy decay.

Exercise 3.18. Certain investigations have led theoretical physicists (Morse 1968; Beale–Rosencrans 1974) to
consider wave equations equipped with acoustic boundary conditions, which can be written in the form

∂2u
∂t2

(t, x) = c2∆u(t, x), t ≥ 0, x ∈ Ω,

m∂2δ
∂t2

(t, z) = −d∂δ∂t (t, z)− kδ(t, z)− ρ
∂φ
∂t (t, z), t ≥ 0, z ∈ ∂Ω,

δ̇(t, z) = ∂u
∂n(t, z), t ≥ 0, z ∈ ∂Ω.

Here φ is the velocity potential of a fluid filling an open domain Ω ⊂ Rd, either bounded or exterior (i.e., the
complement of a compact domain), such that the Gauß–Green formulae hold; δ is the normal displacement of
the boundary ∂Ω of Ω; m, d, and k are the mass per unit area, the resistivity, and the spring constant of the
boundary, respectively; finally, ρ and c are the unperturbed density of, and the speed of sound in the medium,
respectively. Assume m, k, d, ρ to be positive constants.

Introduce a suitable energy function and show that this energy is decaying. (Hint: also the term δ on ∂Ω
contributes to the total energy of the system.)



KAPITEL 4

The heat equation and the method of symmetries

Consider a thin metal rod, which we can think of as 1-dimensional. If at time t = 0 the rod is heated at
some point(s), the heat will diffuse along the rod. If the initial temperature distribution is known at any point
x, can we foresee the temperature distribution at any point x at any future time t > 0?

Such a heat diffusion problem leads to the introduction of the so-called heat equation. First of all, we
simplify the setting by assuming the rod to be homogeneous, i.e., its linear density ρ > 0 to be spatially constant.
It is physically meaningful to assume the temperature to be proportional to the heat capacity of the body, i.e.,
to the thermal energy that it has to be given in order to become 1o warmer. In a way similar to the case of
the transport equation, in an isolated system the temperature change over time in each small region has to be
balanced by the heat flow φ through the region’s boundary. Passing to the limit in time and in space we obtain
the differential relation

∂u

∂t
(t, x) =

∂φ

∂x
(t, x),

where u(t, x) denotes the temperature at time t at the point x of the rod and φ(t, x) the quantity of heat flowing
per time and section unit, again at time t at the point x. Since however it has been observed by Fourier that the
heat flow is proportional to the temperature gradient −∂u

∂x . The proportionality factor is usually not dependent
on time, leading to the partial differential equation

∂u

∂t
(t, x) =

∂

∂x

(
α
∂u

∂x

)
(t, x),

where α is a function of space modelling the conductivity at each point. This is usually called diffusion
equation. In the special case of α ≡ c we obtain the common heat equation

∂u

∂t
(t, x) = c

∂2u

∂x2
(t, x), (4.1)

but in general the chain rule yields

∂u

∂t
(t, x) = α(x)

∂2u

∂x2
(t, x) + α′(x)

∂u

∂x
(t, x).

If we also consider dissipation and drift phenomena, we can also introduce a drift term β − α′ and a damping
term γ (this will be better motivated in Remark 4.1) and study the equation

∂u

∂t
(t, x) = α(x)

∂2u

∂x2
(t, x) + β(x)

∂u

∂x
(t, x) + γ(x)u(t, x).

This is the most general 1-dimensional diffusion equation.

31
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If we are considering a heat diffusion problem in higher dimension, formally repeating the above procedure
yields the general d-dimensional diffusion equation

∂u

∂t
(t, x) = ∇ (A · ∇u) (t, x) +B(x) · ∇u(t, x) + Γ(x)u(t, x), (4.2)

where A : Rd → Rd2 is a general matrix-valued function that models the spacial conductivity in any direction,
B : Rd → Rd a vector-valued function modelling the drift and Γ : Rd → R a scalar-valued function modelling
the damping. Evolution equations like 4.2 are commonly referred to as parabolic equations.

One may suspect that the method of characteristics also works for the heat equation. In order to solve the
heat equation on – say – R, one can assume that in R+ × R a curve parametrised by γ exists such that each
solution is constant along it, i.e., such that

u(s, γ(s)) ≡ const, s ≥ 0.

However, repeating the computations in (2.5) one only obtains that u and γ satisfy the not quite helpful
condition

γ′(s)
∂u

∂x
(s, γ(s)) = −∂u

∂x

(
α(γ(s))

∂u

∂x
(s, γ(s))

)
, s ≥ 0.

Thus, other techniques have to be developed.

Remark 4.1. Before looking for a solution formula, let us recall the variational method, which we applied in
order to show conservation of energy for the wave equation. A similar reasoning can be made for the case of
heat equations. In this case, the thermal energy of the system at time t is given by

E(t) :=

∫
Ω
|∇u(t, x)|2dx,

where u is the solution to the heat equation (4.2) without drift (B ≡ 0) and with negative-valued damping
coefficient (Γ(x) ≤ 0 for all x ∈ Ω) with Dirichlet or Neumann boundary conditions. Then it can be seen that

E(t) ≤ E(0), t ≥ 0,

where the strict inequality holds whenever the system is endowed with Dirichlet boundary conditions and/or Γ
is strictly negative-valued.

4.1. Point symmetries of a PDE

The aim of this section is to provide a brief introduction to jet calculus and the theory of symmetries for
partial differential equations. This is an old field that goes back to the pioneering work of Sophus Lie and Felix
Klein in the 1880s. Although most of the abstract results have been known ever since, a thorough application to
different classes of differential equations is more recent, see e.g. [9]. A clean and precise formulation of this theory
is quite technical, but pursuing this plan is in our opinion worth it. In this section we will mostly follow [7].

If a curve on a finite-dimensional space Rn is given, say by a parametrisation {(s, φ(s)) ∈ I × Rn} for a
smooth function φ ≡ (φ1, . . . , φn) : I → Rn, I an interval, then at each point x = φ(ε) the curve has a tangent
vector

φ′(ε) = (φ′1(ε), . . . , φ′n(ε)) ≡
n∑
j=1

φ′j(ε)
∂

∂xj
.

The tangent space at x, TxRn, is defined as the n-dimensional space spanned by the tangent vectors to all curves
I → Rn at x. Hence, { ∂

∂x1
, . . . , ∂

∂xn
} is a basis of TxRn.
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Example 4.2. Define φ : R→ R3 by
φ(ε) := (cos ε, sin ε, ε)

(i.e., a helix). Then
φ′(ε) := (− sin ε, cos ε, 1) = (−φ2(ε), φ1(ε), 1).

Interpreting φ as a curve, i.e., (φ1, φ2, φ3) ≡ (x, y, z), this means that

φ′(ε) ≡ −y ∂
∂x

+ x
∂

∂y
+

∂

∂z
.

Definition 4.3. A vector field on Rn is a mapping defined by assigning to each x ∈ Rn a vector in its tangent
space,

v : Rn 3 x 7→ v(x) =
n∑
j=1

ξj(x)
∂

∂xj
∈ TxRn,

for some coefficients ξi : Rn → R, i = 1, . . . , n.
An integral curve of v is a smooth curve {(s, φ(s)) ∈ I × Rn} whose tangent vector at any point ε agrees

with v|φ(ε), i.e., such that
dφi
dε

(ε) = ξi(φ(ε)) for all i = 1, . . . , n. (4.3)

Given x0 ∈ Rd, the maximal integral curve through x0 = φ(0), which exists provided that v is smooth, is called
orbit of the flow generated by v. It is commonly denoted by exp(εv)x0, ε ∈ Ix0, where Ix0 ⊂ R is the maximal
interval (which might be empty).

Remark 4.4. Observe that the flow generated by a vector field satisfies the group laws

exp(0v)x = x

and
exp((ε1 + ε2)v)x = exp(ε2v)(exp(ε1v)x), if ε1, ε2, ε1 + ε2 ∈ Ix.

It may well be that the maximal interval depends on x: this happens already in the simple case of d = 1 and
ξ1(x) := x3, since then

exp(εv)x0 =
1√

x−2
0 − 2ε

,

so that
Ix0 =

(
−∞, 1

2x2
0

)
, x0 ∈ R.

Remark 4.5. It is important for the following to emphasize two alternative ways of looking at vector fields.
First of all, as we have already pointed out, a vector field is uniquely identified by the coefficients ξi, once a basis
of each tangent space is fixed. In other words,

v ≡ (ξ1, . . . , ξn) : Rn → Rn,
A more interesting point of view is the following. Take a function f : Rn → R and x0 ∈ Rn. Then,

f(exp(εv)x0 is a well-defined element of R for all ε ∈ Ix0 . If Ix0 is an open neighbourhood of 0, then it is
possible to differentiate the above expression with respect to ε: in fact the chain rule yields

∂

∂ε
f(exp(εv)x0) =

n∑
i=1

ξi(exp(εv)x0)
∂f

∂xi
(exp(εv)x0) = v(f)(exp(εv)x0),
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by definition. Evaluating in particular this expression at ε = 0 shows that

v(f)(x0) =
n∑
i=1

ξi(x0)
∂f

∂xi
(x0), (4.4)

or, to put it more mnemonically:
v ≡ ξ ⇒ v(f)(x0) ≡ ξ(x)∇f(x).

Thus, we can also regard v as a first order differential operator acting on functions from Rn to R.

Example 4.6. Consider the vector fields on R defined by

v(x) :=
∂

∂x
and w(x) := x

∂

∂x
, x ∈ R.

In order to determine the associated flows, observe that exp(εv)x0, ε ∈ R, has to solve the Cauchy problem

dy

dε
(ε) = 1, y(0) = x0;

whereas exp(εw)x, ε ∈ R, has to solve the Cauchy problem

dy

dε
(ε) = y, y(0) = x0.

One directly sees that
exp (εv1)x0 = x0 + ε, ε ∈ R, x0 ∈ R,

while
exp(εv2)x0 = eεx0, ε ∈ R, x0 ∈ R.

Observe that a smooth function f ∈ CK(Rn), has(
n+ k − 1

k

)
different partial derivatives of order 1 ≤ k ≤ K (due to the theorem of Schwarz): we denote them generally by

f (J) :=
∂kf

∂xj1 . . . ∂xjk
, (4.5)

where J = (j1, . . . , jk) is a multi-index of integers between 1 and n.
It is useful to interpret the solutions to a differential equation as a closed subset (actually, a submanifold)

of a suitable Euclidean space. To do so, we introduce a geometrical notion as follows.

Definition 4.7. Let U be an open domain of Rd. Two functions f, g ∈ CK(U) are said to be k-jet-equivalent
at x0 ∈ U if their difference f − g vanishes at x0 along with all its partial derivatives of any order up to k.
The kth-jet space at x0, denoted by Jkx0, is the quotient space of CK(U) with respect to the k-jet-equivalence
relation at x0. The generic element of Jkx0 is therefore of the form (x0, jkf(x0)) for some f ∈ CK(U

d
) and is

called k-jet of f at x0. The resulting function jkf : Rd → Rdk is called the k-jet jkf . Finally,

Jk := Jk(U) := {Jkx0 : x0 ∈ U} ≡ U × Rdk

is called the kth-jet bundle. The same construction can be repeated if we start by considering functions in
CK(U) instead of CK(Rd), eventually arriving at U × Rdk .



4.1. POINT SYMMETRIES OF A PDE 35

Here

d0 := 1, dk := 1 +
k∑

h=1

(
d+ h− 1

h

)
, k ≥ 1.

For example, a generic element (x, f(x)) of J0 consists of a point x ∈ Rd and the value f(x); a generic element
(x, j1f(x)) of J1 consists of a point of Rd, the value f(x) and the vector1 (ux1(x), . . . , uxd(x)); and more
generally a generic element (x, jkf) := (x, jkf(x)) of Jk consists of the coefficients of the (kth) truncated Taylor
polynomial of f at x. The k-th jet of f maps f to the vector consisting of all partial derivatives of f of order
between 0 and k.

In other words, for a function f ∈ CK(U) the graph of its k-jet satisfies{(
x, jkf(x)

)
: x ∈ U

}
⊂ Jk.

Consider a general (it is not really relevant whether ordinary or partial) differential equation of Kth order2

H

(
x, u,

∂u

∂x1
, . . . ,

∂u

∂xd
,
∂2u

∂x2
1

,
∂2u

∂x1∂x2
, . . .

∂2u

∂x2
d

, . . . ,
∂Ku

∂xKd

)
= 0, (4.6)

in the unknown u and its partial derivatives, for a function H : U × C(U)× . . .× C(U) → R. By definition, a
solution to (4.6) is a function u ∈ CK(U) such that u (and its derivatives) satisfy (4.6) for all x ∈ U . The subset
of JK(U) consisting of all jets (x, jKu) such that H(x, jKu) = 0 is called solution manifold of the differential
equation.

On the other hand, at each point x the equation is fulfilled by u if and only if H vanishes in (x, jKu(x)).
Hence, we can regard H as a function from JK to R and the differential equation (4.6) as an algebraic equation.
Denoting its null set by NH , u is a solution to (4.6) if and only if {(x, jKu(x)) : x ∈ Rd} ⊂ NH . We can therefore
re-write (4.6) as

H(x, jKu) = 0.

Determining the set of CK-functions that solve (4.6) is therefore equivalent to determining the closed subset of
JK consisting of solutions to (4.6).

Remark 4.8. In particular, we can introduce the tangent spaces TxJ0, x := (x, u(x)) ∈ J0. This is the (d+ 1)-
dimensional vector space consisting of tangent vectors at x to all curves in J0. Its basis elements are

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xd
,
∂

∂u
.

Similarly, we consider tangent spaces to J1 with basis elements

∂

∂x1
, . . . ,

∂

∂xd
,
∂

∂u
,
∂

∂ux1
, . . . ,

∂

∂uxd
,

and so on for tangent spaces to Jk for any integer k.

1 Here

uxi :=
∂u

∂xi
, i = 1, . . . , d.

2 Clearly, any differential equation of order K is also a differential equation of order K + m for any m ≥ 0. Therefore, one
takes the order of a differential equation to be the least integer K such that the equation is well-defined on CK(Rd).
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Definition 4.9. A point transformation is a mapping from J0 to itself.
A one-parameter point transformation group of (4.6) is a family T := (Tε(x))ε∈Ix, x∈J0 of point

transformations such that 0 ∈ Ix for all x ∈ J0 and such that

T0(x) = x

and that
Tε1+ε2(x) = Tε2 (Tε1(x)) , (4.7)

for all x ∈ J0 and all ε1, ε2 ∈ R for which the above identity makes sense. In many cases we need the dependence
of T on x and ε to be jointly continuously differentiable, which we therefore assume throughout.

In most applications, Ix is an open interval of R that contains 0, for any x ∈ J0, but in fact T will generally
only be defined on subsets of R× J0. For this reasons, such transformation groups are sometimes referred to as
local.

Remark 4.10. We emphasize that point transformations do not act on functions, but rather on elements of the
functions’ graph, i.e., on pairs (x, f(x)). The difference is subtle but fundamental, since in particular it lets a
point transformation group define a curve (parametrised in ε) in the (d+1)-dimensional jet space J0, and hence
to apply the elementary vector analysis introduced before.

Definition 4.11. The infinitesimal generator of a one-parameter point transformation group T is the vector
field A : J0 → J0 defined as the tangent vector to the curve (Tε(x))ε∈I at x = T0x ∈ J0, i.e.,

A(x) ≡ lim
ε→0+

Tε(x)− x

ε
=:
(
ξ1(x), . . . , ξd(x), φ(x)

)
.

By Remark 4.5 we deduce in particular that for any F : J0 → R and any (x, u) ∈ J0 we have

(A(x, u))(F ) =
d∑
i=1

ξi(x, u)
∂F

∂xi
(x, u) + φ(x, u)

∂F

∂u
(x, u).

We can thus regard A(x) as a differential operator acting on functions from J0 to R, for all x ∈ J0.

Example 4.12. The mapping

J0 3 (x, u) 7→ (O(x), u) ≡ (Ox, u(Ox)) ∈ J0,

where O is a d× d matrix, is a point transformation. If in particular O is a rotation, then this transformation
can also be inverted. In the special case of d = 2,

O =

(
cos θ − sin θ
sin θ cos θ

)
for some θ ∈ R, and one is led to introduce the one-parameter group of transformations

Tθ : (x, y, u) 7→ (

(
cos θ − sin θ
sin θ cos θ

)
(x, y), u), θ ∈ R.

This represents an action of the special orthogonal group SO(2), corresponding to rotations in the argument of
functions u. Its infinitesimal generator is the vector field given by

A(x, y, u) = lim
θ→0

(x cos θ − y sin θ − x, x sin θ + y cos θ − u, 0)

θ
= (x cos′ 0− y, x+ y cos′ 0, 0) = (−y, x, 0).
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That is,

A(x, y, u) = −y ∂
∂x

+ x
∂

∂y
.

Example 4.13. Another possible action of SO(2) is given by the one-parameter group of transformations

Tθ : (x, u) 7→
(

cos θ − sin θ
sin θ cos θ

)
(x, u), θ ∈ R,

i.e.,
Tθ(x, u(x)) =

(
x cos θ − u(x) sin θ, x sin θ + u(x) cos θ

)
=: (x̃, ũ(x)), θ ∈ R.

In order to consistently express ũ as a function of the new variable x̃, one has to get rid of the old variable x.
This corresponds to solving a system of equations, which solvability is typically only granted for some values of
θ.

The infinitesimal generator of this transformation group is the vector field given by

A(x, u) = lim
θ→0

(x cos θ − u sin θ − x, x sin θ + u cos θ − u)

θ
= (x cos′ 0− u, x+ u cos′ 0) = (−u, x).

That is,

A(x, u) = −u ∂
∂x

+ x
∂

∂u
.

Example 4.14. Denote by ei the ith vector of the canonical basis of Rd. For all i = 1, . . . , d the mappings

J0 3 (x, u) 7→ (x+ εei, u) ∈ J0, ε ∈ R,
define a one-parameter point transformation group. Its infinitesimal generator is the vector field with coordinates
given by

A(x, u) ≡ (ei, 0), i.e., A(x, u) =
∂

∂xi
.

Example 4.15. The mappings

J0 3 (x, u) 7→ (x, eεu) ∈ J0, ε ∈ R,
define a one-parameter point transformation group. Its infinitesimal generator is the vector field with coordinates
given by

A(x, u) ≡ (0, u), i.e., A(x, u) = u
∂

∂u
.

Remark 4.16. Given a vector field, it is possible to obtain the flow generated by it solving the differential
equations (4.3); and conversely, given a flow that takes the form of a one-parameter group it is possible to find
its infinitesimal generator by differentiating the flow at 0.

The general aim of this section is to investigate symmetries, i.e., transformation groups mapping solutions
to differential equations into solutions to differential equations. Naively, we might want to define a symmetry
as a one-parameter point transformation group S such that

(x, u) is a solution to (4.6) ⇒ Sε(x, u) is a solution to (4.6) for all ε ∈ Iu. (4.8)

However, this does not (yet) make much sense, unless H is a function defined on J0, i.e., unless (4.6) is in fact
not a plain algebraic (as opposite to differential) equation.

But we do know how to turn differential equations into algebraic ones: simply pass to the jet space repre-
sentation! In order to discuss more general cases it is necessary to extend point transformation groups T acting
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on J0 to higher order jet spaces. The most natural way to do so is to define an extended transformation group
that for all ε ∈ I maps (x, u) into (x̃, ũ) = Tε(x, u) and higher order Taylor coefficients of u ar x into higher
order coefficients of ũ at x̃.

Definition 4.17. Let T be a one-parameter point transformation group with generator A. The k-jet of T is
the family jkT of mappings from Jk to itself defined by

(jkTε)(x, jkf) := (x̃, jkf̃), whenever (x̃, f̃) = Tε(x, f), for all ε ∈ Ĩ(x,f),

for some family (Ĩx)x∈J0 of open intervals, each contained in (and possibly strictly smaller than) Ix and such
that (0,x) ∈ Ĩx.

The k-jet jkA of A is defined as the (unique) vector field on Jk that is the infinitesimal generator of jkT ,
i.e.,

jkA(x, f) := lim
ε→0

jkTε(x, jkf)− (x, jkf)

ε
, (x, jkf) ∈ Jk. (4.9)

Remark 4.18. We strongly emphasize that in (4.9) the notation Tε(x, jkf) is merely referred to the action of
the group onto the jet (x, jkf) = (x, jkf(x)). In other words, denoting for the sake of simplicity

(xε, (jkf)ε) := jkTε(x, jkf),

this means that

jkA(x, f) =

(
lim
ε→0

xε − x
ε

, lim
ε→0

(jkf)ε(x)− jkf(x)

ε

)
, (x, jkf) ∈ Jk.

Definition 4.19. A one-parameter point symmetry group of (4.6) is a one-parameter point transforma-
tion group T such that its K-jet satisfies

H(x, jKu) = 0 ⇒ H
(
(jKTε)(x, jKu)

)
= 0 for all ε ∈ Ĩ(x,u). (4.10)

Example 4.20. Consider again the one-parameter point transformation group introduced in Example 4.13. A
direct computation (check!) shows that its first jet acts on general elements (x, u, ux) ∈ J1 by

(j1Tθ)(x, u, ux) =

(
x cos θ − u sin θ, x sin θ + u cos θ,

sin θ + ux cos θ

cos θ − ux sin θ

)
, θ ∈ R.

Differentiating this expression at θ = 0 we obtain

(j1A)(x, u, ux) = −u ∂
∂x

+ x
∂

∂u
+ (1 + u2

x)
∂

∂ux
.

It is important to emphasize that the jets of a transformation group (Tε) (and more generally of a flow)
might be defined on maximal intervals that are shorter than (Tε). Moreover, it might be that even when the
action of a transformation group on elements of a jet bundle are well-defined, the resulting transformed elements
cannot be interpreted as functions anymore.

Example 4.21. Consider the one-parameter point transformation group (Tθ)θ∈R introduced in Example 4.13.
Then (Tθ)θ∈R is a one-parameter symmetry group of the 1-dimensional Laplace equation

u′′(x) = 0, x ∈ R.

In fact, the solutions to this equation are exactly the affine functions, i.e., those functions of the form

u(x) = ax+ b, x ∈ R,
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for some a, b ∈ R. A simple computation shows that each Tθ maps affine functions into affine functions. However,
this only holds for small θ (in fact, the necessary smallness of θ clearly depends on the parameter a in the above
formula), since at some point rotating the graph of u yields a perfectly vertical line – not the graph of a (single-
valued) function anymore! Therefore, it is not S := (Tθx)θ∈R, x∈J2 that satisfies (4.8), but rather its suitable
restriction S := (Tθx)θ∈Iu, x∈J2 defined in such a way that for all θ ∈ I(x,j2u)

(j2Tθ)(x, j2u) ∈ R4,

i.e., in such a way that the slope of a representant u ∈ C2(Rd) of the equivalence class (j2Tθ)(x, j2u) is not
infinite for any θ ∈ Iu.

Example 4.22. We now consider two one-parameter point transformation groups for the 1-dimensional heat
equation. They are defined by

Tε : (t, x, u) 7→ (t+ εa, x+ εb, u), ε ∈ R,

and
Sε : (t, x, u) 7→ (t, x− 2εt, e−εx−ε

2tu), ε ∈ R.
Simply computing the partial derivatives with respect to t and x shows that (the 2-jets of) both groups map
solutions to the heat equation into solutions to the heat equations.

While checking that a given transformation group is a symmetry of (4.6) is in many cases feasible, we are
interested in performing a systematic search for point symmetry groups.

Theorem 4.23. Let T be a one-parameter point transformation group with infinitesimal generator A. Consider
a differential equation (4.6) such that at each solution (x0, jKu) of the system the following condition is satisfied:

There exists a local change of coordinates y = (y1, . . . , yd+dK ),
y : (x, jKu) 7→ y(x, jKu),

such that y(x0, jKu) is the new origin and (4.6) can be written as y1(x, jKu) = 0.
(4.11)

Then the following assertions are equivalent.
(a) T is a one-parameter point symmetry group of (4.6).
(b) A satisfies the implication

H(x, jKu) = 0 ⇒
(
(jKA)H

)
(x, jKu) = 0. (4.12)

In the following proog, for the sake of notational simplicity we prefer to write zε := (jKTε)(x, jKu), ε ∈
I(x,jKu), and in particular z0 = (x, jKu).

Beweis. (a)⇒ (b) The assertion follows directly from the definition of point symmetry group, i.e.,

H(z0) = 0 ⇒ H
(
zε
)

= 0 for all ε ∈ I(x,jKu).

Differentiating the second condition in (4.10) at ε = 0 we see as in Remark 4.5

d

dε
H(zε)

∣∣∣
ε=0

=

d+dK∑
i=1

∂H

∂zε,i
(z0) · ∂zε,i

∂ε

∣∣∣
ε=0

=

(
d+dK∑
i=1

∂zε,i
∂ε

∣∣∣
ε=0
· ∂

∂z0,i

)
H(z0),

where the operator in parenthesis is a vector field on T(z0)J
K = T(x,u)J

K and whose coefficients agree the
tangent vector to the curve defined by

(
jKTε)(x, jKu)

)
ε∈I(x,jKu)

at (x, jKu) = jKT0(x, jKu) ∈ JK – that is,
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with the infinitesimal generator jKA of the point transformation group’s k-jet. Summing up, we have proved
that

H(z0) = 0 ⇒
(
(jKA)H

)
(z0) = 0.

To prove the converse implication, observe first that – by definition – the flow

(zε)ε∈I(x,jKu) = (jKTε(x, jKu))ε∈I(x,jKu)

through (x, jKu) = 0 generated by jKA satisfies the Cauchy problem{
dyε
dε = (jKA)(yε), ε ∈ I0 ⊂ I(x,jKu),
y0 = 0,

associated with the vector field jKA ≡ (ξ1, . . . , ξd+dk) : JK → JK . Owing to (4.11), with respect to the new
coordinates we can write jKA as

jKA(y) =

d+dK∑
i=1

ξi(y)
∂

∂yi
,

hence (zε)ε∈I(x,jKu) satisfies in particular{
dyε,1
dε = ξ1(yε), ε ∈ I0 ⊂ I(x,jKu),

y0,1 = 0,

Since in particular (4.6) is equivalent to
y1(x, jKu) = 0, (4.13)

it follows from (4.12) that

0 = y1(x, jKu) = 0 ⇒ ((jKA)H)(x, jKu) =

d+dK∑
i=1

ξi(y(x, jKu))
∂y1

∂yi
(x, jKu) = ξ1(y(x, jKu)).

Eventually, we have obtained that (zε)ε∈I(x,jKu) solves

dyε,1
dε

= 0, ε ∈ I0 ⊂ I(x,jKu) and y0 = 0.

Due to the existence and uniqueness theorem, the solution (zε)ε∈I(x,jKu) to the above Cauchy problem has to
agree with the trivial one, i.e.,

(jKTε)(x, jKu) = 0, ε ∈ I0 ⊂ I(x,jKu).

and in fact even for all ε ∈ I(x,jKu), by (4.7)). In particular, zε,1 = 0 for all ε ∈ I(x,jKu). I.e., taking into account
the change of coordinates, it satisfies (4.6).

In other words, taking into account (4.13) we have shown that if z0 = (x, jKu) is a solution to (4.6), then
so is zε = (jKTε)(x, jKu) for all ε small enough. But in fact, due to (4.7) we deduce that (jKTε)(x, jKu) is a
solution for all ε ∈ I(x,jKu). �

The fundamental class of equations for which condition (4.11) is satisfied consists of those having maximal
rank, in the following sense.
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Definition 4.24. The equation (4.6) is said to have maximal rank if at each point x ∈ JK such that H(x) = 0
the Jacobian of H at x,

∇H(x) :=
(
∂H
∂x1

, . . . , ∂H∂xd ,
∂H
∂u ,

∂H
∂ux1

, . . . , ∂H
∂ud...d

)
(x) ∈ Rd+dK ,

has at least one non-vanishing coordinate.

Exercise 4.25. Show that each equation of maximal rank satisfies condition (4.11). (Hint: apply the implicit
function theorem.)

Example 4.26. The inhomogeneous 1-dimensional transport equation (2.1) is defined by the function H : J1 →
R given by

H(t, x, j1u) = H

(
t, x, u,

∂u

∂t
,
∂u

∂x

)
:=

∂u

∂t
(t, x) + c

∂u

∂x
(t, x)− f(t, x).

At each point of (t, x, j1u) ∈ J1, the Jacobian of H has coordinates given by
∂H

∂t
= −∂f

∂t
,

∂H

∂x
= −∂f

∂x
,

∂H

∂u
= 0,

∂H

∂ut
= 1,

∂H

∂ux
= c,

i.e.,

∇H (t, x, j1u) =

(
−∂f
∂t

(t, x),−∂f
∂x

(t, x); 0; 1, c

)
.

Hence, (2.1) has maximal rank.

Exercise 4.27. Assume for simplicity the equation (4.6) to be of maximal rank. Show that
the conditions (a) and (b) in Theorem 4.23 are equivalent to the following one.

(c) There exists Q : JK → R such that(
(jKA)H

)
(x, jKu) = Q(x, jKu)H(x, jKu) for all (x, jKu) ∈ JK . (4.14)

Observe that the maximal rank condition is sufficient but not necessary, in order to ensure that (4.11) is
satisfied.

Example 4.28. The 3-dimensional Laplace equation

∆u(x, y, z) = 0, (x, y, z) ∈ R3,

is defined by the function H : J2 → R given by

H (x, y, z, j2u) :=
∂2u

∂x2
(x, y, z) +

∂2u

∂y2
(x, y, z) +

∂2u

∂z2
(x, y, z).

At each point of (x, y, z, j2u) ∈ J2, the Jacobian of H is

∇H(x, y, z, j2u) = (0, 0, 0; 0; 0, 0, 0; 1, 0, 0, 1, 0, 1).

Hence, (2.1) has maximal rank.
However, consider the (equivalent) formulation

(∆u(x, y, z))2 = 0, (x, y, z) ∈ R3.

Then, at each point (x, y, z, j2u) ∈ J2 the Jacobian of the associated function H̃ is

∇H(x, y, z) = (0, 0, 0; 0; 0, 0, 0; 2∆u(x, y, z), 0, 0, 2∆u(x, y, z), 0, 2∆u(x, y, z)),

which vanish whenever ∆u(x, y, z) = 0.
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Exercise 4.29. Show that the heat equation (4.1) has maximal rank for all c ∈ R.

Example 4.30. Let d = 1 and consider the ordinary differential equation defined by the function H : J2 → R
defined by

H(x, y, y′, y′′) := y′′ + y.

We want to prove that the point transformation

Tε : (x, y) 7→ (x, eεy), ε ∈ R,

whose generator is

A(x, y) := y
∂

∂y
,

cf. Example 4.6, is a symmetry group of the above (ordinary) differential equation. In order to check this,
consider the 2-jet j2A, which is defined by

j2A(x, y) := y
∂

∂y
+ y′

∂

∂y′
+ y′′

∂

∂y′′
,

and compute (j2A)H : J2 → J2. This is given by

((j2A)H)(x, j2y) = y
∂H

∂y
+ y′

∂H

∂y′
+ y′′

∂H

∂y′′
= y + y′′ ∈ J2,

which vanishes identically whenever y + y′′ = 0, i.e., whenever y is a solution to the given ODE.

While Theorem 4.23 is a mighty tool for investigating symmetries, it is usually not easy to find jets jKA of
infinitesimal generators, since also formulae for the generated one-parameter groups (even for those on J0) are
seldom known.

A mechanical (and in fact algorithmically implemented) way to determine such jets is known, but providing
its proof is lengthy and goes beyond the scope of this lecture. Instead, we content ourselves in summarizing the
results that are most relevant to us and refer to [7, §2.3].

Proposition 4.31. Consider an infinitesimal generator A : J0 → J0, defined say by

A(x, u) :=
d∑
j=1

ξj(x, u)
∂

∂xj
+ φ(x, u)

∂

∂u
.

The k-jet of A, k ≤ K, is the vector field on JK given by

jkA(x, jKu) = A(x, u) +
∑
J

φ(J)(x, jKu)
∂

∂u(J)
, (4.15)

where each φ(J) maps JK to R by

φ(J)(x, jKu) := DJ

(
φ−

d∑
i=1

ξi
∂u

∂xi

)
(x, jKu) +

d∑
i=1

(
ξi
∂u(J)

∂xi

)
(x, jKu).

In (4.15) we denote by ∑
J
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the sum over all multi-indices J = (j1, . . . , jk) of integers between 1 and d, with 1 ≤ k ≤ K. Here DJ denotes
the J th total derivative of a vector field,

DJ = Dj1 . . . Djk ,

defined for all smooth v and all integers i between 1 and d by3

Div :=
∂v

∂xi
+
∂u

∂xi

∂v

∂u
+
∑
J

∂u(J)

∂xi

∂v

∂u(J)
.

In all the applications (to 1-dimensional partial differential equations) we have in mind d = 2 and K ≤ 2,
hence in order to apply our symmetry criterion all we have to do is to find an explicit expression for j2A, that
is, for

φ(t), φ(x), φ(tt), φ(tx), φ(xx).

A tedious but straightforward computation yields the following.

Corollary 4.32. Let d = 2. The coefficients φ(t), φ(x), φ(tt), φ(tx), φ(xx) of the 2-jet of an infinitesimal generator

A = ξ
∂

∂x
+ τ

∂

∂t
+ φ

∂

∂u

are given as follows: the coefficients of the 1st order terms are

φ(t) =
∂φ

∂t
− ∂ξ

∂t

∂u

∂x
+

(
∂φ

∂u
− ∂τ

∂t

)
∂u

∂t
− ∂ξ

∂u

∂u

∂x

∂u

∂t
− ∂τ

∂u

(
∂u

∂t

)2

,

φ(x) =
∂φ

∂x
− ∂τ

∂x

∂u

∂t
+

(
∂φ

∂u
− ∂ξ

∂x

)
∂u

∂x
− ∂τ

∂u

∂u

∂t

∂u

∂x
− ∂ξ

∂u

(
∂u

∂x

)2

,

3 Formally u(J) is only defined for any (equivalence class whose representant is a) function in Ck, i.e., for the k-jet of u, but
we avoid writing

(jku)(J) for u(J).
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(observe the symmetry with respect to t↔ x and τ ↔ ξ) while the coefficients of the 2nd order terms are

φ(tt) =
∂2φ

∂t2
+

(
2
∂2φ

∂t∂u
− ∂2τ

∂t2

)
∂u

∂t
− ∂2ξ

∂t2
∂u

∂x
+

(
∂2φ

∂u2
− 2

∂2τ

∂t∂u

)(
∂u

∂t

)2

−2
∂2ξ

∂t∂u

∂u

∂t

∂u

∂x
− ∂2τ

∂u2

(
∂u

∂t

)3

− ∂2ξ

∂u2

(
∂u

∂t

)2 ∂u

∂x
+

(
∂φ

∂u
− 2

∂τ

∂t

)
∂2u

∂t2

−2
∂ξ

∂t

∂2u

∂x∂t
− 3

∂τ

∂u

∂u

∂t

∂2u

∂t2
− ∂ξ

∂u

∂u

∂x

∂2u

∂t2
− 2

∂ξ

∂u

∂u

∂t

∂2u

∂t∂x

φ(tx) =
∂2φ

∂t∂x
+

(
∂2φ

∂t∂u
− ∂2ξ

∂t∂x

)
∂u

∂x
+

(
∂2φ

∂x∂u
− ∂2τ

∂t∂x

)
∂u

∂t
− ∂2ξ

∂t∂u

(
∂u

∂x

)2

+

(
∂2φ

∂u2
− ∂2ξ

∂x∂u
− ∂2τ

∂t∂u

)
∂u

∂x

∂u

∂t
− ∂2τ

∂x∂u

(
∂u

∂t

)2

− ∂2ξ

∂u2

(
∂u

∂x

)2 ∂u

∂t
− ∂2τ

∂u2

∂u

∂x

(
∂u

∂t

)2

−∂ξ
∂t

∂2u

∂x2
− ∂ξ

∂u

∂u

∂t

∂2u

∂x2
+

(
∂φ

∂u
− ∂ξ

∂x
− ∂τ

∂t

)
∂2u

∂t∂x
− 2

∂ξ

∂u

∂u

∂x

∂2u

∂t∂x

−2
∂τ

∂u

∂u

∂t

∂2u

∂t∂x
− ∂τ

∂x

∂2u

∂t2
− ∂τ

∂u

∂u

∂x

∂2u

∂t2

φ(xx) =
∂2φ

∂x2
+

(
2
∂2φ

∂x∂u
− ∂2ξ

∂x2

)
∂u

∂x
− ∂2τ

∂x2

∂u

∂t
+

(
∂2φ

∂u2
− 2

∂2ξ

∂x∂u

)(
∂u

∂x

)2

−2
∂2τ

∂x∂u

∂u

∂x

∂u

∂t
− ∂2ξ

∂u2

(
∂u

∂x

)3

− ∂2τ

∂u2

(
∂u

∂x

)2 ∂u

∂t
+

(
∂φ

∂u
− 2

∂ξ

∂x

)
∂2u

∂x2

−2
∂τ

∂x

∂2u

∂x∂t
− 3

∂ξ

∂u

∂u

∂x

∂2u

∂x2
− ∂τ

∂u

∂u

∂t

∂2u

∂x2
− 2

∂τ

∂u

∂u

∂x

∂2u

∂t∂x
.

Exercise 4.33. Prove Corollary 4.32.

4.2. The fundamental solution to the heat equation

In general, determining a point symmetry group is a tiresome task, for a human being. If however this has
been performed4, then it is sometimes possible to extract interesting informations from that. In the following
we specialise the results of §4.1 to the case of the one-dimensional heat equation.

Theorem 4.34. The unique one-parameter point symmetry groups of the heat equation

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x), t ≥ 0, x ∈ R, (4.16)

4 This is made easier by using suitable symbolic software, like MAPLE: its PDEtools package permits e.g. to determine (via
the command Infinitesimals and SymmetryTransformations, respectively) the infitesimal generators of the one-parameter point
symmetry groups of a partial differential equations as well as the generated groups, at least in the more elementary cases.
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are those given by

T
(1)
ε (t, x, u) := (t+ ε, x, u), ε ∈ R,
T

(2)
ε (t, x, u) := (e2εt, eεx, u), ε ∈ R,

T
(3)
ε (t, x, u) := ( t

1−4εt ,
x

1−4εt ,
√

1− 4εt e
−εx2
1−4εtu), ε < 1

4t ,

T
(4)
ε (t, x, u) := (t, x+ ε, u), ε ∈ R,
T

(5)
ε (t, x, u) := (t, x+ 2εt, e−εx−εt

2
u), ε ∈ R,

T
(6)
ε (t, x, u) := (t, x, eεu), ε ∈ R.

It will be clear from the proof of the theorem that also

Sε,w(t, x, u) := (t, x, u+ εw), ε ∈ R, w solution to (4.16)

yields a family of symmetries – in fact a group, due to the vector space structure of the set S of solutions
to (4.16). However, this is not a one-parameter group: in fact, its natural generator is

B : (t, x, u) 7→ w(t, x)
∂

∂u
,

which is however not a generator in the sense of our Definition 4.11 since it is a vector field acting on a infinite
dimensional vector space S. We omit the detais and refer to [7] for a thorough (and more advanced) treatment
of this kind of symmetries, which require the introduction of the notion of Lie group.

Beweis. This partial differential equation can be associated with the function

H : J2 3 (t, x, j2u) 7→ ∂u

∂t
(t, x)− ∂2u

∂x2
(t, x) ∈ R.

Then, by Theorem 4.23 a vector field A is the infinitesimal generator of a one-parameter symmetry group if
and only if

((j2A)H)(x, j2u) = 0 whenever H(x, j2u) = 0.

Plugging the formulae mentioned in Theorem 4.32 in the above condition, this reads

0 = ((j2A)H)(x, j2u) =
∂H

∂t
+
∂H

∂x
+ φ

∂H

∂u
+ φ(t)∂H

∂ut
+ φ(x) ∂H

∂ux
+ φ(tt) ∂H

∂utt
+ φ(tx) ∂H

∂utx
+ φ(xx) ∂H

∂uxx

= φ(t) − φ(xx) whenever ut − uxx = 0.

Now, since

φ(t) =
∂φ

∂t
− ∂ξ

∂t

∂u

∂x
+

(
∂φ

∂u
− ∂τ

∂t
− ∂ξ

∂u

∂u

∂x

)
∂u

∂t
− ∂τ

∂u

(
∂u

∂t

)2

,

and

φ(xx) =
∂2φ

∂x2
+

(
2
∂2φ

∂x∂u
− ∂2ξ

∂x2

)
∂u

∂x
− ∂2τ

∂x2

∂u

∂t
+

(
∂2φ

∂u2
− 2

∂2ξ

∂x∂u

)(
∂u

∂x

)2

−2
∂2τ

∂x∂u

∂u

∂x

∂u

∂t
− ∂2ξ

∂u2

(
∂u

∂x

)3

− ∂2τ

∂u2

(
∂u

∂x

)2 ∂u

∂t
+

(
∂φ

∂u
− 2

∂ξ

∂x

)
∂2u

∂x2

−2
∂τ

∂x

∂2u

∂x∂t
− 3

∂ξ

∂u

∂u

∂x

∂2u

∂x2
− ∂τ

∂u

∂u

∂t

∂2u

∂x2
− 2

∂τ

∂u

∂u

∂x

∂2u

∂t∂x
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and since we have to assume that u solves the heat equation, i.e., that ut = uxx, substituting and equating we
obtain that

∂φ

∂t
− ∂ξ

∂t

∂u

∂x
+

(
∂φ

∂u
− ∂τ

∂t

)
∂2u

∂x2
− ∂ξ

∂u

∂u

∂x

∂2u

∂x2
− ∂τ

∂u

(
∂2u

∂x2

)2

=
∂2φ

∂x2
+

(
2
∂2φ

∂x∂u
− ∂2ξ

∂x2

)
∂u

∂x
− ∂2τ

∂x2

∂2u

∂x2
+

(
∂2φ

∂u2
− 2

∂2ξ

∂x∂u

)(
∂u

∂x

)2

−2
∂2τ

∂x∂u

∂u

∂x

∂2u

∂x2
− ∂2ξ

∂u2

(
∂u

∂x

)3

− ∂2τ

∂u2

(
∂u

∂x

)2 ∂2u

∂x2
+

(
∂φ

∂u
− 2

∂ξ

∂x

)
∂2u

∂x2

−2
∂τ

∂x

∂2u

∂x∂t
− 3

∂ξ

∂u

∂u

∂x

∂2u

∂x2
− ∂τ

∂u

(
∂2u

∂x2

)2

− 2
∂τ

∂u

∂u

∂x

∂2u

∂x∂t
.

