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Notation

N = {1, 2, . . .}, N0 = {0, 1, . . .} is the natural numbers without and with 0, respectively;

Z, Q, R, C the set of integers, rational numbers, real numbers, complex numbers;

K is either R or C;

x = (x1, . . . , xn) is a point in Rn, n ≥ 1. If n = 2, we also write (x, y) ∈ R2;

Ω ⊂ Rn, n ≥ 1, is always an open set;

u, f : Ω→ K (or Km, m ≥ 1) will denote arbitrary functions which, if nothing further is
said, are smooth enough that all expressions in which they appear (such as derivatives)
are well defined;

Rn
+ := {x ∈ Rn : xn > 0} is the (positive) half space in Rn;

intA, A denote the interior and the closure of a set A, respectively;

A ⊂⊂ B (A,B sets) if A is contained in a compact subset of B;

B(x, r) is the open ball centred at x of radius r (either in Rn or a general metric space
depending on the context);

V generally denotes a Banach space, V ′ its dual, and H a Hilbert space. We write
( · , · ) = ( · , · )H for the inner product on H and 〈 · , · 〉 = 〈 · , · 〉V ′,V for the dual pairing
between V and V ′.
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1 Introduction and classification of PDEs

1.1 Notation and basic definitions

1.1.1 Definition. The vector α = (α1, . . . , αn) ∈ Nn
0 is called a multiindex of order

|α| :=
n∑
j=1

αj.

If x ∈ Kn, then we will use the notation xα for the product xα1
1 x

α2
2 . . . xαnn ∈ K. For a function

u : Ω→ K and an arbitrary multiindex α, we denote the αth partial derivative of u by

Dαu :=
∂|α|

∂xα1
1 . . . xαnn

u = ux1 . . . x1︸ ︷︷ ︸
α1

...xn . . . xn︸ ︷︷ ︸
αn

.

If α = 0, then D0u := u.

For k ∈ N0, Dku is shorthand for the vector consisting of all partial derivatives of u of order
k:1

D1u ≡ Du = (ux1 , . . . , uxn),

D2u = (ux1x1 , ux1x2 , . . . , ux1xn , . . . , uxnxn),

etc.. In case of D2u, we also use the same notation for the Hessian matrix, as it should be
clear from the context whether we mean a matrix or simply the collection of derivatives.

1.1.2 Definition. A partial differential equation (of order m ∈ N0), abbreviated PDE, is a
relation of the form

F (x, u(x), Du(x), . . . , Dmu(x)) = f(x), x ∈ Ω, (1.1.1)

where Ω ⊂ Rn is a given, usually open, set, F : Ω× R× Rn × . . .× Rnm → K and f : Ω→ K
are given functions, and u : Ω→ K is the unknown.

Typically we impose auxiliary condition(s) on u, either boundary conditions at the boundary
∂Ω of the set Ω where the PDE is to be solved, or conditions at infinity (if, e.g., Ω = Rn

or Rn
+). We wil use the term PDE both for an equation of the form (1.1.1) and for such an

equation together with given auxiliary condition(s).

An expression of the form F (x, u, . . . , Dmu) will be called a (partial) differential expression,
or, loosely, a (partial) differential operator, PDO. We will often denote such an expression by

Lu := F (x, u, . . . , Dmu).

Several PDEs in one or more unknowns constitute a system (which we will not focus on in
this course).

1In opposition to the lectures, in these notes we will only use the notation Du for the gradient ∇u of u.
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1 Introduction and classification of PDEs

1.1.3 Example. The Laplacian of a function u ∈ C2(Ω) is the PDO of order two given by2

∆u := div(Du) =
n∑
k=1

∂2u

∂x2
k

;

if f ∈ C(Ω) is a given function, then{
−∆u(x) = f(x) if x ∈ Ω,

u(x) = 0 if x ∈ ∂Ω,

is a PDE.

There is no general theory for handling – or even classifying – all PDEs, and given the rich
variety of behaviour which they can exhibit (and phenomena which they model), it seems
unlikely that such a theory should every exist. For most PDEs, it is not even generally
possible to find an explicit formula for the solutions; instead, most theory is devoted to proving
existence and some basic properties of solutions (number of solutions, positivity, symmetry,
boundedness/stability in some sense), usually for a particular equation or type of equation.

In this context, we talk about the well-posedness of the equation we wish to consider: the
PDE Lu = f (plus auxiliary condition(s)) is, loosely speaking, considered to be well posed if
its solution(s) satisfy the following three properties:

1. Existence (for each f in an appropriate space there actually exists a solution);

2. Uniqueness;

3. Continuous dependence on the data: a “small” change in f should lead to a correspond-
ingly small change in the solution u.

In practice we have to be careful about how we define and understand “solutions”: in many
cases existence results are obtained from properties of L considered as an operator between
well-chosen spaces of functions.

