

Universität Ulm

Besprechung: 17.11.14, 13 Uhr E18, HeHo22 Prof. Dr. A. Dall'Acqua A. Spener WS 14/15

Keine Punkte

Übungen zur Vorlesung Glatte Mannigfaltigkeiten Blatt 4

Sei M ein topologischer Raum, $A \subset M$ abgeschlossen und $U \subset M$ eine offene Menge, welche A enthält. Eine stetige Abbildung $\varphi : M \to \mathbb{R}$ heißt Testfunktion (engl.: bump function) für A mit Träger in U, wenn gilt: $0 \le \varphi \le 1$ auf M, $\varphi \equiv 1$ auf A und supp $\varphi \subset U$.

1. Sei M eine glatte Mannigfaltigkeit. Zeige, dass für jede abgeschlossene Teilmenge $A \subset M$ und jede offene Menge $U \subset M$, welche A enthält, eine glatte Testfunktion für A mit Träger in U existiert.

Seien M,N glatte Mannigfaltigkeiten, $A\subset M$ beliebig. Eine Abbildung $F:A\to N$ heißt glatt (auf A), falls sie für jeden Punkt aus A eine glatte Fortsetzung auf eine Umgebung des Punktes besitzt, das heißt: Für jedes $p\in A$ existiert ein $W_p\subset M$ offen mit $p\in W_p$ und eine glatte Abbildung $\tilde{F}_p:W_p\to N$, deren Restriktion auf $W_p\cap A$ mit F übereinstimmt.

2. (i) Es sei M eine glatte Mannigfaltigkeit, $A \subset M$ abgeschlossen und $f: A \to \mathbb{R}^k$ glatt. Zeige, dass für jede offene Menge U, welche A enthält, eine glatte Funktion $\tilde{f}: M \to \mathbb{R}^k$ existiert, welche auf A mit f übereinstimmt und deren Träger in U liegt. Hinweis: Es darf ohne Beweis verwendet werden, dass für jede lokal endliche Familie \mathcal{X} von Teilmengen eines topologischen Raumes M gilt: $\{\overline{X} \mid X \in \mathcal{X}\}$ ist auch lokal endlich und

$$\overline{\cup_{X\in\mathcal{X}}X}=\cup_{X\in\mathcal{X}}\overline{X}.$$

(ii) Zeige, dass obige Aussage im Allgemeinen nicht mehr richtig ist, wenn A nicht abgeschlossen ist.