Both on the LHS and the RHS there are polynomials in the variables

1, ux, (ux)2, (ux)3, uxx, uxuxx, (ux)2uxx, (uxx)2, utx, uxutx :

they are equal if and only if the coefficient of each monomial vanishes.
• Setting to 0 the coefficient of utx and the coefficient of uxutx we obtain that

∂τ

∂u
= 0 =

∂τ

∂x
,

i.e., τ does not depend either on x nor on u (and in particular also τuu = 0 and τxu = 0).
• The condition given by (ux)2 is empty, since it requires that τu = τu.
• The condition on the coefficient of (ux)2uxx shows that τuu = 0, i.e., τ is independent of u (but this
was already known).
• The condition on the coefficient of (ux)uxx shows that ξu = 2τxu + 3ξu, i.e.,

ξu = 3ξu,

i.e., ξ is independent of u (and in particular ξxu = 0).
• Passing to the coefficient of uxx we see that φu − τt = −τxx + φu − 2ξx, i.e.,

τt = 2ξx,

and integrating with respect to x we obtain

ξ(t, x) =
1

2
τt(t)x+ c(t),

where the integration constant c (with respect to x) may indeed depend on t. In particular,

ξt(t, x) =
1

2
τtt(t)x+ ct(t) and ξxx(t, x) = 0. (4.17)

• Since ξ is independent on u, ξuu = 0 and the condition on (ux)3 is empty.
• Similarly, to the second-last case, the condition on (ux)2 yields

0 = φuu − 2ξxu = φuu,

and integrating with respect to u yields

φ(t, x, u) = b(t, x)u+ a(t, x), (4.18)
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for some integration constants a, b (with respect to u). In particular,

φxu(t, x, u) = bx(t, x). (4.19)

• The condition on ux yields
−ξt = 2φxu − ξxx = 2φxu.

Plugging (4.17) and (4.19) in the last equation we obtain

− 1

2
τtt(t)x+ ct(t) = 2bx(t, x), (4.20)

and integrating with respect to x yields

− 1

8
τtt(t)x

2 − 1

2
ct(t)x+ d(t) = b(t, x), (4.21)

for some integration constant d (with respect to x).
• Finally, the coefficient condition in 1 yields

φt = φxx.

Taking into account (4.18) we deduce that

btu+ at = bxxu+ axx.

This is another polynomial in the variables 1, u, and equating the coefficients of the terms corresponding
to the same monomial yields that

bt = bxx as well as at = axx.

Differentiating (4.21) with respect to t and also (4.20) with respect to x yields

− 1

8
τttt(t)x

2 − 1

2
ctt(t)x+ dt(t) = bt(t, x) = bxx(t, x) = −1

4
τtt(t). (4.22)

This is a polynomial in 1, x, x2. Equating to 0 all the coefficient of same degree yields

τttt(t) = 0, ctt(t) = 0, dt(t) +
1

4
τtt(t) = 0.

Accordingly, τ is at most quadratic and c is at most linear with respect to t, i.e.,

τ(t) = c1 + 2c2t+ 4c3t
2

and
c(t) = c4 + 2c5t. (4.23)

for some c1, c2, c3, c4, c5 ∈ R.
Integrating both dt and τtt with respect to t yields

d(t) = −1

4
τt(t) + c7. (4.24)

This finally yields

τ(t) = c1 + 2c2t+ 4c3t
2,

ξ(t, x) = c4 + c2x+ 2c5t+ 4c3tx,

φ(t, x, u) = (c6 − c5x− 2c3t− c3x
2)u+ a(t, x).

for arbitrary numbers c1, c2, c3, c4, c5, c6, and where a is any function that satisfy the heat equation. The equation
for φ is obtained plugging (4.23)–(4.24) and the equation for τ in (4.21), and then in (4.18).
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Setting recursively all but one of these coefficient to 0 we obtain the following six vector fields as generators
of one-parameter point symmetry groups:

A1 =
∂

∂t

A2 = 2t
∂

∂t
+ x

∂

∂x

A3 = 4t2
∂

∂t
+ 4tx

∂

∂x
− (2t+ x2)u

∂

∂u

A4 =
∂

∂x

A5 = 2t
∂

∂x
− xu ∂

∂u

A6 = u
∂

∂u
.

An easy computation shows that differentiating the group T (k) at ε = 0 one obtains Ak: this yields the claim.
For example, let us check that

A3 ≡
(
4t2, 4tx,−(x2 + 2t)u

)
is actually the infinitesimal generator of

T (3)
ε (t, x, u) ≡

(
t

1− 4εt
,

x

1− 4εt
,
√

1− 4εt e−
εx2

1−4εtu

)
, ε <

1

4t
, (t, x, u) ∈ J0.

In fact, one checks directly that
∂

∂ε

t

1− 4εt
= − −4t2

(1− 4εt)2
,

hence
∂

∂ε

t

1− 4εt

∣∣∣
ε=0

= 4t2.

Likewise,
∂

∂ε

x

1− 4εt
= − −4xt

(1− 4εt)2
,

hence
∂

∂ε

x

1− 4εt

∣∣∣
ε=0

= 4tx.

Finally,

∂

∂ε

√
1− 4εt e−

εx2

1−4εtu =
1

2

−4t√
1− 4εt

e−
εx2

1−4εtu+
√

1− 4εt

(
−x

2(1− 4εt) + εx24t

(1− 4εt)2

)
e−

εx2

1−4εtu

= −
(

2t√
1− 4εt

+
√

1− 4εt

(
x2

(1− 4εt)2

))
e−

εx2

1−4εtu,

and evaluating at ε = 0 we obtain
∂

∂ε

√
1− 4εt e−

εx2

1−4εtu
∣∣∣
ε=0

= −
(
2t+ x2

)
u,

thus completing the proof. �
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Exercise 4.35. Work out the details in order to show that the vector field Ak is actually the infinitesimal
generator of the one-parameter point transformation group T (k), k = 1, . . . , 6.

Exercise 4.36. Use the above obtained formulae for the 2-jet of vector fields in order to determine the point
symmetry groups of the 1-dimensional wave equation

∂2u

∂t2
(t, x)− ∂2u

∂x2
(t, x) = 0.

Exercise 4.37. Use the above obtained formulae for the 2-jet of vector fields in order to determine the point
symmetry groups of the 2-dimensional Laplace equation

∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0.

Corollary 4.38. The function

Φ : (t, x) 7→ 1√
4πt

e−
x2

4t , t > 0, x ∈ R, (4.25)

satisfies the one-dimensional heat equation, i.e., there holds

∂Φ

∂t
(t, x) =

∂2Φ

∂x2
(t, x), t > 0, x ∈ R.

A general problem arising when discussing symmetry groups is the following: when a point transformation
T acts on a 0-jet, say (x, u), then we obtain (x̃, ũ) in dependence of the old variables x, u. In order to express ũ
in dependence of its natural variable x̃5, it is natural to try to invert the first relation expressing x̃ in function of
x and u(x): this is generally possible by an elementary application of the inverse function theorem in a suitably
small neighbourhood of ε = 0, using the fact that T0 acts as the identity on J0. Having done this, it will usually
be easy to plug this expression for x (in dependence of x̃ and u(x)) into the expression for ũ(x). Performing
this in the concrete case of the transformation groups T (3) and T (1) will be the main issue in the proof below.

Beweis. Observe in particular that the fact that (T
(3)
ε )ε∈R and (T

(1)
ε )ε∈R are symmetry groups implies that

if (t, x, f) is a solution to the heat equation, then so are also its transforms

(t̃, x̃, ũ) := T (3)
ε1 (t, x, u)

and
(t̂, x̂, û) := T (1)

ε2 (t̃, x̃, ũ),

for any ε ∈ R and ε2 < 1
4t . We will apply in particular this argument to the trivial solution

γ(t, x) :≡ c, t > 0, x ∈ R,
where c is any real number.

To begin with, let us express t and x in function of t̃ and x̃: it follows from

t̃(t) =
t

1− 4ε1t
and x̃(t, x) =

x

1− 4ε1t

that

t(t̃) =
t̃

1 + 4ε1t̃
and x(t̃, x̃) =

x̃

1 + 4ε1t̃
.

5 It is (x̃, ũ) – and not (x, ũ)! – that solves (4.6) if (x, u) does.
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Plugging these formulae into

ũ(t, x, u) =
√

1− 4ε1t e
− ε1x

2

1−4ε1tu(t, x)

we obtain the ugly expression

ũ(t̃, x̃, u) =

√
1− 4ε1t̃

1 + 4ε1t̃
e

−
ε1

(
x̃

1+4ε1 t̃

)2

1− 4ε1 t̃

1+4ε1 t̃ u

(
t̃

1 + 4ε1t̃
,

x̃

1 + 4ε1t̃

)
,

which can be luckily simplified to

ũ(t̃, x̃, u) =
1√

1 + 4ε1t̃
e
−
ε1

(
x̃

1+4ε1 t̃

)2

1
1+4ε1 t̃ u

(
t̃

1 + 4ε1t̃
,

x̃

1 + 4ε1t̃

)
=

1√
1 + 4ε1t̃

e
− ε1x̃

2

1+4ε1 t̃u

(
t̃

1 + 4ε1t̃
,

x̃

1 + 4ε1t̃

)
.

Knowing an explicit expression of u allows in most cases to drop the explicit dependence on u, hence getting a
closed formula for ũ(t̃, x̃). In the special case of the trivial solution γ we obtain

γ̃(t̃, x̃) =
c√

1 + 4ε1t̃
e
− ε1x̃

2

1+4ε1 t̃ , (4.26)

which is therefore a solution for all c ∈ R and all ε1 > − 1
4t̃
. Let us know compute (t̂, x̂, γ̂) = T

(1)
ε2 (t̃, x̃, γ̃). This

is quite easy since all we have to do is to observe that

t̃(t̂) = t̂− ε2 since t̂(t̃) = t̃+ ε2.

Plugging this into (4.26) yields

γ̂(t̂, x̂) =
c√

1 + 4ε1(t̂− ε2)
e
− ε1x̂

2

1+4ε1(t̂−ε2) ,

since x̂ = x̃. While such a function γ̂ is a solution to the heat equation for all small ε1, all ε2 ∈ R and all c ∈ R,
the choice of ε2 = 1

4ε1
looks natural. It yields

γ̂(t̂, x̂) =
c√
4ε1t̂

e
− ε1x̂

2

4ε1 t̂ =
c√
4ε1t̂

e−
x̂2

4t̂ .

Finally, chosing c =
√
ε1π−1 yields the claim. �

Remark 4.39. Observe that while the formula (4.25) defines a function that is continuous at t = 0, and hence
we can consider the continuous extension

Φ(t, x) :=

{
1√
4πt
e−

x2

4t , t > 0,

0 t = 0,

this function cannot be extended to t < 0. In fact, it can be proved by more refined methods (e.g., functional
analytical ones) that the heat equation is not uniquely solvable backward in time.
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We are finally in the position to discuss the initial value problem associated with the heat equation on Rd.
Even if more solution might be constructed through these symmetry groups, starting from the trivial solution,
Φ defined in (4.25) is the most general one (in R), in the sense made precise below.

A natural conjecture is that the solution Φ be extendable to general Euclidean spaces Rd by considering

(t, x) 7→ 1√
4πt

e−
‖x‖2
4t , t > 0 x ∈ Rd.

Unfortunately, this is not a smart choice. This is due to the observation that in the 1-dimensional case one has
for all t > 0 ∫ ∞

−∞
Φ(t, x)dx =

1√
4πt

∫ ∞
−∞

e−
x2

4t dx =
1√
π

∫ ∞
−∞

e−z
2
dz = 1.

This normalisation property will be useful in the following, as we will see, but it does not hold for the naive d-
dimensional extension proposed above. However, the above computation suggests a solution: considering instead

Φ : (t, x) 7→ 1

(4πt)
d
2

e−
‖x‖2
4t , t > 0 x ∈ Rd, (4.27)

yields (by Fubini’s theorem)∫
Rd

Φ(t, x)dx =
1

π
d
2

∫
Rd
e−z

2
dz =

1

π
d
2

d∏
i=1

∫ ∞
−∞

e−z
2
i dz = 1, t > 0. (4.28)

Exercise 4.40. Check that Φ : Rd → R defined in (4.27) satisfies the heat equation.

Definition 4.41. The function Φ : (0,∞) × Rd → R defined in (4.25) is called the Gaussian kernel or the
fundamental solution to the heat equation.

Theorem 4.42. Let u0 ∈ Cb(Rd) and define

u(t, x) :=

∫
Rd

Φ(t, x− y)u0(y)dy =
1

(4πt)
d
2

∫
Rd
e−
‖x−y‖2

4t u0(y)dy, t > 0, x ∈ Rd.

Then the following assertions hold:
(1) u ∈ C∞((0,∞)× Rd),
(2) u satisfies

∂u

∂t
(t, x) = ∆u(t, x), t > 0, x ∈ Rd,

(3) one has for all x0 ∈ Rd

lim
(t,x)→(0,x0)

u(t, x) = u0(x0).

Beweis. (1) The assertion follows from the fact that the Gaussian kernel is an infinitely differentiable
function with bounded derivatives.

Let us first show that u ∈ C1((0,∞)× Rd). In fact, for all i = 1, . . . , d and all h ∈ R one can compute the
ith incremental quotient, which is given by

u(t, x+ hei)− u(t, x)

h
=

1

(4πt)
d
2

∫
Rd

Φ(t, x+ hei − y)− Φ(t, x− y)

h
u0(y)dy.
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Due to the fact that Φ has bounded derivative we deduce that

lim
h→0

Φ(t, x+ hei − y)− Φ(t, x− y)

h
=
∂Φ

∂xi
(t, x− y)

and therefore

lim
h→0

Φ(t, x+ hei − y)− Φ(t, x− y)

h
u0(y) =

∂Φ

∂xi
(t, x− y)u0(y)

uniformly in x ∈ Rd, and by Lebesgue’s dominated convergence theorem we deduce that also

lim
h→0

∫
Rd

Φ(t, x+ hei − y)− Φ(t, x− y)

h
u0(y)dx =

∫
Rd

∂Φ

∂xi
(t, x− y)u0(y),

q.e.d.
A similar claim holds when considering the time derivative, using boundedness on each interval [δ,∞) of

the Gaussian kernel and of its derivatives with respect to t, for any δ > 0. Clearly, the general claim can be
proved recursively.

(2) We also get

∂u

∂t
(t, x)−∆u(t, x) =

∫
Rd

(
∂Φ

∂t
−∆Φ

)
(t, x− y)u0(y)dy = 0, t > 0, x ∈ Rd,

where the latter identity follows from the fact that Φ is itself a solution to the heat equation.
(3) Finally, let us check that u satisfies the initial condition. Let x0 ∈ Rd and ε > 0. By continuity of u0

there exists δ > 0 such that

y ∈ Bδ(x0) ⇒ g(y) ∈ Bδ(g(x0)).

Taking x ∈ B δ
2
(x0) we deduce that

|u(t, x)− u0(x0)| =
∣∣∣∣∫
Rd

Φ(t, x− y)u0(y)dy − u0(x0)

∣∣∣∣ =

∣∣∣∣∫
Rd

Φ(t, x− y) (u0(y)− u0(x0)) dy

∣∣∣∣ ,
where the last equality holds due to (4.28). Splitting the integral into a part in Bδ(x0) (where we can use
closeness of g(y) to g(x0)) and an exterior part (where we can use the exponential decay of the Gaussian kernel)
we obtain

|u(t, x)−u0(x0)| ≤
∫
Bδ(x0)

Φ(t, x−y)|(u0(y)−u0(x0)|dy+

∫
Rd\Bδ(x0)

Φ(t, x−y)|u0(y)−u0(x0)|dy =: I1(t)+I2(t).

Then, again by (4.28)

I1(t) ≤ ε
∫
Rd

Φ(t, x− y)dy = ε

∫
Rd

Φ(t, z)dz = ε,
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and moreover for all x ∈ B δ
2
(x0)6

I2(t) ≤ 2‖u0‖∞
∫
Rd\Bδ(x0)

Φ(t, x− y)dy

≤ C

t
n
2

∫
Rd\Bδ(x0)

e−
|x−y|2

4t dy

≤ C

t
n
2

∫
Rd\Bδ(x0)

e−
|x0−y|

2

16t dy.

Having obtained an estimate involving the integral of a radial function, it is natural to pass to radial coordinates.
We then obtain

I2(t) ≤ C

t
n
2

∫ ∞
δ

e−r
2
16trn−1dr.

Therefore,
lim
t→0+

I2(t) = 0.

This ensures that for t suitably small I2(t) ≤ ε. All in all, we conclude that

|u(t, x)− u0(x0)| ≤ I1(t) + I2(t) ≤ 2ε

whenever t is small and x ∈ B δ
2
(x0). �

Remark 4.43. We have just seen that no matter how regular the initial data is, the solution to the heat equation
will be of class C∞ – in fact, by density one can extend such a result to all initial data in Lp(Rd), for any
p ∈ [1,∞]. Moreover, since the solution u(t, x) is obtained integrating the initial data against a strictly positive
kernel kt(x, ·) := Φ(t, x− ·) over all Rd, it follows that modifications of the initial data inside a bounded subset
of Rd affect the solution everywhere and immediately7. These properties make a heat equations very different
from wave and, more generally, hyperbolic equation. Partial differential equations displaying the above behaviour
are called parabolic .

Exercise 4.44. Strictly speaking, what we have just done is not (yet) finding the fundamental solution to the
heat equation, but rather just a solution to it – in particular because picking other symmetry groups might in
principle yield different, possibly more general solutions. To feel reassured that this is not possible, introduce a
suitable energy function and exploit a method similar to that used in the proof of Theorem (2.18) in order to get
uniqueness of the solution to the heat equation on any bounded domain (with Dirichlet or Neumann boundary
condition), for any given initial condition.

Exercise 4.45. Determine the point symmetries of the Hodgkin–Huxley-equation 8.

6 Here we use the fact that

|y − x0| ≤ |y − x|+
δ

2
≤ |y − x|+ 1

2
|y − x0|,

whence
1

2
|y − x0| ≤ |y − x|,

whenever |x− x0| ≤ δ
2
and |y − x0| ≥ δ.

7 In particular, if the initial data is strictly positive at even only a single point of Rd, the solution is strictly positive everywhere
for any t > 0 (so-called strong maximum principle).
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4.3. The Burger equation

The Burgers’ equation is one of the easiest nonlinear PDEs. It appears in an elementary study of fluid
dynamics and shares some features with more sophisticated models, like the Korteweg–de Vries equation.

Consider a thin pipe containing a viscid fluid, which can only move in one direction (say, due to gravity).
Checking the derivation of the linear transport equation in Chapter 2 one sees that the decisive choice was
that of the flow function. In the linear case (describing a material with constant velocity), we assumed the flow
function to be proportional to the density by ψ = cu. While this is a good approximation for very thin pipes
and very unviscid fluids, it is not acceptable in several situations (in particular, whenever considering shallow,
broad channels). Instead of fomally deriving a fluid function ψ modelling this system, we propose

ψ(t, x) :=
∂u2

∂x
(t, x) = u(t, x)(β − u(t, x)), t > 0, x ∈ R,

for a suitable parameter β > 0, and try to convince the reader of its plausibility8. If u is small, then β − u ≈ β
and ψ ≈ βu – i.e., we obtain the linear transport equation: a less dense fluid is unlikely to develop vortices
(liquids), swirls (gases), congestions (traffic) and so on. If however u grows and gets closer to β, then ψ ≈ 0 and
the flow becomes steadier and steadier. Plugging the above flow function into the general transport equation
we obtain

∂u

∂t
(t, x) =

∂

∂x

(
u(t, x)(β − u(t, x))

)
, t ≥ 0, x ∈ R, (4.29)

and introducing the auxiliary function

v(t, x) := β − 2u

(
t

2
, x

)
we see that it satisfies

∂v

∂t
(t, x) + v(t, x)

∂v

∂x
(t, x) = −∂u

∂t

(
t

2
, x

)
+ β − 2u

(
t

2
, x

)(
−2

∂u

∂x

(
t

2
, x

))
= −

(
∂u

∂t
− 2β

∂u

∂x
− 4u

∂u

∂x

)(
t

2
, x

)
= −∂u

∂t

(
t

2
, x

)
− 2

∂u

∂x

(
t

2
, x

)(
β − u

(
t

2
, x

))
.

Hence, upon time rescaling the nonlinear transport equation (4.29) is equivalent to

∂v

∂t
(t, x) = −2v(t, x)

∂v

∂x
(t, x), t ≥ 0, x ∈ R,

i.e., to
∂v

∂t
(t, x) = −∂v

2

∂x
(t, x), t > 0, x ∈ R,

the so-called inviscid Burgers’ equation.
While a solution to the original Burgers’ equation can be found in very special cases by the method of charac-

teristics, see e.g. [3, § 2.1.3], this approach is not practicable in generality. A usual workaround is to artificially

8 We remark the similarity to the function appearing in the logistic equation appearing in the theory of ODEs, which actually is
designed to present a similar behaviour, in some sense. Also observe that introducing a flow function ψ(t, x) := −u(t, x)(β−u(t, x))
simply models a transport in the opposite direction.
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add a so-called viscosity term9 and consider instead the family of heat-like partial differential equations

∂v

∂t
(t, x) = ε

∂2v

∂x2
(t, x)− ∂v2

∂x
(t, x), t ≥ 0, x ∈ R, (4.30)

where ε > 0. This is the so-called viscid Burgers’ equation. A strategy in numerical analysis is then to derive
a solution u = uε to (4.30). Letting ε → 0 will hopefully yield a solution (and a unique one!) to the original
Burgers’ equation. This can be made more precise but we do not go into details.

Instead, we would like to discuss (4.30) itself, for ε = 1. First of all, we turn instead to the related equation

∂w

∂t
(t, x) =

∂2w

∂x2
(t, x)−

(
∂w

∂x

)2

(t, x), t > 0, x ∈ R : (4.31)

observe that if v is a solution to (4.31), then

v(t, x) :=
∂w

∂x
(t, x), t > 0, x ∈ R,

solves (4.30). To get to grips with (4.31) we will follow [7, Exa. 2.42] and apply the method of symmetries
developed in Chapter 4: to turn it into an algebraic equation one has to consider H : J2 → R defined by

H(t, x, j2u) :=
∂u

∂t
(t, x)− ∂2u

∂x2
(t, x) +

∂u

∂x
(t, x)

∂u

∂x
(t, x) ∈ R.

Let A be an arbitrary vector field on J0,

A(t, x, u) := τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ φ(t, x, u)

∂

∂u
.

Then, considering the 2-jet of A, i.e.,

((j2A)H)(t, x, j2w) = τ
∂H

∂t
+ ξ

∂H

∂x
+ φ

∂H

∂u
+ φ(t) ∂H

∂wt
+ φ(x) ∂H

∂wx
+ φ(tt) ∂H

∂wtt
+ φ(tx) ∂H

∂wtx
+ φ(xx) ∂H

∂wxx

and applying Theorem 4.23 one sees that A is the infinitesimal generator of a one-parameter point symmetry
group if and only if

φ(t) − 2φ(x)∂w

∂x
+ φ(xx) = 0.

9 This is mainly motivated by the analysis to be performed soon, but can be physically justified by saying it models diffusion
(along convection), a phenomenon which in large pipes can never be completely neglected.
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Proceeding as in the proof of Theorem 4.42 we deduce that there exist six (linearly independent) vector fields
that generate a one-parameter point-symmetry group: these are

C1 =
∂

∂t

C2 = 2t
∂

∂t
+ x

∂

∂x

C3 = 4t2
∂

∂t
+ 4tx

∂

∂x
+ (2t+ x2)

∂

∂w

C4 =
∂

∂x

C5 = 2t
∂

∂x
+ x

∂

∂w

C6 = − ∂

∂w

(along with

D = z(t, x)ew
∂

∂w
for any solution z of the heat equation).

Exercise 4.46. Work out the details leading to determination of the coefficients τ, ξ, φ in the above discussion.

The above vector fields look familiar: in fact, one sees that they correspond to the six generators of one-
parameter point symmetry groups of the heat equation, upon formally replacing ∂

∂w by −u ∂
∂u . This suggests to

perform a substitution w 7→ u = Ψ(w) that yields a PDE whose symmetry generators are A1, . . . , A6 instead of
C1, . . . , C6. While this is only a heuristical argument, introducing

u(t, x) = e−w(t,x), t > 0, x ∈ R,
does transform the Burgers’ equation into the heat equation. This is known as Hopf–Cole transformation.
In fact,

∂u

∂t
(t, x)− ∂2u

∂x2
(t, x) =

∂e−w

∂t
(t, x)− ∂2e−w

∂x2
(t, x)

= −∂w
∂t

(t, x)e−w(t,x) +
∂2w

∂x2
(t, x)e−w(t,x) −

(
∂w

∂x

)2

(t, x)e−w(t,x),

i.e., u satisfies the heat equation if and only if w satisfies the Burgers’ equation (4.31). We hence get a funda-
mental solution

(t, x) 7→ log

(
1√
4πt

e−
x2

4t

)
= − log

√
4πt− x2

4t
, t > 0, x ∈ R,

for (4.31).



KAPITEL 5

Hilbert spaces and the method of separation of variables

In this chapter we present some elementary results from the theories of Hilbert spaces and Fourier series.
This introduction is not meant to be complete, but only to yield some technical tools that are useful for the
study of PDEs. In view of some applications it is useful to develop this theory also in the complex case.

Definition 5.1. Let H be a vector space over a field K. An inner product (·|·) on H is a norm, i.e., a
mapping H ×H → K such that for all x, y ∈ H and all λ ∈ K
(1) (x|x) ≥ 0 and (x|x) = 0⇔ x = 0,
(2) (λx|y) = λ(x|y),
(3) (x|y + z) = (x|y) + (x|z),
(4) (x|y) = (y|x).
Then, H is called a pre-Hilbert space.

Lemma 5.2 (Cauchy–Schwarz inequality). Let H be a pre-Hilbert space. Then for all x, y ∈ H one has

|(x|y)|2 ≤ (x|x)(y|y).

Beweis. Let x, y ∈ H. If y = 0, the assertion is clear. Otherwise, for all λ ∈ K = C we have

0 ≤ (x− λy|x− λy)H = (x|x)H + |λ|2(y|y)H − 2Re(λ(y|x)H).

Setting λ = (x|y)H
(y|y)H

we obtain

0 ≤ (x|x)H +
|(x|y)H |2

(y|y)H
− 2
|(x|y)H |2

(y|y)H
= (x|x)H −

|(x|y)H |2

(y|y)H
.

Accordingly,

(x|x)H ≥
|(x|y)H |2

(y|y)H
,

whence the claim follows. The case of K = R can be discussed similarly. �

Remark 5.3. Let H be a pre-Hilbert space and define a mapping ‖ · ‖ by

‖x‖ :=
√

(x|x), x ∈ H. (5.1)

Then ‖ · ‖ is a norm of H, i.e., a mapping H → R+ such that for all x, y ∈ H and all λ ∈ K
(1) ‖x‖ = 0⇔ x = 0,
(2) ‖λx‖ = |λ|‖x‖, and
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Corollary 5.4 (Triangle inequality). Let H be a pre-Hilbert space. Then for all x, y ∈ H one has

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

57



58 KAPITEL 5. HILBERT SPACES AND THE METHOD OF SEPARATION OF VARIABLES

Beweis. There holds

‖x+ y‖2 = (x+ y|x+ y)

= ‖x‖2 + 2Re(x|y) + ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

This concludes the proof. �

Corollary 5.5 (Young inequality). Let H be a pre-Hilbert space. Then for all x, y ∈ H one has

|(x|y)H | ≤
1

2
‖x‖2 +

1

2
‖y‖2.

Beweis. Apply the Cauchy–Schwarz inequality and the fact that (a − b)2 ≥ 0 for all a, b ∈ R, hence in
particular for ‖x‖, ‖y‖. �

Exercise 5.6. Prove the following extensions of the Young inequality.
(1) (x|y)H ≤ ε‖x‖2 + 1

4ε‖y‖
2 for all ε > 0 and all x, y ∈ H.

(2) (x|y)H ≤ 1
p‖x‖

p + 1
q‖y‖

q for all p, q ∈ (1,∞) such that p−1 + q−1 = 1 and all x, y ∈ H.
(3) (x|y)H ≤ ε‖x‖p + 1

q(εp)
q
p
‖y‖q for all p, q ∈ (1,∞) such that p−1 + q−1 = 1, all ε > 0 and all x, y ∈ H.

(Hint for (2): use convexity of the exponential function.)

Remark 5.7. Let Ω ⊂ Rd be a bounded open domain and consider the mapping

(f |g) :=

∫
Ω
f(x)g(x)dx, f, g ∈ C(Ω;C).

Although one can prove that C(Ω;C) is not complete with respect to the associated norm (why?), one can
actually easily see that this (·|·) does define an inner product, i.e., C(Ω) is a pre-Hilbert space with respect to it.
In particular, the Cauchy–Schwarz and Young inequalities∫

Ω
f(x)g(x)dx ≤

(∫
Ω
|f(x)|2dx

) 1
2
(∫

Ω
|g(x)|2dx

) 1
2

≤ 1

2

∫
Ω
|f(x)|2dx+

1

2

∫
Ω
|g(x)|2dx

hold along with all the other Young-type inequalities.

Definition 5.8. Let H be a pre-Hilbert space. If H is complete1, then H is called a Hilbert space.

Example 5.9. The main examples of Hilbert spaces are the Euclidean spaces Rd or Cd with respect to the usual
inner product defined by

(x|y)Cd :=

d∑
k=1

xkyk,

and their infinite dimensional counterparts, the sequence space `2 and the Lebesgue spaces L2(Ω) with respect to
the inner products

(x|y)`2 :=
∑
n∈N

xnyn

1 I.e., if (xn)n∈N ⊂ H is a Cauchy sequence – that is, a sequence such that for all ε > 0 there exists N ∈ N with ‖xn, xm‖ < ε
for all n,m > N –, then it converges – that is, there exists x ∈ H such that limn→∞ ‖xn−x‖ = 0, and in this case x is called limit.
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and
(f |g)L2 :=

∫
Ω
f(x)g(x)dx,

respectively, for any open domain Ω ⊂ Rd. In particular, it is clear that (·|·)L2 satisfies conditions (2)–(3)–(4)
of the definition of inner product. In order to check condition (1), observe that if∫

Ω
|f |2dx = 0,

then |f(x)|2 has to vanish for a.e. x ∈ Ω. It is well-known that `2 as well as L2(Ω) are complete: see e.g. [4,
Thm. 4.8].

Definition 5.10. Let H be a pre-Hilbert space. Two vectors x, y ∈ H are said to be orthogonal to each other
if (x|y)H = 0, and we denote x ⊥ y.

If two subsets A,B of H satisfy (x|y)H = 0 for all x ∈ A and all y ∈ B, also A,B are said to be orthogonal
to each other. Moreover, the set of all vectors of H that are orthogonal to each vector in A is called orthogonal
complement of A and is denoted by A⊥.

Definition 5.11. Let (H, (·|·)H) be a pre-Hilbert space. Then a family {en ∈ H \ {0} : n ∈ J}, J ⊂ N, is called
orthogonal if (en|em)H = 0 for all n 6= m, and orthonormal if (en|em)H = δmn for all m,n ∈ J , where δmn
denotes the Kronecker delta.

Moreover, {en ∈ H : n ∈ J} is called total if its linear span (i.e., the set of all finite linear combinations
of elements of the family) is dense in H2

An orthonormal and total family is called a Hilbert space basis of H, or simply a basis.

Exercise 5.12. Let H be a pre-Hilbert space. Prove the following assertions.
(1) If x, y are orthogonal to each other, then ‖x‖2H + ‖y‖2H = ‖x + y‖2H . (This is nothing but the theorem of

Pythagoras if H = R2).
(2) More generally, 2‖x‖2H + 2‖y‖2H = ‖x+ y‖2H + ‖x− y‖2H for all x, y ∈ H.
(3) Also, for all x, y ∈ H one has

4(x|y)H = ‖x+ y‖2H − ‖x− y‖2H if K = R, and
4(x|y)H = ‖x+ y‖2H + i‖x+ iy‖2H − ‖x− y‖2H − i‖x− iy‖2H if K = C.

(4) If A is a subset of H, then A ⊂ (A⊥)⊥.
(5) The orthogonal complement H⊥ agrees with {0}.

5.1. Fourier series and orthonormal bases

Definition 5.13. Let H be a Hilbert space and {xn ∈ X : n ∈ N} a family of vectors. The associated series∑
n∈N xn is called convergent to x ∈ H if for all ε > 0 there exists N ∈ N such that

‖x−
N∑
n=1

xn‖H < ε

(and convergent if it is convergent to any x ∈ H).
It is called absolutely convergent if

∑
n∈N ‖xn‖H <∞.

2 A vector subspace X of H is called dense if each x ∈ H is limit of a suitable sequence (xn)n∈N ⊂ X.
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Example 5.14. Prove that if H is a Hilbert space, then every absolutely convergent series is convergent. The
converse is not true: consider e.g. H = `2, the canonical basis (δnk)n∈N : k ∈ N), where δnm denotes the
Kronecker delta, and the sequence defined by xn := 1

nen, and prove that it is convergent although it is (clearly)
not absolutely convergent.

Lemma 5.15. Let H be a Hilbert space. Let {xn ∈ H : n ∈ N} be an orthogonal family. Then the following
assertions are equivalent.
(1) The series

∑
n∈N xn is convergent.

(2) For all ε > 0 there exists a finite set J ⊂ N such that∥∥∥∑
k∈J

xk

∥∥∥
H
<∞.

(3) There holds ∑
n∈N
‖xn‖2H <∞.

Exercise 5.16. Prove Lemma 5.15.

Theorem 5.17. Let H be a pre-Hilbert space. Let {en ∈ H : n ∈ J} be an orthonormal family, J ⊂ N. Then
the following assertions hold.
(1)

∑
n∈J |(x|en)H |2 ≤ ‖x‖2H for all x ∈ H.

(2) If H is complete, then the series
∑

n∈J(x|en)Hen converges.
(3) If x =

∑
n∈J anen, then ‖x‖2H =

∑
n∈J |an|2 and an = (x|en)H for all n ∈ J .

The assertions in (1) and (3) are usually called Bessel’s inequality and Parseval’s identity. The scalars
an in (3) are called Fourier coefficients of x.

Beweis. (1) Upon going to the limit, it suffices to prove the claimed inequality for any finite orthonormal
family {e1, . . . , eN}. Then one has

0 ≤
∥∥∥x− d∑

n=1

(x|en)Hen

∥∥∥2

= ‖x‖2H −
d∑

n=1

(x|en)H(en|x)H −
d∑

n=1

(x|en)H(en|x)H +
( d∑
n=1

(x|en)en

∣∣∣ d∑
m=1

(x|em)em

)
= ‖x‖2H − 2

d∑
n=1

|(x|en)H |2 +

d∑
n=1

|(x|en)H |2.

(2) If moreover H is complete, then convergence of
∑

n∈J(x|en)Hen can be deduced showing its absolute
convergence, i.e., applying Lemma 5.15 to the sequence ((x|en)Hen)n∈N.

(3) If J is finite, say J = {1, . . . , N}, then the first assertion is follows by repeatedly applying the Theorem
of Pythagoras.

If J is infinite – and hence without loss of generality J = N – then

‖x‖2H = lim
n→∞

∥∥∥ d∑
k=1

akek

∥∥∥2

H
= lim

n→∞

d∑
k=1

|ak|2 =
∑
n∈J
|an|2.
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Moreover, since x =
∑

n∈J anen, i.e., limn→∞ ‖
∑d

k=1 anen− x‖H = 0, one sees that for fixed m ∈ N and all
n ≥ m ( d∑

k=1

anen|em
)
H
− (x|em)H =

( d∑
k=1

anen − x|em
)
H
,

and by the Cauchy–Schwarz inequality∣∣∣( d∑
k=1

anen − x|em
)
H

∣∣∣ ≤ ∥∥∥ d∑
k=1

anen − x
∥∥∥
H
‖em‖H =

∥∥∥ d∑
k=1

anen − x
∥∥∥
H
.

Accordingly,

lim
n→∞

( d∑
k=1

anen|em
)
H

= (x|em).

Furthermore, ( d∑
k=1

akek|em
)
H

=

d∑
k=1

(akek|em)H =

d∑
k=1

ak(ek|em)H =

d∑
k=1

akδkm = am.

This concludes the proof. �

Proposition 5.18. Let H be a Hilbert space. An orthonormal family {en : n ∈ N} is in fact total (i.e., a basis
of H) if and only if

(f |en) = 0 for all n ∈ N implies f = 0. (5.2)

Beweis. Let f ∈ H. Let {en : n ∈ N} be a basis such that (f |ek)H = 0 for all k ∈ N. Fix an ε > 0. By
totality of {en : n ∈ N} there exists a finite family {a1, . . . , an} such that ‖f −

∑d
k=1 akek‖H < ε. Accordingly,

‖f‖2H =

∣∣∣∣∣‖f‖2H −
(
f
∣∣ n∑
k=1

akek

)
H

∣∣∣∣∣
=

∣∣∣∣∣(f ∣∣f −
n∑
k=1

akek

)
H

∣∣∣∣∣
≤ ‖f‖H

∥∥∥f − n∑
k=1

akek

∥∥∥
H

< ε‖f‖H .

Therefore, ‖f‖H < ε for all ε > 0, i.e., ‖f‖H = 0, hence f = 0.
Conversely, let the only vector orthogonal to each en be 0. Define (sn)n∈N ⊂ H by

sn :=

n∑
k=1

(f |ek)Hek,

which is a Cauchy sequence by Theorem 5.17.(2), hence convergent towards some g :=
∑∞

k=1(f |ek)Hek ∈ H.
Thus, (g|ek)H = (f |ek)H or rather (g− f |ek) = 0 for all k ∈ N. By Exercise 5.12.(6) this means that f = g. I.e.,
any f ∈ H can be expressed as a Fourier series with respect to (en)n∈N. It follows that (en)n∈N is total. �
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Hence, if {ek : k ∈ N} is a basis, then ∑
n∈N

(f |en)en

actually converges to f , and it is called the Fourier series associated with f .

Exercise 5.19. Let ` > 0. Show that the family{
1,
√

2 cos
2π

`
n·,
√

2 sin
2π

`
m· : n,m = 1, 2, 3, . . .

}
is orthonormal in L2(0, `;R). Finite linear combinations of elements of this family are called trigonometric
polynomials.

Theorem 5.20. The family

{1,
√

2 cos 2πn·,
√

2 sin 2πm· : n,m = 1, 2, 3, . . .}

is a basis of L2(0, 1;R).

In the proof we will exploit completeness of the space L2(0, 1;R).

Beweis. We first consider a continuous function f : [0, 1] → R and observe that if f 6= 0, then there is
x0 ∈ [0, 1] such that f(x0) 6= 0. Without loss of generality we can assume f(x0) to be a positive maximum of f .
Due to continuity there exists a neighbourhood (x0−δ, x0 +δ) such that 2f(x) > f(x0) for all x ∈ [x0−δ, x0 +δ].
Consider a linear combination p of basis vectors such that

m ≤ p(y) for some m > 1 and all y ∈ [x0 −
δ

2
, x0 +

δ

2
]

and
|p(y)| ≤ 1 for all y 6∈ [x0 − δ, x0 + δ].

(Such a function p surely exists, consider e.g. the trigonometric polynomial

p(x) := 1− cos 2πδ + cos 2π(x0 − x)).

It follows from the assumption in (5.2) that f is orthogonal to pd for each n ∈ N, and hence

0 =

∫ 1

0
f(x)pd(x)dx

=

∫ x0−δ

0
f(x)pd(x)dx+

∫ x0+δ

x0−δ
f(x)pd(x)dx+

∫ 1

x0+δ
f(x)pd(x)dx.

Moreover, for all n ∈ N one has∣∣∣∣∫ x0−δ

0
f(x)pd(x)dx

∣∣∣∣+

∣∣∣∣∫ 1

x0+δ
f(x)pd(x)dx

∣∣∣∣ ≤ ∫ x0−δ

0
|f(x)pd(x)|dx+

∫ 1

x0+δ
|f(x)pd(x)|dx

≤
∫ x0−δ

0
|f(x)|dx+

∫ 1

x0+δ
|f(x)|dx

≤ ‖f‖L1(0,1) <∞,
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since in particular f ∈ L1(0, 1). Still, one sees that∫ x0+δ

x0−δ
f(x)pd(x)dx ≥

∫ x0+ δ
2

x0− δ2
f(x)mddx ≥ f(x0)

2
md δ

2
,

and therefore limn→∞
∫ x0+δ
x0−δ f(x)pd(x)dx = ∞, a contradiction to the assumption that

∫ 1
0 f(x)pd(x)dx = 0 for

all n ∈ N.
Let us now consider a possibly discontinuous function g ∈ L2(0, 1;R) ⊂ L1(0, 1;R) and consider the conti-

nuous function G :=
∫ ·

0 g(x)dx. Since by assumptions g is orthogonal to each function e2πik·, k ∈ Z, integrating
by parts one clearly obtains that also G −

∫ 1
0 G(x)dx is orthogonal to each function e2πik·, k ∈ Z. (In fact,

the corrective term
∫ 1

0 G(x)dx is needed since G is in general not orthogonal to 1 = e0). Due to continuity of
G−

∫ 1
0 G(x)dx, we can apply the result obtained above and deduce thatG−

∫ 1
0 G(x)dx ≡ 0, i.e., g(x) = G′(x) ≡ 0

for a.e. x ∈ (0, 1). Here we are using the well-known fact that if a function h : [0, 1]→ C satisfies
∫ t

0 h(t)dt = 0
for all t ∈ (0, 1), then h ≡ 0.

Moreover, L2-convergence of Fourier series is a direct consequence of Bessel’s inequality, as already deduced
in the proof of Proposition 5.18. �

With respect to the above introduced basis we consider the following.

Definition 5.21. Let f : [0, 1]→ R. Then the Fourier sequence associated with f is∫ 1

0
f(x)dx+ 2

n∑
k=1

∫ 1

0
f(y) cos(ky)dx cos(nx) + 2

n∑
k=1

∫ 1

0
f(y) sin(ky)dy sin(nx), t ∈ [0, 1].

Corollary 5.22. The family
{en := e2πin· : n ∈ Z}

is a basis of L2(0, 1;C). Accordingly, for all f ∈ L2(0, 1;C) the Fourier series associated with it converges to f
with respect to the L2-norm, i.e.,

lim
n→∞

∫ 1

0

∣∣∣∣∣∣f(t)−
∑
|k|≤n

∫ 1

0
f(x)e2πik(t−x)dx

∣∣∣∣∣∣
2

dt = 0.

Exercise 5.23. Deduce Corollary 5.22 from Theorem 5.20. (Hint: observe that it suffices to check condition (5.2)
for any real-valued function f .

5.2. The wave equation and the separation of variables

Let us apply the above results on Fourier series to the wave equation introduced in Section 2.1.
In order to solve the 1-dimensional wave equation assuming that the solution can be written as product of

two functions X and T that only depend on the space and time variables x and t, respectively. By assumption
the function u = X · T satisfies the wave equation, hence

1

T (t)

∂2T

∂t2
(t) =

c2

X(x)

∂2X

∂x2
(x).

Since the LHS and the RHS agree identically although they depend on different variables, each of them must
agree with the same constant λ: this yields the two ordinary differential equations

T ′′(t) = λT (t) and X ′′(x) =
λ

c2
X(x).
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Another educated guess suggests to try assuming λ ≤ 0, say, λ = −µ2, which yields

T ′′(t) = −k2T (t) and X ′′(x) = −µ
2

c2
X(x).

Solving each of them and multiplying both solutions yield the solution to the wave equation. Since they are
ODEs of second order, each of them needs two boundary conditions. The conditions relevant for T impose initial
condition on u, i.e., they impose the initial displacement and velocity of the string, i.e.,

u(0, x) = u0(x) and
∂u

∂t
(0, x) = u1(x),

for some functions u0, u1 defined on the string; whereas those relevant for X impose a condition on the displa-
cement at any time at the endpoints a, b of the string, as we already know. A necessary compatibility condition
postulates that u0, u1 satisfy the boundary conditions, too.

Remark 5.24. This Ansatz on the form of the solution, which usually goes under the name separation of
variables, is justified by the fact that it does lead to a function that solves the equation. In fact, since it is
known that the wave equation admits at most one solution, it then necessarily agrees with the one we will obtain
following the idea sketched above.