1.2 Some important classes of PDEs

There is no universal classification scheme for all PDEs; nevertheless, there are several types
of equations which are important in practice, either because they appear in many applications,
or because they are particularly amenable to mathematical analysis (or hopefully both).

1.2.1 Definition. (a) A PDE is called linear if it is linear in the unknown function(s) and
derivatives, with coefficients depending only on the independent variable(s) x: a general
linear PDE of order m has the form

m∑
|α|=0

aα(x)Dαu(x) = f(x), x ∈ Ω, (1.2.1)

for given functions aα, f : Ω→ R; it is called homogeneous if f ≡ 0.

2Note the sign! In some places ∆u stands for −
∑n
k=1

∂2u
∂x2

k
.
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1.2 Some important classes of PDEs

(b) A PDE is called semilinear if the coefficients aα of the highest order derivatives, i.e.,
when |α| = m, depend only on x:∑

|α|=m

aα(x)Dαu(x) + a0(x, u(x), Du(x), . . . , Dm−1u(x)) = f(x), x ∈ Ω.

(c) A PDE is called quasilinear if the highest order derivatives appear linearly with respect
to each other, but their coefficients may depend on (lower order) derivatives of u:∑
|α|=m

aα(x, u(x), . . . , Dm−1u(x))Dαu(x)+a0(x, u(x), Du(x), . . . , Dm−1u(x)) = f(x), x ∈ Ω.

(d) A PDE is nonlinear if it is not linear and fully nonlinear if it depends nonlinearly on
the highest order derivatives.

1.2.2 Definition. A (linear) PDE is in divergence form if it has the form∑
|α|+|β|≤m
|β|≤m−1

Dα(aαβ(x)Dβu(x)) = f(x), x ∈ Ω

(i.e., the coefficients of the highest order derivatives appear inside the corresponding differential
expressions) and in non-divergence form otherwise.

1.2.3 Remark. (a) The same definitions hold for systems (suitably adjusted).

(b) Linear =⇒ semilinear =⇒ quasilinear.

(c) If we have a linear PDE
∑
|α|≤m aα(x)Dαu(x) = f(x), then L :=

∑
|α|≤m aαD

α genuinely

defines a linear operator, for example from the space C∞(Ω) to itself.

(d) A general rule of thumb is: an equation is harder to solve/study if it has more inde-
pendent variables (n), if it is of higher order (m), or, most importantly, if it is “more”
nonlinear.

1.2.4 Example. Here are three prototypical examples, which you have probably seen before:

(a) Laplace’s equation
−∆u = 0

and the inhomogeneous variant, Poisson’s equation

−∆u = f. (1.2.2)

(b) The heat equation
∂u

∂t
−∆u = 0,

with initial condition u(0, x) = u0(x), where now u : R+ × Ω→ R, (t, x) 7→ u(t, x), and
where ∆ = ∆x denotes the Laplacian with respect to the x-variables.

(c) The wave equation
∂2u

∂t2
−∆u = 0

with u(0, x) = u0(x), where u : R× Ω→ R and ∆ = ∆x again.

9



1 Introduction and classification of PDEs

In each case, to obtain a well-posed equation, we need a boundary condition. The most
common types for equations such as (1.2.2) are:

u = 0 on ∂Ω (Dirichlet/1st kind)

∂u

∂ν
= 0 on ∂Ω (Neumann/2nd kind)

∂u

∂ν
+ αu = 0 on ∂Ω (Robin/3rd kind)

where ν is the outer unit normal to Ω (assuming ∂Ω is sufficiently smooth), and α is some
function on ∂Ω in the Robin condition.

The equations (a), (b) and (c) are examples of elliptic, parabolic and hyperbolic equations,
respectively; each type has its own body of theory.

1.3 The Cauchy problem, characteristics and symbols

To motivate where these names come from, and how we expect solutions in each case to
be different, we will investigate the question of well-posedness of general two-dimensional
quasilinear equations of second order. Writing (x, y) ∈ R2, these have the form

auxx + buxy + cuyy = d, (1.3.1)

where a, b, c, d are in general given functions of x, y, u, ux, uy and for the meantime we are
considering the problem on the whole of R2. We are also given a (sufficiently smooth) curve
γ ⊂ R2 and conditions that u should satisfy on γ (called Cauchy data):

u|γ = f, ux|γ = g, uy|γ = h. (1.3.2)

The (classical) Cauchy problem consists in determining u from the equations (1.3.1) and
(1.3.2). To this end we need to determine conditions on a, b, c, d, γ, f, g, h in order to ensure
the existence and uniqueness of a (smooth) solution u (i.e. well-posedness).

Compatibility conditions.

Suppose γ is given parametrically by

x = γ1(s), y = γ2(s), s ∈ I ⊂ R.

Then any differentiable function v = v(x, y) = v(γ1(s), γ2(s)) must satisfy

dv

ds
= vx · γ′1(s) + vy · γ′2(s). (1.3.3)

If in addition v satisfies (1.3.2), then the Cauchy data must satisfy the compatibility condition

f ′(s) = g(s)γ′1(s) + h(s)γ′2(s).

