

Universität Ulm

Abgabe: Mittwoch, 17.07.2019

Prof. Dr. Anna Dall'Acqua

Fabian Rupp

Sommersemester 2019

Punktzahl: 10

Übungen Elementare Differentialgeometrie: Blatt 10

Definition 2.30. Eine reguläre Fläche $S \subset \mathbb{R}^3, S \neq \emptyset$ heißt Minimalfläche, falls $H(p) = 0 \quad \forall p \in S$.

Bemerkung Man kann zeigen, dass Minimalflächen die kritischen Punkte des Flächenfunktionals sind.

Satz 2.31. Sei $S \subset \mathbb{R}^3$ eine orientierte reguläre Fläche. Dann gilt $H^2 \geq K$. Insbesondere gibt es keine kompakten orientierbaren Minimalflächen.

- **36.**[⋆] Beweisen Sie Satz 2.31.
- $37.^*$ Berechnen Sie die mittlere Krümmung H und die Gaußkrümmung K von S, falls
 - $(\mathbf{a})^{\star} \ S = \mathbb{S}^2$ die Sphäre ist. Bestimmen die außerdem die Hauptkrümmungen.
 - (b)* S eine Rotationsfläche wie in den Aufgaben 27, 31 und 34 ist.
 - (c)* S ein Graph wie in Aufgabe 35 ist.

Berechnen Sie H und K außerdem explizit, falls S eine Ebene der Form $E = \{(x, y, z) \in \mathbb{R}^3 \mid z = c\}$ für $c \in \mathbb{R}$ bzw. ein Zylinder (vgl. Aufgabe 34) ist.

- 38. (Bedeutung der Normalkrümmung aus Bemerkung 2.24) Sei S eine orientierbare reguläre Fläche, $p \in S$. Sei $x \in T_pS$ mit |x| = 1 und N := N(p) die Einheitsnormale. Sei $E := \text{span}\{x, N\}$. Wir wollen zeigen, dass
 - (i) $(E+p)\cap S$ nahe p eine reguläre ebene Kurve ist, d.h. eine Kurve, welche in einer Ebene enthalten ist.
 - (ii) die (ebene) Krümmung der Kurve in p (bei geeigneter Wahl des Durchlaufsinnes) durch $\kappa_{nor}(p,x)$ gegeben ist.

Zum Beweis:

- (a) Schreiben Sie $(E+p) \cap S$ lokal um p als Nullniveaumenge einer glatten Funktion $f: V \to \mathbb{R}^2$ wobei $V \subset \mathbb{R}^3$ eine offene Umgebung von p ist. Hinweis: Zunächst lässt sich S nahe p als Nullniveaumenge einer reellwertigen Funktion f_1 schreiben. Für $y := x \times N$ definieren Sie $f_2(w) := \langle w-p, y \rangle$ und betrachten dann $f := (f_1, f_2)^T$.
- (b) Zeigen Sie, dass $(E+p) \cap S$ nahe p das Bild einer regulären Kurve $c: I \to \mathbb{R}^3$ ist und folgern Sie (i). Hinweis: Verwenden Sie den Hauptsatz über Implizite Funktionen. Zeigen Sie dazu, dass für die in (a) konstruierte Abbildung rang Df(p) = 2 gilt.
- (c) Zeigen Sie, dass die Kurve c aus (b) regulär ist und planar mit $\operatorname{Im} c \subset E$. Zeigen Sie, dass die Normale in der Ebene E an die ebene Kurve c im Punkt $c(t_0)$ gegeben ist durch $\pm N$. Hinweis: Zeigen Sie zunächst $\dot{c}(t_0) \in T_pS \cap E$ und $\dot{c}(t_0) \parallel x$, wobei $t_0 \in I$ mit $c(t_0) = p$.
- (d) Folgern Sie daraus (ii). Hinweis: Benutzen Sie eine Bogenlängenparametrisierung \tilde{c} von c und zeigen Sie $\dot{\tilde{c}}(t_0) = \pm x$ für ein geeignetes t_0 . Verwenden Sie dann den Satz von Meusnier (Satz 2.23) um das Vorzeichen zu diskutieren.