To fix the ideas, let us solve the 1-dimensional wave equation on a string of length ` (i.e., we identify it with
an interval (0, `) and with Dirichlet boundary conditions. We have to divide the cases µ = 0 and µ > 0: they
imply

• X(x) = α1x+ β1, T (t) = α2t+ β2 and
• X(x) = A1 cos(µc x) +B1 sin(µc x), T (t) = A2 cos(µt) +B2 sin(µt),

respectively. Now, let us impose the boundary conditions. If µ = 0, then it follows from X(0) = X(`) = 0 that
α1 = β1 = 0, hence X ≡ 0 and also u vanishes identically. We neglect this trivial solution and hence rather
consider the case µ > 0. The Dirichlet boundary condition X(0) = 0 yields A1 = 0 and hence

X(x) = B1 sin
(µ
c
x
)

which is satisfied if and only if B1 = 0 (leading again to the trivial solution) or

sin
(µ
c
`
)

= 0,

i.e., if and only if
µ

c
` = kπ

for some k ∈ Z, i.e.,

µ =
ckπ

`
.

(A different choice of µ would have been required by different – e.g. Neumann – boundary conditions at `). It
follows that

u(t, x) = X(x)T (t)

= B1 sin

(
kπ

`
x

)(
A2 cos

(
ckπ

`
t

)
+B2 sin

(
ckπ

`
t

))
.
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We still have to impose the initial conditions in order to determine T . Since the wave equation is linear, i.e.,
each linear combination of solutions is again a solution, looking for existence of a solution to the form

u(t, x) = B1 sin

(
kπ

`
x

)(
A2 cos

(
ckπ

`
t

)
+B2 sin

(
ckπ

`
t

))
is equivalent to looking for existence of a solution to the form

u(t, x) =

∞∑
k=1

B1 sin

(
kπ

`
x

)(
γk cos

(
ckπ

`
t

)
+ δk sin

(
ckπ

`
t

))
. (5.3)

Imposing the initial conditions yields to looking for coefficients (γk)k∈N and (δk)k∈N such that

u(0, x) =
∞∑
k=1

B1 sin

(
kπ

`
x

)
γk = u0(x)

along with
∂u

∂t
(0, x) =

∞∑
k=1

B1 sin

(
kπ

`
x

)
δk = u1(x).

This is only possible if both u0 and u1 satisfy Dirichlet boundary conditions.
In other words, we are looking for coefficients (γ̃k)k∈N and (δ̃k)k∈N such that

u0(x) =
∞∑
k=1

γ̃k sin

(
kπ

`
x

)
along with

u1(x) =

∞∑
k=1

δ̃k sin

(
kπ

`
x

)
,

i.e., the wave equation with Dirichlet boundary conditions has a (unique) solution given by (5.3) whenever
the initial values u0 and u1 can be represented as the above series of sines for suitable sequences (γk)k∈N and
(δk)k∈N. Since by Theorem (5.19) the orthogonal family{

1, cos
2π

`
n·, sin 2π

`
m· : n,m ∈ N

}
is total in L2(0, `;R), this claimed representability holds whenever the initial values satisfy Dirichlet boundary
condition.

Exercise 5.25. Apply the above strategy to find a solution (as a series) of the wave equation with Robin boundary
conditions on an interval (0, `).

Exercise 5.26. Express the solution to the damped wave equation introduced in Remark 3.16 with Dirichlet
boundary conditions on an interval (0, `) by Fourier series.

Exercise 5.27. Solve the heat equation on an interval (0, `) with Neumann boundary condition by separation
of variables.





KAPITEL 6

The Poisson equation and the theorem of Lax–Milgram

One of the most ubiquitous equations in applied mathematics is the Laplace equation

∆u(x, y) = 0, (x, y) ∈ R2,

and its inhomogeneous companion, Poisson equation

∆u(x, y) = −f(x, y), (x, y) ∈ R2.

The easiest way to look at this equation is to interpret it as describing the equilibrium reached by a heat
equation. It also plays a fundamental role in electrostatics, as it yields the electric potential u in a body which
has been charged – the charge being described by f , but its derivation requires knowledge of the Maxwell’s
equation, which we have not met yet.

However, historically the Poisson equation was first derived to describe two-dimensional elastical systems.
Consider a domain Ω ⊂ R2 whose pointwise extension u(x, y), (x, y) ∈ Ω, with respect to a reference level we
want to describe. We assume Ω to be fixed at the boundary: this corresponds to Dirichlet boundary conditions.
It is subject to gravity, which we model by f : Ω→ R. Newton’s first law of motion states that every object in
a state of uniform motion tends to remain in that state of motion unless an external force is applied to it. In
the special case we are considering, this implies that an object that is not moving has to undergo forces that
are mutually balancing. This implies that the total action on the system has to be a minimum among those
arising under all allowed configurations. In an elastic body, as we have already mentioned in Section 2.1, each
point is subject to tension: the total action is therefore the difference of tension energy and potential energy. In
the present situation, the tension energy has to be computed (according to Hooke’s law) as an elastic constant
times surface variation of Ω. It is known from vector analysis that in general the area of the surface beneath Ω
is given by ∫

Ω

√
1 + |∇u(x, y)|2dx dy.

Hence the (2-dimensional) surface of Ω in a quiet state is simply given by its (Lebesgue) measure∫
Ω

1dx,

and their difference (which is relevant to the Hooke’s law) is∫
Ω

(√
1 + |∇u(x, y)|2 − 1

)
dx dy.

Using the first order Taylor development of h : z 7→
√

1 + z in z = 0 (hence implicitly assuming small extensions),
i.e.,

√
1 + z = h(z) ≈ h(0) + h′(0)z +O(z2) ≈ 1 +

1

2
z

67
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we deduce that the difference is approximately given by
1

2

∫
Ω
|∇u(x, y)|2dx dy.

Hence, by Hooke’s law the tension applied to each point (x, y) ∈ Ω is

F (x, y) = α|∇u(x, y)|2,
for some α > 0, and the tension energy is

I1 =

∫
Ω
F (x, y)dx dy =

α

2

∫
Ω
|∇u(x, y)|2dx dy.

The potential energy, on the contrary, is given by the integral of gravity (which tends in the direction opposite
to tension) times displacement

I2 =

∫
Ω
f(x, y)u(x, y)dx dy.

The total action functional is therefore

I(u) = I1(u)− I2(u) =

∫
Ω

(α
2
|∇u(x, y)|2 − f(x, y)u(x, y)

)
dx dy.

Considering I as a mapping from C1(Ω)→ R it is possible to consider its derivative
d

dε
I(u+ εv), v ∈ {h ∈ C1(Ω) : h|∂Ω = 0}.

A minimum attained by I (at one configuration among all the admissible ones) satisfies
d

dε
I(u+ εv)|ε=0 = 0 for all v ∈ {h ∈ C1(Ω) : h|∂Ω = 0}.

(Observe that if v vanishes at the boundary, then u and u+ εv satisfy the same boundary conditions, hence are
admissible. Hence

0 =
d

dε

∫
Ω

(α
2
|∇(u+ εv)(x, y)|2 − f(x, y)(u+ εv)(x, y)

)
dx dy

∣∣∣
ε=0

= lim
ε→0

(α∇(u+ εv)∇v − f(x, y)v(x, y)) dx dy.

We conclude that

α

∫
Ω

∆u(x, y)v(x, y)dx dy = −α
∫

Ω
∇u(x, y)∇v(x, y)dx dy

= −
∫

Ω
f(x, y)v(x, y)dx dy.

Since this holds for all v ∈ {h ∈ C1(Ω) : h|∂Ω = 0}, and since this space is dense in L2(Ω), we conclude that

(α∆u+ f |v)L2 = 0

for all v ∈ L2(Ω), hence Exercise 5.12.(5) finally yields that

α∆u(x, y) = −f(x, y), (x, y) ∈ Ω,

has to hold. In the particular case of f ≡ 0, one derives the Laplace equation. The tension energy
1

2

∫
Ω
|∇u|2dx
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is sometimes called Dirichlet integral. While this integral can be made arbitrarily large, hence it does not
have a maximum, Bernhard Riemann extended an idea by Gustave Dirichlet and observed in 1851 that since I
only takes positive values, the twice continuously differentiable zeroes of d

dεI(u+ εv)|ε=0 have to be minima of
I. He went on to formulate the following theorem.

Theorem 6.1 (Dirichlet’s principle). Let Ω ⊂ Rd be an open bounded domain, smooth enough that the Gauß–
Green formulae hold. Let u ∈ C2(Ω) such that u|∂Ω = 0. Then the following assertions are equivalent.

(i) I(u) ≤ I(w) for all w ∈ C2(Ω) such that w|∂Ω = 0.
(ii) u is a critical point for I, i.e.,

d

dε

∫
Ω

(α
2
|∇(u+ εw)(x)|2 − f(x)(u+ εw)(x)

)
dx
∣∣∣
ε=0

= 0

for all w ∈ C2(Ω) such that w|∂Ω = 0.
(iii) u solves the Poisson equation

α∆u(x) = −f(x), x ∈ Ω.

While this theorem does hold, Riemann’s original argument (only based on boundedness from below of I)
contains a small fallacy. Karl Weierstraß pointed out in 1870 that the zeroes of d

dεI(u+ εv)|ε=0 only need to be
infima of I, and that there exist infima that are not minima. He observed that when trying to minimise the
new Dirichlet integral

I(u) :=

∫ 1

−1

x2

2
(u′(x))2dx,

which is clearly bounded from below, over the set of continuous, piecewise continuously differentiable functions
u : [−1, 1] → R with boundary values u(−1) = 0 and u(1) = 1, there exists a sequence un such that I(un) is
arbitrarily small. However, the value 0 can never be attained considering functions in the given class, since the
only function u such that I(u) = 0 would satisfy xu(x) = 0 for all x ∈ [−1, 1], i.e., u(x) = 0, and this function
does not satisfy the boundary conditions.

Proof of Theorem 6.1 . The implication (i)⇒(ii) is clear, and we have proved above that (ii)⇒(iii) also
holds.

To prove that (iii)⇒ (i), take w ∈ C2(Ω) with compact support. It follows that for all ε ∈ R the functions
u and u+ εw satisfy the same boundary conditions, i.e., they are admissible configurations. Since −α∆u = f ,
one has

0 =

∫
Ω

(
− α∆u(x)− f(x)

)(
u(x)− w(x)

)
dx

= −
∫

Ω
α∆u(x)

(
u(x)− w(x)

)
dx−

∫
Ω
f(x)

(
u(x)− w(x)

)
dx

=

∫
Ω
α∇u(x)∇(u(x)− w(x))dx−

∫
Ω
f(x)

(
u(x)− w(x)

)
dx

= α

∫
Ω
|∇u(x)|2dx−

∫
Ω
f(x)u(x)dx− α

∫
Ω
∇u(x)∇w(x)dx+

∫
Ω
f(x)w(x)dx.
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Consequently

α

∫
Ω
|∇u(x)|2dx−

∫
Ω
f(x)u(x)dx = α

∫
Ω
∇u(x)∇w(x)−

∫
Ω
f(x)w(x)dx

≤ α

2

∫
Ω
|∇u(x)|2dx+

α

2

∫
Ω
|∇w(x)|2dx−

∫
Ω
f(x)w(x)dx,

where the latter step follows from the Young inequality (see Remark 5.7). Rearranging the terms yields the
claim. �

Remark 6.2. Observe that our use of the Young inequality in the above proof depends critically on the fact that
the Dirichlet integral is tightly related to the inner product of the pre-Hilbert space C(Ω). In particular, while
the above proof can be easily extended to the case of general elliptic partial differential equations of the form

∇(A∇u)(x) = −f(x), x ∈ Ω,

where A : Ω → Md(R) is a positive definite (d × d)-matrix-valued function, it fails miserably when we remove
the assumption that A be positive definite. In the special case of d = 2 and

A =

(
0 1
1 0

)
,

we will see that this corresponds to failure of a Dirichlet-type principle for the wave equation.

6.1. The representation theorem of Riesz–Fréchet and the lemma of Lax–Milgram

Definition 6.3. Let H1, H2 be Hilbert spaces over the field K. A mapping T : H1 → H2 such that

T (αx+ βy) = αT (x) + βT (y) (6.1)

for all x, y ∈ H1 and all α, β ∈ K is called a linear operator, and one usually writes Tx instead of T (x). An
scalar-valued operator is usually called a functional.

A linear operator is called bounded if there exists M > 0 such that

‖T (x)‖H2 ≤M‖x‖H1 , x ∈ H.
Endowed with the norm defined by

‖T‖ := sup
‖x‖H1

≤1
‖T (x)‖H2 ,

the set of bounded linear operators from H1 to H2 becomes in fact a normed vector space, which we denote by
L(H1, H2), or rather H ′1 if H2 = K. An invertible bounded linear operator is called an isomorphism. A bounded
linear operator such that ‖Tx‖H2 = ‖x‖H1 for all x ∈ H1 is called isometric.

Remark 6.4. In some occasions (in particular, in physical applications) one has to deal with operators that are
not linear, but rather antilinear, i.e., such that

T (x+ y) = Tx+ Ty, T (αx) = αx, α ∈ C, x, y ∈ H1.

holds instead of (6.1) (clearly, antilinearity differs from linearity only if H1 and H2 are complex Hilbert spaces).
An bounded antilinear bijection is called an antiisomorphism.

Exercise 6.5. Let H1, H2 be Hilbert spaces. Show that any linear or antilinear operator T : H1 → H2 such that

‖Tx‖H2 ≥ α‖x‖H1 , x ∈ H1,

for some α > 0, is one-to-one.
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Exercise 6.6. Show that a linear operator is bounded if and only if it is Lipschitz continuous if and only if it
is continuous.

Remark 6.7. Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2). It is clear that KerT := {x ∈ H1 : Tx = 0} and
RanT := {y ∈ H2 : ∃x ∈ H1 s.t. y = Tx} are vector spaces. Since T is continuous, T−1C is a closed subset of
X for all closed subsets C of Y . In particular, KerT = T−1{0} is a closed subspace of X, while RanT need not
be closed. Can you find an example?

Definition 6.8. Let A be a subset of H and x0 ∈ H. A vector x is said to be of best approximation to x0

in A if
‖x− x0‖H = inf

y∈A
‖y − x0‖H .

Points of best approximation need neither exist (think of the case of a point outside an open ball) nor be
unique (as in the case of the centre of a circle). However, the following holds.

Theorem 6.9. Let H be a Hilbert space. Let A be closed and convex subset of H and let x0 ∈ H.
1) Then there exists exactly one vector x of best approximation of x0.
2) Such a best approximation x of x0 is characterized by the inequality

(x0 − x|y − x) ≤ 0 for all y ∈ A if K = R, or by (6.2)

Re(x0 − x|y − x) ≤ 0 for all y ∈ A if K = C. (6.3)

Such an x is usually denoted by PA(x0) and called orthogonal projection of x0 onto A. The operator
PA is called orthogonal projector of H onto A.

Beweis. 1) One can assume without loss of generality that x0 = 0 6∈ A.
i) In order to prove existence of the vector of best approximation, let z := infy∈A ‖y‖H and consider a

sequence (yn)n∈N ⊂ A such that limn→∞ ‖yn‖H = z. Then by the parallelogram law (see Exercise 5.12.(2))

lim
m,n→∞

∥∥∥∥yn + ym
2

∥∥∥∥2

H

+ lim
m,n→∞

∥∥∥∥yn − ym2

∥∥∥∥2

H

= lim
m,n→∞

1

2

(
‖yn‖2H + ‖ym‖2H

)
= z2.

Because A is convex yn+ym
2 ∈ A, so that by definition ‖yn+ym

2 ‖2H ≥ z2. One concludes that

lim
m,n→∞

∥∥∥∥yn − ym2

∥∥∥∥2

H

= 0,

i.e., (yn)n∈N is a Cauchy sequence. By completeness of H there exists a x := limn→∞ yn, which belongs to A
since A is closed. Clearly, ‖x‖ = limn→∞ ‖yn‖ = z.

ii) In order to prove that a vector of best approximation is unique, assume that both x, x∗ satisfy ‖x‖H =
‖x∗‖H = z. If x 6= x∗, then ‖x+ x∗‖2H < ‖x+ x∗‖2H + ‖x− x∗‖2H , and by the parallelogram law∥∥∥∥x+ x∗

2

∥∥∥∥2

H

<

∥∥∥∥x+ x∗

2

∥∥∥∥2

H

+

∥∥∥∥x− x∗2

∥∥∥∥2

H

=
1

2
(‖x‖2H + ‖x∗‖2H) = z2.

In other words, x+x∗

2 would be a better approximation of x. Since x+x∗

2 ∈ A, this would contradict the con-
struction of x as vector of best approximation of x0 in A. Hence, x = x∗.

2) Let w ∈ A and set yt := (1− t)x+ tw, where t ∈ (0, 1] is a scalar to be optimized in the following. Since
A is convex, yt ∈ A and accordingly

‖x0 − x‖H < ‖x0 − yt‖H ,
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since yt is not the (unique!) best approximation of x0 in A. Accordingly,

‖x0 − x‖H < ‖x0 − (1− t)x− tw‖H = ‖(x0 − x) + t(x− w)‖H ,

and squaring both sides we obtain (using

(x+ y|x+ y)H = (x|x)H + 2Re(x|y) + (y|y)H , x, y ∈ H),

that
‖x0 − x‖2H < ‖(x0 − x)‖2H + t2‖(x− w)‖2H − 2tRe(x0 − x|w − x).

It follows that t2‖(x − w)‖2H > 2tRe(x0 − x|w − x) for all t ∈ (0, 1]. Therefore, 0 ≥ 2Re(x0 − x|w − x) in the
limit t→ 0 and the claimed inequality holds.

Conversely, let x satisfy (6.3). Then for all y ∈ A

‖x− x0‖2H − ‖y − x0‖2H = 2Re(x0 − x|y − x)− ‖y − x‖2H ≤ 0,

i.e., ‖x − x0‖2H ≤ ‖y − x0‖2H . It follows that x is the best approximation of x0 in A. (In the case K = R the
assertions can be proved in just the same way). �

Exercise 6.10. Let (H, (·|·)H) be a Hilbert space. Let {en ∈ H : n ∈ N} be an orthonormal family and denote
by Y its linear span. Show that the orthogonal projection PY of H onto Y is given by

PY x =
∑
n∈N

(x|en)Hen, x ∈ H.

(Observe that the series converges by the Bessel inequality.)

Exercise 6.11. Let H be a Hilbert space. Let A1, A2 be closed and convex subsets of H and denote by P1, P2

the orthogonal projections onto A1, A2, respectively. Prove that P1A2 ⊂ A2 if and only if P2A1 ⊂ A1 if and only
if P1, P2 commute, i.e., P1P2x = P2P1x for all x ∈ H.

Exercise 6.12. Let A be a closed convex subset of H. Prove that if PA is the orthogonal projector onto A, then
the orthogonal projector onto A⊥ is I − PA, where I denotes the identity operator.

Exercise 6.13. Define A1, A2 ⊂ L2(R) as the sets of all square summable functions that are a.e. even and
positive, respectively.
(1) Show that A1, A2 are closed convex subsets of L2(R).
(2) Prove that the orthogonal projections PA1 , PA2 onto A1, A2 are given by

PA1f(x) =
f(x) + f(−x)

2
and PA2f(x) =

|f(x)|+ f(x)

2
for a.e. x ∈ R.

Exercise 6.14. Let Ω ⊂ Rd be an open bounded domain. Find the orthogonal projection onto the closed subspace
of constant functions.

Exercise 6.15. Let H be a Hilbert space and A be a nonempty closed convex subset of H.
(1) Show that the orthogonal projection PA is linear if and only if A is a closed subspace of H.
(2) Prove that PA is Lipschitz continuous with Lipschitz constant 1.

Exercise 6.16. Let H be a Hilbert space and Y be a closed subspace of H.
(1) Show that if Y 6= {0}, then the orthogonal projection PY of H onto Y satisfies ‖PY ‖ = 1 and KerPY = Y ⊥.
(2) Prove that each x ∈ H admits a unique decomposition as x = y+z, where y = PY x ∈ Y and z = PY ⊥x ∈ Y ⊥.
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Recall that the linear span of two vector spaces Y, Z whose interection is {0} is called their direct sum,
and we write Y ⊕ Z. Accordingly, under the assumptions of Exercise 6.16 H is the direct sum of Y and Y ⊥.
We also denote by x = y ⊕ z the decomposition introduced in Exercise 6.16.(2).

Lemma 6.17. Let A be a closed convex set of a Hilbert space H. Then the projector onto A is a contraction,
i.e., it satisfies

‖PAf − PAg‖H ≤ ‖f − g‖H , f, g ∈ H.

Beweis. For all f, g ∈ H and all h, k ∈ A one has

Re(f − PAf |h− PAf) ≤ 0 and Re(g − PAg|k − PAg) ≤ 0.

Hence, setting in particular h = PAg and k = PAf , respectively, one obtains

Re(f − PAf |PAg − PAf) ≤ 0 and Re(g − PAg|PAf − PAg) ≤ 0.

Summing these inequalities we obtain

Re(f − PAf − g + PAg|PAf − PAg) ≥ 0,

or rather
Re(f − g|PAf − PAg) ≥ Re(PAf − PAg|PAf − PAg) = ‖PAf − PAg‖2.

By the Cauchy–Schwarz inequality

Re(f − g|PAf − PAg) ≤ ‖f − g‖‖PAf − PAg‖,
and combining the above inequalities the claim follows. �

The following has been proved in 1907 by Frigyes Riesz and independently also by Maurice René Fréchet.

Theorem 6.18 (Representation theorem of Riesz–Fréchet). Let H be a Hilbert space. For each bounded linear
functional φ on H there exists a unique yφ ∈ H such that

φ(x) = (x|yφ)H for all x ∈ H. (6.4)

Moreover, the mapping H ′ 3 φ 7→ yφ ∈ H is an isometric isomorphism if K = R, and an isometric antiisomor-
phism if K = C.

Beweis. It suffices to prove that Φ : H 3 y 7→ φy := (·|y) ∈ H ′ is an isometric (anti)isomorphism.
To begin with, we prove that Φ is isometric (and therefore injective, too, by Exercise 6.5). Clearly, by

definition and the Cauchy–Schwarz inequality |〈φy, x〉| = |(x|y)H | ≤ ‖y‖H‖x‖H , so that the norm of φy satisfies
‖φy‖ ≤ ‖y‖H . In order to check the equality in the non-trivial case of y 6= 0, take x := y

‖y‖H and observe that
〈φy, x〉 = ‖y‖H by definition.

In order to prove surjectivity of Φ, take φ ∈ H ′. If Kerφ = H, then φ = 0 and the assertion is clear – so we
can assume that Kerφ 6= H and (up to rescaling) that ‖φ‖ = 1. By Remark 6.7, one has H = Kerφ ⊕ Kerφ⊥.
Moreover, the closed subspace Kerφ⊥ has dimension 1, since the restriction of φ to Kerφ⊥ is an isomorphism
from Kerφ⊥ to K. Accordingly, there exists ξ ∈ Kerφ⊥ – which up to rescaling can be assumed to satisfy
〈φ, ξ〉 = 1 – such that each z ∈ Kerφ⊥ has the form z = λξ for some λ ∈ K, and in particular each x ∈ H
admits the decomposition x = PKerφx⊕ λξ. Then

φ(x) = 〈φ, PKerφx+ λξ〉 = λ〈φ, ξ〉 = λ

as well as
(x|ξ)H = (PKerφx+ λξ|ξ)H = λ‖ξ‖2H ,
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where we have used the fact that PKerφx and ξ belong to subspaces that are orthogonal to each other. We
deduce that

φ(x) = λ =
(x|ξ)H
‖ξ‖2H

=: (x|yφ)H ,

for all x ∈ H, and we conclude that Φ is surjective. This concludes the proof. �

Remark 6.19. One can show likewise that y 7→ φy := (·|y) is an isometric isomorphism between H and the
vector space of antilinear bounded functionals on H.

While the representation theorem of Riesz–Fréchet is sometimes sufficient in order to prove existence and
uniqueness of solutions to some partial differential equation, in many applications we need a stronger version of
it, which we present next following the approach in [4, §5.3].

Definition 6.20. Let H be a Hilbert space. A mapping a : H ×H → K is called a sesquilinear form if it is
linear in the first and (anti)linear in the second coordinate.

A sesquilinear form is called coercive if there exists α > 0 such that

Rea(f, f)| ≥ α‖f‖2H for all f ∈ H.

It is called continuous if there exists M > 0 such that

|a(f, g)| ≤M‖f‖H‖g‖H for all f, g ∈ H.

Finally, a sesquilinear form is called (anti)symmetric if

a(f, g) = a(g, f) for all f, g ∈ H.

The following strong result on differential inequalities related to sesquilinear forms is due to Guido Stam-
pacchia.

Theorem 6.21 (Stampacchia). Let H be a Hilbert space and a : H × H → K be a continuous, coercive
sesquilinear form. Let A be a nonempty closed convex subset of H. Then for all φ ∈ H ′ there exists u = uφ ∈ A
such that

Rea(u, v − u) ≥ Reφ(v − u) for all v ∈ A. (6.5)
If moreover a is (anti)symmetric, then u is the unique element of A such that

1

2
a(u, u)− Reφ(u) = min

v∈A

{
1

2
a(v, v)− Reφ(v)

}
.

Beweis. Let φ ∈ H ′. Then by the representation theorem of Riesz–Fréchet there exists a unique y ∈ H
such that

φ(x) = (x|y)H for all x ∈ H.
Furthermore, for all u ∈ H also the mapping v 7→ a(u, v) is a continuous (anti)linear functional on H, hence
(again by the representation theorem of Riesz–Fréchet or by Remark 6.19, respectively) there exists some element
– say, Tu ∈ H – such that

a(u, v) = (v|Tu)H = (Tu|v)H for all v ∈ H.
By linearity of a in its first coordinate, T turns out to be a linear operator on H. Moreover, for all u ∈ H we
have

‖Tu‖H = sup
‖v‖H=1

|a(u, v)| ≤ sup
‖v‖H=1

|M‖u‖H‖v‖H = M‖u‖H
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along with
Re(Tu|u)H ≥ α‖u‖2H .

In order to find u ∈ A such that (6.5) – or, equivalently,

Re(Tu|v − u)H ≥ Re(v − u|y)H for all v ∈ A
holds – we consider a (nonlinear) operator S that maps each v ∈ A into the best approximation of ρ(y−Tv)+v
on A, i.e.,

S : H 3 v 7→ PA(ρy − ρTv + v) ∈ H,
for some ρ > 0. Our goal is to pick ρ in a proper way and thus turn S into a strict contraction to which Banach’s
fixed point theorem (see e.g. [10, § IV.7]) can be applied. If we achieve this, then there exists uφ ∈ A such that
uφ = PA(ρy − ρTuφ + uφ), i.e., by Theorem 6.9 uφ satisfies

Re(ρy − ρTuφ + uφ − uφ|v − uφ)H ≤ 0 for all v ∈ K.
But this is simply

Re(ρy − ρTuφ|v − uφ) ≤ 0 for all v ∈ K,
that is,

ρReφ(v − uφ) = Re(ρy|v − uφ)H ≤ Re(ρTuφ|v − uφ)H = ρRea(uφ|v − uφ)H for all v ∈ K,
as we wanted to show. It remains to check that S is actually a strict contraction, for some ρ suitable. This is a
simple consequence of the contractivity of orthogonal projections, cf. Lemma 6.17, so that for all x, y ∈ H

‖Sx− Sy‖H ≤ ‖x− y − ρ(Tx− Ty)‖H ,
and squaring both sides we obtain, by boundedness and coercivity of a,

‖Sx− Sy‖2H ≤ ‖x− y‖2 − 2ρRe(x− y|Tx− Ty)H + ρ2‖Tx− Ty‖2H ,
= ‖x− y‖2 − 2ρRea(x− y|x− y)H + ρ2‖T (x− y)‖2H ,
= ‖x− y‖2 − 2ρα‖x− y‖2H +M2ρ2‖x− y‖2H .

Now, letting e.g. ρ = α
M2 we obtain the desired estimate, as 1 > α

M .
Finally, we observe that

((u|v))H := a(u, v), u, v ∈ H,
defines a scalar product on H, whenever a is symmetric – in particular, symmetry implies that

((u|u))H = a(u, u) = a(u, u) = ((u|u))H , u ∈ H,
and in particular that ((u|u))H ∈ R for all u ∈ H, whereas coercivity of a ensures positive definiteness of
((·|·))H . Moreover, coercivity and continuity of a imply that the norm associated with ((·|·))H , i.e.,

H 3 u 7→ ((u|u))
1
2
H ∈ [0,∞),

is equivalent to the norm ‖ · ‖ associated with (·|·)H . Accordingly, H is a Hilbert space with respect to ((·|·))H ,
too, to which the representation theorem of Riesz–Fréchet applies. Representing φ with respect to ((·|·))H , we
conclude that there exists w = wφ ∈ H such that

φ(v) = ((v|w))H = a(v, w), v ∈ H.
Then, (6.5) reads

Rea(u, v − u) ≥ Reφ(v − u) = Rea(v − u,w) = Rea(w, v − u), v ∈ A,



76 KAPITEL 6. THE POISSON EQUATION AND THE THEOREM OF LAX–MILGRAM

i.e., finding u = uφ ∈ A as in the statement of the theorem amounts to finding u ∈ A such that

Rea(u− w, v − u) ≥ 0 for all v ∈ H,

or rather
Re((w − u|v − u))H ≤ 0, v ∈ H.

Of course, by Theorem 6.9 validity of this inequality means that u is the best approximation of w in A,
i.e., u = PAw, with respect to the distance defined by means of the norm associated with ((·|·))H . The best
approximation of w in A with respect to this distance is, by definition, the element u ∈ A in which the distance√

a(w − ·, w − ·) =
√
a(w,w)− 2Reφ(·) + a(·, ·)

from w attains the minimal value. Since a(w,w) is constant (w is now fixed), the above distance is minimal in
u if and only if

a(u, u)− 2Reφ(u)

is minimal. This concludes the proof. �

A direct corollary of the above result has been obtained by Peter David Lax and Arthur Norton Milgram.
It is commonly known as the Lax–Milgram Lemma.

Corollary 6.22 (Lax–Milgram 1954). Let H be a Hilbert space and a : H ×H → K a continuous and coercive
sesquilinear function. Then, for any φ ∈ H ′ there is a unique solution u =: Tφ ∈ H to

a(u, v) = φ(v), v ∈ H.

If moreover a is symmetric, then u is the unique element of H such that

1

2
a(u, u)− φ(u) = min

v∈H

{
1

2
a(v, v)− φ(v)

}
.

Following the approach in [4, Chapter 5], the proof is based on the above theorem of Stampacchia. Another
proof is more common in the literature, see e.g. [5]. This one, being based on the fixed point theorem of Banach,
which is constructive, is more suitable for numerical applications.

Beweis. Apply the theorem of Stampacchia with A = H. If a is symmetric, deduce the claimed characte-
risation of u using the fact that by Theorem 6.9

u = PY x ⇔ u ∈ Y and (f − x|v)H = 0 for all v ∈ Y

characterises the orthogonal projector onto a closed subspace Y of H. �

The most interesting application of the Lax–Milgram Lemma is the possibility of proving solvability of
partial differential equations of elliptic type, like the Poisson equation

∆u(x) = −f(x), x ∈ Ω, (6.6)

with – say – Dirichlet boundary conditions

u(z) = 0, z ∈ ∂Ω, (6.7)

for given inhomogeneous terms f . The strategy is easy: first, weaken the notion of solution to an elliptic problem
by re-writing it in integral form; then, interpret such an integral equation as an equation involving a bounded
linear functional; third, apply the theorem of Lax–Milgram to get existence and uniqueness of solutions.
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Definition 6.23. A function u : Ω→ K is called a weak solution of the elliptic problem (6.6)–(6.7) if∫
Ω
∇u(x)∇h(x)dx =

∫
Ω
f(x)h(x)dx for all h ∈ C1

c (Ω). (6.8)

This definition does not come out of the blue. In fact, each “classical” solution u of (6.6)–(6.7), once integrated
“against a C1-function” (i.e., upon multiplying it by any h ∈ C1

c (I) and the integrating over I) satisfies (6.8)
after integration by parts.

6.2. Sobolev spaces

Unfortunately, if we try to carry over the above program, it turns out that we have to consider functionals
acting on functions by differentiation, i.e., we define them on C1(Ω) – which, however, is a pre-Hilbert space
but not a Hilbert one, so that the theorems of Riesz–Fréchet and Lax–Milgram do not apply to it. Hence, we
would like to consider a Hilbert space that is large enough to be complete but at the same time small enough to
allow differentiation. To this aim, in Section 6.2 we are going to introduce a special class of function spaces, the
so-called Sobolev spaces. As we are going to see, the main idea is to define a weak form of differentiation by
one of classical differentiation’s outmost useful consequences, namely validity of the integration by parts. Since
the latter can be defined as an integral property, it turns out to be more general than the usual differential
formulation.

A brief, old but still unsurpassed introduction to Sobolev spaces can be found in [4, Chapters 8–9].

Definition 6.24. Let I ⊂ R be an open interval. A function f ∈ L2(I) is said to be weakly differentiable if
there exists g ∈ L2(I) such that∫

I
f(x)h′(x)dx = −

∫
I
g(x)h(x) for all h ∈ C1

c (I). (6.9)

The set of weakly differentiable functions f ∈ L2(I) such that g is in L2(I) is denoted1 by H1(I) and called first
Sobolev space. They were introduced in 1936 by Sergei Lvovich Sobolev.

For an open interval I ⊂ R we have here denoted by C1
c (I) the vector space of continuously differentiable

functions with compact support, i.e., continuously differentiable functions f : I → K such that f(x) = f ′(x) = 0
for all x outside some compact subset of I.

Exercise 6.25. Let I ⊂ R be an open interval. Let f ∈ L2(I). Show that if a function g satisfying (6.9) exists,
then it is unique.

Exercise 6.26. Consider the operator S : f 7→ f ′. Show that S is a linear operator that is not bounded on
L2(0, 1), but indeed bounded from H1(0, 1) to L2(0, 1). Find an example of an operator on L2(0, 1) that is not
linear.

Remark 6.27. Clearly, there exist nonlinear functionals – any nonlinear function R → R is an example.
However, showing that there exist linear functionals that are unbounded is much more delicate and needs the
axiom of choice.

1 Or sometimes by W 1,2(I), due to historical reasons. The number 2 suggests that the basic space is L2, because – yes – given
the definition of weak derivative, the same construction can be repeated starting from Lp-spaces. Since our focus lie in the theory
of Hilbert spaces – which Sobolev spaces are not, unless p = 2 – we neglect this extension and refer the reader to the already
mentioned references [4, 5].
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Example 6.28. Let I = (−1, 1). The prototypical case of a weakly differentiable function that does not admit
a classical derivative in some point is given by

f(x) :=
|x|+ x

2
=

{
0 if x ≤ 0,
x if x > 0.

Take some function h ∈ C1
c ((−1, 1)) and observe that∫ 1

−1
f(x)h′(x)dx =

∫ 0

−1
f(x)h′(x)dx+

∫ 1

0
f(x)h′(x)dx

=

∫ 1

0
xh′(x)dx

=
[
xh(x)

]1

0
−
∫ 1

0
h(x)dx

= −
∫ 1

0
h(x)dx,

where the last equality follows from compactness of support of h (whence h(1) = 0). In other words,∫ 1

−1
f(x)h′(x)dx =

∫ 1

−1
H(x)h(x)dx

for all h ∈ C1
c (I), where H is defined by

H(x) :=

{
0 if x ≤ 0,
1 if x > 0.

This shows that f is weakly differentiable with f ′ = H, where H is called the Heaviside function after Oliver
Heaviside.

Remark 6.29. Let I be an interval of R. By Exercise 12.4 we can deduce that if f is a function in L2(I) and
its primitive F is in L2(I) as well (e.g., if I is bounded, since F is continuous by the fundamental theorem of
calculus), then F ∈ H1(I).

The definition of Sobolev space can be promptly extended to the higher dimensional case.

Definition 6.30. Let Ω ⊂ Rd be an open domain. A function f ∈ L2(Ω) is said to be weakly differentiable
if there exist g := (g1, . . . , gd) ∈

(
L2(Ω)

)d such that∫
Ω
f(x)

∂h

∂xi
(x)dx = −

∫
Ω
gi(x)h(x) for all h ∈ C1

c (Ω) and all i = 1, . . . , d. (6.10)

The set of weakly differentiable functions f ∈ L2(Ω) such that g is in
(
L2(Ω)

)d is denoted by H1(Ω), the first
Sobolev space on Ω.

Definition 6.31. Let I ⊂ R be an open interval. Let f ∈ L2(I) be weakly differentiable. The unique function g
introduced in Definitions 6.24 and 6.30 is called the weak derivative of f and with an abuse of notation we
write f ′ = g.



6.2. SOBOLEV SPACES 79

Remark 6.32. Observe that since any two continuosly differentiable functions f, h satisfy (6.9) (which is nothing
but the usual formula of integration by parts), by definition C1(Ω) ⊂ H1(Ω) – i.e., each function in C1(Ω) is
representative of a weakly differentiable L2-function whose weak derivative is again in L2.

Moreover, integrating by parts one clearly sees that each continuously differentiable function is also weakly
differentiable, i.e., C1(Ω) ⊂ H1(Ω). In general a function that is merely in C1(Ω) need not be in L2(Ω), but in
fact each u ∈ C1(Ω) ∩ L2(Ω) such that u′ ∈

(
L2(Ω)

)d also belongs to H1(Ω).

Lemma 6.33. Let Ω be an open domain of Rd. Then the set H1(Ω) is a Hilbert space with respect to the inner
product

(f |g)H1 := (f |g)L2 + (f ′|g′)(L2)d =

∫
Ω
f(x)g(x)dx+

∫
Ω
∇f(x) · ∇g(x)dx.

Observe that
(f |g)H1 =

∑
J

(fJ |gJ)L2 , f, g ∈ H1(Ω),

where the sum is taken over all multi-indices J of length 0 or 1 (recall the notation introduced in (4.5)).

Beweis. It is easy to see that (·|·)H1 is an inner product, since in particular (·|·)L2 is. In order to show
completeness, take a Cauchy sequence in H1(Ω), i.e., a sequence (fn)n∈N of weakly differentiable functions such
that both (fn)n∈N and (f ′n)n∈N are Cauchy in L2(Ω) and in (L2(Ω))d, respectively. By completeness of L2(I)
both sequences converge, say to φ, ψ respectively. Furthermore, for all i = 1, . . . , d we see that∫

Ω
fn(x)

∂h

∂xi
(x)dx = −

∫
Ω

∂f

∂xi n
(x)h(x) for all h ∈ C1

c (I),

so that∫
Ω
φ(x)

∂h

∂xi
(x)dx = lim

n→∞

∫
Ω
fn(x)

∂h

∂xi
(x)dx = −

∫
Ω

∂f

∂xi n
(x)h(x)dx = −

∫
Ω
ψi(x)h(x)dx for all h ∈ C1

c (Ω).

This shows that φ′ = ψ, so that H1(Ω) is in fact complete, i.e., a Hilbert space. �

Exercise 6.34. Let I be an interval.
(1) Let f ∈ L2(I) such that

∫
I f(x)h′(x)dx = 0 for all h ∈ C1

c (I). Show that there exists a constant c ∈ K such
that f(x) = c for a.e. x ∈ I.

(2) Let g ∈ L2(I) and x0 ∈ I. Define G : I 3 x 7→
∫ x
x0
g(t)dt ∈ K. Show that G ∈ C(I) and moreover∫

I G(x)h′(x)dx = −
∫
I g(x)h(x)dx for all h ∈ C1

c (I).
(3) Conclude that each f ∈ H1(I) has a representative f∗ ∈ C(I) such that f(x) = f∗(x) for a.e. x ∈ I.

Moreover, ‖f∗‖C(I) ≤ ‖f‖H1(I) for all f ∈ C([0, 1]).

Remark 6.35. Accordingly, it is common (although a slight abuse of language) to say that in 1-dim, weakly
differentiable functions are continuous. It is worthwile to emphasize that this important property is exclusive of
the 1-dimensional case. In particular, this allows to talk about point evaluation of functions in H1(I).

The converse is not true, i.e., there exist continuous functions that are not weakly differentiable. A continuous
but nowhere differentiable, like the Weierstraß function, yields a counterexample. In fact, it can be proved that
a weakly differentiable function has to be differentiable (in the classical sense) almost everywhere.

Higher order Sobolev spaces can be introduced recursively, like in the case of classical derivatives.
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Definition 6.36. Let Ω ⊂ Rd be an open domain and k ∈ N. The kth Sobolev space is defined recursively by
setting

Hk+1(Ω) :=

{
f ∈ Hk(Ω) :

∂f

∂xi
∈ Hk(Ω) for all x ∈ Ω

}
, k ∈ N.

Reasoning as in the proof of Lemma 6.33, we see that for any k the kth Sobolev space is a Hilbert space,
when endowed with the scalar product

(f |g)Hk :=
∑
J

(fJ |gJ)L2 , f, g ∈ Hk(Ω),

where the sum is taken over all multi-indices J of length between 0 and k. We denote the associated norm by
‖ · ‖Hk .

The following is a fundamental result of the theory of Sobolev spaces (which we are not going to prove, but
cf. [5, §5.3]).

Theorem 6.37 (Meyers–Serrin 1964). Let Ω be an open domain of Rd. Then the Sobolev space Hk(Ω) agrees
with the closure of C∞(Ω) ∩Hk(Ω) with respect to ‖ · ‖Hk . If Ω is bounded and has C1-boundary, then Hk(Ω)
even agrees with the closure of C∞(Ω) with respect to ‖ · ‖Hk .

The main feature of the theorem of Meyers–Serrin is the possibility of extending results that are known to
hold for continuous functions to more general functions in certain Sobolev spaces, by simple density arguments.
For example, the Gauß–Green formulae hold for functions that are merely in Hk-spaces, instead of Ck. Among
all such extensions we would like to point out the following one. Its proof is not difficult, but it relies heavily
on the technical tool of convolutions, which we wish to avoid.

Corollary 6.38. Let Ω be a bounded open domain of Rd. Then each u ∈ H1(Ω) is limit of a sequence (un)n∈N ⊂
C∞c (Rd) with respect to the H1(Ω)-norm.

Clearly, taking the restriction in an open domain Ω of a function u ∈ H1(Rd) yields a function u|Ω that is
again of class H1: in fact, this defines a linear contraction operator R by

Ru := u|Ω, u ∈ H1(Rd).

The following shows that in some sense the converse holds, too.

Theorem 6.39. Let Ω ⊂ Rd be an open domain with C1-boundary. Then there exists a linear operator Θ :
H1(Ω)→ H1(Rd) and C > 0 such that for all u ∈ H1(Ω)

• (Θu)|Ω) = u,
• ‖Θu‖L2(Rd) ≤ C‖u‖L2(Ω),
• ‖Θu‖H1(Rd) ≤ C‖u‖H1(Ω).

In the proof the above theorem we will need the following.

Exercise 6.40. Consider u ∈ H1(0,∞) and η ∈ C1(0,∞) such that η|{x≥1−ε} = 0 for some ε ∈ (0, 1). Prove
that then ηu ∈ H1(0,∞) and the product rule

(ηu)′ = η′u+ ηu′

holds for its weak derivative. (Hint: After taking a test function, apply the usual rule for products of continuously
differentiable functions to its product with η.)
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Proof of Theorem 6.39. We only prove the assertion in the case of d = 1, the general case being
definitely more technical (we refer to [4, Chapter 9] for a detailed proof). For d = 1 we only have to consider,
without loss of generality, the cases of
(1) Ω = (0,∞),
(2) Ω = (0, 1).

