

Universität Ulm

Abgabe und Besprechung: 27.10.15, 16 Uhr H12

F. Stoffers A. Spener WS 15/16

20+7* Punkte

(6)

Übungen zur Vorlesung Analysis III Blatt 01

1. (a) Zeige: Das uneigentliche Integral $\int_{\mathbb{R}} e^{-x^2} dx$ existiert und es gilt (2*)

$$\int_{\mathbb{R}} e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}.$$

Hinweis: Bestimme $\left(\int_{\mathbb{R}} e^{-x^2} dx\right) \cdot \left(\int_{\mathbb{R}} e^{-y^2} dy\right)$ mit Hilfe der Polarkoordinatentransformation, welche ohne Beweis für die unbeschränkte Menge \mathbb{R}^2 verwendet werden darf.

(b) Es sei $A \in \mathbb{R}^{n \times n}$ symmetrisch und positiv definit. Zeige: (4)

$$\int_{\mathbb{R}^n} e^{-x^T A x} dx = \sqrt{\frac{\pi^n}{\lambda_1 \cdot \lambda_2 \cdots \lambda_n}},$$

wobei $\lambda_1, \ldots, \lambda_n > 0$ die Eigenwerte von A bezeichnen.

Hinweis: Hauptachsentransformation und Substitutionsregel, welche wieder ohne Begründung auf \mathbb{R}^n verwendet werden darf.

2. Es sei die Funktion Φ definiert durch

$$\Phi: \mathbb{R} \to \mathbb{R}, \ t \mapsto \Phi(t) := \begin{cases} e^{-\frac{1}{t}}, & t > 0\\ 0, & t \le 0. \end{cases}$$

Zeige: $\Phi \in \mathcal{C}^{\infty}(\mathbb{R})$. Zeige außerdem, dass Φ nicht reell-analytisch ist, genauer: Die Taylorreihe von Φ mit Entwicklungspunkt t=0 stimmt in keiner Umgebung von 0 mit Φ überein.

Hinweis: Beweise mit vollständiger Induktion, dass sich die k-te Ableitung $\Phi^{(k)}$ von Φ für t > 0 schreiben lässt als $\Phi^{(k)}(t) = P_k\left(\frac{1}{t}\right)\Phi(t)$ für ein Polynom P_k vom Grad 2k.

3. Für eine stetige Funktion $f \in \mathcal{C}(\mathbb{R}^n)$ schreiben wir $f \in \mathcal{C}_0(\mathbb{R}^n)$, wenn f kompakten Träger besitzt, also $\operatorname{supp}(f) = \{x \in \mathbb{R}^n \mid f(x) \neq 0\} \subset \mathbb{R}^n$ beschränkt ist. Für $f, g \in \mathcal{C}_0(\mathbb{R}^n)$ definieren wir die **Faltung** von f mit g durch

$$f * g : \mathbb{R}^n \to \mathbb{R}, \qquad x \mapsto (f * g)(x) := \int_{\mathbb{R}^n} f(x - y)g(y) \, dy.$$

Zeige:

(a)
$$f * g$$
 ist wohldefiniert und stetig. (1)

(b)
$$f * g = g * f$$
.

(c)
$$(f+g)*h = f*h+g*h.$$
 (1)

(d)
$$(f * g) * h = f * (g * h)$$
. (2)

4. Es seien $f \in \mathcal{C}^k(\mathbb{R}^n)$ und $g \in \mathcal{C}^k_0(\mathbb{R}^n)$ für ein $k \in \mathbb{N}$. Zeige für jeden Multiindex (4) $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ mit $|\alpha| = \alpha_1 + \ldots + \alpha_n \leq k$:

$$\int_{\mathbb{R}^n} D^{\alpha} f(x) g(x) dx = (-1)^{|\alpha|} \int_{\mathbb{R}^n} f(x) D^{\alpha} g(x) dx.$$

Hinweis: Partielle Integration.

5. Es sei $a=(a_0,\ldots,a_{n-1})\in\mathbb{R}^n$ und es sei x_0 eine einfache reelle Nullstelle des normierten Polynoms

$$P_a(x) := x^n + \sum_{k=0}^{n-1} a_k x^k.$$

Zeige:

(a) Einfache Nullstellen von Polynomen hängen lokal stetig differenzierbar von (5*) den Koeffizienten ab, genauer:

Es gibt ein $\varepsilon > 0$ und eine eindeutige \mathcal{C}^1 -Funktion $\varphi : B(a, \varepsilon) \to \mathbb{R}$ mit $\varphi(a) = x_0$, so dass für alle $b = (b_0, \ldots, b_{n-1}) \in \mathbb{R}^n$ mit $|a_i - b_i| < \varepsilon \ \forall i \in \{0, \ldots, n\}$ eine einfache Nullstelle x_1 von $P_b(x) = x^n + \sum_{k=0}^{n-1} b_k x^k$ gegeben ist durch $x_1 = \varphi(b)$.

Hinweis: Hauptsatz über implizite Funktionen.

(b) Besitzt P_a n verschiedene reelle Nullstellen, so haben alle Polynome P_b genau (1) n verschiedene reelle Nullstellen für b genügend nahe bei a.

Achtung: Die Lösungen bitte vor der Übung abgeben. Vergesst nicht, euch im Moodle für diese Veranstaltung anzumelden.

Zum Bestehen der Vorleistung ist das Erreichen von 50% der Summe aller Punkte auf den Übungsblättern hinreichend.