The three most natural ways of extending a function are
• extension by 0,
• even extension,
• odd extension.

Each one of them is better suited to some particular situations. We will meet all three in this proof.
(1) If Ω = (0,∞), take u ∈ H1(0,∞) and let Eu be its even extension, i.e.,

(Eu)(x) :=

{
u(x), if x ≥ 0,
u(−x), if x < 0,

(Here we have defined u(0) considering the boundary value of the continuous representative of u). One has

‖Eu‖2L2(R) =

∫ ∞
−∞
|f(x)|2dx =

∫ 0

−∞
|f(x)|2dx+

∫ ∞
0
|f(x)|2dx = 2‖Eu‖2L2(0,∞), (6.11)

by variable substitution. Moreover, Eu is weakly differentiable: this amounts to finding a function g ∈ L2(R)
that turns out to be its weak derivative. An educated guess suggests us to try with the odd extension of u′, i.e.,
with

(Ou′)(x) :=

{
u′(x), if x ≥ 0,
−u′(−x), if x < 0,

which is in L2(R), as one sees reasoning as we have done to prove that Eu is. By Remark 6.29 it suffices to
show that Eu actually is the primitive of Ou′: and in fact

(Eu)(x)− (Eu)(0) =

{
u(x)
u(−x)

− u(0) =

∫ x

0
(Ou′)(s)ds for all x ∈ R,

which holds because u is weakly differentiable and it is the primitive of u′. (Here we could perform point
evaluation because u ∈ H1(0,∞), and hence it has a continuous representative).

Moreover, a direct computation shows that ‖Eu‖H1 ≤ 2‖u‖H1 : in fact,

‖(Eu)′‖2L2(R) =

∫ 0

−∞
|f ′(x)|2dx+

∫ ∞
0
|f ′(x)|2dx = 2‖Eu‖2L2(0,∞),

and combining with (6.11) yields the claim.
(2) Let us now consider the case of Ω = (0, 1). Consider a function η : R → R with range contained in the

interval [0, 1] that is a smoothed version of H(1
2 + ·), H the Heaviside function: to fix the ideas, we will assume

that η ≡ 1 on (1
2 + ε,∞) and η ≡ 0 on (−∞, 1

2 − ε), for some small ε > 0. We remark that neither η nor 1− η
are L2(R)-functions, hence in particular they are not H1(R)-functions.

For any u ∈ H1(0, 1), we can write u = ηu + (1 − η)u. The idea is to apply Lemma 6.40 to the functions
ηu and (1 − η)u, whose support is contained in two (disjoint) halflines. First of all, observe that

(
ηu
)
(x) = 0

and
(
(1 − η)u

)
(x) = 0 for all x ≤ 0 and all x ≥ 1, respectively. In the case of ηu (or rather, of its restriction

to (0, 1)), extend it to (−∞, 1) by 0 on (−∞, 0): such an extension, which we denote by η̃u, we then extend to
the whole R as we did in (1) (almost as we did in (1), because now we are reflecting in 1 and not in 0), i.e., we
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consider u1 := E(η̃u). Similarly, (1 − η)u can be extended to R by first extending it to (0,∞) by 0 on (1,∞),
obtaining ˜(1− η)u, and then considering the even extension u2 of ˜(1− η)u.

It is straightforward to check that the three claimed conditions hold for both u1 and u2. We complete the
proof by setting Θu := u1 + u2. �

One of the main features of Sobolev spaces is that while they are defined on the top of L2, their relation
to other Lebesgue spaces and to spaces of continuously differentiable functions is quite well-behaved, as the
following Sobolev embedding theorems show.

Theorem 6.41 (First Sobolev embedding theorem). Let Ω be an open domain of Rd. Then there exists a
constant C > 0, only depending on Ω – and in fact only on the measure of Ω – and d, such that for all
u ∈ H1(Ω)

(1) ‖u‖L∞ ≤ ‖u‖H1 if d = 1 (and in particular H1(R) ⊂ L∞(R)),
(2) ‖u‖Lp ≤ C‖u‖H1 if d = 2 (and in particular H1(R2) ⊂ Lp(R2)), for all p ∈ [2,∞), and finally
(3) ‖u‖

L
2d
d−2
≤ C‖u‖H1 if d ≥ 3 (and in particular H1(R2) ⊂ L

2d
d−2 (R3)).

This explains in particular the special role played by L6(R3) in many partial differential equations of physical
relevance, where energy functionals are defined on H1(R3).

Beweis. The 1-dimensional is case is elementary, while the higher dimensional ones rely more upon pro-
perties of Lp-spaces. Hence, we are only going to prove the assertion (1) – in fact, it suffices to check it for the
case of Ω = R, since the case of a bounded or semibounded interval can be recovered via Theorem 6.39.

In view of Corollary 6.38, it suffices to prove the assertion (1) for u ∈ C1
c (R); for if u ∈ H1(R), then there

exists a sequence (un)n∈N ⊂ C1
c (R) approximating u in H1-norm, hence by (1) also in L∞-norm, and since (1)

is satisfied by each un, the claim follows.
To begin with, define a function G ∈ C1(R) by

G(x) :=

{
x2 if x ≥ 0,
−x2 otherwise.

Let now u ∈ C1
c (R) and consider w := G◦u, with |w| = |u|2. The function w is composition of two continuously

differentiable functions, hence it is of class C1, and in fact it has compact support because u does. Observe that
by the chain rule

w′(x) = (G ◦ u)′(x) = G′(u(x))u′(x) = 2|u(x)|u′(x), x ∈ R.
By the fundamental theorem of calculus, the chain of inequalities

w(x) =

∫ x

−∞
w′(x)dx = 2

∫ x

−∞
|u(x)|u′(x)dx ≤ 2

∫ x

−∞
|u(x)||u′(x)|dx ≤ 2

∫
R
|u(x)||u′(x)|dx ≤ 2‖u‖L2‖u′‖L2

holds for all x ∈ R. Hence, the absolute value of u satisfies

|u(x)|2 = |w(x)| ≤ 2‖u‖L2‖u′‖L2 ≤ ‖u‖2L2 + ‖u′‖2L2 = ‖u‖2H1 ,

i.e.,
|u(x)| ≤ ‖u‖H1 .

Finally, taking the maximum yields the claim.
We refer to [4, Cor. 9.11 and Thm. 9.9] for the proofs of the remaining cases. �

The following is a generalisation of the assertion in Exercise 6.34.
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Theorem 6.42 (Second Sobolev embedding theorem). Let Ω be an open bounded domain of Rd with C1-
boundary. Then each u ∈ Hk(Ω) has a continuous representative u∗ if 2k > d. Moreover, in this case there
exists a constant C, only depending on Ω, such that ‖u∗‖L∞ ≤ C‖u‖Hk for all u ∈ Hk(Ω).

The above theorem can be in fact strenghtened a bit if one introduces the spaces of Hölder continuous
functions, a generalisation of Lipschitz continuous ones. We omit the details and refer to [5, Thm. 5.6.5] for the
details and for the proof.

Definition 6.43. Let Ω ⊂ Rd be an open domain. The closure of C∞c (Ω) with respect to the Hk(Ω)-norm is
called the Sobolev space of order k with vanishing boundary values, which we denote by Hk

0 (Ω).

If the reason for its name is a little obscure in view of Definition 6.30, take into account the theorem of
Meyers–Serrin and observe that Hk

0 (Ω) is constructed in a way that is analogous to Hk(Ω), with the only
difference that we are taking the Hk-closure of C∞c (Ω), rather than of the (larger) space C∞(Ω) ∩ Hk(Ω).
Accordingly, Hk

0 (Ω) is generally smaller than Hk(Ω), although they may occasionally agree (examples?). The
explanation for the second part of the name of the spaces Hk is more delicate. Informally speaking, one may e.g.
expect functions in H1

0 (Ω) to vanish at the boundary. But what does this mean? If Ω ⊂ R, then by Exercise 6.34
H1(Ω)-functions have a continuous representative on I, so that we can perform point evaluation. But what about
the higher dimensional case?

Theorem 6.44. Let Ω be an open domain of Rd with C1-boundary. If u ∈ H1
0 (Ω)∩C(Ω), then u(z) = 0 for all

z ∈ ∂Ω.

Beweis. The proof is based on a technique that is useful in many instances in the theory of Sobolev spaces,
e.g. for proving Sobolev embeddings theorems. In the present case, the idea is that the boundary of any C1-
domain can be locally flattened: more precisely, at each point z ∈ ∂Ω there is a neighbourhood ω of z that is
diffeomorphic to the cylinder (−1, 1)×B1(0), where B1(0) is the unit ball of Rd−1, such that ω∩Ω, ω∩∂Ω and
ω ∩ (Rd \ Ω) are mapped into (0, 1) × B1(0), {0} × B1(0), and (−1, 0) × B1(0), respectively, cf. [5, Appendix
C.1].

Thus, it suffices to prove that if

u ∈ H1
0

(
(0, 1)×B1(0)

)
∩ C

(
[0, 1]×B1(0)

)
,

then u(z) = 0 for all z ∈ {0}×B1(0). By definition of H1
0 we can choose a sequence (un)n∈N ⊂ C1

c

(
(0, 1)×B1(0)

)
such that limn→∞ un = u with respect to the H1-norm. Take x1 ∈ (0, 1) and y ∈ B1(0). We have for all n

|un(x1, y)| ≤
∫ x1

0

∣∣∣∣∂un∂x1
(s, y)

∣∣∣∣ ds
(there is no boundary term because un has compact support), hence an analogous inequality holds for the
average of u. Thus, for all ε ∈ (0, 1)

1

ε

∫ ε

0
|un(x1, y)|dx1 = |un(x1, y)| ≤

∫ ε

0

∣∣∣∣∂un∂x1
(s, y)

∣∣∣∣ ds.
Integrating both sides over the (d− 1)-dimensional unit ball B1(0) we obtain

1

ε

∫
B1(0)

∫ ε

0
|un(x1, y)|dx1dy ≤

∫
B1(0)

∫ ε

0

∣∣∣∣∂un∂x1
(s, y)

∣∣∣∣ dsdy
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Taking the limit as n→∞ we deduce that

1

ε

∫
B1(0)

∫ ε

0
|u(x1, y)|dx1dy ≤

∫
B1(0)

∫ ε

0

∣∣∣∣ ∂u∂x1
(s, x̃)

∣∣∣∣ dsdy,
and letting finally ε→ 0 we obtain by Lebesgue’s differentiation theorem∫

B1(0)
|u(0, y)|dy ≤ 0,

i.e., u(z) = 0 for all z ∈ {0} ×B1(0), corresponding to the ω ∩ ∂Ω, as we wanted to show. �

Remark 6.45. Conversely, it is also true that if u ∈ H1(Ω) ∩ C(Ω) and u(z) = 0 for all z ∈ ∂Ω, then
u ∈ H1

0 (Ω), but the proof is more delicate, cf. [4, Thm. 9.17].

Remark 6.46. By density of C1
c (Ω) in H1

0 (Ω), the definition of weak solution to an elliptic problem can be
equivalently reformulated as follows: For any A ∈ L∞(Ω;Md(K) A function u : Ω → K is called a weak
solution of the elliptic problem

∇(A∇u)(x) = f(x), x ∈ Ω, (6.12)

with Dirichlet boundary conditions

u(z) = 0, z ∈ ∂Ω, (6.13)

if ∫
Ω
A(x)∇u(x)∇h(x)dx =

∫
Ω
f(x)h(x)dx for all h ∈ H1

0 (Ω). (6.14)

Exercise 6.47. Prove that if Ω = Rd, then H1(Ω) = H1
0 (Ω).

Theorem 6.48 (Poincaré inequality). Let Ω be a bounded open domain of Rd that is contained in a strip of
width 2δ, i.e., such that there exist δ > 0 and i ∈ {1, . . . , d} for which

xi ∈ (−δ, δ) for all x = (x1, . . . , xd) ∈ Ω. (6.15)

Then for all u ∈ H1
0 (Ω) there holds

‖f‖2L2 ≤ 4d2‖∇f‖2L2 .

In particular, u 7→ ‖∇u‖L2 defines a norm on H1
0 (Ω) which is equivalent to the one induced by H1(Ω).

Beweis. We first begin by proving the assertion for d = 1 and u ∈ C1[−δ, δ] such that u vanishes at the
boundary (in fact, we will only need that u vanishes at −δ or at δ). There holds∫ δ

−δ
|u(x)|2dx =

∫ δ

−δ

∣∣∣∣∫ x

−δ
u′(y)dy

∣∣∣∣2 dx
=

∫ δ

−δ

∣∣∣∣∫ x

−δ
u′(y) · 1dy

∣∣∣∣2 dx.
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By the Cauchy–Schwarz inequality applied to the inner integral we deduce∫ δ

−δ
|u(x)|2dx ≤

∫ δ

−δ

(∫ x

−δ

∣∣u′(y)
∣∣2 dy · ∫ x

−δ
1dy

)
dx

≤
∫ δ

−δ

∫ x

−δ

∣∣u′(y)
∣∣2 dy(x+ δ)dx

≤ 2δ

∫ δ

−δ

∫ x

−δ

∣∣u′(y)
∣∣2 dydx

≤ 4δ2

∫ δ

−δ

∣∣u′(y)
∣∣2 dy.

In the d-dimensional case, it suffices to consider u ∈ C∞c (Ω): the general assertion will follow by density.
Assume without loss of generality that it (6.15) holds with respect to the first coordinate. Applying the 1-
dimensional Poincaré inequality to u and ∂u

∂x1
and identifying u with its extension by 0 to the whole Rd we

obtain that ∫
Ω
|u(x)|2dx =

∫
R
. . .

∫
R︸ ︷︷ ︸

d−1 times

∫ δ

−δ
|u(x1, . . . , xd)|2dx1 . . . dxd

≤ 4d2

∫
R
. . .

∫
R

∫ δ

−δ

∣∣∣∣ ∂u∂x1
(x1, . . . , xd)

∣∣∣∣2 dx1 . . . dxd

≤ 4d2

∫
R
. . .

∫
R

∫ δ

−δ
|∇u(x1, . . . , xd)|2 dx1 . . . dxd

= 4d2

∫
Ω
|∇u(x)|2 dx,

since u is not defined outside Ω. This concludes the proof. �

Exercise 6.49. In the literature it is common to find a different formulation of the Poincaré inequality, namely
that ∥∥∥∥u− 1

|Ω|

∫
Ω
u(x)dx

∥∥∥∥
L2

≤ 4δ2‖∇u‖L2 for all u ∈ H1(Ω).

Find out what is the connection of this inequality to the one in the above theorem. (Hint: Take into account the
fact that 1

|Ω|
∫

Ω u(x)dx agrees with the best approximation of any function u on the subspace 〈1〉 of constant
functions, cf. Exercise 6.14, and hence by Exercise 6.12

u− 1

|Ω|

∫
Ω
u(x)dx

turns out to be the best approximation of u onto the subspace orthogonal to 〈1〉.)

As we have already mentioned, Sobolev spaces were first applied in order solve elliptic equations, like the
Poisson equation. Applying the Lemma of Lax–Milgram we are finally in the position to formulate an existence
and uniqueness result.
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Corollary 6.50. Let Ω ⊂ Rd be an open domain. For all f ∈ Lp(Ω) the elliptic problem (6.6)–(6.7) has a
unique weak solution, where

p =


1 if d = 1,
1 + ε for any ε ∈ (0, 1] if d = 2,
2d
d+2 if d ≥ 3.

Moreover, the energy functional

u 7→ 1

2

∫
Ω
|∇u|2dx−

∫
fudx

attains in u the minimal value among those attained at all v ∈ H1
0 (Ω).

While the former assertion can (and will) be proved simply by means of the representation theorem of Riesz–
Fréchet, the latter is a direct consequence of the approach we have chosen to prove the theorem of Lax–Milgram.
Observe that we recover Dirichlet’s principle, which we have first discussed in Theorem 6.1. Also observe that
we have formulated the above result only for the Poisson equation exclusively for the sake of simplicity: it can be
immediately extended to the case of general elliptic operators u 7→ ∇(A∇u)+B∇u+cu, for suitable coefficients
A : Ω→Md(K), B : Ω→ Rd, c : Ω→ K.

Beweis. Consider the mapping φ : H1
0 (Ω) 3 h 7→

∫
I hf ∈ K, which is clearly linear and bounded, since

h ∈ Lp∗(Ω) by the Sobolev embedding theorem and therefore by the Hölder inequality

|φ(h)| ≤ ‖hf‖L1 ≤ ‖h‖Lp∗‖f‖Lp ≤ C‖h‖H1‖f‖L2

for all h ∈ H1(Ω). Then by the representation theorem of Riesz–Fréchet there exists a unique u ∈ H1
0 (Ω)

(continuously depending on f) such that φ(h) = (h|u)H1
0 (Ω) = (h′|u′)L2(Ω). By definition of weak solution, this

completes the proof, since we have already remarked that the characterisation of solutions via minimal energy
is a consequence of the theorem of Lax–Milgram for symmetric forms. �

Remark 6.51. The above theorem only applies to an elliptic equation with Dirichlet boundary conditions and
not, say, with Neumann ones. This is not a problem of the method based on the theorem of Lax–Milgram, but an
intrinsic feature of elliptic equations. To see this, observe that even in the case of f ≡ 0, the Poisson equation
(or rather, the Laplace equation) is not uniquely solvable, since if u is a solution, then so is u+c for any constant
c. This can be reformulated as follows: for any λ ∈ K, unique solvability of the elliptic equation

∇(A∇u)(x)− λu(x) = −f(x), x ∈ Ω, (6.16)

with Dirichlet, Neumann, Robin or even more general boundary conditions is equivalent to invertibility of the
linear (unbounded on L2(Ω)) operator λ−∇(A∇). However, with Neumann boundary conditions this operator
is not invertible for λ = 0. It turns out that in fact there exist infinitely many (countably many, if Ω is bounded)
values λ, called the eigenvalues, such that λ−∇(A∇) is not invertible. What we have just seen is that 0 is an
eigenvalue if we impose Neumann boundary conditions, but not if Dirichlet boundary conditions are considered.
Whenever A(x) is a hermitian matrix for all x ∈ Ω, all such eigenvalues are real, but this is generally false. The
equation (6.16) is called Helhmholtz equation..

The weak formulation of an elliptic problem (say, with Dirichlet boundary conditions) is an interesting
method for obtaining some kind of solution, via the Theorem of Lax–Milgram, but its application would be
of limited interest if one could not link weak solutions to classical solutions. Fortunately, this is not the case.
On one hand, we have already remarked that each classical solution – i.e., any C2-function solving the elliptic
problem pointwise – is also a weak solution. On the other hand, if one already knows that a weak solution (i.e.,
a H1

0 (Ω)-function) is a C2(Ω)-function, then it is a solution in classical sense. In fact, u has vanishing boundary
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data, and moreover (∆u+ f |v)L2(Ω) = 0 for all v ∈ C1
c (Ω) – or rather for all v ∈ L2(Ω), by density. Therefore,

u satisfies ∆u(x) = −f(x) for a.e. x ∈ Ω, and hence for all x ∈ Ω, since it is a C2-function.
What is more important, there is an extensive regularity theory developed with the aim of yielding stronger

(that is, stronger than the theorem of Lax–Milgram) assertions on the regularity of weak solutions, provided
that the inhomogeneous term in the Poisson equation is “better” than L2. A favorite approach is based on the
so-called method of incremental quotients developed in the 1950s by Louis Nirenberg and others. Its technical
core lies in the following result, where we denote by τε the linear translation operator τξ defined for all ξ ∈ Rd
by

τξu := u(·+ ξ).

Niremberg’s idea was to use integrability properties of images of such operators to characterise H1-functions,
just like strong differentiability is characterized by convergence of incremental quotients.

Lemma 6.52. Let Ω be an open domain of Rd. Let u ∈ L2(Ω). Then the following assertions are equivalent.

(i) u ∈ H1(Ω).
(ii) The inequality ∣∣∣∣∫

Ω
u
∂h

∂xi
dx

∣∣∣∣ ≤ C‖h‖L2

holds for all h ∈ C1
c (Ω) and all i = 1, . . . , d.

(iii) The inequality

‖τξu− u‖L2(ω) ≤ C|ξ|

holds for some C > 0, all open subsets ω whose closure is contained in Ω and all ξ ∈ Rd such that
|ξ| < dist(ω, ∂Ω).

Observe that by definition of H1(Ω), for all h ∈ C1
c (Ω) and all i = 1, . . . , d we have∣∣∣∣∫

Ω
u
∂h

∂xi
dx

∣∣∣∣ =

∣∣∣∣∫
Ω

∂u

∂xi
hdx

∣∣∣∣ ≤ C‖h‖L2 ,

where the last step follows from the Cauchy–Schwarz inequality letting C := ‖ ∂u∂xi ‖L2 or, more generally,
C := ‖u′‖(L2)d .

Beweis. (i)⇒(iii) To begin with, assume u ∈ C1
c (Rd) and let ξ ∈ Rd. Then,

u(x+ ξ)− u(x) =

∫ 1

0
ξ∇u(x+ tξ)dt for all x ∈ Rd :

this can be seen e.g. introducing the function

v : R 3 t 7→ u(x+ tξ) ∈ R,

which permits to write u(x+ ξ)− u(x) = v(1)− v(0) =
∫ 1

0 v
′(s)ds, which implies the claim. Therefore,

|u(x+ ξ)− u(x)|2 ≤ |ξ|2
∫ 1

0
|∇u(x+ tξ)|2dt for all x ∈ Rd,
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and integrating over any compact subset ω of Rd yields∫
ω
|u(x+ ξ)− u(x)|2dx ≤ |ξ|2

∫
ω

∫ 1

0
|∇u(x+ tξ)|2dtdx

≤ |ξ|2
∫ 1

0

∫
ω+tξ
|∇u(y)|2dydt,

where in the last step we have applied Fubini and an obvious variable substitution.
If now |ξ| < dist(ω, ∂Ω), then ω̃ :=

⋃
t∈[0,1] ω + tξ is a compact subset of Rd. Accordingly,

‖τξu− u‖2L2 =

∫
ω
|u(x+ ξ)− u(x)|2dx ≤ |ξ|2

∫ 1

0

∫
ω̃
|∇u(y)|2dydt = |ξ|2

∫
ω̃
|∇u(y)|2dy,

as we wanted to prove. The general case follows by a density argument based on a technical result, cf. [4,
Thm. 9.2].

(iii)⇒(ii) Let h ∈ C1
c (Ω). Take an open subset ω that contains the support of h whose closure is contained

in Ω. By a variable substitution and due to the assumption we have∣∣∣∣∫
Ω
u(y) (h(y − ξ)− h(y)) dy

∣∣∣∣ =

∣∣∣∣∫
Ω

(u(x+ ξ)− u(x))h(x)dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(τξu− u)hdx

∣∣∣∣ ≤ C|ξ|‖h‖L2 ,

i.e., ∣∣∣∣∫
Ω
u(y)

(
h(y − ξ)− h(y)

|ξ|

)
dy

∣∣∣∣ ≤ C‖h‖L2 .

Now, the assertion follows taking ξ = tei (for all i = 1, . . . , d) and then letting ε→ 0.
(ii)⇒(i) Since for all i = 1, . . . , d the linear functional

C1
c (Ω) 3 h 7→

∫
Ω

∂h

∂xi
udx ∈ K

is continuous with respect to ‖ · ‖L2 , and since C1
c (Ω) is dense in L2(Ω), it can be extended by continuity to a

bounded linear functional Φi : L2(Ω) → K. Now, by the representation theorem of Riesz–Fréchet there exists
gi ∈ L2(Ω) such that

Φi(h) =

∫
Ω
hgidx for all h ∈ L2(Ω),

and in particular ∫
Ω

∂h

∂xi
udx = Φi(h) =

∫
Ω
hgidx for all h ∈ C1

c (Ω).

Since this holds for all i = 1, . . . , d, u ∈ H1(Ω) by definition of weak differentiability. �

Remark 6.53. Adopting the notation

Dξu :=
τξu− u
|ξ|

, (6.17)

what Lemma 6.52 says is that if u ∈ L2(Ω), then u ∈ H1(Ω) if and only if the estimate ‖Dξu‖L2(ω) ≤ C holds
uniformly in ξ on open subsets ω with ω ⊂ Ω. In fact, the proof yields even C = ‖∇u‖L2(Ω), i.e.,

‖Dξv‖L2(ω) ≤ ‖∇v‖L2(Ω) for all ξ ∈ Rd \ {0} small and all v ∈ H1(Ω). (6.18)

Observe also that
(Dξu|v)L2 = (u|D−ξv)L2 , u, v ∈ L2(Ω). (6.19)
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We are now in the position to discuss the promised regularity results. We follow the approach in [4, § 9.6]
and, in particular, share Brezis’ mind on the utility of well understanding the cases of Ω without boundary and
then of Ω with a flat boundary.

Theorem 6.54. Let Ω = Rd. Let k ∈ N and f ∈ Hk(Ω). Then the weak solution2 u ∈ H1(Ω) of

∆u(x)− u(x) = f(x), x ∈ Rd, (6.20)

is of class
Hk+2(Ω) := {u ∈ L2(Ω) : u ∈ H2(ω) for all open ω with ω ⊂ Ω}.

Observe that since Rd is (of course) not contained in any strip, Poincare’s inequality does not apply, H1(Rd)
cannot be endowed with the H1

0 -norm and one has indeed to consider the corrective term −u in (6.20).

Beweis. Let ξ ∈ Rd \ {0} and define Dξu as in (6.17). Let moreover

φ := D−ξ(Dξu) =
τ−ξ(τξu− u)− (τξu− u)

|ξ|2
=
−τ−ξu− τξu
|ξ|2

,

i.e.,

φ(x) :=
−u(x− ξ)− u(x+ ξ)

|ξ|2
,

Since u ∈ H1(Rd), φ ∈ H1(Rd) and we can plug it in (6.14), obtaining by (6.19)

‖Dξu‖2H1 =

∫
Ω

(
|∇Dξu(x)|2 + |Dξu(x)|2

)
dx =

∫
Ω
fD−ξ(Dξu)dx ≤ ‖f‖L2‖D−ξ(Dξu)‖L2 ,

where we have used the fact that for H1-functions ∇ and Dξ commute. Taking into account (6.18) and applying
it to v := Dξu we can estimate the last term by

‖f‖L2‖D−ξ(Dξu)‖L2 ≤ ‖f‖L2‖∇(Dξu)‖L2 ,

i.e., we obtain
‖Dξu‖2H1 ≤ ‖f‖L2‖∇(Dξu)‖L2 ≤ ‖f‖L2‖(Dξu)‖H1 .

Summing up, we deduce that

‖Dξ
∂u

∂xi
‖L2 ≤ ‖Dξu‖H1 ≤ ‖f‖L2 i = 1, . . . , d.

By Lemma 6.52 this means that each weak partial derivative of u is in H1, and finally we get u ∈ H2(Rd), by
definition of second Sobolev space.

The proof of the general assertion is based on induction. In order to get a clue on how to perform the
inductive step, we show that if f ∈ H1(Rd), then u ∈ H3(Rd), i.e., we have to prove that each weak partial
derivative ∂2u

∂xi∂xj
of u is in H2(Rd). Since the method presented above for in order to show that u ∈ H2 is solely

based on the fact that u satisfies the weak formulation of the elliptic equation, our goal is to replicate the same
argument. To this aim we want to show that each weak partial derivative ∂u

∂xi
satisfies∫

Rd

(
∇ ∂u

∂xi
∇h+

∂u

∂xi
h

)
dx =

∫
Rd

∂f

∂xi
hdx for all h ∈ H1(Rd),

2 whose existence (and uniqueness) is ensured by the theorem of Lax–Milgram.
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or rather, by density (cf. Exercise 6.47), that∫
Rd

(
∇ ∂u

∂xi
∇h+

∂u

∂xi
h

)
dx =

∫
Rd

∂f

∂xi
hdx for all h ∈ C∞c (Rd). (6.21)

This would yield that v := ∂u
∂xi

is a weak solution to

∆v(x)− v(x) =
∂f

∂xi
(x), x ∈ Rd,

which would suffice in order to deduce the claim.
Let therefore h and hence ∂h

∂xi
∈ C∞c (Rd). Since u is a weak solution, by definition∫

Rd

(
∇u∇ ∂h

∂xi
+ u

∂h

∂xi

)
dx =

∫
Rd
f
∂h

∂xi
dx for all h ∈ C∞c (Rd),

and integrating by parts we see that (6.21) holds. �

The above kind of assertions goes under the name of interior regularity results. The reason for this name is
that alone imposing boundary values (we will as usual consider Dirichlet boundary conditions, but Neumann
and Robin would cause the same effect) ensures regularity up to the boundary.

Theorem 6.55. Let Ω = Rd+. Let k ∈ N and f ∈ Hk(Ω). Then the weak solution u ∈ H1
0 (Ω) of

∆u(x)− u(x) = f(x), x ∈ Rd, (6.22)

with boundary conditions
u(z) = 0, z ∈ ∂Rd+, (6.23)

is of class
Hk+2(Ω).

The interesting feature of this result lies in the – somewhat surprising – possibility of deducing from the
assumption ∆u ∈ L2(Ω) that every partial derivative of order 2 is in L2, too.

In the proof we will repeatedly use the fact that if ξ ∈ Rd−1×{0}, i.e., if ξ is a vector that is parallel to the
boundary of Ω, then

τξu ∈ H1
0 (Ω) whenever u ∈ H1

0 (Ω),

i.e., H1
0 (Ω) is invariant under translations in directions that are parallel to the boundary of Rd+, i.e., in all

directions ej , j ∈ {1, . . . , d− 1}.
Furthermore, we will need the following two auxiliary results. The former can be proved following the proof

of Lemma 6.52 almost verbatim, using invariance of H1
0 (Ω) under translations along directions parallel to ∂Rd+.

The proof of the latter needs some (elementary) functional analytical tool, and we omit it.

Lemma 6.56. Let Ω = Rd+. Let ξ be a vector that is parallel to the boundary of Ω. Then

‖Dξu‖L2 ≤ ‖∇u‖L2 for all u ∈ H1(Ω).

Lemma 6.57. Let Ω = Rd+ and u ∈ H2(Ω) ∩H1
0 (Ω) be a weak solution to (6.22). Then ∂u

∂xi
∈ H1

0 (Ω) and∫
Rd

(
∇ ∂u

∂xi
∇h+

∂u

∂xi
h

)
dx =

∫
Rd

∂f

∂xi
hdx for all h ∈ H1

0 (Ω).
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Proof of Theorem 6.55. Arguing as in the proof of Theorem 6.52 one sees that (6.18) holds in this
context, too. More precisely, if ξ is a vector that is parallel to the boundary of Ω – say, ξ = |ξ|ej , j ∈ {1, . . . , d−1},
then

‖Dξu‖2H1 ≤ ‖f‖L2‖D−ξ(Dξu)‖L2 for all u ∈ H1(Ω).

Accordingly, by Lemma 6.56

‖Dξu‖2H1 ≤ ‖f‖L2‖D−ξ(Dξu)‖L2

≤ ‖f‖L2‖∇(Dξu)‖L2

≤ ‖f‖L2‖(Dξu)‖H1 for all u ∈ H1(Ω),

i.e.,
‖Dξu‖H1 ≤ ‖f‖L2 for all u ∈ H1(Ω). (6.24)

Let now h ∈ C∞c (Ω) and i ∈ {1, . . . , d}. It follows – applying (6.19) and then integrating by parts – that∣∣∣∣∫
Ω
uD−ξ

∂h

∂xi
dx

∣∣∣∣ =

∣∣∣∣∫
Ω
Dξu

∂h

∂xi
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

∂

∂xi
Dξuhdx

∣∣∣∣
≤

∥∥∥∥ ∂

∂xi
Dξu

∥∥∥∥
L2

‖h‖L2

≤ ‖Dξu|H1 ‖h‖L2

≤ ‖f‖L2‖h‖L2 ,

where we have used (6.24) in the last step. Passing to the limit as ξ → 0, Lebesgue’s dominated convergence
theorem yields ∣∣∣∣∣

∫
Ω
u

∂2h

∂xi∂xj
dx

∣∣∣∣∣ ≤ ‖f‖L2‖h‖L2 for all h ∈ C∞c (Ω), (6.25)

which – we repeat it – holds for all i ∈ {1, . . . , d} and all j ∈ {1, . . . , d− 1}. Our aim is to show this inequality
for all partial derivatives of second order of h, i.e., to show also∣∣∣∣∣

∫
Ω
u
∂2h

∂x2
d

dx

∣∣∣∣∣ ≤ ‖f‖L2‖h‖L2 for all h ∈ C∞c (Ω).

This estimate can be obtained taking into account the definition of weak solution, which (applying the formulae
of Gauß–Green) yields ∫

Ω
u∆hdx =

∫
Ω

(u+ f)hdx for all h ∈ C∞c (Ω),

or rather ∫
Ω
u
∂2h

∂x2
d

dx = −
d−1∑
j=1

∫
Ω
u
∂2h

∂x2
j

dx+

∫
Ω

(u+ f)hdx for all h ∈ C∞c (Ω),

Accordingly,∣∣∣∣∣
∫

Ω
u
∂2h

∂x2
d

dx

∣∣∣∣∣ ≤
d−1∑
j=1

∣∣∣∣∣
∫

Ω
u
∂2h

∂x2
j

dx

∣∣∣∣∣+

∣∣∣∣∫
Ω

(u+ f)hdx

∣∣∣∣ ≤ K‖u+ f‖L2‖h‖L2 ≤ K̃‖f‖L2‖h‖L2 ,
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for some constants K, K̃ > 0, where the term ‖u + f‖L2 has been estimated by the triangle inequality and
by (6.24). This finally shows that for all i, j = 1, . . . , d the linear functional

C∞c (Ω) 3 h 7→
∫

Ω
u

∂2h

∂xi∂xj
dx ∈ K

is continuous, hence applying the representation theorem of Riesz–Fréchet as in the proof of (ii)⇒ (i) in Lem-
ma 6.52 yields the existence of functions gij ∈ L2(Ω) such that∫

Ω
u

∂2h

∂xi∂xj
dx =

∫
Ω
gijhdx for all h ∈ C∞c (Ω).

By definition of weak derivative, this means that u ∈ H2(Ω).
Let us finally perform the induction step, i.e., let us assume validity of the implication f ∈ Hk(Ω) ⇒ u ∈

Hk+2(Ω) and let us take f ∈ Hk+1. Since f ∈ Hk, by assumption u ∈ Hk+2, i.e., for all j ∈ {1, . . . , d − 1}
Lemma 6.57 yields ∂u

∂xj
∈ H1

0 . Moreover, again by Lemma 6.57, ∂u
∂xj

is the weak solution to an elliptic problem

analogous to ours, with the inhomogeneous term f replaced by ∂f
∂xj
∈ Hk. By the induction assumption,

∂u
∂xj
∈ Hk+2, and the claim finally follows if we only can prove that the unique missing partial derivative, ∂

2u
∂x2d

,

also belongs to Hk+1. But this follows re-writing the elliptic equation: since u ∈ H2,

∆u(x) + u(x) = −f(x)

is satisfied for a.e. x ∈ Ω, hence in particular

∂2u

∂x2
d

= −
d∑
j=1

∂2u

∂x2
j

− u+ f ∈ Hk+1.

This concludes the proof. �

The case of general Ω (with regular boundary) is tackled essentially by boundary flattening – like in the
proof of Lemma 6.44 – but the method is made overly technical by the necessity of performing several variable
substitutions. The interested reader is referred to Brezis’ book or to [5, § 6.3] for the generalization of these
results to the case of elliptic equations involving operators that are more general than ∆.

Theorem 6.58. Let Ω be an open bounded domain of Rd. Let k ∈ N and f ∈ Hk(Ω). Then the weak solution
u ∈ H1

0 (Ω) of
∆u(x)− u(x) = f(x), x ∈ Rd, (6.26)

with boundary conditions
u(z) = 0, z ∈ ∂Rd+, (6.27)

is of class
Hk+2(Ω).

Remark 6.59. The above regularity results show in particular, together with the second Sobolev embedding
theorem, that if f ∈ Hm(Ω) for some m > d/2, then the weak solution u to the elliptic problem is in fact in
C2(Ω), and in fact even in C∞(Ω) if f ∈ C∞(Ω) (e.g. if f ≡ 0).

One of the most interesting features of the method based on weak formulation of partial differential equations
is the possibility of easily obtaining invariance results.
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Definition 6.60. Let V,H be Hilbert spaces, such that V ⊂ H, V = H, and such that the canonical injection
V → H is continuous. Let a : H ×H → K be a continuous and coercive sesquilinear form3. The operator A
on H associated with a is the linear unbounded operator defined by

D(A) := {f ∈ V : ∃g ∈ H : a(f, h) = (Af |h)H ∀h ∈ V },
Af := −g.

Exercise 6.61. Consider the Laplace equation with Robin boundary conditions on the interval (0, 1). Find a
weak formulation of the problem by presenting a sesquilinear form on H1(0, 1) whose associated operator on
L2(0, 1) is the Laplacian with Robin boundary conditions.

Proposition 6.62 (Ouhabaz’s lemma). Let V,H be Hilbert spaces, such that V ⊂ H, V = H, and such that
the canonical injection V → H is continuous. Let a : H × H → K be a continuous and coercive sesquilinear
form and denote by A the associated operator on H. Let finally C be a closed convex set of H and denote by
PC the projector of H onto C.

Then the following assertions are equivalent.
(i) If f ∈ C, then for all λ > 0 also the weak solution4 uλ of the Helmholtz equation

λu−Au = f

satisfies λuλ ∈ C.
(ii) PCV ⊂ V and Rea(v|v − PCv)H ≥ 0 for all v ∈ V .

This result has been obtained by ElMaati Ouhabaz in 1992. The proof of the implication (i)⇒ (ii) is more
delicate and we omit it. It can be found as part of [8, Thm. 2.1 and Thm. 2.2]. In the proof of (ii) ⇒ (i) we
use repeatedly the fact that

f = λuλ −Auλ,
at least in weak sense.

Beweis. (ii)⇒(i) Let λ > 0. Then setting v := λuλ we obtain by assumption

0 ≤ Rea(λuλ|λuλ − λPCuλ)H

= λRe− (Auλ|λuλ − λPCuλ)H

= λRe(f − λuλ|λuλ − λPCuλ)H

= λRe(f − λPCuλ|λuλ − λPCuλ)H + Re(λPCuλ − λuλ|λuλ − λPCuλ)H

= λRe(f − λPCuλ|λuλ − λPCuλ)H − λ‖PCuλ − uλ‖2H
≤ λRe(f − λPCuλ|λuλ − λPCuλ)H

≤ 0,

where the last inequality follows from Theorem 6.9. This inequality chain can only hold if

‖PCuλ − uλ‖H = 0,

3 Actually, slightly less restrictive assumption on a are needed: it suffices that a is closed and accretive – i.e., that

Rea(u, u) + ω‖u‖2H ≥ α‖u‖2V and Rea(u, u) ≥ 0

for some α > 0, some ω ∈ R, and all u ∈ V – rather than coercive. These two assumptions are only slightly weaker than coercivity
of a, but this relaxation is enough to accomodate the case of a associated with the Laplace operator with Neumann boundary
conditions.

4 whose existence is yielded by the lemma of Lax–Milgram.
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i.e., if uλ agrees with its best approximation in C – in other words, if uλ ∈ C. �

Exercise 6.63. Use Sobolev spaces of second order to solve the following.
(1) Find a weak formulation of the elliptic equation

d4u

dx4
(x) + u(x) = f(x), x ∈ (0, 1),

with Dirichlet and Neumann boundary conditions (a fourth order equation needs four boundary condi-
tions).

(2) Use the implication (a)⇒(b) in the Proposition 6.62 to prove that the above elliptic equation does not
satisfy the maximum principle.

Exercise 6.64. Let Ω be an open domain of Rd. Denote by P+ the orthogonal projector of L2(Ω) onto the closed
convex set {f ∈ L2(Ω) : f(x) ≥ 0 for a.e. x ∈ Ω}. Consider the sesquilinear form a : H1(Ω) × H1(Ω) → C,
whose associated operator is the Laplace operator with Neumann boundary conditions. Show that a and P+

satisfy the assumptions of Proposition 6.62.

Exercise 6.65. Let V be a Hilbert space and b : V × V → R a continuous symmetric bilinear form. Show that
for each function u ∈ C1(R+, V ) the chain rule

d

dt
b(u(t), u(t)) = 2b

(
∂u

∂t
(t), u(t)

)
, t ≥ 0,

holds. How can this help to relax the hypotheses of Theorem 2.18?

Exercise 6.66. Prove the estimate in Remark 4.1.



KAPITEL 7

The telegraph equation and Noether’s theorem

The main aim of this chapter is to extend the results of Section 4.1. If a (partial or ordinary)differential
equation has a variational structure, in a sense that will be defined soon, then it is possible to turn its symmetries
into conservation laws. This piece of mathematical magic is the essential feature of the theory developed by
Emmy Noether in the second half of the 1910s. We will mostly follow the approach of [5, § 8.6] and [7, § 4.2].

Traditionally, Noether’s theorem is developed in the framework of the calculus of variations, but one may just
as well rely upon other methods to obtain existence of solutions to differential equations, and only afterwards
perform a symmetry analysis on them, just like we have done in Section 4.1.

The telegraph equation has been introduced by Oliver Heaviside in the 1920s. It is derived by a simple model
of electric circuit. Consider a thin electric wire of infinite length that can be approximated as a diffuse mix of
resistors and coils, with a given resistance Rdx ohm and inductance Ldx henry, respectively. The current
flowing through resistors and coils in the wire between the points x and x+ ∆x at time t is

i(t, x)R∆x and
∂i

∂t
(t, x)L∆x,

respectively, hence the total voltage between the points x and x+ ∆x at time t is

u(t, x+ ∆x)− u(t, x) = −
∫ x+∆x

x
i(t, ξ)Rdξ −

∫ x+∆x

x

∂i

∂t
(t, ξ)Ldξ.

With the aim of describing the behaviour of a (1-dimensional) telegraph (or railway, or telephone...) wire,
one wants the assume the possibility that – because the wire is not grounded – the electric current may flow
out of the system through insulators or capacitors of conductance G−1dx mho or capacitance Cdx farad –
modelling telegraph poles and wires, respectively.

(from Wikipedia)

Now, the telegraph equation arises as one tries to describe the time evolution of the current i and the voltage
u along the wire. The total current that escapes from the wire through the resistor is∫

u(t, ξ)G−1dξ. (7.1)

95
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In order to compute the current escaping through the capacitor, observe that the total charge on a piece of the
capacitor of length ∆x is ∫ x+∆x

x
u(t, ξ)Cdξ,

hence its time variation is ∫ x+∆x

x

∂u

∂t
(t, ξ)Cdξ :

combining this expression with (7.1) we obtain the total current flowing through resistors and coils in the wire
between the points x and x+ ∆x at time t is

i(t, x+ ∆x)− i(x) = −
∫ x+∆x

x

∂u

∂t
(t, ξ)Cdξ −

∫ x+∆x

x
u(t, ξ)G−1dξ.

Taking the limit ∆x→ 0 we obtain the system of partial differential equations{
∂u
∂x(t, x) = −i(t, x)R− ∂i

∂t(t, x)L,
∂i
∂x(t, x) = −u(t, x)G−1 − ∂u

∂t (t, x)C.

Taking the partial derivative with respect to x of the former equation yields

∂2u

∂x2
(t, x) = − ∂i

∂x
(t, x)R− ∂2i

∂t∂x
(t, x)L,

while taking the partial derivative with respect to t of the latter one yields

∂2i

∂t∂x
(t, x) = −∂u

∂t
(t, x)G−1 − ∂2u

∂t2
(t, x)C.

Combining them yields the partial differential equations

L

(
−C∂

2u

∂t2
(t, x)−G−1∂u

∂t
(t, x)

)
+R

(
−C∂u

∂t
(t, x)−G−1u(t, x)

)
+
∂2u

∂x2
= 0.

(It is clear that a similar argument yields an analogous “dual” equation for the current i.)
Thus, renaming some constants we finally obtain the telegraph equation

∂2u

∂t2
(t, x) + h

∂u

∂t
(t, x) + k2u = c2∂

2u

∂x2
(t, x), t, x ∈ R, (7.2)

for h, k2, c2 ∈ R (or its d-dimensional version

∂2u

∂t2
(t, x) + h

∂u

∂t
(t, x) + k2u = c2∆u(t, x), t ∈ R, x ∈ Ω, (7.3)

for some open domain Ω ⊂ Rd, which describes wave propagation phenomena in differerent media).
This equation has an interesting dependence on these parameters: it is an ODE if c = 0, it behaves like a

(damped) wave equation for h = 0 but mimics a heat equation for h→∞ (and it becomes an elliptic equation
for c ∈ iR). In fact, it can be seen as a kind of hybrid between parabolic and hyperbolic equations.
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7.1. Noether’s theorem

Let U ⊂ Rd be open and bounded with ∂U so smooth that the Gauß–Green formulae hold. For k ∈ N we
consider again the jet bundle Jk(U) introduced in Chapter 4. Since Jk(U) is a finite-dimensional vector space,
one can consider the second Sobolev spaces of (for simplicity) real-valued functions H2(Jk(U)), k ∈ N. Consider
L ∈ H2(Jk(U)) ∩ L1(Jk(U)) and define I : CkBC(U)→ R by

I(u) :=

∫
U
L(x, jku(x))dx.

where CkBC(U) is a set of Ck(U)-functions that satisfy certain boundary conditions – for k = 1, these are typi-
cally Dirichlet, Neumann or Robin (possibly inhomogeneous) boundary conditions depending on the specifical
problems we consider, i.e.

u|∂U = g|∂U or
∂u

∂n
+ p∂Uu|∂U = g|∂U

for some p, g ∈ C(U).
For the sake of simplicity we restrict our discussion to the case of Lagrangians defined on J1(U), i.e., we are

thinking of applications to partial differential equations whose (weak) solutions are defined as H1-solutions. The
general case is treated in [7, §4.4] and is only notationally more demanding, but not much harder to discuss.

Proposition 7.1. Let the value I(u) be a minimum among all those attained by I on the set C1
BC(U). Then u

satisfies the partial differential equation
d∑

k=1

∂2L

∂xk∂uxk
(x, j1u(x)) +

∂L

∂u
(x, j1u(x)) = 0 for a.e. x ∈ U. (7.4)

If Theorem 7.1 applies, then (7.4) is called Euler–Lagrange equation associated with the Lagrangian
L and its action functional I.

The reason why we are assuming that the Lagrangian L is a H2-function is that we wish to derivate it twice
in the Euler–Lagrange equation, while we want it to be an L1-function in order to have a well-defined action
functional I. These requirements do not depend on the specific differential equation we are considering.

Remark 7.2. Observe that the converse implication, which holds in the context of Dirichlet’s principle, is
not always valid in the much more general context of arbitrary Euler–Lagrange equations. In fact, the proof of
Theorem 6.1 depends much on the particular structure of the problem. This becomes clear if we write it (quite
informally) as

DxD∇uL+DuL = 0.

Three main reasons for the general failure of a Dirichlet-type principle are that on one hand, when it comes
to apply the Gauß–Green formulae, only the term Dx (the divergence with respect to the space variables) is
well-behaved; and on the other hand that, even when DuL ≡ 0, the term D∇uL is in general very nonlinear, cf.
Example 7.3 below. In particular, if one tries to mimic the proof in Theorem 6.1 naively when trying to compare
the action I(u) of a solution with any other action I(w), one gets stuck with

0 =

∫
U
D∇uL(j1u)Dx(j1u− j1w)dx.

But even when neither of the above problems arise, failure of a Dirichlet-type principle may depend on the failure
of the basic argument in Weierstraß’ (incomplete) argument: namely, that DuL is related to an inner product
on C(U). Generally speaking, an action functional does not have to reflect a physical energy. An example of this
kind can be found in Exercise 7.6 below.
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Proof of Proposition 7.1. The starting point is an argument similar to that used when we have derived
the Poisson equation by minimising its total energy. Also in this case, we fix u ∈ C1

BC(U) and for all ε ∈ R
consider the functions

u+ εv for all v ∈ C∞c (U).

Observe that since v is smooth also u + εv ∈ C1(U), and since it has compact support it does not contribute
to the trace and normal derivative of u+ εv, which therefore agree with the trace and normal derivative of u –
i.e., u+ εv ∈ C1

BC(U).
A minimum of I satisfies

d

dε
I(u+ εv)|ε=0 = 0,

hence

0 =
d

dε

∫
U
L(x, j1(u+ εv)(x))dx

∣∣∣
ε=0

=
d

dε

∫
U
L(x, u(x) + εv(x),∇u(x) + ε∇v(x))dx

∣∣∣
ε=0

=

∫
U

(
d∑

k=1

∂L

∂uxi

(
x, u(x) + εv(x),∇u(x) + ε∇v(x)

)
vi(x)

+
∂L

∂u

(
x, u(x) + εv(x),∇u(x) + ε∇v(x)

)
v(x)

)
dx
∣∣∣
ε=0

=

∫
U

(
d∑

k=1

∂L

∂uxi

(
x, u(x),∇u(x)

) ∂v
∂xi

(x) +
∂L

∂u

(
x, u(x),∇u(x)

)
v(x)

)
dx.

Applying the Gauß–Green formulae we finally obtain1

0 =

∫
U

(
d∑

k=1

∂2L

∂xi∂uxi

(
x, u(x),∇u(x)

)
v(x) +

∂L

∂u

(
x, u(x),∇u(x)

)
v(x)

)
dx

=

(
d∑

k=1

∂2L

∂xi∂uxi
(j1u) +

∂L

∂u
(j1u)

∣∣∣v)
L2(U)

,

which – as we have seen – holds for all v ∈ C∞c (U) and hence, by density, also for all v ∈ L2(U). By Exerci-
se 5.12.(5) this concludes the proof. �

Example 7.3. Define for u : R2 → R the Lagrangian

L(x, y, j1u(x, y)) :=
√

1 + |∇u(x, y)|2.

We have already met this Lagrangian at the beginning of Chapter 6, in the derivation of the Poisson equation.
For i = 1, 2 one has

∂L

∂uxi
(x, y, j1u(x, y)) =

∂

∂uxi

√
1 + |∇u(x, y)|2 =

1

2

uxi√
1 + |∇u(x, y)|2

,

1 Here, no boundary term appears since v|∂U = 0.
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and accordingly the associated Euler–Lagrange equation is

∇

(
∇u√

1 + |∇u|2

)
=

∂

∂x

ux√
1 + |∇u(x, y)|2

+
∂

∂y

uy√
1 + |∇u(x, y)|2

= 0,

the so-called mimimal surface equation. As soon as we impose (generally speaking, inhomogeneous) boundary
conditions, a solution to this equation yields the surface with minimal area among all those with prescribed
boundary.

Usually, however, one proceeds the other way round: one considers a partial differential equation and –
typically by partial integration – is led to introduce a suitable Lagrangian that realizes the given equation as
associated Euler–Lagrange-equation.

Example 7.4. Let f : R→ R and consider the nonlinear Poisson equation

∆u(x, y) = −f(u(x, y)), (x, y) ∈ U ⊂ Rd.
Take F :=

∫ ·
0 f(y)dy. This equation can be recovered as a Euler–Lagrange equation by introducing the Lagrangian

L(x, j1u) :=
1

2
|∇u(x)|2 − F (u(x)).

Now, for all i = 1, . . . , d

∂L

∂uxi
(x, j1u(x)) =

1

2

∂

∂uxi
|∇u(x)|2 =

1

2

∂

∂uxi

d∑
k=1

uk(x)2 = uxi(x)

and accordingly
∂2L

∂xi∂uxi
(x, j1u(x)) =

∂uxi
∂xi

(x) =
∂2u

∂x2
i

(x).

Similarly,
∂L

∂u
(x, j1u(x)) = −∂F

∂u
(u(x)) = − ∂

∂u

∫ u(x)

0
f(w(x))dw(x) = −f(u(x)).

This shows that the Euler–Lagrange equation associated with the Lagrangian L is exactly the above nonlinear
Poisson-type equation.

While many equations are actually not associated with a Lagrangian, in some cases an equation that does
not look like a Euler–Lagrange one only needs a tricky transformation.

Exercise 7.5. Consider the convective Poisson equation

∆u(x) +∇φ(x) · ∇u(x) = f(x), x ∈ U ⊂ Rd,
for some φ, f : U → R.

(1) For d = 1, find a Lagrangian for the above equation by considering a multiplicative perturbation of the
Dirichlet integral by a suitable exponential function related to φ.

(2) Extend the above result to general d using Lebesgue’s differentiation theorem.
(3) Find an inspiration to represent the elliptic regularisation of the heat equation

∂u

∂t
− ε∂

2u

∂t2
=
∂2u

∂x2
, (t, x) ∈ (0,∞)× R,

as Euler–Lagrange equations, where ε > 0.
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Exercise 7.6. Let U be an open domain of Rd+1 and f : R→ R. Consider the Lagrangian

L(x, y, j1u) :=
1

2

d∑
k=1

uxk(x, y)2 − 1

2
uy(x, y)2 + F (u(x, y),

where F :=
∫ ·

0 f(z)dz. Observe that even in the case f ≡ 0, its action functional differs from the total energy
introduced in Definition 2.19.

(1) Check that the Euler–Lagrange equation associated with L is a d-dimensional nonlinear wave equation.
(2) Show that a solution to the wave equation need not minimise the energy: Let U = (0, 1) × R and

f ≡ 0 and find initial conditions u0, u1 and a smooth functions w : U → R with w(0, y) = w(1, y) = 0,
y ∈ R, satisfying them, not solving the wave equation and nevertheless such that I(w) < I(u), where
u is the (unique) solution to the wave equation with Dirichlet boundary conditions and given initial
values. (Hint: apply the Dirichlet principle to an affine function).

In the following we are going to consider not only additive variations of the solution u, but also more general
ones, and even variations of the domain where the Euler–Lagrange equations take place. All this up will show up
in the statement of Lemma 7.11. Let us consider a one-parameter point transformation group (Tε(x))ε∈Ix,x∈J0(U)

with generator A – or rather, their 1-jets. For the sake of notational simplicity, for ε small enough we write

(xε, uε) := (j0Tε)(x, u).

and
ωε := {xε ∈ Rd : x ∈ ω}.

Definition 7.7. Let U be an open domain of Rd and L be a Lagrangian. A one-parameter point transformation
group (Tε(x))ε∈Ix,x∈J0(U) satisfying ∫

ω
L(j1Tε(x, j1u))dx =

∫
ωε

L(x, j1u)dx (7.5)

for all |ε| small enough, all bounded open domains ω ⊂ Rd and all u ∈ H1(U) is called variational symmetry
group of the Euler–Lagrange equation associated with L.

Remark 7.8. By the above definition, the Lagrangian involves derivatives of order 1 at most, whereas typically
the associated Euler–Lagrange equations is a differential equation of order 2. Therefore, checking that a given
point transformation group is a variational symmetry group of the given Euler–Lagrange equation – i.e., checking
that (7.5) holds – may be more convenient then checking that the same group is a point symmetry group – i.e.,
checking (4.12) – since typically we only have to determine a lower order jet of the generator A: as we know,
this is usually the lengthiest part of the assignment.

Remark 7.9. Moreover, it is true that each one-parameter point symmetry groups of a Euler–Lagrange dif-
ferential equation is also a variational symmetry group (but the converse does not hold). We are not going to
prove this result, and refer instead to [7, §4.2].

In the following we need the following notation: if (Tε(x))ε∈Ix,x∈J0(U) is a one-parameter transformation
group with generator

A := (ξ1, . . . , ξd, φ),

then we denote by (ξ̃1, . . . , ξ̃d, φ̃) the mappings defined by

(ξ̃1, . . . , ξ̃d, φ̃)(x, f) :=

(
lim
ε→0

xε − x
ε

, lim
ε→0

fε(xε)− f(x)

ε

)
. (7.6)
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Remark 7.10. We stress the difference from the definition of the generator A, cf. Remark 4.18. In particular,
observe that in general (ξ̃1, . . . , ξ̃d, φ̃)(x, f) may also involve terms related to derivatives of f (unlike the generator
A). In the setting of Example 4.14, for instance,

(ξ̃, φ̃)(x, f) := lim
ε→0

(x+ εej , f(x+ εej))− (x, f(x))

ε

= lim
ε→0

(εej , f(x+ εej)− f(x))

ε

=

(
ej ,

∂f

∂xj
(x)

)
,

i.e.,

(ξ̃1, . . . , ξ̃d, φ̃)(x, f) =
∂

∂xj
+
∂f

∂xj
(x)

∂

∂f
.

Lemma 7.11. Consider a Lagrangian L : H2(J1(U)) ∩ L1(J1(U)) and a one-parameter variational symmetry
group (Tε(x))ε∈Ix,x∈J0(U) with generator

A := (ξ1, . . . , ξd, φ).

Assume each ξi to depend on the independent variables only, i.e. ξi 6= ξi(u), i = 1, . . . , d. Then, one has

d∑
k=1

∂

∂xk

(
φ̃(x, j1u)

∂L

∂uxk
(x, j1u)− L(x, j1u)ξk(x, j1u)

)
= φ̃(x, j1u)

(
d∑

k=1

∂2L

∂xk∂uxk
(x, j1u)− ∂L

∂u
(x, j1u)

)

for a.e. (x, u) ∈ J1(U), where φ̃ is defined as in (7.6).

Remark 7.12. The component φ of the generator A of (Tε(x))ε∈Ix,x∈J0(U) is sometimes called multiplier of
the Euler–Lagrange equation associated with L, since by Lemma 7.11 simply pointwise multiplying the Euler–
Lagrange equation by φ turns it into a new equivalent equation of the form

∇(. . .) = 0.

Such kind of equations have several pleasant features: they are called equations in divergence form. In
easy cases the divergence form can be easily obtained, but in some cases one needs to apply the Gauß–Green
formulae not without ingenuity.

In the proof we will apply (without proving it) an extension of Gauß–Green formulae for integration by
parts on variable domains. Let (ωε) be a family of open bounded domains of Rd smoothly depending on ε and
such that their union is contained in a reference open domain U . Denoting by ∂ωε the boundary of ωε, by ξ(z)
its velocity field and (as usual) by n(z) the unit normal at z ∈ ∂ωε, we obtain for all f ∈ H1(U) that

d

dε

∫
ωε

f(x)dx =

∫
∂ωε

f(z)ξ(z) · n(z)dσ(z) +

∫
ωε

∂f

∂ε
(x)dx, (7.7)

cf. [5, App. C.4].

Proof of Lemma 7.11. It suffices to differentiate both sides of (7.5) with respect to ε, i.e., to consider∫
ω

∂

∂ε
L(x, j1uε)dx =

∂

∂ε

∫
ωε

L(x, j1u)dx
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and to apply the above Gauß–Green formula (7.7) for variable domains, to obtain (since L(x, j1u) does not
depend on ε) that∫

ω

(
d∑

k=1

∂L

∂uxk
(x, j1uε)

∂2uε
∂ε∂xk

(x, j1uε) +
∂L

∂u
(x, j1uε)

∂uε
∂ε

(x, j1uε)

)
dx =

∫
∂ωε

L(z, j1u)
∂xε
∂ε

(z) · n(z)dσ(z)

where we have used the fact that the velocity field of ∂ωε is exactly the component ξ of the generator A of the
transformation group. Evaluating2 the above expression at ε = 0 we obtain∫

ω

(
d∑

k=1

∂L

∂uxk
(x, j1u)

∂φ̃

∂xk
(x, j1u) +

∂L

∂u
(x, j1u)φ̃(x, j1u)

)
dx =

∫
∂ω
L(z, j1u)ξ(z, j1u) · n(z)dσ(z). (7.8)

In order to conclude the proof we want to get rid of the partial derivatives of φ: the Gauß–Green formula applied
to the function φ and to the vector field D∇uL yields∫

ω

(
d∑

k=1

∂L

∂uxk
(x, j1u)

∂φ̃

∂xk
(x, j1u)

)
dx = −

∫
ω

(
d∑

k=1

∂2L

∂xk∂uxk
(x, j1u)φ̃(x, j1u)

)
dx

+

∫
∂ω

(
d∑

k=1

∂L

∂uxk
(z, j1u) · nk(z)φ̃(x, j1u)

)
dσ(z).

Plugging this expression into (7.8) we obtain∫
ω

(
−

d∑
k=1

∂2L

∂xk∂uxk
(x, j1u)φ̃(x, j1u) +

∂L

∂u
(x, j1u)φ̃(x, j1u)

)
dx

=

∫
∂ω

d∑
k=1

(
− ∂L

∂uxk
(z, j1u)φ̃(x, j1u) + L(z, j1u)ξ(z, j1u)

)
nk(z)dσ(z)

=

∫
ω

d∑
k=1

∂

∂xk

(
− ∂L

∂uxk
(z, j1u)φ̃(x, j1u) + L(z, j1u)ξk(z, j1u)

)
dσ(z).

where the last identity follows from the divergence theorem. This concludes the proof, since this integral ex-
pression holds on all open sets, hence a.e. (again because the Lagrangian is an H2-function. �

We can finally state the main result of this section, the fundamental theorem obtained by Emmi Noether
in 1915.

Theorem 7.13 (Noether’s theorem, 1918). Under the assumptions of Lemma 7.11, for each one-parameter
variational symmetry group (Tε(x))ε∈Ix,x∈J0(U) with generator

A := (ξ1, . . . , ξd, φ)

of the corresponding Euler–Lagrange equation the divergence identity
d∑

k=1

∂

∂xk

(
φ̃(x, j1u)

∂L

∂uxk
(x, j1u(x))− L(x, j1u(x))ξk(x, j1u)

)
= 0

2 We can do this because by definition every one-parameter point transformation group, and hence also every variational
symmetry group, depends in a continuously differentiable fashion on its arguments, and in particular on ε.
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holds for a.e. (x, u) ∈ J1(U) in the solution manifold of the same equation, where φ̃ is defined as in (7.6).

Beweis. By assumption
d∑

k=1

∂2L

∂xk∂uxk
(x, j1u(x)) +

∂L

∂u
(x, j1u(x)) = 0 a.e. (7.9)

Plugging it into the identity in Lemma 7.11 yields the claim. �

Remark 7.14. Another way to express Noether’s theorem is to say that

φD∇uL− Lξ

is a solenoidal vector field on J1(U).

Sometimes the Lagrangian does not depend on x. For example, this is true for the linear wave or Laplace
equations, but also – more interestingly – for the minimal surface equation. Then, Noether’s theorem can be
promptly applied.

Corollary 7.15. Let j ∈ {1, . . . , d} and assume L not to depend explicitly on the independent variable xj.
Then, under the assumptions of Theorem 7.13 for all solutions u of the Euler–Lagrange equation there holds

d∑
k=1

∂

∂xk

(
∂u

∂xj
(x)

∂L

∂uxk
(j1u(x))

)
=

∂L

∂xj
(j1u(x)) for a.e. (x, j1u) ∈ J1(U).

Beweis. First of all, consider the one-parameter point transformation group

Tε,j : (x, u) 7→ (x+ εej , u), ε ∈ R,

with infinitesimal generator A := ∂
∂xj

, for the basis vector ej ∈ Rd follows by a direct application of the
substitution formula for the integral, since L does not depend on x.

Moreover, we know from Remark 7.10 that

j0A(x, f) :=
∂

∂xj
+
∂f

∂xj
(x)

∂

∂u
,

i.e.,

ξ(x, f) = ej and φ(x, f) :=
∂f

∂xj
(x).

Noether’s theorem then states that if u is a solution to the Euler–Lagrange equation, then for all j

0 =
d∑

k=1

∂

∂xk

(
φ(j1u(x))

∂L

∂uxk
(j1u(x))− L(j1u(x))ξk(j1u(x))

)

=
d∑

k=1

∂

∂xk

(
∂u

∂xj
(x)

∂L

∂uxk
(j1u(x))− L(j1u(x))δjk

)

=
d∑

k=1

∂

∂xk

(
∂u

∂xj
(x)

∂L

∂uxk
(j1u(x))

)
− ∂L

∂xj
(j1u(x)).

This concludes the proof. �
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Remark 7.16. As we will see, the identities

∇
(
∂u

∂xj
D∇uL

)
=

∂L

∂xj

can be often given a physical intepretation. In the special case the independent variable can be identified with
time, xj = t, then

∇ (utD∇uL(t, x, j1u)) =
∂L

∂t
(t, x, j1u),

i.e., the so-called current density J for the Lagrangian L, defined by

J(u) := −utD∇uL(u),

satisfies
∂L

∂t
(u(t, x)) +∇J(u(t, x)) = 0, t ∈ R, x ∈ U,

which is called the continuity equation.
(If the Lagrangian does not depend explicitly on any indpendent variables, we promptly obtain a family of d

equations.)

By putting the Euler–Lagrange equation in divergence form, Noether’s theorem shows that some vector field
related to the problem is divergence-free. In many interesting cases this can be interpreted as the existence of
some invariant of the system.

Exercise 7.17. Let p ∈ (1,∞) and consider the action

I(u) =

∫
U
|∇u(x)|pdx, u ∈ H1

0 (U).

Prove that the associated Euler–Lagrange equation is the p-Laplace equation

∇
(
|∇u|p−2∇u

)
= 0.

Show that
Tε : (x, u) 7→ (eεx, eε

n−p
n u), ε ∈ R,

defines a variational symmetry group for this problem and that the point transformation group

Sε : (x, u) 7→ (x, eεu), ε ∈ R,
does not, even in the linear case of p = 2 (the usual Laplace equation). Derive the corresponding divergence
identity from Noether’s theorem and show that it also follows directly from the Euler–Lagrange equation.

Example 7.18. Let Ω be an open domain of Rd. The nonlinear wave equation of Exercise 7.6 is an example
of Euler–Lagrange equation with an action that does not explicitly depend on the independent variables. If in
particular we apply Corollary 7.15 to the Lagrangian

L(x, j1u) :=

d∑
k=1

1

2
uxk(x)2 − 1

2
uxd1(x)2 + F (u(x)), (x, j1u) ∈ J1(U),

where U := Ω×R, then we obtain (in the d+1-dimensional notation, setting t := xd+1) in particular the identity
d+1∑
k=1

∂

∂xk

(
∂u

∂t
(x)

∂L

∂uxk
(j1u)

)
=
∂L

∂t
(j1u(x)),
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corresponding to the last identity in Corollary 7.15. In other words,
d∑

k=1

∂

∂xk
(utuxk)− ∂

∂t
(u2
t ) =

∂L

∂t
(j1u(x, t)).

This yields
d∑

k=1

∂

∂xk
(utuxk) =

∂

∂t
(u2
t + L(j1u(x, t)) =

∂

∂t

(
u2
t

2
+

d∑
k=1

u2
xk

2
+ F (u)

)
=: η′(t).

In the RHS of the above expression, η(t) represents the total energy density of the system. To obtain the total
energy E(t) it suffices to integrate η(t) over the whole space Rd, cf. Definition 2.19. On the other hand, the LHS
of the above expression is the divergence (with respect to the spacial variables only!) of the vector field ut∇u. If
we therefore integrate both terms over Rd we obtain

E′(t) =
d

dt

∫
Rd
η(t)dt

=

∫
Rd
∇ · (ut∇u)dx

= lim
R→∞

∫
BR(0)

∇ · (ut∇u)dx,

and using the divergence theorem

E′(t) = lim
R→∞

∫
∂BR(0)

ut∇u · ndσ.

Now, assume the term on the RHS to vanish. For example, this is the case if the wave equation takes place on a
bounded domain, so that the wave function u has compact support; or if we already know that it enjoys a strong
(spacial) asymptotic decay. Then we conclude that E′(t) = 0, i.e., the nonlinear elastic system has constant
energy.

Exercise 7.19. Let d = 2. Show in a similar way, using the fact that also space translations define variational
symmetry groups, that ∫

R2

∂u

∂x

∂u

∂t
dx and

∫
R2

∂u

∂y

∂u

∂t
dx

are conserved quantities. In physics they are identified with the linear momenta in the x- and y-directions of
an elastic system.

Exercise 7.20. Consider again the setting of Exercise 7.6, with f ≡ 0. Show that the rotation, i.e., the group
generated by

A := x
∂

∂y
− y ∂

∂x

is a variational symmetry and determine the associated conserved quantity, which in physics is identified with
the angular momentum.

Are any of the further point symmetry groups variational symmetry groups, too?

Exercise 7.21. Apply Corollary 7.15 to the minimal surface equation.



106 KAPITEL 7. THE TELEGRAPH EQUATION AND NOETHER’S THEOREM

Exercise 7.22. The nonlinear partial differential equation
∂u

∂t
(t, x) + 6u(t, x)

∂u

∂x
(t, x) +

∂3u

∂x3
(t, x) = 0, t ≥ 0, x ∈ [0, 1]

has been introduced by Diederik Korteweg and Gustav de Vries in 1895 as a model of waves on shallow water
surfaces. It is usually known as KdV-equation. Show that the KdV-equation can be put in variational form
upon setting u =: ∂v∂x (which implies a certain regularity of u, of course) for a generic function v. Apply Noether’s
theorem.

Exercise 7.23. A modification of the KdV-equation has been proposed in 1972 by Thomas Benjamin, Jerry
Bona and J.J. Mahony and is therefore known as the BBM-equation. It reads

∂u

∂t
(t, x) +

∂u

∂x
(t, x) + u(t, x)

∂u

∂x
(t, x)− ∂3u

∂x2∂t
(t, x) = 0, t ≥ 0, x ∈ [0, 1], (7.10)

and it has proved mathematically more tractable than the KdV equation. After performing the same transforma-
tion as in Exercise 7.22, are you able to represent the BBM equation as the Euler–Lagrange equation associated
to a suitable Lagrangian? What does Noether’s theorem imply?

7.2. Variational symmetries of the telegraph equation

If h = 0, then the telegraph equation on an open domain Ω ⊂ Rd turns into a damped wave equation that
can be studied by introducing the Lagrangian

L0(t, x, j1u) :=
c2

2
|∇u(t, x)|2 +

k2

2
|u(t, x)|2 − 1

2
|ut(t, x)|2, (t, x, j1u) ∈ J1(U),

where U := R× Ω. At a first glance, the general telegraph equation seems not to have a variational structure,
due to the lower order term that arises if h 6= 0. This can be accomodated by introducing a multiplicative term
as follows: define

L(t, x, j1u) := L0(t, x, j1u)e−th =
c2

2
|∇u(t, x)|2e−th +

k2

2
|u(t, x)|2e−th − 1

2
|ut(t, x)|2e−th. (7.11)

Then the vector field D∇uL agrees with

D∇uL = (−ute−th, c2∇ue−th)

and therefore its divergence is given by

∇D∇uL = (−utte−th − hute−th + c2∆ue−th).

On the other hand
DuL = k2ue−th,

and summing up we obtain the associated Euler–Lagrange equation(
−utt − hute−th + c2∆ue−th − k2u

)
e−th = 0,

whose solutions are also solutions to (7.2), and viceversa.
In comparison to its two “parents” – the heat and the wave equation – the telegraph equation presents some

properties that make it interesting in applications.
The telegraph equation can be seen as a variational regularisation of the heat equations: the heat equations

is not a Euler–Lagrange equation, but adding to it a term 1
mutt it turns into a telegraph equation. It is then

possible to discuss properties (e.g., symmetries) of such a regularisation by variational methods, and then let
m→∞.
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Example 7.24. While the solutions to the wave equation have constant energy, as we have seen, the solutions
to the telegraph equation may have exponentially decaying energy. This is both more realistic and more desirable
in applications3. To see this, consider the special case of h = 2k, i.e., the equation

∂2u

∂t2
(t, x) + 2k

∂u

∂t
(t, x) + k2u(t, x) = c2∆u(t, x), t ∈ R, x ∈ Ω.

Since this equation can be written as(
∂

∂t
+ kI

)2

u(t, x) :=

(
∂

∂t
+ kI

)(
∂

∂t
+ kI

)
u(t, x) = c2∆u(t, x), t ∈ R, x ∈ Ω,

where I denotes the identity operator, the kinetic energy of the system4 is

Ek(t) :=
1

2

∫
Ω

∣∣∣∣∂u∂t (t, x) + ku(t, x)

∣∣∣∣2 dx, t ∈ R,

hence the total energy is

E(t) :=
1

2

∫
Ω

∣∣∣∣∂u∂t (t, x) + ku(t, x)

∣∣∣∣2 dx+
1

2

∫
Ω
|∇u(t, x)|2, t ∈ R.

Introducing the function
w(t, x) := u(t, x)etk, t ∈ R, x ∈ Ω,

yields a solution to the wave equation (2.12). To see this, compute

wt(t, x) =
(
ut(t, x) + ku(t, x)

)
etk and wtt(t, x) =

(
ut(t, x) + 2ku(t, x) + k2u(t, x)

)
etk

and
wx(t, x) = ux(t, x)etk and wxx(t, x) = uxx(t, x)etk.

Now, the energy associated with the solution w of the wave equation is

Ẽ(t) :=
1

2

∫
Ω

∣∣∣∣∂w∂t (t, x)

∣∣∣∣2 dx+
1

2

∫
Ω
|∇w(t, x)|2

=
1

2

∫
Ω

∣∣∣∣(∂u∂t (t, x) + ku(t, x)

)
ekt
∣∣∣∣2 dx+

1

2

∫
Ω
|∇u(t, x)etk|2dx

=
e2tk

2

∫
Ω

∣∣∣∣(∂u∂t (t, x) + ku(t, x)

)∣∣∣∣2 dx+
e2tk

2

∫
Ω
|∇u(t, x)|2dx

= Ẽ(t)e2tk.

Assume finally that Ω is bounded, or that we already know suitable decay estimates for the solution u as x→∞.
Since Ẽ(t) is constant by Example 7.18, i.e.,

Ẽ(t) = Ẽ(0), t ∈ R,
it follows that

E(t) = e−2tkẼ(0), t ∈ R.

3 An engineer could, say, forge elastic components of a mechanical systems in such a way that they obey a certain telegraph
equation.

4 Observe that this corresponds to the potential energy of the system described by the dual telegraph equation in i.
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This shows in particular that the time translation is a point symmetry group of the telegraph equation, but
not a variational one (for otherwise Noether’s theorem would yield a conservation law for the energy).

Example 7.25. On the other hand, the Lagrangian defined in (7.11) does not depend on the spacial variables,
hence in particular the space translations are variational symmetries. Corollary 7.15 then implies that the identity

d∑
k=1

∂

∂xk

(
∂u

∂xj
(t, x)

∂L

∂uxk

)
− ∂

∂t

(
∂u

∂xj
(t, x)

∂u

∂t
(t, x)e−th

)
=

∂L

∂xj

holds for any solution u of the telegraph equation. To derive another nontrivial conservation law, turn back to
the case of d = 1, which is more specifical for the original telegraph equation of electromagnetism. Then in
particular, for j := 1,

∂L

∂x
=

∂

∂x

(
∂u

∂x
(t, x)

∂L

∂ux

)
+
∂

∂t

(
∂u

∂x
(t, x)

∂L

∂ut

)
=

∂

∂x

(
ux(t, x)c2ux(t, x)e−th

)
− ∂

∂t

(
ux(t, x)ut(t, x)e−th

)
,

whence the linear momentum P satisfies
∂

∂t
P (t)e−th =

∂

∂t

∫
R

(
ux(t, x)ut(t, x)e−th

)
dx

=

∫
R

∂

∂x

(
c2u2

x(t, x)e−th − L
)
dx

=

∫
R

∂

∂x

(
c2

2
u2
x(t, x)− k2

2
u2(t, x) +

1

2
u2
t (t, x)

)
e−thdx,

where the last term vanishes whenever u has compact support (i.e., for telegraph equations over finite wires).
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Nonlinear elliptic equations and compactness methods

In this last chapter we finally discuss a class of nonlinear partial differential equations related to so-called
reaction-diffusion systems. Such equations arise in a number of different fields, they involve a lot of different
nonlinear terms and it is hardly possible to propose a unified derivation1. However, all of them are justified by
the following heuristical observation:

If a system with initial condition u0 is governed by two competing and simultaneous phenomena, each des-
cribed by a certain (finite or infinite) dynamical system governed by a flow Φ and Ψ, respectively, then the whole
dynamics is given by a flow Ξ that is given by

Ξ(t)u0 = lim
n→∞

(
Φ

(
t

n

)
Ψ

(
t

n

))n
u0.

This product formula, which generalises a result for matrix exponentials that goes back to Lie, means to
suggest that the evolution of a system with two simultaneous ongoing dynamich processes can be described by
switching on one dynamics, let it work for a time step, then switching it off and switching on the the second
dynamics, let it work for a time step, then switching it off and so on..., and repeating this procedure for time
steps becoming ever shorter. It can be precisely and formally proved in a few cases 2 that the above flow Ξ
governs the system given by the linear overlapping of the two dynamical systems.

A typical example of this approach consists in the modelling of chemical processes, or population dynamics:
two solutions diffuse in a medium Ω and simultaneously (i.e., on a comparable time scale) they react; or else,
two populations (say, prey and predator) diffuse in a region while they reproduce themselves and die. This is
typically modelled by a system of partial differential equations{

∂v
∂t (t, x) = c2

1∆v(t, x) + f(v(t, x), w(t, x)), t ≥ 0, x ∈ Ω,
∂w
∂t (t, x) = c2

1∆w(t, x) + f(v(t, x), w(t, x)), t ≥ 0, x ∈ Ω,

or rather,
∂u

∂t
(t, x) = c∆u(t, x) + f(u(t, x)), t ≥ 0, x ∈ Ω,

for vector-valued functions u. (Of course, such equations also need to be endowed with further initial and
boundary conditions.)

Generally speaking, all this equations represent phenomena in which appearance or disappearance of material
is involved: molecules are created or destroyed, animals are born or die, cars move on a traffic network, current
waves diffuse through a cardiac tissue. In the case of the Hodgkin–Huxley equation 8, for instance, a spike (i.e.,
an excitation wave) diffuses along a neuron while certain biochemical reactions keep the wave going or damp

1 Generally speaking, however, such systems can be derived in a way similar to diffusion or transport equations, if we allow for
a nonlinear flow function.

2 But beware that this assertion fails sometimes dramatically, even in the purely linear case.
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it up, depending on the convenience of the cell. More precisely, the nonlinear term of the Hodgkin–Huxley
equation,

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x)− 1

2
u(t, x)

(
u(t, x)− 1

)(
u(t, x)− α

)
,

i.e.,
∂u

∂t
(t, x) = u(t, x)

(
u(t, x)− 1

)(
u(t, x)− α

)
,

where α ∈ (0, 1), represent a system in which the membrane potential u is pushed towards the values 0 or 1,
depending on whether the initial data is larger or smaller than α.

Now, one is usually interested in equilibria of such systems, since it is usually impossible to find a general
solution formula. But if u is an equilibrium solution, i.e., if u is constant (and therefore

∂u

∂t
(t, x) = 0)

then
c∆u(t, x) + f(u(t, x)) = 0, x ∈ Ω. (8.1)

In other words, a necessary condition for an equilibrium to exist is that (8.1) has a solution.

8.1. Fixed point theorems

To fix the ideas, we first consider a simple example – a nonlinear evolution equation
∂u

∂t
(t, x) = F (x, u(t, x),∇u(t, x),∆u(t, x)),

with initial data
u(0, x) = u0(x),

with t and x in suitable domains3. While of course we cannot represent any arbitrary nonlinear equation in this
way, this is still general enough to accommodate the BBM equation introduced in (7.10) or the nonlinear wave
equation considered in Exercise 7.6 (how?).

Integrating with respect to t we then have

u = u0 +

∫ t

0
F (x, u,∇u,∆u)dt =: K(u).

Now, a possible strategy to show well-posedness of the above nonlinear differential equation is to find a solution
of its integrated form and then - hopefully - to show that it is differentiable and satisfies the equation in its
differential form, too. Now, the first step amounts to finding u in a certain function space such that u = K(u).
This is where fixed point theorems come into play.

Similar methods are particularly popular when considering nonlinear elliptic equations. As we have seen
while discussing the Poisson equation, elliptic equations can typically be thought of as describing equilibria of
time dependent equations – i.e., solutions with vanishing derivative with respect to time. The same holds for
nonlinear elliptic equations. A favourite strategy to obtain existence and uniqueness of solutions to such problems
is to apply fixed point theorems. We will meet Brouwer’s fixed point theorem and its infinite dimensional
generalisations – Schauder’s and Schaefer’s theorems.

Theorem 8.1 (Brouwer’s fixed point theorem). Let Ω be an open bounded domain of Rd that is homeomorphic
to B1(0). Then each continuous function f : Ω→ Ω has a fixed point, i.e., there exists x ∈ Ω

3 Unlike in the linear case, global well-posedness in time of nonlinear evolution equations is quite unusual.
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The above theorem has been first proved by Luitzen Brouwer in 1912. Nowadays several proofs of Brouwer’s
theorem are known, most of which analytical – and some of which even based on the variational methods
developed in Chapter 7, see e.g. [5, §8.1]. Instead, we are going to present an elegant one, based on the following
result obtained by Emanuel Sperner in 1928 and celebrated in [1, § 25.6]. Its main ingredients are a few
elementary ideas and methods from discrete mathematics.

Definition 8.2. Let v1, . . . , vd+1 ∈ Rd+1 be linearly independent. A d-dimensional simplex with vertices
v1, . . . , vd+1 is the closed set {

d+1∑
k=1

xkvk ∈ Rd+1 : 0 ≤ xk and
d+1∑
k=1

xk = 1

}
,

i.e., the closed convex hull of the set {v1, . . . , vd+1} (that is, the intersection of all closed convex subsets of
X containing the set {v1, . . . , vd+1}).

The canonical d-dimensional simplex is the d-dimensional simplex whose vertices are the elements of the
canonical basis of Rd+1.

Observe that the boundary of any d-dimensional simplex is the union of (d − 1)-dimensional simplices –
more precisely, of d+ 1 of them – which we call hyperfaces. The intersection of two hyperfaces is either empty
or a (d−2)-dimensional simplex, which we call a hyperedge. In the 2-dimensional case, a simplex is a triangle,
a hyperface is actually one of its edges and a hyperedge is a point.

Definition 8.3. A simplicial subdivision of a d-dimensional simplex Σ is a family (ω1, . . . , ωN ) of d-
dimensional (sub)simplices whose union agrees with Σ, whose interiors are pairwise disjoint, and whose in-
tersections are either empty or agree with one of the hyperfaces constituting the boundary of both.

Remark 8.4. Equivalently, the canonical d-dimensional simplex can be defined as the polyhedron contained in
the hyperplane of Rd+1 whose extremal points are e1, . . . , ed+1 – the vectors of the canonical basis of Rd+1. Also
observe that in fact, a 2-dimensional simplicial subdivision is just a triangulation, as usually encountered in
numerical analysis and in graph theory.

Definition 8.5. A Sperner colouring of a d-dimensional simplicial subdivision Ω of the canonical d-dimensional
simplex Sigma with vertex set V is any mapping c : V → {1, . . . , d} such that

• c(ei) = i, i = 1, . . . , d, and
• c(V ) ∈ {i1, . . . , id} for any vertex of the (d − 1)-dimensional face of Ω whose extremal points are
Vi1 , . . . , Vid .

The values 1,. . . ,d are referred to as colours.

Lemma 8.6 (Sperner’s lemma). Let Ω = (ω1, . . . , ωN ) be a simplicial subdivision of a d-dimensional simplex Σ.
Then for each Sperner colouring of Ω there is an odd number of rainbow (sub)simplices, i.e., of (sub)simplices
ωi such that their d+ 1 vertices are assigned d+ 1 different colours.

The proof we perform is slightly redundant – but the 2-dimensional case is particularly elucidating and we
perform it in detail.

Beweis. We will prove – by induction – a slightly stronger result, namely that the number of rainbow
(sub)simplices in a simplicial subdivision is always odd.

In the case d = 1, the canonical simplex is simply the interval connecting the points e1 = (1, 0) and
e2 = (0, 1). Consider a Sperner colouring of it. Since all the intermediate points have to be coloured by either
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1 or 2, then it clearly exists a 1 − 2-edge, i.e., a subinterval whose extremal points are coloured by 1 and 2,
respectively. Furthermore, the number of such 1− 2-edges has to be odd: to see this, observe that walking away
from e1 towards e2 through the first 2m 1− 2-edges we necessarily encounter a vertex coloured by 1.

Now, consider a Sperner colouring of the 2-dimensional canonical simplex and single out all the N subsim-
plices (i.e., the triangles) that have a 1 − 2-edge (i.e., an edge whose extremal points are coloured 1 and 2).
Among them, there areM rainbow simplices and N−M where either of the colours 1, 2 is used twice. Similarly,
if H is the total number of 1−2-edges, then J of them lie on the boundary of Σ and H−J will consist (with the
possible exception of the extremal points) of interior points of Σ. The proof is now based on double counting, a
classical proof technique in discrete mathematics, based on the simple idea of counting the elements of a set in
two different ways (according to two different features, that is): this yields to different formulae that necessarily
have to agree, yielding a desired relation. Now, let us count the 1 − 2-edges on the border of all subsimplices:
the M rainbow triangles yield M 1− 2-edges, while the remaining N −M triangles yield 2(N −M) edges. Of
course, in this way we have counted some edges twice: to be more precise, we have counted twice exactly those
H−J edges lying in the interior of Σ, while we have counted once the J boundary edges. Thus, this elementary
double counting yields the formula

2(H − J) + J = 2(N −M) +M.

We do not know yet that there is an odd number of rainbow triangles, i.e., that M is an odd number. Proving
this is equivalent to proving that J is an odd number. But how many 1 − 2-edges lie on the boundary of Σ?
By definition of Sperner colouring, 1− 2-edges can only possibly lien on the interval connecting e1 and e2. But
then, we know from the first step that an odd number of 1− 2-edges has to appear, i.e., J is odd 4.

Finally, consider a Sperner colouring of the d-dimensional canonical simplex, which by definition uses the
colours 1, 2, . . . , d + 1. By inductive assumption we know that the number of rainbow simplices is odd in the
Sperner colouring of each d − 1-dimensional simplex (hence in particular of each hyperface). We single out all
the N subsimplices that have a 1− 2− . . .− d-hyperface (i.e., an edge whose extremal points are coloured using
all the colours 1, 2, . . . , d). Among them, there are M rainbow simplices and N −M where (by the pigeonhole
principle) each but one of the colours 1, 2, . . . , d is used once, and the exceptional colour is used twice. Similarly,
if H is the total number of 1− 2− . . .− d-hyperfaces, then J of them lie on the boundary of Σ and H − J will
consist (with the possible exception of the extremal hyperedges) of interior points of Σ. Now, the same double
counting as in the 2-dimensional case yields the formula

2(H − J) + J = 2(N −M) +M,

and as in the 2-dimensional case the inductive process yields that J , hence M are odd. �

Remark 8.7. One might be tempted to conjecture that Sperner’s lemma also holds if a weaker notion of simplicial
subdivision is considered, namely, that of a family of subsimplices whose union yields Σ, regardless of how may
(“alien”) vertices can be contained in the boundary of each subsimplex. This is wrong, as one can see considering
the example

4 For those who have some familiarity with graph theory or numerical analysis, it will be clear that this is nothing but the
hand-shaking lemma applied to a certain subgraph of the Delaunay triangulation of Σ.
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Remark 8.8. Observe that a d-dimensional simplicial subdivision can be made finer and finer by an iterative
process. Namely, consider

Ω0 := Σ

and for a subdivision Ωn = (ω1, . . . , ω
n
d+1) consider a new subdivision Ωn+1 by subdividing each of its (smaller)

simplices ωi – say, having vertices vi1, . . . , v
i
d+1 – by adding the centre of gravity vc(ωi) of ωi and considering

the d+ 1 smaller simplices with vertices
• vc(ωi), vi2, . . . , vid+1,
• vi1, vc(ωi), . . . , vid+1,
• . . . ,
• vi1, vi2, . . . , vc(ωi).

of ωi, yielding a new subdivision in (d+ 1)n+1 subsimplices.

Remark 8.9. While a simplicial subdivision can obviously be thought of as a graph, we emphasize that a Sperner
colouring is in general not a proper colouring of it in the graph theoretical sense. In particular, already the first
simplicial subdivision of Σ in the 2-dimensional case yields what in graph theoretical language is called the
complete graph K4. Such a graph is obviously seen to be not 3-colourable. In fact, the nth simplicial subdivision
Ωn of the d-dimensional canonical simplex is a proper colouring if and only if

• d = 1 and n is an odd number, or
• d > 1 and n = 0.

An obvious corollary of Sperner’s lemma is that any simplicial subdivision of Σ contains at least one rainbow
(sub)simplex. This is all we need in the following.

Proof of Theorem 8.1. First of all, observe that it suffice to prove the assertion for Ω = Σ, the canonical
d-dimensional simplex, since any Ω that is homeomorphic to B1(0) is homeomorphic to Σ, too, and fixed points
remain such under homeomorphisms.

Construct a sequence of simplicial subdivisions (Ωn)n∈N that are finer and finer, as in Remark 8.8. In
particular, denoting

|Ωn| := max{vol(ω) : ω in Ωn}
we obtain5 that limn→∞ |Ωn| = 0.

If a continuous function f : Σ → Σ without fixed points would exist, then it would be possible to define
a colouring cn of any Ωn as follows: since on one hand for any x ∈ Σ (and in particular for any vertex of
the subdivision) one has f(x) 6= x, and since on the other hand

∑d+1
k=1 xk = 1, one sees that for each vertex

V = (y1, . . . , yd+1) in Ωn there must exist at least one index i such that f(V )i < yi. Choose the smallest such
i ∈ {1, . . . , d + 1} and assign the corresponding colour to V , i.e., cn(V ) := i. Repeating this procedure for
all vertices we obtain a colouring: let us check that it is in fact one of Sperner type. Since the kth extremal
points of Σ is ek, the kth vector of the canonical basis, and since f(ek) 6= ek, then at least one coordinate of
f(ek) ∈ Rd+1 has to differ from the corresponding coordinate of ek. Since however all coordinates f(ek)j of
f(ek) have to stay nonnegative, and since by definition of simplex

∑d+1
k=1 f(ek)j = 1, the only way to balance

this increase in the other coordinates is to have f(ek)k < (ek)k = 1, i.e., c(ek) = k, for all k ∈ {1, . . . , d + 1}.
Similarly, if V is a vertex on the (d − 1)-dimensional face Ω whose extremal points are Vi1 , . . . , Vid , such that
k = {1, . . . , d+ 1} \ {i1, . . . , id}, then the kth coordinate of V is 0. Therefore, f(V )k ≥ 0, and this can only be

5 In fact, using the same simplicial subdivisions as in Remark 8.8, all ω in Ωn have the same volume.
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balanced by having (at least) one of the remaining d coordinates satisfy f(V )i < yi: since all such i’s belong to
the set {1, . . . , d+ 1} \ {k}, also the second defining condition of a Sperner colouring is satisfied.

Summing up, we have defined a Sperner colouring of each simplicial subdivision Ωn, and by Sperner’s
lemma we deduce the existence of a rainbow subsimplex ωn in Ωn, i.e., of a subsimplex with vertices vn1 =
(yn1 1, . . . , y

n
1 d+1) of colour 1, vn2 = (yn2 1, . . . , y

n
2 d+1) of colour 2, etc., which therefore satisfy f(vni )i < yni i.

Consider now the sequence (vc(ωn))n∈N of centres of gravity of ωn. Such a sequence is bounded, since
vc(ωn) ∈ Σ for all n ∈ N, hence by the theorem of Bolzano–Weierstraß it admits a convergent subsequence
(znh)h∈N. Denote

lim
h→∞

znh =: z̃.

The corresponding subsimplices become smaller and smaller, hence the sequence of ith vertices of the cor-
responding (rainbow) subsimplices converge to the same point, regardless of i, i.e.,

lim
h→∞

vnh1 = . . . = lim
h→∞

vnhd+1 =: z̃ ∈ Σ.

It follows that

f(z̃)i = f

(
lim
h→∞

vnh
)
i

= lim
h→∞

f (vnh)i ≤ lim
h→∞

vnhi = z̃i,

for all i ∈ {1, . . . , d+ 1}. Since however both z̃ and f(z̃) belong to Σ, and hence
d+1∑
i=1

z̃i =

d+1∑
i=1

f(z̃)i = 1,

one sees that necessarily
f(z̃)i = z̃i,

for all i ∈ {1, . . . , d+ 1}, i.e., f(z̃) = z̃. This yields a contradiction to our standing assumption and therefore a
proof of the desired assertion. �

While Brouwer’s theorem has a broad spectrum of consequences, ranging from the theory of ordinary
differential equations to game theory, it is typically hopeless to try to apply it to partial differential equations –
with the possible, remarkable exception of elliptic partial differential equations can be turned into ordinary ones
by some symmetry argument (remember the reduction of 3-dimensional wave equation to the Euler–Poisson–
Darboux equation and think of the associated eigenvalue problems). Its extension to infinite dimensional vector
spaces, which is due to Juliusz Schauder, has therefore been a breakthrough back in 1930.

Theorem 8.10 (Schauder’s fixed point theorem). Let X be a complete and normed vector space over R. Let
K be a compact and convex subset of X. Then each continuous function Φ : K → K has a fixed point in K.

Beweis. Let n ∈ N. By the theorem of Heine–Borel, K has a finite open covering of coarseness 1
n , i.e.,

there exist finitely many open balls B 1
n

(x1), . . . , B 1
n

(xNn) whose union contains K. Taking the closed convex
hull of their centers x1, . . . , xNn yields a convex set Kn: since all these points also belong to K and Kn is
minimal among all the closed convex sets that contain x1, . . . , xNn , we deduce that Kn ⊂ K. Moreover, Kn is
homeomorphic to the (closed) unit ball of Rn0 , for some n0 ≤ Nn. (The equality holds if and only if the points
x1, . . . , xNn are linearly independent.)

Now, define a mapping Pn by

Pn(x) :=

Nn∑
i=1

λi
‖λ‖1

xi,



8.1. FIXED POINT THEOREMS 115

where6

λi := dist(x,K \B 1
n

(xi)) ≥ 0, hence ‖λ‖1 =

Nn∑
i=1

λi.

Observe that each Pn is continuous because the norm and hence distance function are. (BecauseB 1
n

(x1), . . . , B 1
n

(xNn)

is an open covering of K, for all x ∈ K there exists i0 with x ∈ B 1
n

(xi0), i.e., with x 6∈ K \ B 1
n

(xi0), or rather
such that the distance between x and K \B 1

n
(xi0) is strictly positive. This shows that the denominator in the

definition of Pn never vanishes.)
Since Pn(x) is for all x ∈ K a linear combination of x1, . . . , xNn , with positive coefficients that sum up to

1, it follows that Pn(x) ∈ Kn, i.e., Pn maps K into Kn. Moreover, we observe the inequality

‖Pn(x)− x‖X ≤
Nn∑
i=1

λi‖xi − x‖X
‖λ‖1

≤ 1

n
, x ∈ K. (8.2)

Here, the former inequality follows directly from the triangle inequality for the norm of ‖ · ‖X while the latter
from the observation that x may be either element of B 1

n
(xi), and in this case

‖xi − x‖X ≤
1

n
, hence λi‖xi − x‖X ≤

1

n
λi,

or not, and in this case λi = 0 and again (trivially)

λi‖xi − x‖X ≤
1

n
λi.

In order to apply Brouwer’s fixed point theorem we need a continuous function mapping onKn and somehow
related to Φ: the right choice is Pn◦Φ. Then, by Brouwer’s theorem there exists xn ∈ Kn such that Pn(Φ(xn)) =
xn. In order to get a fixed point for Φ, observe that by compactness of K the sequence (xn)n∈N has a convergent
subsequence (xnk)k∈N. Now, it suffices to prove that its limit x is a fixed point of Φ. In fact,

‖Φ(xnk)− xnk‖ = ‖Φ(xnk)− Pn(Φ(xnk))‖ ≤ 1

nk
,

by (8.2), i.e.,

Φ(x) = Φ

(
lim
k→∞

xnk

)
= lim

k→∞
Φ (xnk) = lim

k→∞
xnk = x.

This concludes the proof. �

Exercise 8.11. Let X be a complete and normed vector space over R. Prove the following simple corollary
of Schauder’s theorem: Let K be a bounded, closed and convex subset of X. Then each continuous function
Φ : K → K such that T (K) is relatively compact has a fixed point in K.

As an application of Schauder’s fixed point theorem we mention the following result by Giuseppe Peano.
It is one of the earliest existence theorems for ordinary differential equations, originally proved (of course, by
different methods) in the 1880s.

6 Recall that the distance between a point x and a set is defined as the infimum of all distances between x and any point in
the set.



116 KAPITEL 8. NONLINEAR ELLIPTIC EQUATIONS AND COMPACTNESS METHODS

Proposition 8.12 (Peano’s theorem). Let Ω be a bounded open domain of Cn, T > 0, and f : [0, T ]×Ω→ Cn
be continuous. Then the Cauchy problem{

du
dt (t) = f(t, u(t)), t ∈ [0, T ],
u(0) = u0,

is locally well-posed, i.e., it admits a solution on some interval [0, t0], t0 ≤ T .

It is well-known that the assertion in Peano’s theorem cannot be sharpened to yield uniqueness (just set
n = 1 and f(t, u(t)) :=

√
u(t).) In our approach, this limitation is a direct consequence of the non-constructive

method used to prove Brouwer’s and Schauder’s fixed point theorems.
In the proof we will have to check relatively compactness of a certain set: this will be accomplished applying

the theorem of Ascoli–Arzelà, which we briefly recall.

Theorem 8.13 (Theorem of Ascoli–Arzelà). Let d,m ∈ N. Let Ω be a bounded domain of Rd. A subset of
C(Ω;Rm) is relatively compact if and only if it is bounded and equicontinuous.

Proof of Theorem 8.12. Consider the integral formulation

u(t) = u0 +

∫ t

0
f(s, u(s))ds =: (K(u))(t)), t ∈ [0, T ],

of the given Cauchy problem: K is by definition an operator mapping continuous functions into continuous
functions. (A priori this formulation is only weaker, but it will eventually turn out that to our purposes they
are equivalent.)

Consider t0 ∈ (0, T ] and M > 0 such that

|f(t, x)| ≤M, t ∈ [−t0, t0], |x| ≤Mt0 :

such constants exist due to continuity of f . Let

X := BM (u0) = {g ∈ C([0, t0];Rd) : max
t∈[0,t0]

|g(t)− u0| ≤Mt0}.

The closed set X is bounded and convex. Moreover, K : X → C([0, t0];Rd) is continuous because if (gn)n∈N ⊂ X
and g ∈ X, and if limn→∞ gn = g with respect to the ‖ · ‖∞-norm, then

lim
n→∞

|Kgn(t)−Kg(t)| ≤ lim
n→∞

∫ t

0
|f(s, gn(s))−f(s, g(s))|ds ≤ t0 lim

n→∞
max
s∈[0,t0]

|f(s, gn(s))−f(s, g(s))| = 0, t ∈ [0, T ],

due to continuity of f .
In order to apply Exercise 8.11, it suffices to prove that that K(X) ⊂ X and that K(X) is relatively

compact. The former assertion is a direct consequence of the estimate

|Kg(t)− u0| ≤
∫ t0

0
|f(s, g(s))|ds ≤Mt0, t ∈ [0, t0], g ∈ X.

The latter follows applying the theorem of Ascoli–Arzelà: in order to show equicontinuity of the bounded set
X, observe that for all t1, t2 ∈ [−t0, t0] and for all g ∈ X one has

|Kg(t1)−Kg(t2)| ≤
∫ t2

t1

|f(s, g(s))|ds ≤M |t2 − t1|.

Therefore, by Exercise 8.11 there exists a fixed point u of K.
Finally, the fundamental theorem of calculus implies that Ku is continuously differentiable for all u ∈ X,

hence in particular for the fixed point(s) of K. This concludes the proof. �
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In the following, we need the notion of compact (nonlinear) operator.

Definition 8.14. Let X be a complete and normed vector space. A function Φ : X → X is called compact if
for any bounded sequence (xn)n∈N ⊂ X the sequence of values (Φ(xn))n∈N has a convergent subsequence.

In other words, Φ is compact if it maps bounded sets in relatively compact sets.
The following result has been obtained by Helmut Schaefer in 1955, one of his last results obtained in

the field of integral equations before fleeing to Western Germany and devoting himself to abstract functional
analysis. Schaefer’s assertion is essentially a corollary of Schauder’s fixed point theorem, and in fact in the
literature it often goes under the name of theorem of Leray–Schauder. Though, it is often more easily applied
to partial differential equations than original Schauder’s theorem7.

Theorem 8.15 (Schaefer’s fixed point theorem). Let X be a complete and normed vector space over R. Then
each continuous and compact function Φ : X → X has a fixed point, provided that the set

{x ∈ X : ∃λ ∈ [0, 1] s.t. x is a fixed point of λΦ}

is bounded.

Beweis. By assumption, there exists M > 0 such that

‖x‖X ≤M

whenever x = λΦ(x) for some λ ∈ [0, 1]. We introduce a “cut-off” version Φ̃ of Φ by setting

Φ̃(x) :=

{
Φ(x) if ‖Φ(x)‖X ≤M,
M

‖Φ(x)‖Φ(x) if ‖Φ(x)‖X ≥M.

Observe that ‖Φ̃(x)‖ ≤ M for all x ∈ X, hence in particular Φ̃ maps BM (0) := {x ∈ X : ‖x‖X ≤ M} into
itself. Our aim is to apply Schauder’s fixed point theorem to Φ̃ taking K to be closed convex hull of the image
of BM (0) under Φ̃. It is clear that Φ̃ is continuous, since ‖ · ‖X : X → R is continuous. Moreover, Φ̃ maps K
into itself.

Finally, observe that since Φ is compact, so is Φ̃, since ‖Φ̃(x)‖X ≤ M for all x ∈ X, and since closed
balls are compact in Rd (i.e., sequences in closed balls of Rd have convergent subsequences by the theorem of
Bolzano–Weierstraß). Accordingly, Φ̃(BM (0)) is relatively compact, hence K is compact. By Schauder’s theorem
we deduce the existence of a fixed point x0 of Φ̃. It remains to show that x0 is also a fixed point of Φ. If this
would not be the case, i.e., if it would hold

Φ(x0) 6= x0 = Φ̃(x0) =
M

‖Φ(x0)‖
Φ(x0),

then necessarily ‖Φ(x0)‖ > M . But then defining

λ :=
M

‖Φ(x0)‖X
∈ (0, 1)

this would yield
x0 = λΦ(x0),

7 Identifying a compact convex set left invariant under Φ is seldom an easy task. One may of course try to apply Proposition 6.62,
under whose assumptions however the theorem of Lax–Milgram already yields a stronger result – not only existence, but also
uniqueness of solutions.
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i.e., x0 would be a fixed point of Φ for some λ ∈ (0, 1), and by assumption ‖x0‖X ≤ M . Now, on one hand x0

is a fixed point of Φ̃, hence ‖Φ(x0)‖X ≤M . On the other hand, this implies that Φ(x0) = Φ̃(x0), hence x0 is a
fixed point of Φ, a contradiction. �

Exercise 8.16. Let X be a complete and normed vector space over R. Prove the following corollary of Schaefer’s
theorem. If Φ : X → X is continuous and compact, then αΦ has a fixed point for at least one α ∈ (0, 1].

We have mentioned the possibility of applying fixed point theorems to evolution equations. A more elemen-
tary example is given by nonlinear elliptic equations, as follows. Most applications of Schauder’s or Schaefer’s
theorems are based on the following theorem, for whose proof we refer to [4, Thm. 9.16].

Proposition 8.17 (Rellich–Kondrachov’s embedding theorem). Let Ω be an open bounded domain of Rd with
C1-boundary. Then the unit ball of H1(Ω) is relatively compact in

• C(Ω) if d = 1,
• Lp(Ω) if d = 2, for all p ∈ [1,∞), or finally
• L

2d
d−2 (Ω) if d ≥ 3.

In particular, the unit ball H1(Ω) is relatively compact in L
2d
d−2 (Ω), and hence in L2(Ω), for all d ∈ N.

Observe that this assertion is equivalent to saying that the identity is compact as a mapping from H1(Ω) to
L2(Ω).

Remark 8.18. For applications of Schaefer’s fixed point theorem is also useful to recall that for each compact
subset K of Rd, the unit ball of each subspace Ck(K) is relatively compact in C(K), k ∈ N.

8.2. Semilinear elliptic problems

Following [5, § 9.2] we wish to discuss the nonlinear elliptic problem

−∆u(x) + µu(x) = b(∇u(x)), x ∈ Ω, (8.3)

with Dirichlet boundary conditions.

Proposition 8.19. Let Ω be an open bounded domain of Rd and consider a continuous function b : Rd → R
with sublinear growth, i.e., such that there exists C > 0 such that

|b(x)| ≤ C(|x|+ 1), x ∈ Rd. (8.4)

Then for all µ ≥ C2 there exists a weak solution of class H2(Ω) to (8.3) with Dirichlet boundary conditions,
i.e., u ∈ H2(Ω) ∩H1

0 (Ω) such that∫
Ω

(∇u(x)∇v + µu(x)v(x)) dx =

∫
Ω
b(∇u(x))v(x)dx for all v ∈ H1

0 (Ω).

Beweis. The proof is based on the following trick: we let u ∈ H1
0 (Ω) (arbitrary, so far) and set

fu(x) := b(∇u(x)) ∈ R.
For this function we consider the Helmholtz equation

−∆w(x) + µw(x) = fu(x), x ∈ Ω, (8.5)

with Dirichlet boundary conditions. By the theorem of Lax–Milgram (more precisely, by Corollary 6.50) this
equation has a unique solution w ∈ H1

0 (Ω) which, in turn, by Theorem 6.58 also belongs toH2(Ω), as fu ∈ L2(Ω),
and in fact the estimate

‖w‖H2 ≤M‖f‖L2
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holds, for some M > 0. This construction defines a mapping Φ : H1
0 (Ω) 3 u 7→ w ∈ H1

0 (Ω), to which we are
going to apply Theorem 8.15. If we succeed in doing so, then by Schaefer’s theorem there exists u such that
Φ(u) = u, i.e., such that

−∆u(x) + µu(x) = fu(x) = b(∇u(x)).

This would then conclude the proof.
To this aim, we first have to prove that Φ is continuous and compact. First of all, let us observe the estimate

‖Φ(u)‖H2 ≤M‖f‖L2 = M‖b(∇u)‖L2 ≤MC(‖∇u‖L2 + 1) = MC(‖u‖H1
0

+ 1). (8.6)

Moreover, let us take a sequence (un)n∈N ⊂ H1
0 (Ω) such that limn→∞ un = u with respect to the norm of H1

0 (Ω).
Then obviously the sequence (un)n∈N is bounded in H1

0 (Ω), and therefore so is (Φ(un))n∈N in H2(Ω), by (8.6).
By the embedding theorem of Rellich–Kondrachov (Φ(un))n∈N has a subsequence (Φ(unk))k∈N that converges
in H1

0 (Ω), say to a function w. If we can show that Φ(u) = w, then the continuity of Φ is completely proved.
This can be seen as follows: since each Φ(unk) is by construction weak solution of (8.5), i.e., it satisfies∫

Ω
(∇Φ(unk)(x)∇v + µΦ(unk)(x)v(x)) dx =

∫
Ω
funk (x)v(x)dx =

∫
Ω
b(∇unk(x))v(x)dx, v ∈ H1

0 (Ω). (8.7)

Passing to the limit for k →∞, we know that

Φ(unk)→ w and unk → u,

both with respect to the norm of H1
0 (Ω), whence in particular ( by continuity of b)

∇Φ(unk)→ ∇w and b(∇unk)→ b(∇u)

with respect to the norm of L2(Ω). Summing up, (8.7) implies∫
Ω

(∇w(x)∇v + µw(x)v(x)) dx =

∫
Ω
b(∇u(x))v(x)dx =

∫
Ω
fu(x)v(x)dx, v ∈ H1

0 (Ω), (8.8)

i.e., w weak solution of (8.5), hence w = Φ(u).
Similarly, Φ is compact because if a sequence (un)n∈N is bounded with respect to the norm of H1

0 (Ω), then
(as observed above) (Φ(un))n∈N has a subsequence (Φ(unk))k∈N that is convergent with respect to the norm of
H1

0 (Ω).
Finally, we have to check that the set

{v ∈ H1
0 (Ω) : ∃λ ∈ [0, 1] s.t. v is a fixed point of λΦ}

is bounded, at least for µ > 0 large enough. To do so, consider v ∈ H1
0 (Ω) such that v

λ = Φ(v) for some λ ∈ (0, 1]
(if λ = 0, then the only fixed point is the 0-function, hence we can neglect this trivial case): this means that v

λ
is weak solution to (8.3) with Dirichlet boundary conditions, hence in particular integrating (8.3) against the
same v ∈ H1

0 (Ω) yields∫
Ω

(
|∇v(x)|2 + µ|v(x)|2

)
dx =

∫
Ω
λb(∇v(x))v(x)dx

≤
∫

Ω
C(|∇v(x)|+ 1)|v(x)|dx

=

∫
Ω
C|∇v(x)||v(x)|dx+

∫
Ω
C|v(x)|dx

≤ 1

2

∫
Ω
|∇v(x)|2dx+

C2

2

∫
Ω
|v(x)|2dx+

C2

2

∫
Ω
|v(x)|2dx+

∫
Ω
dx,
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where the last step follows from the Young inequality. Summing up,
1

2

∫
Ω
|∇v(x)|2dx ≤ (C2 − µ)

∫
Ω
|v(x)|2dx+ |Ω|.

Hence, for µ ≥ C2 we deduce that

‖v‖2H1
0 (Ω) =

∫
Ω
|∇v(x)|2dx ≤ 2|Ω|.

This completes the proof. �

Remark 8.20. The viscid Burger’s equation can be put in the form
∂u

∂t
(t, x) = ∆u(x) + b(∇u(x)), x ∈ Ω.

for b(x) := x2, x ∈ R. Hence, when looking for stationary solutions, the corresponding time-independent problem
is the Helmoltz equation (8.3). However, if we try to apply the above theorem, we see that the assumptions on b
are not satisfied by the square function. A possible workaround is to show some a priori estimates on solutions
u, so that at least

|b(v(x))| = |v(x)|2 ≤ C(|v(x)|+ 1), x ∈ Ω,

is satisfied for all solutions v, but in general this reveals an ubiquitous feature of nonlinear elliptic equations:
there is such a large manifold of them that they cannot be tackled by a unitary method – or perhaps it is just the
current techniques that are still much too weak.

Exercise 8.21. Let Ω an open bounded domain of Rd. Carefully check the proof of Proposition 8.19 and show
that the assertion there is still valid if we replace in Proposition 8.19 the term b(∇u) by a term p(u), where
p : R → R is a polynomial of arbitrary order, provided d ≤ 2. What does this mean for the Hodgkin–Huxley
equation (8)?

You can use the fact that the Gagliardo–Niremberg inequalities

‖u‖L∞ ≤ C‖u‖
1
2

H1‖u‖
1
2

L2 , u ∈ H1(Ω),

and
‖u‖Lp ≤ C‖u‖1−2/p

H1 ‖u‖2/p
L2 , u ∈ H1(Ω),

for all p ≥ 2 and α := 1 − 2/p, hold for d = 1 and d = 2, respectively, cf. [4, Comment 8.1.(iii), page 233 and
Comment 9.3.C, page 313].
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ANHANG A

Übungsaufgaben

Sei u : Rn 7→ R mit x := (x1, . . . , xn) 7→ u(x). Wir werden für die partiellen Ableitungen der Funktion u auch
folgende Notation verwenden: uxi := ∂u

∂xi
, uxixj := ∂2u

∂xi∂xj
etc.

(1) Gegeben sei die folgende partielle Differenzialgleichung ( “gedämpfte Diffusionsgleichung”)

ut = uxx + u, t ≥ 0, x ∈ R.

Eine Lösung u der gedämpften Diffusionsgleichung heißt “travelling wave”, falls eine Funktion φ : R 7→
R und eine Konstante c ∈ R existieren, so dass u(t, x) = φ(x− ct) für alle t ≥ 0, x ∈ R.
Bestimmen Sie alle “travelling wave” Lösungen.

(2) Gegeben sei die folgende partielle Differenzialgleichung (“Laplace-Gleichung”)

∆u = 0, wobei u : Rn 7→ R und ∆u(x) :=
n∑
i=1

uxixi(x).

Zeigen Sie, dass die Laplace-Gleichung rotationsinvariant ist, d.h ist A eine orthogonale n× n-Matrix
(AAT = I) und u eine Lösung der Gleichung, so ist auch die Funktion v : Rn 7→ R mit v(x) := u(Ax)
eine Lösung.

(3) Die Methode der Charakteristiken eignet sich auch für Transportgleichungen mit nicht konstanten
Koeffizienten. Wir betrachten das Anfangswertproblem

ut(t, x) = −xux(t, x), t ≥ 0, x ∈ R,
u(0, x) = u0(x).

Bestimmen Sie die Charakteristiken für diese Transportgleichung und finden Sie die Lösung des An-
fangswertproblems.

(4) Betrachte das Anfangs-Randwertproblem für die Transportgleichung auf dem Intervall [0, 1]

ut(t, x) = −cux(t, x), t ≥ 0, x ∈ [0, 1]

mit Anfangswert u(0, x) = u0(x), x ∈ [0, 1].
Bestimmen Sie die Lösungen für folgende Randbedingungen. Welche Forderungen sind an den An-
fangswert u0 bei diesen Randbedingungen zu stellen?

a) Periodische Randbedingungen : u(t, 0) = u(t, 1), t ≥ 0;

b) Dirichlet-Randbedingungen (c > 0) : u(t, 0) = 0, t ≥ 0;

c) Periodische und Dirichlet-Randbedingungen : u(t, 0) = u(t, 1) = 0, t ≥ 0.

(5) Finden Sie die Lösungen der inhomogenen Transportgleichung

ut(t, x) = 2ux(t, x) + tx2, t ≥ 0, x ∈ R.
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(6) Leiten Sie, den eindimensionalen Fall imitierend, die Lösungsformel für die Transportgleichung im Rd

ut(t, x) = −b · ∇u(t, x) + f(t, x), t ≥ 0, x ∈ Rd,
u(0, x) = u0(x)

her, wobei b ∈ Rd ein konstanter Vektor und ∇u(t, x) := (ux1 , . . . , uxd)(t, x)) ist.
(7) Wir definieren wie in der Vorlesung die Operatoren

(C(t)f)(x) :=
1

2
(f(x+ ct) + f(x− ct)) und (S(t)f)(x) :=

1

2

∫ x+ct

x−ct
f(y) dy.

Zeige C(0)f ≡ f und 2C(t)(C(s)f) ≡ C(t+s)f+C(t−s)f sowie S(t+s)f ≡ C(s)(S(t)f)+S(s)(C(t)f)
für alle s, t ≥ 0 und alle Funktionen f ∈ C1. Warum wird S Sinus und C Cosinus genannt?

(8) Sei A, c ∈ R \ {0}. Zeige, dass die beiden travelling waves

u(t, x) := A sin(x− ct) und v(t, x) := A sin(x+ ct)

sowie auf Grund von Linearität auch deren Summe u+v Lösungen der eindimesionalen Wellengleichung
(utt = c2uxx) sind, u+v aber keine travelling wave, sondern eine stehende Welle ist, d.h. u+v läßt sich
mittels zweier Funktionen η : R 7→ R und ξ : R 7→ R in der Form (u+ v)(t, x) = η(t)ξ(x) schreiben.

(9) Sei u(t, x) eine Lösung der eindimensionalen Wellengleichung utt = c2uxx.
Führe die Variablentransformation λ := x − ct und µ := x + ct durch und definiere v(λ, µ) :=
u(t(λ, µ), x(λ, µ)).
Zeige, dass vλµ = 0 äquivalent zu utt = c2uxx ist. Schließe daraus, dass die allgemeine Lösung der
eindimensionalen Wellengleichung die Gestalt F (x − ct) + G(x + ct) hat, wobei F : R 7→ R und
G : R 7→ R zweimal stetig differenzierbare Funktionen sind. Leite dann aus dieser Darstellung der
Lösung d’Alemberts Formel für das Anfangswertproblem

utt(t, x) = c2uxx mit u(0, x) = u0(x) und ut(0, x) = u1(x)

her.
(10) Sei u0 ∈ C2(R) und u1 ∈ C1(R). Löse das Anfangswertproblem

utt(t, x) = x2uxx(t, x) + xux(t, x), t ≥ 0, x ∈ R,
u(0, x) = u0(x),

ut(0, x) = u1(x).

Hinweis: Finde eine Zerlegung des Differentialoperators
(
∂2

∂t2
− x2 ∂2

∂x2
− x ∂

∂x

)
, ähnlich derjenigen, die

in der Vorlesung bei der Herleitung von d’Alemberts Formel für die Wellengleichung benutzt wurde.
(11) Sei u eine Lösung des Anfangswertproblems für die Wellengleichung

utt(t, x) = uxx(t, x), t ≥ 0, x ∈ R, u(0, x) = u0(x) und ut(0, x) = u1(x),

wobei u0 ∈ C2(R) and u1 ∈ C1(R) kompakten Träger haben sollen, d.h. u0(x) = 0 und u1(x) = 0 für
alle x mit |x| ≥ R für ein R ∈ R.
Zeige, dass für t groß genug die kinetische Energie gleich der potentiellen Energie ist

Ekin(t) :=

∫
R

1

2
(ut(t, x))2 dx =

∫
R

1

2
(ux(t, x))2 dx =: Epot(t).

Hinweis: Benutze d’Alemberts Formel.
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(12) Sei u0 ∈ C2([0, 1]) mit u0(0) = u0(1) = u′′0(0) = u′′0(1) = 0 (warum?) und u1 ∈ C1([0, 1]) mit
u1(0) = u1(1) = 0. Löse das Anfangs-Randwertproblem für die Wellengleichung auf dem Interval [0, 1]

utt(t, x) = uxx(t, x), t ≥ 0, x ∈ [0, 1], u(0, x) = u0(x) und ut(0, x) = u1(x),

mit Dirichletrandbedingungen u(t, 0) = u(t, 1) = 0 für t ≥ 0.
(13) Sei u0 ∈ C2([0, 1]) mit u′0(0) = u′0(1) = 0 und u1 ∈ C1([0, 1]) mit u′1(0) = u′1(1) = 0. Löse das

Anfangs-Randwertproblem für die Wellengleichung auf dem Interval [0, 1]

utt(t, x) = uxx(t, x), t ≥ 0, x ∈ [0, 1], u(0, x) = u0(x) und ut(0, x) = u1(x),

mit Neumannrandbedingungen u′(t, 0) = u′(t, 1) = 0 für t ≥ 0.
Kann die Lösung u negative Werte annehmen, wenn u0(x) ≥ 0 und u1(x) ≥ 0 für alle x ∈ [0, 1]?

(14) Sei Ω ein Gebiet im Rd, d ≥ 1, mit C1 Rand (für eine Definition siehe z.B im Buch von Arendt und
Urban auf Seite 220), insbesondere gilt Gauß-Green für Ω ∩BR(0) (BR(0) der Ball mit Radius R um
0). Seien u0 ∈ C2(Ω̄) und u1 ∈ C1(Ω̄) . Zeige, dass höchstens eine Lösung u ∈ C2,2(R+ × Ω̄) für das
Anfangswertproblem

utt(t, x) = ∆u(t, x), (t, x) ∈ R+ × Ω und u(0, x) = u0(x), ut(0, x) = u1(x)

existiert, wobei u auf dem Rand Dirichlet- oder Neumannrandbedingungen genügen und im Falle eines
unbeschränkten Gebietes ferner gelten soll: Für jedes kompakte Zeitintervall [t1, t2] findet man eine auf
Ω quadratintegrierbare Funktion g : Ω 7→ R+ (∫Ω |g(x)|2 dx <∞) mit

|uxi(t, x)|, |uxit(t, x)|, |ut(t, x)|, |utt(t, x)| ≤ g(x), i = 1, . . . , d , für alle t ∈ [t1, t2].

(15) Sei k ∈ N und r > 0. Zeige, dass für alle φ ∈ Ck+1(R) gilt

d2

dr2

(
1

r

d

dr

)k−1 (
r2k−1φ(r)

)
=

(
1

r

d

dr

)k (
r2k dφ

dr
(r)

)
.

(16) Sei k ∈ N. Für u0 ∈ Ck+2(R2k+1) und u1 ∈ Ck+1(R2k+1) definiere die Funktion u durch

u(t, x) :=
1

(2k − 1)!!

∂

∂t

(
1

t

∂

∂t

)k−1
(
t2k−1

|∂Bt|

∫
∂Bt(x)

u0(z)dσ(z)

)

+
1

(2k − 1)!!

(
1

t

∂

∂t

)k−1
(
t2k−1

|∂Bt|

∫
∂Bt(x)

u1(z)dσ(z)

)
, t > 0, x ∈ R2k+1.

Zeige, dass u die (2k + 1)-dimensionale Wellengleichung utt(t, x) = ∆u(t, x) löst.
(17) Es sollen u0 ∈ C3(R3) und u1 ∈ C2(R3) kompakten Träger besitzen (d.h. es existiert R > 0, so

dass u0(x) = 0 bzw. u1(x) = 0 für alle x mit ‖x‖ ≥ R). Sei u ∈ C2,2(R+ × R3) die Lösung des
Anfangswertproblems

utt(t, x) = ∆u(t, x) (t, x) ∈ R+ ×R3 und u(0, x) = u0(x), ut(0, x) = u1(x).

Zeige |u(t, x)| ≤ C/t für alle x ∈ R3 und t > 0, wobei C > 0 eine Konstante ist, die nicht von x
abhängt.

(18) Betrachte die Wellengleichung utt(t, x) = ∆u(t, x) auf einem beschränkten Gebiet Ω mit C1-Rand ∂Ω
und der Randwertbedingung ∂u

∂n(t, z) = ±∂u
∂t (t, z) für alle t ≥ 0 und z ∈ ∂Ω. Für welches Vorzeichen

ist die wie in der Vorlesung definierte Energie E(t) für jede Lösung u ∈ C2,2(Ω̄ eine fallende bzw.
wachsende Funktion in der Zeit?
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(19) Sei Ω ein beschränktes Gebiet mit C1-Rand. In der Physik betrachtet man auch die Wellengleichung
mit “akustischen” Randbedingungen

∂2φ
∂t2

(t, x) = c2∆φ(t, x), t ≥ 0, x ∈ Ω,

m∂2δ
∂t2

(t, z) = −d∂δ∂t (t, z)− kδ(t, z)− ρ
∂φ
∂t (t, z), t ≥ 0, z ∈ ∂Ω,

∂δ
∂t (t, z) = ∂φ

∂n(t, z), t ≥ 0, z ∈ ∂Ω.

Hierbei bezeichnet φ das Gechwindigkeitspotential einer Flüssigkeit, die im Gebiet Ω eingeschlossen ist,
und δ die Auslenkung des Randes in Normalenrichtung aus seiner Ruhelage; m > 0, d > 0, k > 0 sind
Konstanten, die die Masse pro Fläche, den Widerstand und die Federkonstante des Randes beschreiben;
c > 0 und ρ > 0 stehen für die Schallgeschwindigeit in der Flüssigkeit bzw. die Dichte der Flüssigkeit
im ungestörten Zustand.
Führe ein geeignetes Energiefunktional ein und zeige, dass diese Energie mit der Zeit abnimmt.
Hinweis: Beachte, dass auch der Rand durch die Auslenkung δ zur Gesamtenergie beiträgt.

(20) Betrachte folgende Transformationen Tε : R3 7→ R3 mit Tε(t, x, z) = (t, x+2εt, e−εx−ε
2tz), ε ∈ R. Zeige,

dass die Familie von Transformationen T := (Tε)ε∈R eine eindimensionale Transformationsgruppe
bildet und bestimme deren infinitisimalen Erzeuger.

(21) Sei u eine Lösung der eindimensionalen Wärmeleitungsgleichung

ut(t, x) = uxx(t, x), (t, x) ∈ R2.

Betrachte den Graphen der Funktion u

Gu := {(t, x, u(t, x)) : (t, x) ∈ R2} ⊂ R3.

Zeige, dass das Bild des Graphen Gu unter den in Aufgabe 3. definierten Transformationen Tε wieder
der Graph einer Funktion ũε : R2 7→ R ist und diese Funktionen ũε ebenfalls Lösungen der Wärmelei-
tungsgleichung sind.

(22) Die algebraische Gleichung H(x) = 0, x ∈ JK , habe maximalen Rang, d.h. für alle x ∈ JK mit
H(x) = 0 ist ∇H(x) 6= 0.
Zeige, dass dann für jede Lösung (x0, jKu0), x0 ∈ Rd, der Differentialgleichung H(x, jKu) ein lokaler
Koordinatenwechsel y = (y1, . . . , yd+dK ) existiert, der (x0, jKu0) auf 0 ∈ JK abbildet und für den die
Gleichung H(x, jKu) = 0 in y1(x, jKu) = 0 übergeht, d.h. y ist ein C∞-Diffeomorphismus

y : U((x0, jKu0)) 7→ V (0), y((x, jKu)) = (y1, . . . , yd+dK ),

wobei U((x0, jKu0)) ⊆ JK eine offene Umgebung von (x0, jKu0) und V (0) ⊆ JK eine offene Umgebung
der Null in JK ist.
Hinweis: Satz über implizite Funktionen.

(23) Zeige, dass die Wärmeleitungsgleichung ut(t, x) = cuxx(t, x) für jedes c ∈ R maximalen Rang hat.
(24) Proposition 5.28. aus der Vorlesung gibt eine Methode zur Berechnung der K-Jets jKA(x, jKu) der

infinitesimalen Erzeuger von einparametrischen Transformationsgruppen.
a) Sei A = τ ∂

∂t +φ ∂
∂u der infinitesimale Erzeuger einer einparametrischen Transformationsgruppe auf

J0 = R2. Berechne den 3-Jet j3A(t, j3u) von A.
b) Sei A = ξ ∂

∂x + τ ∂
∂t + φ ∂

∂u der infinitesimale Erzeuger einer einparametrischen Transformations-
gruppe auf J0 = R3. Berechne den Koeffizienten φtx von ∂

∂utx
in j2A(t, x, j2u).
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(25) Betrachte den infinitesimalen Erzeuger einer einparametrischen Transformationsgruppe auf J0

A(x, u) =
d∑
j=1

ξj(x, u)
∂

∂xj
+ φ(x, u)

∂

∂u
.

Zeige, dass der 1-Jet von A die Form

j1A(x, j1u) = A+

d∑
i=1

φi(x, j1u)
∂

∂uxi

hat, wobei die φi gegeben sind durch

φi = Di

(
φ−

d∑
l=1

ξl(x, u)uxi

)
+

d∑
l=1

ξl(x, u)
∂uxi
∂xl

;

d.h. beweise Proposition 5.28. aus der Vorlesung für 1-Jets.
(26) Betrachte die einparametrische Transformationsgruppe T = (Tε)ε∈I(x,u) auf J

0 = Rd ×Rl,

Tε(x, u) =: (Xε(x, u), Uε(x, u)) ∈ J0 = Rd ×Rl,
wobei x = (x1, . . . , xd) die unabhängigen und u = (u1, . . . , ul) die von x abhängigen Variablen umfasst.
Sei x0 ∈ Rd, f : U(x0) 7→ Rl und (ε, x, u) 7→ Tε(x, u) eine C∞-Abbildung von W := ∪(x,u)∈J0(I(x,u) ×
{(x, u)}) ⊆ R× J0 nach J0 ({0} × J0 ⊂W ).
Zeige: Es existiert ein δ′ > 0 und für jedes 0 ≤ δ ≤ δ′ eine offene Umgebung Vδ(x0) ⊆ U(x0), so dass
der lokale Graph Gfδ := {(x, f(x)) : x ∈ Vδ(x0)} der Funktion f unter der Transformation Tδ übergeht
in den lokalen Graphen Gfδ = Tδ(G

f
δ ) einer Funktion f δ : Xδ(Vδ(x0)) 7→ Rl.

Hinweis: f δ(xδ) = (Uδ ◦ [Id× f ]) ◦ (Xδ ◦ [id× f ])−1(xδ).
(27) Es gelten die Bezeichnungen aus Aufgabe 1. Zeige, dass der k-Jet der einparametrische Transformati-

onsgruppe T
(jkTδ)(x0, jkf(x0)) := (xδ0, jkf

δ(xδ0))

nur von x0, f(x0) und den Ableitungen der Ordnung ≤ k von f an der Stelle x0 abhängt, also wohl-
definiert ist.
Hinweis: Für k = 1 benutze die explizite Darstellung von f δ (siehe Aufgabe 1) und schließe dann
induktiv, d.h. betrachte j(k−1)u als die neuen abhängigen Variablen.

(28) Betrachte die Transformationsgruppe T aus Beispiel 5.13

Tθ(x, u) :=

(
cos θ − sin θ
sin θ cos θ

)(
x
u

)
, (x, u) ∈ R2 = J0, θ ∈ R.

Berechne den 1-Jet (j1Tθ)(x, u, ux), θ ∈ I(x,u,ux), der Transformationsgruppe T , den 1-Jet (j1A)(x, u, ux)
des infinitesimalen Erzeugers A von T und bestimme I(x,u,ux). (Siehe Beispiel 5.18)

(29) Benutze die Formeln aus Korollar 5.29, um die Punktsymmetriegruppen der zweidimensionalen Laplace-
Gleichung herzuleiten

∂2u

∂x2
(t, x) +

∂2u

∂y2
(t, x) = 0.

(30) Sei A = ξ ∂
∂x + τ ∂

∂t + φ ∂
∂u der infinitesimale Erzeuger einer einparametrischen Transformationsgruppe

auf J0 ≈ R3. Berechne den Koeffizienten φxx von ∂
∂uxx

in j2A(t, x, j2u).
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(31) Zeige, dass

Φ(t, x) =
1

(4πt)
d
2

e−
‖x‖2
4t , t > 0, x ∈ Rd,

die d-dimensionale Wärmeleitungsgleichung ∆Φ(t, x)− Φt(t, x) = 0 löst.
(32) Sei Ω ein beschränktes Gebiet im Rd. Zeige, dass höchstens eine Funktion u in C1(R+ × Ω̄) existiert,

die die Wärmeleitungsgleichung mit Neumann- oder Dirichletranbedingungen bei beliebig, aber fest
vorgegebenem Anfangswert (u(0, x) = u0(x), x ∈ Ω) löst.
Hinweis: Finde eine geeignete Energiefunktion und schließe ähnlich wie im Fall der Wellengleichung.

(33) Seien v = ξ1(x) ∂
∂x1

+ · · · + ξn(x) ∂
∂xn

und w = η1(x) ∂
∂x1

+ · · · + ηn(x) ∂
∂xn

zwei Vektorfelder auf dem
Rn; ein Vektorfeld kann aufgefasst werden als Ableitungsoperator von C∞(Rn) nach C∞(Rn) mit
v(f(x)) = ξ1(x)∂f(x)

∂x1
+ · · ·+ ξn(x)∂f(x)

∂xn
.

Zeige, dass auch der Kommutator [v,w], definiert durch

[v,w](f(x)) = v(w(f(x)))−w(v(f(x))), f ∈ C∞(Rn),

ein Vektorfeld auf dem Rn bildet und bestimme die Koeffizienten φi von [v,w] = φ1(x) ∂
∂x1

+ · · · +
φn(x) ∂

∂xn
.

(34) Sei H ein Prä-Hilbertraum. Beweise die folgenden Aussagen.
(1) Falls x, y orthogonal aufeinander stehen, gilt ‖x‖2H + ‖y‖2H = ‖x+ y‖2H .
(2) Allgemeiner 2‖x‖2H + 2‖y‖2H = ‖x+ y‖2H + ‖x− y‖2H für alle x, y ∈ H.
(3) Ferner gilt für alle x, y ∈ H

4(x|y)H = ‖x+ y‖2H − ‖x− y‖2H falls K = R, und
4(x|y)H = ‖x+ y‖2H + i‖x+ iy‖2H − ‖x− y‖2H − i‖x− iy‖2H falls K = C.

(4) Ist A eine Teilmenge von H, dann ist A ⊂ (A⊥)⊥.
(5) Das orthogonale Komplement H⊥ ist {0}.

(35) Zeige, dass die Familie von Funktionen {1,
√

2 cos(2πn·),
√

2 sin(2πm·) : n,m = 1, 2, 3, . . .} orthonormal
in L2(0, 1;R) ist und dass die Familie {e2nπi· : n ∈ Z} orthonomal in L2(0, 1;C) ist.
Zeige ferner, dass {e2nπi· : n ∈ Z} auch total ist, also eine Hilbertraumbasis von L2(0, 1;C) bildet.
Hinweis: Benutze, dass {1,

√
2 cos(2πn·),

√
2 sin(2πm·) : n,m = 1, 2, 3, . . .} eine Hilbertraumbasis von

L2(0, 1;R) ist, und zerlege in Reell- und- Imaginärteil. (s.a. Proposition 6.15)
(36) Finde mit dem Ansatz der Trennung der Variablen u(t, x) = v(t)w(x) eine nicht konstante Lösung der

Poröse-Medien-Gleichung

ut(t, x)−∆(uγ)(t, x) = 0, (t, x) ∈ (0,∞)×Rd,
wobei u(·, ·) ≥ 0 eine positive Funktion sein soll und γ > 1 eine Konstante ist. Existiert die Lösung für
alle t ≥ 0 oder explodiert sie in endlicher Zeit t∗ (d.h. limt→t∗ u(t, x) =∞, x 6= 0).
Hinweis: Mache für w den Ansatz w(x) = (‖x‖2)α, wobei α ein noch zu bestimmender Exponent ist.

(37) Betrachte das Eigenwertproblem des Laplace-Operators auf dem Intervall I = (0, l) mit Robin-Rand-
bedingungen, d.h.

−f ′′(x) = λf(x), x,∈ (0, 1), f ∈ C2(I) ∩ C1(Ī), λ ∈ C
b0f(0) = f ′(0), b0 > 0,

−blf(l) = f ′(l), bl > 0.
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Zeige, dass λ ∈ C nur dann ein Eigenwert sein kann, falls λ > 0, und dass zwei Eigenfunktionen
(d.h. nicht triviale Lösungen obiger Gleichung) zu verschiedenen Eigenwerten λ 6= µ bezüglich des
L2-Skalarprodukts orthogonal aufeinander stehen.

(38) Sei H ein Hilbertraum und {xn ∈ H : n ∈ N} eine orthonomale Familie. Zeige, dass die Reihe
∑

n∈N xn
genau dann in H konvergiert, wenn

∑
n∈N ‖xn‖2 <∞.

(39) Es seien v und w Vektorfelder auf J0 ≈ Rd × R. Ferner seien v und w infinitesimale Erzeuger von
einparametrischen Transformationsgruppen von Symmetrien der Differentialgleichung H(x, jku) = 0.
Zeige, dass dann auch das Vektorfeld [v,w] eine Symmetriegruppe von H(x, jku) = 0 erzeugt. (Siehe
Aufgabe 4 von Blatt 9)

(40) Die infinitesimalen Erzeuger der eindimensionalen Wärmeleitungsgleichung sind gegeben durch (siehe
Vorlesung)

A1 =
∂

∂t
, A2 = 2t

∂

∂t
+ x

∂

∂x
, A3 = 4t2

∂

∂t
+ 4tx

∂

∂x
− (2t+ x2)u

∂

∂u
,

A4 =
∂

∂x
, A5 = 2t

∂

∂x
− xu ∂

∂u
, A6 = u

∂

∂u
.

Bestimme die Kommutatoren [Ai, Aj ], i, j = 1, . . . , 6.
(41) Es habe H(x, jku) vollen Rang für alle (x, jku) ∈ Jk mit H(x, jku) = 0 und sei A der Erzeu-

ger einer einparametrischen Transformationsgruppe auf J0 ≈ Rd × R. Zeige, dass die Bedingung
((jkA)H)(x, jku) = 0 für alle (x, jku) ∈ Jk mit H(x, jku) = 0 äquivalent ist zur Existenz einer Funk-
tion Q : Jk 7→ R, die ((jkA)H)(x, jku) = Q(x, jku)H(x, jku) für alle (x, jku) ∈ Jk erfüllt.
Hinweis: Zeige die Behauptung zuerst lokal (siehe dazu Theorem 5.21 aus der Vorlesung) und benutze
dann eine Zerlegung der Eins.

(42) Sei H ein Hilbertraum und A1, A2 abgeschlossene, konvexe Teilmengen von H. Bezeichne mit P1 bzw.
P2 die orthogonalen Projektionen auf A1 bzw. A2. Beweise, dass folgende Aussagen äquivalent sind:
i) P1A2 ⊂ A2,
ii) P2A1 ⊂ A1,
iii) P1 und P2 kommutieren, d.h. P1P2x = P2P1x für alle x ∈ H.
(Allgemein: Warum betrachtet man stets abgeschlossene und konvexe Mengen?)

(43) Definiere A1 bzw. A2 ⊂ L2(R) als die Menge aller quadratintegrierbaren Funktionen, die fast überall
gerade bzw. positiv sind.
(1) Zeige, dass A1, A2 abgeschlossene, konvexe Teilmengen von L2(R) sind.
(2) Zeige, dass die orthogonalen Projektionen PA1 , PA2 auf A1, A2 gegeben sind durch

PA1f(x) =
f(x) + f(−x)

2
und PA2f(x) =

|f(x)|+ f(x)

2
für fast alle x ∈ R.

(44) Sei H ein Hilbertraum und Y ein abgeschlossener Unterraum von H.
(1) Sei Y 6= {0}. Zeige, dass dann für die orthogonale Projektion PY von H auf Y gilt: ‖PY ‖ = 1 und

KerPY = Y ⊥.
(2) Zeige, dass jedes x ∈ H eine eindeutige Zerlegung x = y + z hat, wobei y = PY x ∈ Y und

z = PY ⊥x ∈ Y ⊥.
(45) Finde mittels der Methode der Trennung der Variablen eine Reihendarstellung der Lösung der Wär-

meleitungsgleichung auf dem Intervall (0, l) mit den Randbedingungen f(0) = 0 und −f(l) = f ′(l).
(46) Sei H ein Hilbertraum und A eine abgeschlossene, konvexe Teilmenge von H.

(1) Zeige, dass die Projektion PA genau dann linear ist, wenn A ein Unterraum von H ist.
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(2) Zeige, dass PA Lipschitz-stetig ist mit Lipschitz-Konstante 1.
(47) Sei I ⊆ R ein offenes Intervall. Sei f ∈ L2(I). Zeige, dass die schwache Ableitung von f eindeutig ist,

d.h. es existiert höchstens ein g ∈ L2(I) mit∫
I
f(x)h′(x) dx =

∫
I
g(x)h(x) dx für alle h ∈ C1

c (I).

Hinweis: Benutze, dass C1
c (I) dicht in L2(I) liegt.

(48) Zeige, dass C0(0, 1), versehen mit der L2-Norm ‖f‖2 =
∫ 1

0 f
2(x) dx, und C1(0, 1), versehen mit der

H1-Norm ‖f‖2 =
∫ 1

0 f
2(x) + (f ′(x))2 dx, keine Hilberträume sind.

(49) Sei I = (a, b) ein Intervall.
(1) Sei f ∈ L2(I) derart, dass

∫
I f(x)h′(x)dx = 0 für alle h ∈ C1

c (I). Zeige, dass f(x) = c für fast alle
x ∈ I, wobei c ∈ K eine Konstante ist.

(2) Sei g ∈ L2(I). Definiere G : I 3 x 7→
∫ x
a g(t)dt ∈ K. Zeige, dass G ∈ C(I) und

∫
I G(x)h′(x)dx =

−
∫
I g(x)h(x)dx für alle h ∈ C1

c (I).
(3) Folgere, dass jedes f ∈ H1(I) einen stetigen Repräsentanten f̃ ∈ C(I) hat, d.h. f(x) = f̃(x) für

fast alle x ∈ I.
Ferner gilt für I = (0, 1): ‖f‖C(I) ≤

√
2‖f‖H1(I) für alle f ∈ C([0, 1]) ∩H1(0, 1).

(50) Seien H1, H2 Hilberträume und T : H1 7→ H2 ein linearer Operator.
(a) Zeige, dass T genau dann beschränkt ist, wenn T Lipschitz-stetig ist, und T genau dann Lipschitz-

stetig ist, wenn T stetig ist.
Sei Ω ⊆ Rd und betrachte den Hilbertraum H = L2(Ω).
(b) Finde die orthogonale Projektion in H auf den Unterraum der konstanten Funktionen.

(51) Sei η ∈ C1(0,∞). Sei u ∈ H1(0, 1) und es existiere ein ε > 0, so dass η(x) = 0 für x ≥ 1− ε. Bezeichne
mit ũ die Erweiterung von u auf (0,∞) durch ũ(x) = 0 für x ≥ 1. Zeige ηũ ∈ H1(0,∞), und beweise
die Produktregel (ηũ)′ = η′ũ+ ηũ′.

(52) Sei Ω ⊆ Rd und u ∈ H1(Ω). Zeige u+ := |u|+u
2 ∈ H1(Ω).

Hinweis: Die schwache Ableitung ∂u+

∂xj
ist gegeben durch χ{u>0}

∂u
∂xj

. Definiere f ∈ C1(R) durch fn(r) :={
(r2 + n−2)1/2 − n−1 für r > 0,
0 für r ≤ 0

und betrachte −
∫

Ω(fn ◦ u(x)) ∂φ∂xj (x) dx mit φ ∈ C1
c (Ω).

(53) Sei Ω eine offene Teilmenge des Rd. Definiere C2
0 (Ω)+ := {f ∈ C2

c (Ω) : f(x) ≥ 0 ∀x ∈ Ω} und
H1

0 (Ω)+ := {f ∈ H1
0 : f(x) ≥ 0 f.ü.}. Eine Funktion f ∈ L2(Ω) heißt subharmonisch, falls gilt

−
∫

Ω f(x)∆φ(x) ≤ 0 für alle φ ∈ C2
0 (Ω)+.

Zeige: Ist u ∈ H1(Ω) subharmonisch und (u− c)+ ∈ H1
0 (Ω), c ∈ R, so gilt u(x) ≤ c für fast alle x ∈ Ω.

Hinweis: Benutze, dass C2
c (Ω)+ dicht in H1

0 (Ω)+ liegt und dass aus ∇f = 0 f.ü. folgt f = 0 f.ü., falls
f ∈ H1

0 (Ω).
Für die nächste Aufgabe benutze das folgende Lemma.

Sei Ω ein offenes Gebiet im Rd und u ∈ H1(Ω). Dann existiert eine Folge un ∈ C1
c (Ω), so dass un → u

in L2(Ω) und ∂un
∂xj
→ ∂u

∂xj
in L2(ω), j = 1, . . . , d, für alle ω ⊂ Ω offen mit kompaktem Abschluss ω ⊂ Ω

(Abschluss bezüglich Rd).
(54) (a) (Kettenregel) Sei f ∈ C1(R) mit f ′(r) ≤M <∞ (und f(0) = 0, falls |Ω| =∞). Sei u ∈ H1(Ω).

Zeige: f ◦ u ∈ H1(Ω) und ∂(f◦u)
∂xj

(x) = f ′(u(x)) ∂u∂xj (x), j = 1, . . . , d.
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(b) (Produktregel) Seien u, v ∈ H1(Ω) und v, ∂v∂xj ∈ L
∞(Ω), j = 1, . . . , d.

Zeige: uv ∈ H1(Ω) und ∂(uv)
∂xj

= u ∂v
∂xj

+ ∂u
∂xj

v, j = 1, . . . , d.
(55) (a) Sei H ein Hilbertraum und a : H ×H 7→ K eine stetige und koerzive Sesquilinearform. Sei C eine

abgeschlossene und konvexe Teilmenge von H und bezeichne mit P die orthogonale Projektion
auf C.
Zeige, dass Rea(u|u − Pu) ≥ 0 für alle u ∈ H äquivalent ist zu Rea(Pu|u − Pu) ≥ 0 für alle
u ∈ H.

(b) Sei a(·|·) jetzt zudem symmetrisch (d.h a(u|v) = a(v|u)).
Zeige, dass a(Pu|Pu) ≤ a(u|u) für alle u ∈ H aquivalent ist zu Rea(u|u−Pu) ≥ 0 für alle u ∈ H.
Welche Äquivalenz lässt sich also in diesem Fall zu Proposition 7.60 aus der Vorlesung hinzufügen?

(c) Sei Ω ein offenes Gebiet im Rd, für das die Poincaré-Ungleichung gilt, und bezeichne mit P+ die
orthogonale Projektion auf L2(Ω)+. Sei a : H1

0 ×H1
0 7→ R mit a(u|v) =

∫
Ω∇u(x)∇v(x) dx. Der

zu a(·|·) gehörige Operator A ist der Laplace-Operator mit Dirichlet-Randbedingungen.
Zeige, dass für jedes f ∈ L2(Ω)+ die Lösung von λu − Au = f , λ > 0, ebenfalls Element von
L2(Ω)+ ist.

(56) (a) Sei H ein Hilbertraum und b : H ×H 7→ R eine stetige und symmetrische Bilinearform.
Zeige, dass für jede Funktion u ∈ C1(R+, H) gilt d

dtb(u(t)|u(t)) = 2b(dudt (t)|u(t)), t ≥ 0.
(b) Sei a : V × V 7→ R eine stetige und symmetrische Bilinearform mit a(u|u) ≥ 0 für alle u ∈ V

und A der zugehörige Operator, wobei der Hilbertraum V dicht und mit stetiger Einbettung in
H liege.
Zeige, dass das Anfangswertproblem auf C2(R+, H)

wtt(t)−Aw(t) = 0 für t ≥ 0, w(0) = u0 ∈ V, wt(0) = u1 ∈ V,

höchstens eine Lösung besitzt, und wende dieses Resultat auf die Wellengleichung an.
(57) Finde die Lagrange-Funktion (a) zur konvektiven Poisson-Gleichung und (b) zur modifizierten Wär-

meleitungsgleichung

(a) ∆u(x) +∇φ(x)∇u(x) = f(x) x ∈ Ω ⊂ Rd, φ, f : Ω 7→ R,

(b)
∂u

∂t
− ε∂

2u

∂t2
=
∂2u

∂x2
(t, x) ∈ (0,∞)× Ω ⊂ R2, ε > 0.

(58) (a) Überprüfe, dass die mit der Lagrange-Funktion

L(x, y, z, j1u) := u2
x(x, y, z) + u2

y(x, y, z)− u2
z(x, y, z) + F (u(x, y, z)), F (·) =

∫ ·
0
f(z) dz,

assoziierte Euler-Lagrange-Gleichung eine nichtlineare Wellengleichung ist.
(b) Zeige, dass die Lösung u : (0,∞) × (0, 1) =: Ω 7→ R der eindimensionalen Wellengleichung

(uxx − utt = 0) mit Neumann-Randbedingungen (ux(t, 0) = ux(t, 1) = 0) und Anfangswer-
ten u(0, ·) = u0(·), ut(0, ·) = u1(·) nicht notwendiger Weise ein Minimum des entsprechenden
Lagrange-Funktionals I(u) =

∫
Ω(u2

x(t, x)−u2
t (t, x)) d(t, x) ist, d.h. finde Anfangswerte u0, u1 und

eine Funktion w, die Rand- und Anfangsbedingungen erfüllt und für die I(w) < I(u) gilt.
)
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(59) Sei p ∈ (1,∞) und betrachte das Lagrange-Funktional

I(u) =

∫
Ω
|∇u(x)|p dx, u ∈ H1

0 (Ω).

Zeige, dass die assoziierte Euler-Lagrange-Gleichung die p-Laplace-Gleichung

∇(|∇u|p−2∇u) = 0

ist und dass die Abbildungen

Tε : x 7→ eεx, u(x) 7→ e
εn−p

p u(eεx), ε ∈ R,
eine variationelle Symmetrie erzeugen.
Leite ferner die zu Tε gehörige Noethersche Divergenzgleichung

d∑
k=1

∂

∂xk

(
φ(x, j1u)

∂L

∂uxk
(x, j1u(x))− L(x, j1u(x))ξk(x, j1u)

)
= 0,

φ(x, j1u) :=
d

dε

∣∣∣∣
ε=0

(
e
εn−p

p u(eεx)
)
, ξk(x, j1u) =

d

dε

∣∣∣∣
ε=0

eεx,

her und überprüfe auch direkt, dass diese aus der p-Laplace-Gleichung folgt.
(60) Betrachte die zweidimensionale Wellengleichung utt−uxx−uyy = 0. Die Vektorfelder rxy := −y∂x+x∂y

(Rotation) und d := x∂x + y∂y + t∂t (Dilatation) erzeugen einparametrische Symmetriegruppen der
Wellengleichung.
Untersuche, ob sie auch variationelle Symmetrien erzeugen.
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Lösungen

(1) Dass u(t, x) = φ(x − ct) die partielle Differenzialgleichung löst, ist äquivalent dazu, dass φ(y) (y =
x − ct) der gewöhnlichen Differenzialgleichung φ′′(y) + cφ′(y) + φ(y) = 0 genügt. Die Nullstellen des
charakteristischen Polynoms dieser gewöhnlichen Differenzialgleichung sind λ1/2 = 1

2(−c ±
√
c2 − 4).

Deren allgemeine Lösung lautet:

φ(y) = C1e
λ1y + C2e

λ2y, falls c2 − 4 > 0

φ(y) = (C1 + C2y)eλ1y, falls c2 − 4 = 0

φ(y) = eαy(C1 cos(βy) + C2 sin(βy)), falls c2 − 4 < 0.

mit α = − c
2 und β = 1

2

√
4− c2. Man muss nun nur noch y durch x− ct ersetzen.

(2) Schreib y = Ax. Dann ist vxi =
∑n

k=1 ak,iuyk und

n∑
i=1

vxixi =
n∑
i=1

n∑
k=1

ak,i

n∑
l=1

al,iuykyl =

n∑
k,l=1

(
n∑
i=1

al,iak,i

)
uykyl =

n∑
k=1

uykyk = 0.

(3) Gleichung für die Charakteristiken: γ′(s) = γ(s), also γ(s) = αes.
Charakteristik durch den Punkt (t, x): γ(s) = xes−t.
Lösung des AWP: u(t, x) = u(0, γ(0)) = u0(xe−t).

(4) Nach Definition einer (klassischen) Lösung, muss u0 zumindest stetig differenzierbar sein.
a) Setze u0 1-periodisch auf ganz R zu ũ0 fort. ũ(t, x) = ũ0(x− ct) ist die Lösung der Transportglei-

chung auf ganz R zum Anfangswert ũ0. Setze für 0 ≤ x ≤ 1

u(t, x) = ũ(t, x) = ũ0(x− ct) = u0(x− ct− bx− ctc).

u(t, x) ist dann die Lösung des Anfangs-Randwertproblems mit periodischen Randbedingungen,
vorausgesetzt ũ0 ist stetig differenzierbar, d.h. u0(0) = u0(1) und u′0(0) = u′0(1).

b) Unter der Bedingung, dass u0(0) = u′0(0) = 0, ist die Lösung gegeben durch

u(t, x) =

{
u0(x− ct), falls x− ct ≥ 0,
0, falls x− ct < 0.

c) Sei o.B.d.A c > 0. Aus 0 = u(t, 1) = u0(1− ct) folgt u0 ≡ 0.
(5) Die Lösungen sind gegeben durch

u(t, x) = u0(x+ 2t) +

∫ t

0
s(x− 2(s− t))2 ds = u0(x+ 2t) +

1

3
t4 +

2

3
xt3 +

1

2
x2t2,

wobei u0 eine stetig differenzierbare Funktion ist.
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(6) Angenommen u(t, x̄) löst ut(t, x̄) = −b̄ ·∇u(t, x̄). Man sucht die Kurven (Charakteristiken) {(s, γ̄(s)) :
s ∈ (a, b)} ⊂ R×Rd, entlang derer u konstant ist, also

0 =
∂u(s, γ̄(s))

∂s
= ut(s, γ̄(s)) + γ̄′(s) · ∇u(s, γ̄(s)),

und erhält die Bedingung γ̄′(s) = b̄. Die Charakteristik durch den Punkt (t, x̄) ist somit γ̄(s) =
x̄+ (s− t)b̄ und die Lösung zum Anfangswert u0 = u(0, x̄) gegeben durch u0(x̄− tb̄). Sei u eine Lösung
der inhomogenen Gleichung ut(t, x̄) = −b̄ · ∇u(t, x̄) + f(t, x̄), dann ist

∂u(s, γ̄(s))

∂s
= ut(s, γ̄(s)) + b̄ · ∇u(s, γ̄(s)) = f(t, x̄)

und u(t, x̄) = u0(x̄− tb̄) +
∫ t

0 f(s, x̄+ (s− t)b̄) ds.
(7)

C(0)f(x) =
1

2
(f(x) + f(x)) = f(x)

2C(t)(C(s)f)(x) = 2C(t)(
1

2
(f(x+ cs) + f(x− cs)))

=
1

2
(f(x+ cs+ ct) + f(x+ cs− ct) + f(x− cs+ ct) + f(x− cs− ct))

= C(s+ t)f(x) + C(t− s)f(x)

(C(s)(S(t)f) + S(s)(C(t)f))(x) =
1

4

∫ x+ct+cs

x−ct+cs
f(y) dy +

1

4

∫ x+ct−cs

x−ct−cs
f(y) dy

+
1

4

∫ x+cs

x−cs
f(z + ct) + f(z − ct) dz

= S(t+ s)f(x)

Vergleiche mit cos(0) = 1, cos(s + t) + cos(t − s) = 2 cos(t) cos(s) und sin(s + t) = cos(s) sin(t) +
sin(s) cos(t).

(8)

∂2

∂t2
(A sin(x− ct) +A sin(x− ct)) = Ac2 sin(x− ct) +Ac2sin(x+ ct) = c2 ∂

2

∂x2
(A sin(x− ct) +A sin(x+ ct))

A sin(x− ct) +A sin(x+ ct) = 2A sin(x) cos(ct)

Aber 2A sin(x) cos(ct) läßt sich nicht durch φ(x + bt) für ein b ∈ R und eine Funktion φ darstellen
(setzt man z.B t = π/2c, so würde folgen φ ≡ 0).

(9)

t(λ, µ) =
µ− λ

2
, x(λ, µ) =

µ+ λ

2
; 0 = vλµ =

1

4
uxx −

1

4c2
utt ⇔ utt = c2uxx

Aus vλµ = 0 folgt vλ(λ, µ) = f(λ) und daraus v(λ, µ) = F (λ) + G(µ), d.h. die allgemeine Lösung der
Wellengleichung ist F (x− ct) +G(x+ ct) mit F,G ∈ C2(R).
Aus den Anfangsbedingungen F (x)+G(x) = u0(x), bzw. F ′(x)+G′(x) = u′0(x) und c(G′(x)−F ′(x)) =
u1(x) erhält man

G′(x) =
1

2
u′0(x) +

1

2c
u1(x), bzw. G(x+ ct)−G(0) =

1

2c

∫ x+ct

0
u1(y) dy +

1

2
u0(x+ ct)− 1

2
u0(0)
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und

F ′(x) =
1

2
u′0(x)− 1

2c
u1(x), bzw. − F (x− ct) + F (0) = − 1

2c

∫ 0

x−ct
u1(y) dy − 1

2
u0(x− ct) +

1

2
u0(0)

) und somit d’Alemberts Formel.
(10) Sei u eine Lösung des Anfangswertproblems, dann gilt

0 =

(
∂2

∂t2
− x2 ∂

2

∂x2
− x ∂

∂x

)
u =

(
∂

∂t
+ x

∂

∂x

)(
∂

∂t
− x ∂

∂x

)
u.

Setze v :=
(
∂
∂t − x

∂
∂x

)
u. Es folgt v(t, x) = v(0, xe−t) =: φ(xe−t) für eine Funktion φ ∈ C1(R) und(

∂
∂t − x

∂
∂x

)
u = φ(xe−t). Die Charakterisik für letztere Gleichung ist γ(s) = xet−s und damit

u(t, x) = u0(xet) +

∫ t

0
φ(xet−se−s) ds.

Aus u1(x) = ut(0, x) = xu′0(x) + φ(x) bzw. φ(x) = u1(x)− xu′0(x) folgt

u(t, x) = u0(xet) +

∫ t

0
−xet−2su′0(xet−2s) + u1(xet−2s) ds =

1

2

(
u0(xet) + u0(xe−t

)
+

1

2

∫ xet

xe−t

1

y
u1(y) dy

und man rechnet leicht nach, dass die so definierte Funktion tatsächlich eine Lösung ist.
(11) Sei t > R. Es ist u(t, x) = 1

2(u0(x− t) + u0(x+ t)) + 1
2

∫ x+t
x−t u1(y) dy und

ut(t, x) = −1

2
u′0(x− t) +

1

2
u′0(x+ t) +

1

2
u1(x+ t) +

1

2
u1(x− t),

ux(t, x) =
1

2
u′0(x− t) +

1

2
u′0(x+ t) +

1

2
u1(x+ t)− 1

2
u1(x− t),

wobei

u′0(x− t) = 0 und u1(x− t) = 0 für x− t < −R und x− t > R,

u′0(x+ t) = 0 und u1(x+ t) = 0 für x+ t < −R und x+ t > R,

also

Ekin =
1

2

(∫ R−t

−R−t
(
1

2
u′0(x+ t) +

1

2
u1(x+ t))2 dx+

∫ R+t

−R+t
(−1

2
u′0(x− t) +

1

2
u1(x− t))2 dx

)
=

1

2

(∫ R−t

−R−t
(
1

2
u′0(x+ t) +

1

2
u1(x+ t))2 dx+

∫ R+t

−R+t
(
1

2
u′0(x− t)− 1

2
u1(x− t))2 dx

)
= Epot.

(12) Definiere

ũ0/1 :=

{
u0/1(x− bxc) falls bxc = 2k,
−u0/1(1− (x− bxc)) falls bxc = 2k + 1,

k ∈ Z.

Dann ist ũ0/1(n) = 0 für alle n ∈ Z und ũ0/1(−x) = −ũ0/1(x) sowie ũ0/1(1− x) = −ũ0/1(1 + x).

u(t, x) :=
1

2
(ũ0(x− t) + ũ0(x+ t)) +

1

2

∫ x+t

x−t
ũ1(y) dy

löst also das Anfangswertproblem mit Dirichletrandbedingungen.
Da limh→+0 u

′′
0(n+ h) = − limh→+0 u

′′(n− h) muss u′′0(0) = u′′0(1) = 0 gelten.
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(13) Definiere

ũ0/1 :=

{
u0/1(x− bxc) falls bxc = 2k,
u0/1(1− (x− bxc)) falls bxc = 2k + 1,

k ∈ Z.

Dann ist ũ0/1(−x) = ũ0/1(x) und ũ0/1(1 − x) = ũ0/1(1 + x), woraus folgt ũ′0(−x) = −ũ0(x) und
ũ′0(1− x) = −ũ′0(1 + x).

u(t, x) :=
1

2
(ũ0(x− t) + ũ0(x+ t)) +

1

2

∫ x+t

x−t
ũ1(y) dy

löst also das Anfangswertproblem mit Neumannrandbedingungen.
Aus der Lösungsformel für u folgt unmittelbar, dass u(t, x) ≥ 0, falls ũ0(x) ≥ 0 und ũ1(x) ≥ 0 für alle
x ∈ R, was äquivalent zu u0(x) ≥ 0 und u1(x) ≥ 0 für alle x ∈ [0, 1] ist.

(14) Seien u und v Lösungen des gegebenen Anfangswertproblems, die die genannten Eigenschaften bzw.
Randbedingungen besitzen, dann hat w := u− v ebenfalls die gewünschten Eigenschaften bzw. Rand-
bedingungen und

wtt(t, x) = ∆w(t, x), (t, x) ∈ R+ × Ω und w(0, x) = 0, wt(0, x) = 0.

Die Energiefunktion von w läßt sich in diesem Fall auch bei nicht beschränktem Ω ableiten, und man
erhält

d

dt
E(t) =

d

dt

(∫
Ω

1

2
|wt(t, x)|2 +

1

2
|∇w(t, x)|2 dx

)
=

∫
Ω∩BR

(wt(t, x)wtt +∇w(t, x) · ∇wt(t, x)) dx+

∫
Ω∩BCR

(wt(t, x)wtt +∇w(t, x) · ∇wt(t, x)) dx

=

∫
Ω∩BR

(wt(t, x)(wtt −∆w(t, x))) dx+

∫
∂(Ω∩BR)

wt(t, y)
∂w

∂n
(t, y) dσ(y)

+

∫
Ω∩BCR

(wt(t, x)wtt +∇w(t, x) · ∇wt(t, x)) dx

=

∫
∂(Ω∩BR)

wt(t, y)
∂w

∂n
(t, y) dσ(y) +

∫
Ω∩BCR

(wt(t, x)wtt(t, x) +∇w(t, x) · ∇wt(t, x)) dx,

wobei BR den Ball mir Radius R um den Nullpunkt und BC
R dessen Komplement bedeutet. Der letzte

Ausdruck geht mit R → ∞ gegen 0, da wxi(t, ·), wxit(t, ·), wt(t, ·), wtt(t, ·) quadrat integrierbar sind
bzw. wt und ∂w

∂n auf ∂Ω verschwinden. D.h. die Energie von w ist wegen E(0) = 0 konstant Null und
damit auch wt(t, x), weshalb w die Nullfunktion ist, woraus u ≡ v folgt.

(15) Induktionsanfang:

d2

d r2
(rφ(r)) = 2φ′(r) + rφ′′(r) =

(
1

r

d

d r

)(
r2 d

d r
φ(r)

)
.
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Induktionsschritt:

d2

d r2

(
1

r

d

d r

)k
(r2k+1φ(r)) =

d2

d r2

(
1

r

d

d r

)k−1(
(2k + 1)r2k−1φ(r) + r2k d

d r
φ(r)

)
=

d2

d r2

(
1

r

d

d r

)k−1(
r2k−1

(
(2k + 1)φ(r) + r

d

d r
φ(r)

))
=

(
1

r

d

d r

)k (
r2k d

d r

(
(2k + 1)φ(r) + r

d

d r
φ(r)

))
=

(
1

r

d

d r

)k (
(2k + 2)r2k d

d r
φ(r) + r2k+1 d

2

d r2
φ(r)

)
=

(
1

r

d

d r

)k+1(
r2k+2 d

d r
φ(r)

)
.

(16) Anfangsbedingungen:
Sei x fest. Schreibe φ0(t) := 1

|∂Bt|
∫
∂Bt(x) u0(z) dσ(z) und φ1(t) := 1

|∂Bt|
∫
∂Bt(x) u1(z) dσ(z). Dann gilt

φ′0/1(t) =
t

(2k + 1)|Bt|

∫
Bt(x)

∆u0/1(y) dy und
dj

dtj
φ0/1(t) =

t2−j

|Bt|

∫
Bt(x)

f(y) dy

mit f ∈ Ck+2−(j+1), j = 1, . . . , k + 1, für φ0 und f ∈ Ck+1−(j+1), j = 1, . . . , k, für φ1.
Lemma 4.6 aus dem Skript liefert

u(t, x) =
1

(2k − 1)!!

d

d t

(2k − 1)!!tφ0(t) +
k−1∑
j=1

βkj t
j+1 d

j

dtj
φ0(t)


+

1

(2k − 1)!!

(2k − 1)!!tφ1(t) +
k−1∑
j=1

βkj t
j+1 d

j

dtj
φ1(t)


= φ0(t) + tφ′0(t) +

1

(2k − 1)!!

k−1∑
j=1

(
(j + 1)βkj t

j d
j

dtj
φ0(t) + βkj t

j+1 d
j+1

d tj+1
φ0(t)

)

+ tφ1(t) +
1

(2k − 1)!!

k−1∑
j=1

βkj t
j+1 d

j

dtj
φ1(t)

 ,

∂

∂t
u(t, x) = 2φ′0(t) + tφ′′0(t) + φ1(t)

+
1

(2k − 1)!!

k−1∑
j=1

c1t
j+1 d

j

dtj
φ0(t) + c2t

j d
j+1

dtj+1
+ c3t

j+1 d
j+2

dtj+2
φ0(t) + c4t

j d
j

dtj
φ1(t) + c5t

j+1 d
j+1

dtj+1

 .

Es folgt limt→0 u(t, x) = limt→0 φ0(t) = u0(x) und limt→0
∂
∂tu(t, x) = limt→0 φ1(t) = u1(x).

Dass u(t, x) tatsächlich eine Lösung ist, wurde schon in der Vorlesung gezeigt.
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(17) Sei M das Maximum von |u0(x)|, |∆u0(x)| und |u1(x)| über alle x ∈ R3 und sei t ≥ 1. Dann gilt

|u(t, x)| = | ∂
∂t

( t

|∂Bt|

∫
∂Bt(x)

u0(z) dσ(z)
)

+
t

|∂Bt|

∫
∂Bt(x)

u1(z) dσ(z)|

= | 1

|∂Bt|

∫
∂Bt(x)∩BR

u0(z) dσ(z) +
t

|∂Bt|

∫
Bt(x)∩BR

∆u0(x) dx+
t

|∂Bt|

∫
∂Bt(x)∩BR

u1(z) dσ(z)|

≤ 1

|∂B1|t2

∫
∂Bt(x)∩BR

M dσ(z) +
t

|∂B1|t2

∫
Bt(x)∩BR

M dx+
t

|∂B1|t2

∫
∂Bt(x)∩BR

M dσ(z)|

≤ M

|∂B1|t
(2|∂BR|+ |BR|) =:

C1

t

Ferner sei u(t, x) ≤ C2 für 0 ≤ t ≤ 1 und ‖x‖ ≤ R+ 1. Mit C := max{C1, C2} folgt dann u(t, x) ≤ C/t
für alle t ≥ 0 und x ∈ R3.

(18)
d

d t
E(t) =

∂

∂t

1

2

∫
Ω
|ut(t, x)|2 + ‖∇u(t, x)‖2 dx =

∫
Ω
ututt +∇ut · ∇u dx

=

∫
Ω
ut(utt −∆u) dx+

∫
∂Ω

∂u

∂n

∂u

∂t
dσ =

∫
∂Ω

∂u

∂n

∂u

∂t
dσ

Die Energie E(t) wächst also für ∂u
∂n = ∂u

∂t und nimmt ab für ∂u
∂n = −∂u

∂t .
(19) Mit E(t) := 1

2

∫
Ω

ρ
c2
|φt(t, x)|2 + ρ‖∇φ(t, x)‖2 dx+ 1

2

∫
∂Ω kδ(t, y)2 +mδt(t, y)2 dσ(y) gilt

d

d t
T (t) =

∫
Ω
ρφt(

1

c2
φtt −∆φ) dx+

∫
∂Ω
ρ
∂φ

∂n

∂φ

∂t
+ kδδt +mδtδtt dσ

=

∫
∂Ω
δt(ρφt + kδ − dδt − kδ − ρφt) dσ =

∫
∂Ω
−dδ2

t dσ ≤ 0.

(20) Man hat T0(t, x, z) = (t, x, z) und

Tδ(Tε(t, x, z)) = Tδ(t, x+ 2εt, e−εx−ε
2tz) = (t, x+ 2εt+ 2δt, e−δ(x+2εt)−δ2te−εx−ε

2tz)

= (t, x+ 2(ε+ δ)t, e−(ε+δ)x−(ε+δ)2tz) = Tε+δ(t, x, z).

Ferner ist A = ( d
d εTε)|ε=0 = (0, 2t,−xz).

(21) Setze t̃ = t, x̃ = x+ 2εt bzw. x = x̃− 2εt̃, dann ist die Funktion ũε gegeben durch

ũ(t̃, x̃) = e−ε(x̃−2εt̃)−ε2 t̃u(t̃, x̃− 2εt̃) = e−εx̃+ε2 t̃u(t̃, x̃− 2εt̃)

und

ũt̃ = e−εx̃+ε2 t̃(ε2u(t̃, x̃− 2εt̃) + ut(t̃, x̃− 2εt̃)− 2εux(t̃, x̃− 2εt̃))

= e−εx̃+ε2 t̃(ε2u(t̃, x̃− 2εt̃) + uxx(t̃, x̃− 2εt̃)− 2εux(t̃, x̃− 2εt̃)) = ũx̃x̃(t̃, x̃).

(22) Da H maximalen Rang am Punkt (x0, jKu0) =: z0 = (z1
0 , . . . , z

n
0 ), n = d+ dK , hat, existiert 0 ≤ i ≤ n

mit ∂H
∂zi

(z0) 6= 0. O.B.d.A. können wir annehmen, dass z0 = 0 und i = 1 ist (z 7→ (zi ↔ z1)(z−z0) ist ein
C∞-Diffeomorphismus). Nach dem Satz über implizite Funktionen existiert daher eine offene Umgebung
U(z0) und eine C∞-Funktion f(z2, . . . , zn) =: f(ẑ) (H ist C∞), so dass H(z) = 0 ⇔ z1 = f(ẑ) (also
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insbesondere z1
0 = f(ẑ0)) und 0 6= ∂H(z)

∂z1
=: h(z) für z ∈ U(z0). Die partiellen Ableitungen von f sind

gegeben durch fi := ∂f
∂zi

(ẑ) = − 1
h(z)

∂H(z)
∂zi

, i = 2, . . . , n und z = (f(ẑ), ẑ). Definiere

y(z) := h(z)(z1 − f(ẑ), z2, . . . , zn) = (y1, . . . , yn) = y.

Da die Determinante der Jacobimatrix

Jy(z) =


hz1z

1 + h− hz1f hz2z
1 − f2h− hz2f · · · hznz

1 − fnh− hznf
hz1z

2 hz2z
2 + h . . . hznz

2

...
. . .

...
hz1z

n . . . . . . hznz
n + h


an der Stelle z = z0(= 0) gleich h(0)n 6= 0 ist, existiert nach dem Satz über inverse Abbildungen
eine Umgebung U ′(0), so dass y ein C∞-Diffeomorphismus von U ′(0) nach V (0) := y(U ′(0)) ist.
Insbesondere ist y(0) = 0 und H(z) geht über in H̃(y) = H(y−1(y)) mit H̃(y) = 0 genau dann, wenn
y1 = 0. Wegen hziz1 − fih− hzif = −fih = ∂H(z)

∂zi
für i = 2 . . . , n folgt

∇H̃(y) = ∇H(z) · (Jy(z))−1 = (1, 0, . . . , 0),

also H̃(y) = y1 für alle y ∈ V (0).
(23) ut(t, x) = cuxx(t, x) ist äquivalent zu H(t, x, u, ut, ux,−utt, uxx, utx) := ut− cuxx = 0 und ∂H

∂ut
= 1, d.h.

die Wärmeleitungsgleichung hat vollen Rang.
(24) a) j3A(t, j3u) = τ(t, u) ∂∂t + φ(t, u) ∂

∂u + φt(t, j1u) ∂
∂ut

+ φtt(t, j2u) ∂
∂utt

+ φttt ∂
∂uttt

φt = Dt(φ− τut) + τutt = (φt + φuut − τtut − τuu2
t − τutt) + τutt = φt + (φu − τt)ut − τuu2

t

φtt = Dt(φt + φuut − τtut − τuu2
t − τutt) + τuttt

= (φtt + (2φut − τtt)ut + (φu − 2τt)utt + (φuu − 2τtu)u2
t − τuuu3

t − 3τuututt −���τuttt) +���τuttt

φttt = Dt(Dt(Dt(φ− τut))) + τutttt

= φttt + (3φttu − τttt)ut + (3φuut − 3τttu)u2
t + (3φut − 3τtt)utt + (3φuu − 9τtu)ututt

+ (φu − 3τt)uttt + (φuuu − 3τtuu)u3
t − 6τuuu

2
tutt − 4τuututtt − τuuuu4

t

b)

φtx = DxDt(φ− τut − ξux) + τutxt + ξutxx

= Dx(φt + φuut − τuu2
t − τutt − ξtux − ξuutux − ξuxt) + τutxt + ξutxx

= φtx + (φtu − ξtx)ux + (φux − τtx)ut + (φuu − τtu − ξux)utux + (φu − τt − ξx)utx

− τuxu2
t − τuuuxu2

t − 2τuututx − τxutt − τuuxutt − ξtuu2
x − ξtuxx − ξuuu2

xut − 2ξuutxux

(25) Betrachte die eindimensionale Transformationsgruppe T = (Tε)ε∈I(x,u) auf J0 = Rd×R. Sei (x̄, j1ū) =

(x̄, ū, ūx1 , . . . , ūxd) ∈ J1 und f(x) : U(x̄) 7→ R mit f(x̄) = ū, ∇f(x̄) = (ūx1 , . . . , ūxd). Schreibe
Tε(x, u) = (Xε(x, u), Uε(x, u)). Dann geht für kleine ε die Funktion f(x), x ∈ V (x̄) ⊆ U(x̄), unter Tε
über in die Funktion f ε(xε) = (Uε ◦ [Id× f ]) ◦ (Xε ◦ [Id× f ])−1(xε). Nach Definition ist

j1A(x̄, j1ū) =
d

d ε
(x̄ε, f ε(x̄ε),∇f ε(x̄ε))|ε=0 = A(x̄, ū)× d

d ε
∇f ε(x̄ε)|ε=0
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und nach Anwendung von Ketten- und Produktregel (J bezeichne die Jacobi-Matrix)
d

d ε
∇f ε(x̄ε)|ε=0 =

d

d ε

(
J(Uε ◦ [Id× f ])(x̄) · (J(Xε ◦ [Id× f ]))−1(x̄)

)
ε=0

=
d

d ε
(J(Uε ◦ [Id× f ])(x̄)) |ε=0 · (J(X0 ◦ [Id× f ])−1(x̄)

+ J(U0 ◦ [Id× f ])(x̄) · d
d ε

(
J(X0 ◦ [Id× f ]))−1(x̄)

)
|ε=0

=
d

d ε
(J(Uε ◦ [Id× f ])(x̄)) |ε=0 −∇f(x̄) · d

d ε
(J(Xε ◦ [Id× f ])(x̄)) |ε=0

= J(
d

d ε
(Uε ◦ [Id× f ])(x̄)|ε=0)−∇f(x̄) · J(

d

d ε
(Xε ◦ [Id× f ])(x̄)|ε=0)

=
(
Dxiφ(x̄, f(x̄))−

d∑
l=1

uxlDxiξl(x̄, f(x̄))
)
i=1,...,d

,

wobei benutzt wurde, dass J(X0 ◦ [Id × f ]))−1(x̄) die Einheitsmatrix ist und für jede invertierbare
Matrix M(ε) gilt d

d εM
−1(ε)|ε=0 = −M−1(0) · dd εM(ε)|ε=0M

−1(0). Ferner hat man

Dxiφ(x̄, f(x̄))−
d∑
l=1

uxlDxiξl(x̄, f(x̄)) = Dxi(φ(x̄, f(x̄))−
d∑
l=1

ξl(x̄, f(x̄))uxl) +

d∑
l=1

ξl(x̄, f(x̄))uxixl .

(26) Sei x0 ∈ Rd, u0 ∈ Rl und f = (f1, . . . , fd) : U(x0) 7→ Rl mit f(x0) = u0, (Tε)ε∈I(x,f(x) eine einparame-
trische Transformationsgruppe auf J0 ≈ Rd ×Rl. Schreibe Tε =: (Xε, Uε). Dann gilt

Uε(x, f(x)) = (Uε ◦ [Id× f ])(x) und Xε(x, f(x)) = (Xε ◦ [Id× f ])(x) für alle x ∈ U(x0).

Ferner ist X0(x, f(x)) = (X0 ◦ [Id × f ])(x) = x und daher det J(X0(x, f(x))) = 1. Auf Grund der
stetigen Abhängigkeit von det J(Xε(x, f(x))) bezüglich ε existiert δ′ > 0, so dass det J(Xε(x, f(x))) 6= 0
für alle δ ≤ δ′. Nach dem Satz über inverse Funktionen ist (Xε ◦ [Id× f ]), δ ≤ δ′, invertierbar auf einer
offenen Umgebung Vδ(x0), und man erhält f δ(xδ) = (Uδ ◦ [Id× f ]) ◦ (Xδ ◦ [Id× f ])−1(xδ).

(27) Sei x0 ∈ Rd, u0 ∈ Rl und f = (f1, . . . , fd) : U(x0) 7→ Rl mit f(x0) = u0, (Tε)ε∈I(x,f(x) eine einparame-
trische Transformationsgruppe auf J0 ≈ Rd ×Rl.
Schreibe Tε =: (Xε, Uε) = (X1

ε , . . . , X
d
ε , U

1
ε , . . . , U

l
ε).

(j1Tε)(x0, j1f(x0)) besteht neben den Komponenten von xε0 und f ε(xε0) aus den Einträgen ∂fεi
∂xεj

(xε0),
j = 1, . . . , d und i = 1, . . . , l, d.h. mit Aufgabe 1 aus den Einträgen der Matrix

J((Uδ ◦ [Id× f ]) ◦ (Xδ ◦ [id× f ])−1(xδ)) = J(Uε(x0, f(x0))) · J−1(Xε(x0, f(x0))), (B.1)

wobei die Komponenten der ersten Matrix auf der rechten Seite von der Form ∂U iε
∂xj

(x0, f(x0)) +∑l
m=1

∂U iε
∂fm

(x0, f(x0))∂fm∂xj (x0) sind, also nur von x0, f(x0) und den Ableitungen erster Ordnung von f
an der Stelle x0 abhängen, und genauso die Komponenten der zweiten Matrix.
Es hänge nun jkTε nur von x0, f(x0) und den Ableitungen der Ordnung ≤ k von f an der Stelle x0 ab.
Fasse jkf =: f̄ als Abbildung von U(x0) nach Rldk auf und gemäß Induktionsvoraussetzung jkTε =: T̄ε
als Transformationsgruppe auf J̄0 := Jk. Dann hängt j1T̄ε(x0, j1f̄(x0)) nur von den Ableitungen ≤ 1
von f̄ an der Stelle x0 ab, also von den Ableitungen ≤ k+ 1 von f an der Stelle x0. Da sich jede Kom-
ponente von (jk+1Tε)(x0, f(x0)) auch in (j1T̄ε)(x0, f̄(x0)) wiederfindet, ist die Behauptung bewiesen.
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(28) Aus (1) folgt sofort

(j1Tθ)(x, u, ux) = (x cos θ − u sin θ, x sin θ + u cos θ, (sin θ + ux cos θ)(cos θ − ux sin θ)−1)),

also I = (−|arccotux|, |arccotux|), und nach Ableiten bezüglich θ an der Stelle θ = 0

(j1A)(x, u, ux) = (−u, x, 1 + u2
x).

(29) Sei v = τ ∂
∂y + ξ ∂

∂x + φ ∂
∂u ein Vektorfeld auf J0. v erzeugt genau dann eine Symmetriegruppe, wenn

(j2(v)(uxx + uyy) = φyy + φxx = 0 gilt, wann immer uyy = −uxx. Man erhält

1. (1) : φxx = −φyy, 2. (ux) : 2φxu − ξxx = ξyy, 3. (uy) : −τxx = −2φyu + τyy,

4. (u1
x) : φuu − 2ξxu = 0, 5. (u2

y) : 0 = −φuu + 2τyu, 6. (uxuy) : −2τux = 2ξuy,

7. (u3
x) : −ξuu = 0, 8. (u3

y) : 0 = τuu, 9. (u2
xuy) : −τuu = 0,

10. (uxu
2
y) : ξuu = 0, 11. (uxx) : φu − 2ξx = φu − 2τy, 12. (uxy) : −2τx = 2ξy,

13. (uxuxx) : −3ξu = −ξu, 14. (uyuxx) : −τu = −3τu,

15. (uxuyx) : −2τu = 0, 16. (uyuxy) : −2ξu = 0.

Aus 15. oder 14. bzw. 16. oder 13. folgt, dass τ(y, x) bzw. ξ(y, x) nicht von u abhängen.
6., 7., 8., 9. und 10. geben keine weiteren Informationen.
4. und 5. werden zu φuu = 0, was bedeutet φ = b(y, x)u+ a(y, x).
11. ergibt ξx = τy und 12. −τx = ξy, woraus folgt ξxx = τyx = −ξyy und τyy = ξxy = −τxx, d.h. ξ und
τ müssen die Laplace-Gleichung erfüllen.
2. verwandelt sich damit in 0 = φux = by und 3. in 0 = φuy = by, weshalb b eine Konstante ist.
Aus 1. erhält man noch, dass a(y, x) eine beliebige Lösung der Laplace-Gleichung ist.
Z.B. liefert die Wahl τ bzw. ξ konstant Translationen, die Wahl τ = y und ξ = x Streckungen und
die Wahl τ = −x und ξ = y Drehungen, während die Vektorfelder (u + a(y, x))∂u die Linearität der
Laplace-Gleichung widerspiegeln.

(30)

φxx = DxDx(φ− τut − ξux) + τuxxt + ξuxxx

= Dx

(
φx + φuux − (τx + τuux)ut − τutx − (ξx + ξuux)ux − ξuxx

)
+ τuxxt + ξuxxx

= φxx + (2φxu − ξxx)ux − τxxut + (φu − 2ξxu)u2
x − 2τxuuxut − ξuuu3

x − τuuu2
xut

+ (φu − 2ξx)uxx − 2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxutx.

(31) Φxi = −xi
2t

1

(4πt)
d
2
e
−‖x‖2

4t , Φxixi =
(
x2i
4t2
− 1

2t

)
1

(4πt)
d
2
e
−‖x‖2

4t

∆Φ =
(‖x‖2

4t2
− d

2t

)
1

(4πt)
d
2
e
−‖x‖2

4t = Φt.

(32) Seien u und w zwei Lösungen der Wärmeleitungsgleichung zu gegebenen Rand- und Anfangsbedingun-
gen. Dann ist v := u−w eine Lösung mit Anfangswert v(0, ·) ≡ 0 und Randbedingung v(t, y) = 0 bzw.
∂v
∂n(t, y) = 0 für alle t ≥ 0 und y ∈ ∂Ω.
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Definiere E(t) := 1
2

∫
Ω(∇v(t, x))2 dx. Man erhält

d

d t
E(t) =

∫
Ω
∇v(t, x) · ∇vt(t, x) dx = −

∫
Ω

(∆v(t, x))vt(t, x) dx+

∫
∂Ω

∂v(t, y)

∂n
vt(t, y) dσ(y)

= −
∫

Ω
v2
t (t, x) dx ≤ 0.

Es folgt 0 ≤ E(t) ≤ E(0) = 0, was bedeutet, dass v(t, ·) konstant in x und wegen vt = ∆v auch
konstant in t ist, weshalb gilt v(·, ·) ≡ Konstante. Aus v(0, ·) ≡ 0 ergibt sich die Behauptung.

(33)

v(wf)−w(vf) =

d∑
j=1

d∑
i=1

(
ξj
∂ηi
∂xj

∂f

∂xi
+ ξjηi

∂2f

∂xi∂xj

)
−

d∑
j=1

d∑
i=1

(
ηj
∂ξi
∂xj

∂f

∂xi
+ ηjξi

∂2f

∂xi∂xj

)

=
d∑
i=1

 d∑
j=1

ξj
∂ηi
∂xj
− ηj

∂ξi
∂xj

 ∂f

∂xi
.

(34) (a) ‖x+ y‖2 = 〈x+ y , x+ y〉 = 〈x , x〉+ 〈x , y〉+ 〈y , x〉+ 〈y , y〉 = ‖x‖2 + ‖y‖2.
(b) ‖x+ y‖2 + ‖x− y‖2 = 2〈x , x〉+ 2〈y , y〉 = 2‖x‖2 + 2‖y‖2.
(c) ‖x+ y‖2 − ‖x− y‖2 = 2〈x , y〉+ 2〈y , x〉 = 4〈x , y〉+ 〈y , x〉 falls K = R.
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2 = 2〈x , y〉+ 2〈y , x〉+ 2i〈x , iy〉+ 2i〈iy , x〉

= 2〈x , y〉+ 2〈y , x〉+ 2〈x , y〉 − 2〈y , x〉 = 4〈x , y〉 falls K = C.
(d) (A⊥)⊥ = {y ∈ H : 〈x , y〉 = 0 ∀x ∈ A⊥} ⊇ A.
(e) x ∈ H⊥ ⇒ 〈x , x〉 = 0 ⇒ x = 0.

(35) Einfaches Berechnen der jeweiligen Stammfunktion liefert:∫ 1
0 1 · cos(2πnx) dx = 0;

∫ 1
0 cos(2πnx)sin(2πmx) dx = 0, n,m ≥ 1;∫ 1

0 cos(2πnx) cos(2πmx) dx = 0 =
∫ 1

0 sin(2πnx) sin(2πmx) dx, n,m ≥ 1, n 6= m;∫ 1
0 sin(2πnx) sin(2πnx) dx = 1

2 =
∫ 1

0 cos(2πnx) cos(2πnx) dx, n ≥ 1;∫ 1
0 e

2nπxe−2mπx dx =
∫ 1

0 e
2(n−m)πx dx, was 0 für n 6= m und 1 für n = m ergibt, n,m ∈ Z.

Sei nun f orthogonal zu jedem en ∈ {e2nπi· : n ∈ Z}, dann ist wegen 0 =
( ∫ 1

0 f(x)e−2nπx dx
)−

=∫ 1
0 f̄(x)e2nπx dx auch die Konjugierte f̄ orthogonal zu jedem en, also insbesondere auch 1

2(f + f̄) =

Re(f) =: g ∈ L2(0, 1;R) und 1
2i(f − f̄) = Im(f) =: h ∈ L2(0, 1;R). Es folgt

0 =

∫ 1

0
g(x)e−2nπx dx =

∫ 1

0
g(x) cos(−2nπx) dx+ i

∫ 1

0
g(x) sin(−2nπx) dx, n ∈ Z

und insbesondere
∫ 1

0 g(x) cos(2nπx) dx = 0 und
∫ 1

0 g(x) sin(2nπx) dx = 0 für alle n ≥ 0 . Da {1,
√

2 cos(2πn·),
√

2 sin(2πm·) :

n,m = 1, 2, 3, . . .} eine Basis von L2(0, 1;R) ist, muss g = 0 sein und ebenso h = 0, also f = 0, woraus
sich die Behauptung ergibt.

(36) Es existiert genau dann eine Lösung der Form v(t)w(x), wenn vt(t)w(x) − vγ(t)∆wγ(x) = 0. D.h. es
muss gelten

vt(t)

vγ(t)
= µ =

∆wγ(x)

w(x)
für alle t, x mit v(t), w(x) 6= 0.
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Für v erhält man die gewöhnliche Differentialgleichung vt(t) = µvγ(t) mit Lösung v(t) =
(
(1− γ)µt+

λ
) 1

1−γ .
Für w erhält man die Gleichung µw(x) = ∆wγ(x) und mit dem Ansatz w(x) = |x|α (| · | euklidische
Norm)

µ|x|α = ∆|x|αγ = γα
(
d+ γα− 2

)
|x|αγ−2,

woraus folgt α = 2
γ−1 > 0 und µ = αγ(d + γα − 2) > 0. Man wähle also λ > 0. Als Lösung der

Porösen-Medien-Gleichung ergibt sich u(t, x) =
(
(1 − γ)µt + λ

) 1
1−γ |x|

2
γ−1 , d.h. für x 6= 0 strebt die

Lösung gegen ∞ wenn t gegen λ
(γ−1)µ geht.

(37) Alle Eigenwerte sind echt größer Null wegen

λ

∫ l

0
f(x)f̄(x) dx = −

∫ l

0
f ′′(x)f̄(x) dx =

∫ l

0
f ′(x)f̄ ′(x) dx− f ′(l)f̄(l) + f ′(0)f̄(0)

=

∫ l

0
f ′(x)f̄ ′(x) dx+ blf(l)f̄(l) + b0f(0)f̄(0) > 0 für f 6= 0,

und zwei Eigenvektoren zu verschiedenen Eigenwerten stehen orthogonal aufeinander wegen

λ

∫ l

0
f(x)ḡ(x) dx =

∫ l

0
−f ′′(x)ḡ(x) dx =

∫ l

0
f ′(x)ḡ′(x) dx+ blf(l)ḡ(l) + b0f(0)ḡ(0)

= −
∫ l

0
f(x)ḡ′′(x) dx = µ

∫
f(x)ḡ(x) dx.

Es folgt (λ− µ)
∫ l

0 f(x)ḡ(x) dx = 0 und damit auch
∫ l

0 f(x)ḡ(x) dx = 0.
(38) Wenn

∑
n∈N xn konvergiert, gilt ‖

∑N
i=1 xi‖2 ≤M für alle N ≥ 1 und M ≥ 0 konstant.

Also 〈
∑N

i=1 xi,
∑N

i=1 xi〉 =
∑N

i=1 ‖xi‖2 ≤M für alleN ≥ 1. Umgekehrt erkennt man aus voranstehender
Gleichung, dass (

∑N
i=1 xi)N∈N eine Cauchyfolge in H ist, falls (

∑N
i=1 ‖xi‖2)N∈N eine Cauchyfolge in

K ist.
(39) Man zeigt zuerst jk[v,w] = [jkv, jkw]: Für k = 1 läßt sich die Aussage (auch im Falle mehrerer abhän-

giger Variablen) direkt nachrechnen (sehr langwierig) und für k > 1 kann man per Induktion schließen,
in dem man die Komponenten der Form uJ , |J | ≥ 1, von Jk−1 als neue, abhängige Variablen auf-
fäßt, dann die Behauptung für k = 1 anwendet und schließlich die auf J1(Jk−1) lebenden Vektorfelder
j1(jk−1(v)) usw. auf den Unterraum Jk ⊂ J1(Jk−1) einschränkt.
Damit erhält man (jk[v,w])H(·) = (jkv)(jkwH(·)) − (jkw)(jkvH(·)). Nun sind (jkw)H =: Hw und
(jkv)H =: Hv konstant Null auf der Menge H := {y ∈ Jk : H(y) = 0} . Da v und w Symmetriegrup-
pen von H erzeugen, verläuft der durch jkv bzw. jkw gegebene Fluß ganz in H, falls der Startwert in
H liegt, weshalb (jkv)Hw(y) = 0 und (jkw)Hv(y) = 0, wann immer y ∈ H. Also (jk[v,w])H(y) = 0
für alle y mit H(y) = 0.

(40) [Ai, Ai] = 0 und [Ai, Aj ] = −[Aj , Ai].
[A1, A2] = 2∂t = 2A1, [A1, A3] = 8t∂t + 4x∂x − 2u∂u = 4A2 − 2A6, [A1, A4] = 0,
[A1, A5] = 2∂x = 2A4, [A1, A6] = 0,

[A2, A3] = 8t2∂t + 8xt∂x − 2(2t+ x2)u∂u = 2A3, [A2, A4] = −∂x = −A4,
[A2, A5] = 2t∂x − xu∂u = A5, [A2, A6] = 0,

[A3, A4]− 4t∂x + 2xu∂u = −2A5, [A3, A5] = 0, [A3, A6] = 0,
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[A4, A5] = −u∂u = −A6, [A4, A6] = 0, [A5, A6] = 0.
(41) Falls H(x, jku) =: H(y) 6= 0, existiert eine Umgebung Uy von y mit H(·) 6= 0 auf Uy und (jkA)H(·) =

Qy(·)H(·) auf Uy mit Qy(·) = (jkA)H(·)/H(·).
Falls H(y) = 0, existiert eine Umgebung Uy und ein lokaler Koordinatenwechsel z, so dass z(y) = 0

und H̃(z) = H(z−1(z)) = z1 für alle z ∈ z(Uy). In diesen Koordinaten geht (jkA)H(y′) über in
(jkA)H̃(z′) = q1(z′) ∂H̃∂z1 + q2(z′) ∂H̃∂z2 + · · · = q1(z′), z′ = z(y′), was nach Voraussetzung gleich Null ist
für alle z′ ∈ z(Uy) mit z′1 = 0, weshalb die Funktion q1(z′)/z′1 = (jkA)H̃(z′)/H̃(z′) auf z(Uy) (q1 ist
stetig differenzierbar) wohldefiniert ist. Setze Q̃y = (jkA)H̃(z′)/H̃(z′), d.h.(jkA)H(y′) = Qy(y

′)H(y′)

für alle y′ ∈ Uy mit Qy(y′) = Q̃y(z(y′)).
Wähle nun eine der offenen Überdeckung (Qy)y∈Jk von Jk untergeordnete Zerlegung der Eins (fy)y∈Jk .
Dann ist (jkA)H(y′) =

∑
y∈Jk fy(y

′)(jkA)H(y′) =
∑

y∈Jk fy(y
′)Qy(y

′)H(y′) = Q(y′)H(y′) für alle
y′ ∈ Jk mit Q(y′) :=

∑
y∈Jk fy(y

′)Qy(y
′).

(42) iii)⇒ i), ii): Sei y ∈ A2. Dann ist P1y = P1P2y = P2P1y ∈ A2. ii) folgt auf gleiche Weise.
i)⇒ ii): Sei x ∈ A1, also x = P1x. Es gilt:

0 ≤ ‖P1P2x− P2x‖2 = 〈P1P2x− P2x, P1P2x− P2x〉
= 〈P1P2x− P2P1x, P1x− P2P1x〉+ 〈P1P2x− P2x, P1P2x− P1x〉 ≤ 0.

Also P2x = P1P2x ∈ A1. Und ebenso ii)⇒ i).
i), ii)⇒ iii) ist falsch. Gegenbeispiel: Sei A1 := {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1} und A2 := A1 ∪ {(x, y) ∈
R2 : 0 ≤ x ≤ 1, 1 ≤ y ≤ 2 − |x|}, z := (1, 2). Dann sind i) und ii) erfüllt, aber P2P1z = (1, 1) und
P1P2z = (1/2, 1).

(43) (a) Jede Konvexkombination von Elementen f und g aus A1 bzw. A2 ist mindestens an den Stellen
gerade bzw. positv, an denen sowohl f als auch g gerade bzw. positiv sind, also fast überall. Eine
Cauchyfolge (fn)n∈N in L2(R) konvergiert fast überall punktweise gegen eine Funktion f ∈ L2(R).
Sei nun fn ∈ A1 bzw. fn ∈ A2 für alle n ∈ N. Sei Nf die Ausnahmemenge, auf der fn nicht
punktweise konvergiert, und seien Nn, n ∈ N, die Mengen, auf denen fn nicht gerade bzw. nicht
positiv ist, dann hat N := Nf ∪ (∪n∈NNn) Maß Null und die Grenzfunktion f ist zumindest
außerhalb von n gerade bzw. positiv.

(b) Sei f ∈ L2(R) und g ∈ A1, o.B.d.A. sei g überall gerade. Dann ist
∫
R

(g(x) − f(x))2 dx =∫∞
0 (g(x)− f(x))2 + (g(x)− f(−x))2 dx und der Ausdruck (g(x)− f(x))2 + (g(x)− f(−x))2 wird
punktweise durch g = PA1f(x) minimiert.
Sei f ∈ L2(R) und g ∈ A2, o.B.d.A. sei g überall positiv. (g(x) − f(x))2 wird punktweise durch
g(x) = PA2f(x) minimiert.

(44) (b) Definiere y = Pyx und z = x−y. Sei u ∈ Y beliebig. Dann gilt Re〈z, u〉 = Re〈x−y, (y+u)−y〉 ≤ 0
undRe〈z, u〉 = Re〈x−y, y−(y−u)〉 ≥ 0, also istRe〈z, u〉 = 0 und ebenso Im〈z, u〉 = Re〈z, iu〉 = 0,
weshalb z ∈ Y ⊥. Weiter gilt für alle w ∈ Y ⊥: Re〈x− z, w − z〉 = Re(〈y, w〉+ 〈y − 0, y − x〉) ≤ 0,
also z = PY ⊥x.
Aus x = y′ + z′ mit y′ ∈ Y und z′ ∈ Y ⊥ folgt 0 = ‖y + z − y′ − z′‖2 = ‖y − y′‖2 + ‖z − z′‖2, also
Eindeutigkeit.

(a) Sei 0 6= x ∈ H beliebig und 0 6= a ∈ Y . Dann ist ‖PY x‖‖x‖ = ‖PY x‖
‖PY x+P

Y⊥x‖
≤ 1 und ‖PY a‖‖a‖ = 1, also

‖PY ‖ = 1. Ferner folgt aus (b) sofort: PY x = 0 ⇔ x ∈ Y ⊥.
(45) Wir suchen eine Lösung der Gestalt v(t)w(x). Nach Einsetzen in die Wärmeleitungsgleichung erhält

man die Bedingung vt(t)
v(t) = −µ = wxx(x)

w(x) , was zu den gewöhnlichen Dfgl. vt(t) = −µv(t) mit allgemeiner
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Lösung v(t) = αµe
−µt und wxx = −µw(x) mit Randbedingungen w(0) = 0 und −w(l) = w′(l) führt.

Nach Aufgabe 4 von Blatt 10 muss µ > 0 sein (µ = 0 liefert die triviale Lösung). D.h. die allgemeine
reelle Lösung ist w(x) = A sin(

√
µx) + B cos(

√
µx). Aus w(0) = 0 folgt B = 0 und aus −w(l) = w′(l)

folgt − sin(
√
µl) =

√
µ cos(

√
µl), also −√µ = tan(

√
µl). Letztere Gleichung hat genau eine Lösung√

µk in jedem Intervall [k( π2l ), (k + 2)( π2l )] mit k ≥ 1 ungerade. D.h. man erhält die Reihendarstellung∑
k αµke

−µkt sin(
√
µx).

(46) a) Seien a, b ∈ A und λ, µ ∈ K. Sei PA linear. Dann ist λa+ µb = λPAa+ µPAb = PA(λa+ µb) ∈ A.
Sei A ein Unterraum, λc = b ∈ A beliebig, λ ∈ K, und x, y ∈ H. Dann ist

Re〈λx− λPAx, b− λPAx〉 = |λ|2Re〈x− PAx, c− PAx〉 ≤ 0,

also PA(λx) = λPAx; und

Re〈x+ y − PAx− PAy, b− PAx− PAy〉 = Re〈x− PAx, (b− PAy)− PAx〉+Re〈y − Py, (b− PAx)− Py〉 ≤ 0,

also PA(x+ y) = PAx+ PAy.

b) ‖PAx− PAy‖2 = Re〈PAx− PAy, x− y〉+Re〈PAx− PAy, PAx− x〉+Re〈PAx− PAy, y − PAy〉
≤ Re〈PAx− PAy, x− y〉 ≤ ‖PAx− PAy‖‖x− y‖

(47) Sein g1, g2 ∈ L2(I) und
∫
I g1(x)h(x) dx =

∫
I f(x)h′(x) dx =

∫
I g2(x)h(x) dx, also∫

I(g1 − g2)(x)h(x) dx = 0 für alle h ∈ C1
c (I). Sei (hn)n∈N eine Folge in C1

c (I), die gegen g1 − g2

konvergiert. Dann gilt 0 = limn→∞〈g1 − g2, hn〉L2 = 〈g1 − g2, g1 − g2〉L2 , also g1 = g2.
(48) Betrachte die Folge (fn)n≥2 in C0(0, 1) mit

fn(x) =

 0 für 0 < x ≤ 1/2− 1/n,
n/2(x− 1/2 + 1/n) für 1/2− 1/n ≤ x ≤ 1/2 + 1/n,
1 für 1/2 + 1/n ≤ x < 1.

(fn) konvergiert in L2(0, 1) gegen die Funktion f 6∈ C0(0, 1) mit f(x) = 0 für 0 < x ≤ 1/2 und f(x) = 1
für 1/2 < x < 1.
Betrachte die Folge (gn)n∈N in C1(0, 1) mit gn(x) = |x − 1/2|1+1/n. (gn) konvergiert bezüglich der
H1-Norm gegen g 6∈ C1(0, 1) mit g(x) = |x− 1/2|.

(49) a) Sei ψ ∈ C1
c (I) fest mit

∫ b
a ψ(x) dx = 1. Sei w ∈ C1

c (I) beliebig. Definiere v(x) =
∫ x
a w(z) −

ψ(z)
(∫ b

a w(y) dy
)
dz. Dann ist wegen

∫ b
a ψ(x) dx = 1 auch v(x) ∈ C1

c (I); und v′(x) = w(x) −

ψ(x)
∫ b
a w(y) dy. Man erhält mit dem Satz von Fubini

0 =

∫ b

a
f(x)v′(x) dx =

∫ b

a
f(y)w(y) dy −

∫ b

a
f(x)ψ(x)

(∫ b

a
w(y) dy

)
dx

=

∫ b

a

(
f(y)−

∫ b

a
f(x)ψ(x) dx

)
w(y) dy.

Da w ∈ C1
c (I) beliebig war, folgt f(y) =

∫ b
a f(x)ψ(x) dx konstant fast überall.

b) Aus g ∈ L2(I) folgt G ∈ C(Ī). Definiere die Indikatorfunktion χ(x, t) :=

{
1 für x ≥ t,
0 für x < t

Dann gilt
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mit dem Satz von Fubini∫ b

a
G(x)h′(x) dx =

∫ b

a

(∫ x

a
g(t) dt

)
h′(x) dx =

∫ b

a

∫ b

a
χ(x, t)g(t)h′(x) dt dx

=

∫ b

a
g(t)

(∫ b

t
h′(x) dx

)
dt = −

∫ b

a
g(t)h(t) dt.

c) Sei f ∈ H1. Definiere F :=
∫ x
a f
′(x) dx ∈ C(Ī). Dann ist

∫ b
a f(x)h′(x) dx = −

∫ b
a f
′(x)h(x) dx =∫

F (x)h′(x) dx, also
∫ b
a (F − f)(x)h′(x) dx = 0 für alle h ∈ C1

c (I). Mit a) folgt dann f − F = c f.ü.,
c ∈ R, also f = F + c ∈ C(Ī) fast überall.
Sei nun f ∈ C([0, 1]) ∩H1(0, 1). Es ist ‖f‖C([0,1]) = maxx∈[0,1] |f(x)| =: M . Betrachte auf H1(0, 1) die

äquivalente Norm ‖f‖ :=
√∫ 1

0 f
2(x) dx +

√∫ 1
0 (f ′(x))2 dx ≤

√
2‖f‖H1 . Sei y ∈ [0, 1] mit |f(y)| = M

und o.B.d.A. f(y) = M . Sei m := max{minx∈[0,1] f(x), 0} und z ∈ [0, 1] mit f(z) = m. Dann folgt mit
der Hölder-Ungleichung

‖f‖ =

√∫ 1

0
f2(x) dx

√∫ 1

0
12 dx+

√∫ 1

0
(f ′(x))2 dx

√∫ 1

0
12 dx ≥

∫ 1

0
|f ′(x)| dx+

∫ 2

0
|f(x)| dx

≥ |
∫ y

z
f ′(x) dx|+m = M −m+m = M.

Also ‖f‖C([0,1]) ≤ ‖f‖ ≤
√

2‖f‖H1 .
(50) a) T beschränkt, d.h ‖Tx‖H2/‖x‖H1 ≤M <∞, ∀x 6= 0. ⇒ ‖Tx1 − Tx2‖H2 = ‖T (x1 − x2)‖H2 ≤

M‖x1 − x2‖H1 ⇒ Lipschitz-stetig ⇒ stetig, d.h. ∃δ > 0 : ‖Tx− T~0‖H2 ≤ 1, ∀x : ‖x‖H1 ≤ δ
⇒ ‖Tx‖H2 ≤ 1/δ, ∀x : ‖x‖H1 ≤ 1.
b) Der Abstand in der L2-Norm zu einer Funktion f ∈ L2(Ω) wird minimiert durch diejenige konstante
Funktion, für die

g(c) :=

∫
Ω

(f(x)− c)2 dx =

∫
Ω
f2(x) dx− 2c

∫
Ω
f(x) dx+ |Ω|c2

minimal ist. Es folgt Pkonst.f = 1/|Ω|
∫

Ω f(x) dx.
(51) (η ∈ C1

c (0,∞) ∩ H1(0,∞)) Sei η̂ die Einschränkung von η auf (0, 1). Mit φ ∈ C1
c (0, 1) ist auch

η̂φ ∈ C1
c (0, 1). Es folgt

−
∫ 1

0
u′(x)(η̂(x)φ(x)) dx =

∫ 1

0
u(x)η̂′(x)φ(x) dx+

∫ 1

0
u(x)η̂(x)φ′(x) dx

für alle φ ∈ C1
c (0, 1) und damit (uη̂)′ = u′η̂ + uη̂′ und uη̂ ∈ H1(0, 1).

Sei nun φ ∈ C1
c (0,∞) und φ̃ ∈ C1

c (0, 1) mit φ̂(x) = φ(x) für x ≤ 1 − ε und φ̂(x) = 0 für x ≥ 1 − ε/2
(dazwischen z.B. durch ein Polynom vom Grad ≥ 3 interpoliert). Dann ist

∫∞
0 ũ(x)η(x)φ′(x) dx =∫ 1

0 u(x)η̂(x)φ̂(x) dx = −
∫ 1

0 (u′(x)η̂(x) + u(x)η̂′(x))φ̂(x) dx = −
∫∞

0 (ũ′(x)η(x) + u(x)η′(x) dx.

(52) (u+ und ∇u+ ∈ L2(Ω) ist klar). Da fn ∈ C1(R), fn(0) = 0 und f ′n(r) = r(r2 + n−2)−1/2 ≤ 1 gilt, ist
mit u ∈ H1(Ω) auch fn ◦ u ∈ H1(Ω) (Kettenregel). Es folgt

−
∫

Ω
fn(u(x))

∂φ

∂xj
(x) dx =

∫
Ω
χu>0u(x)(u2(x) + n−2)−1/2 ∂u

∂xj
(x)φ(x) dx
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und mit dem Satz von Lebesgue nach Grenzübergang auf beiden Seiten

−
∫

Ω
u(x)

∂φ

∂xj
(x) dx =

∫
Ω
χu>0

∂u

∂xj
(x)φ(x) dx für alle φ ∈ C1

c (Ω).

(53) Es gilt für alle φ ∈ C1
c (Ω)+:

0 ≥ −
∫

Ω
u(x)∆φ(x) dx =

∫
Ω
∇u(x)∇φ(x) dx =

∫
Ω
∇(u− c)(x)∇φ(x) dx.

Da C1
c (Ω)+ dicht in H1

0 (Ω)+ liegt, gilt obige Gleichung auch für (u− c)+ ∈ H1
0 (Ω)+, d.h.

0 ≥
∫

Ω
∇(u− c)(x)∇(u− c)+(x) dx =

∫
Ω
∇(u− c)+(x)∇(u− c)+(x) dx,

was bedeutet ∇(u− c)+ = 0 f.ü., woraus folgt (u− c)+ = 0 f.ü., also u ≤ c fast überall.
(54) (a) Es gilt |f(r)| ≤ f(0) +Mr. Es folgt∫

Ω
(f ◦ u)2(x) dx ≤

∫
Ω
|f(0) +Mu(x)|2dx ≤ 2

∫
Ω
f2(0) dx+ 2M2

∫
Ω
u2(x) dx <∞,

also (f ◦ u) ∈ L2(Ω); und∫
Ω

(f ′(u(x))
∂u(x)

∂xj
dx ≤M2

∫
Ω

(
∂u(x)

∂xj
dx <∞, j = 1, . . . , d.

Sei nun un ∈ C1
c (Ω) eine Folge wie im Lemma. Dann erhält man∫

Ω
(f ◦ un)

∂φ(x)

dxj
dx = −

∫
Ω
f ′(un(x))

∂un(x)

∂xj
φ(x) dx für alle φ ∈ C1

c (Ω), j = 1, . . . , d,

und nach Grenzübergang auf beiden Seiten mit dem Satz von Lebesgue die Behauptung.
(b) Es gilt∫

Ω
(uv)2(x) dx ≤ ‖v‖2∞

∫
Ω
u2(x) dx <∞ und∫

Ω
(u
∂v

∂xj
+

∂u

∂xj
)2(x) dx ≤ 2‖v‖2∞

∫
Ω
u2(x) dx+ 2‖v‖2∞

∫
Ω

(u′(x))2 dx <∞, j = 1, . . . , d.

Sei nun un ∈ C1
c (Ω) eine Folge wie im Lemma. Dann erhält man

−
∫

Ω

∂v(x)

∂xj
un(x)φdx =

∫
Ω
v(x)

∂(unφ)

∂xj
(x) dx =

∫
Ω
v(x)un(x)

∂φ(x)

∂xj
dx+

∫
Ω
v(x)

∂un(x)

∂xj
φ(x) dx,

also
∫

Ω(vun)(x)∂φ(x)
∂xj

dx = −
∫

Ω

(
∂v(x)
∂xj

un(x) + v(x)∂un(x)
∂xj

)
φ(x) dx und nach Grenzübergang auf

beiden Seiten mit dem Satz von Lebesgue die Behauptung.
(55) (a) Sei Rea(Pu|u− Pu) ≥ 0. Dann gilt wegen der Koerzivität von a(·|·)

0 ≤ Rea(Pu−u|u−Pu)+Rea(u|u−Pu) = −Rea(u−Pu|u−Pu)+Rea(u|u−Pu) ≤ Rea(u|u−Pu).

Sei nun Rea(u|u− Pu) ≥ 0 für alle u ∈ H. Dann folgt auf Grund von P (Pu+ λ(u− Pu)) = Pu
für alle λ > 0

0 ≤ 1
λRea(Pu+ λ(u− Pu)|Pu+ λ(u− Pu)− Pu) = Rea(Pu+ λ(u− Pu)|(u− Pu))

und nach Grenzübergang λ→ 0 die Behauptung, da a(·|·) stetig ist.
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(b) Da a(·|·) eine stetige, symmetrische und koerzive Sesquilinearform ist, gilt für a(·|·) natürlich die
Cauchy-Schwarz-Ungleichung.
Sei a(Pu|Pu) ≤ a(u, u). Dann gilt

a(u|u− Pu) = a(u|u)− a(u|Pu) ≥ a(u|u)− a(u|u)1/2a(Pu|Pu)1/2 ≥ 0.

Sei a(u|u− Pu) ≥ 0, Dann gilt mit Teil (a)

a(Pu|Pu) = a(Pu− u|Pu) + a(u|Pu) ≤ a(u|Pu) ≤ a(u|u)1/2a(Pu|Pu)1/2.

Also lässt sich in diesem Fall zu Proposition 7.60 aus der Vorlesung noch die Äquivalenz PV ⊆ V
und a(Pu|Pu) ≤ a(u|u) für alle u ∈ V hinzufügen.

(c) Da a(·|·) stetig auf H1
0 , koerziv und symmetrisch ist und P+H

1
0 ⊂ H1

0 , folgt die Behauptung mit
Teil (b) und Proposition 7.60 aus

∫
Ω(∇(P+u)(x))2 dx =

∫
Ω χu>0(∇u(x))2 dx ≤

∫
Ω(∇u(x))2 dx.

(56) (a) Es gilt für t ≥ 0

b (u(t+ h)|u(t+ h))− b (u(t)|u(t)) = b (u(t+ h)− u(t), u(t+ h))

+b (u(t)|u(t+ h))− b (u(t)|u(t))

= b (u(t+ h)− u(t)|u(t+ h)) + b (u(t)|u(t+ h)− u(t)) ,

woraus folgt

d

dt
b(u(t), u(t)) = lim

h→0
b

(
u(t+ h)− u(t)

h
, u(t+ h)

)
+b

(
u(t),

u(t+ h)− u(t)

h

)
= 2b

(
∂u

∂t
(t), u(t)

)
, t ≥ 0.

(b) Definiere die Energie einer Lösung des gegebenen Anfangswertproblems durch

E(t) := a(w(t)|w(t)) + ‖wt(t)‖2H ≥ 0.

Dann ist
dE

dt
(t) = 2a(wt(t)|w(t)) + 2〈wtt(t), wt(t)〉H = 2〈−Aw(t), wt(t)〉H + 2 + 2〈wtt(t), wt(t)〉H

= 2〈−wtt(t), wt(t)〉H + 2〈wtt(t), wt(t)〉H = 0,

d.h. die Energie ist konstant für jede Lösung. Existieren nun zwei Lösungen u und v, dann löst
deren Differenz das Anfangswertproblem mit (u−v)(0) = 0 und (u−v)t(0) = 0, d.h. E(u−v) ≡ 0.
Daraus folgt (u− v)t(t) ≡ 0, also (u− v)(t) ≡ 0.
Das obige Resultat liefert Eindeutigkeit der Lösung der Wellengleichung mit Neumann- oder
Dirichlet-Ranbedingungen, weil die zugehörige Bilinearform a : H1(Ω) × H1(Ω) 7→ L2(Ω) bzw.
a : H1

0 (Ω) × H1
0 (Ω) 7→ L2(Ω), gegeben durch a(u|v) =

∫
Ω∇u(x)∇v(x) dx, die Bedingungen an

a(·|·) erfüllt.
(57) (a) L(x, u,∇u) = eφ(x)

(
1
2∇

2u(x)− f(x)u(x))
)

(b) L(x, u, ux, ut) = e−t/ε
(

1
εu

2
x + u2

t

)
.

(58) (a) Euler-Lagrange-Gleichung: 2uxx(x, y, z) + 2uyy(x, y, z) − 2uzz(x, y, z) + f(u(x, y, z)) = 0 oder
uxx(x, y, z) + uyy(x, y, z)− uzz(x, y, z) + 1

2f(u(x, y, z)) = 0.
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(b) Sei u0 = u1 ≡ 0. Dann ist die eindeutige Lösung der Wellengleichung gegeben durch u ≡ 0
und I(u) = 0. Wähle z.B. w(x, t) = t2. Dann erfüllt w Rand- und Anfangsbedingungen, aber
I(w) =

∫
Ω(u2

x(t, x)− u2
t (t, x)) d(t, x) = −∞.

(59) Euler-Lagrange-Gleichung: 0 =
∑d

i=1 p(uxi |∇u|p−2)xi = p∇(|∇u|p−2∇u).
Variationelle Symmetrie: Mit ωε = {y = xeε : x ∈ ω} folgt∫

ω
|∇(e

εn−p
p u(eεx))|p dx =

∫
ω
eε(n−p)|∇u(eεx)|p dx =

∫
ωε
|∇u(y)|p dy.

Divergenzgleichung: Mit φ(x, j1u) = n−p
p u(x) +∇u(x) · x und ξk = xk folgt

0 =
d∑
i=1

((
n− p
p

u(x) +∇u(x) · x
)
puxi |∇u(x)|p−2 − xi|∇u(x)|p

)
xi

=
((((

((((
((((

(((
((((

((n− p)u+ p∇u · x)
d∑
i=1

(uxi |∇u|p−2)xi +
d∑
i=1

((
(n− p)u2

xi + pu2
xi + p

d∑
j=1

uxjxixjuxi
)
|∇u|p−2

)

−
d∑
i=1

(
|∇u|p + p|∇u|p−2

d∑
j=1

uxjxiuxjxi
)

= 0.

(60) Das Vektorfeld −y∂x + x∂y erzeugt die Tranformationsgruppe (x sin θ + y cos θ, x cos θ + y sin θ, t, u).
Da die Determinante der Variablentransformation (x, y, t) → (x sin θ + y cos θ, x cos θ + y sin θ, t) be-
tragsmäßig gleich 1 ist, folgt∫

ω

(
u2
t (−x sin θ + y cos θ, x cos θ + y sin θ, t)− u2

x(−x sin θ + y cos θ, x cos θ + y sin θ, t)

− u2
y(−x sin θ + y cos θ, x cos θ + y sin θ, t)

)
d(x, y, t)

=

∫
ωθ

(
u2
t (x, y, t)− (−ux(x, y, t) sin θ + uy(x, y, t) cos θ)2 − (ux(x, y, t) cos θ + uy(x, y, t) sin θ)2

)
d(x, y, t)

=

∫
ωθ

(
u2
t (x, y, t)− u2

x(x, y, t)− u2
y(x, y, t)

)
d(x, y, t),

d.h. es liegt eine variationelle Symmetrie vor.
Das Vektorfeld x∂x+y∂y+t∂t erzeugt die Transformationsgruppe (eεx, eεy, eεt, u) und die entsprechende
Variablentransformation (x, y, t)→ (eεx, eεy, eεt) hat Determinante e3ε. Es folgt∫

ω

(
u2
t (e

εx, eεy, eεt)− u2
x(eεx, eεy, eεt)− u2

y(e
εx, eεy, eεt)

)
d(x, y, t)

=

∫
ωε

(
e−3εe2ε(u2

t (x, y, t)− u2
x(x, y, t)− u2

y(x, y, t))
)
d(x, y, t),

d.h. es liegt keine variationelle Symmetrie vor.
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