10



1.3 The Cauchy problem, characteristics and symbols

Hence we can only choose two of f, g, h, i.e. u, ux, uy on γ arbitrarily. Alternatively, we could
specify u and its normal (or tangent) derivative on γ:

u|γ = f,
−ux · g′ + uy · f√

f 2 + g2
= f̃ .

Choosing v = ux and uy in (1.3.3), we obtain

(g′(s) =)
d

ds
ux = uxx · γ′1 + uxy · γ′2

and

(h′(s) =)
d

ds
uy = uxy · γ′1 + uyy · γ′2,

respectively. Suppose now that u(x, y) in solves (1.3.1) and (1.3.2). Then on γ we must have

auxx + buxy + cuyy = d
γ′1uxx + γ′2uxy = g′

γ′1uxy + γ′2uyy = h′
(1.3.4)

The given data determine uxx, uxy, uyy uniquely along γ unless

4 := det

 a b c
γ′1 γ′2 0
0 γ′1 γ′2

 = a(γ′2)2 − b(γ′1γ′2) + c(γ′1)2 = 0. (1.3.5)

1.3.1 Definition. The curve γ is characteristic (for the given PDE and data, and even the
solution u if a, b, c depend on u and its derivatives) if 4 = 0 along γ, and non-characteristic
otherwise.

1.3.2 Remark. Along a non-characteristic curve we can also successively find all higher order
derivatives of u (assuming they exist). For example, supposing a, b, c to be constant, if we
differentiate (1.3.1) with respect to x and then repeat the above analysis, we obtain three
linear equations, namely for uxxx, uxxy, uxyy, which satisfy the same (uniquely soluble) system
of equations as (1.3.4). Using (1.3.3) with v = uxx and v = uxy to obtain uyyy. Proceeding
iteratively, we can obtain all derivatives of u in a given point (x0, y0) ∈ γ and so give a formal
power series expansion for u in terms of powers of x − x0 and y − y0. That the solution u is
in fact a priori analytic if a, b, c, d, γ, f, g, h are analytic, so that this power series converges,
is the statement of the Theorem of Cauchy–Kovalevskaia, which however we shall not treat in
this course.

Along a characteristic curve the system (1.3.4) is inconsistent unless the data satisfy additional
identities; hence the Cauchy problem (1.3.1) and (1.3.2) generally has no solution (i.e. it is ill
posed).

When can this happen? Suppose γ is given by a level curve φ(x, y) = const. Then (1.3.5) says

a(φx)
2 + bφxφy + c(φy)

2 = 0.

Solving for x as a function of y, we have

a(dx)2 + b(dx)(dy) + c(dy)2 = 0

dx

dy
=
−b±

√
b2 − 4ac

2a
.

The existence of characteristic curves depends on the sign of the discriminant b2 − 4ac.

11



1 Introduction and classification of PDEs

1.3.3 Definition. (a) If b2 − 4ac < 0, the equation is called elliptic, since then

ax2 + bxy + cy2 = d (1.3.6)

describes an ellipse. In this case there are no characteristics.

(b) If b2−4ac = 0, the equation is parabolic, since (1.3.6) describes a parabola. There is one
family of characteristics, namely y = −2a

b
x+ C.

(c) If b2 − 4ac > 0, the equation is hyperbolic, as (1.3.6) is an hyperbola, and there are two
families of characteristics.

1.3.4 Remark. This classification is valid for all two-dimensional quasilinear second order
PDEs. In general, since a, b, c, d may be functions of x, y, u etc., the type may depend on the
point (x, y) and, in the nonlinear case, even on the solution u.

General dimensions and orders.

Now let x ∈ Rn and suppose

L :=
∑
|α|≤m

aαD
α

is a general quasilinear operator of order m.

1.3.5 Definition. (a) The (total) symbol of L (at a function u) is the polynomial (in ξ)

P (x, u, ξ) =
∑
|α|≤m

aα(x, u, . . .)ξα, ξ ∈ Rn.

Note however that, if L is nonlinear, so that the coefficients aα themselves may depend
on u and its derivatives, then this may not be independent of the particular way of
writing L.

(b) The principal (or leading) symbol of L is the (homogeneous in ξ) polynomial

p(x, u, ξ) =
∑
|α|=m

aα(x, u, . . . , Dm−1u)ξα, ξ ∈ Rn.

In order to suppress the dependence on u, we introduce dummy variables z1 ∈ R, . . . , zm−1 ∈
Rnm−1

(i.e. z1 stands for u, z2 for Du, . . . , zm−1 for Dm−1u) and write

p(x, z1, . . . , zm−1, ξ) =
∑
|α|=m

aα(x, z1, . . . , zm−1)ξα.

1.3.6 Remark. Sometimes the symbol is defined as
∑
|α|≤m aα(. . .)(iξ)α; this is also known

as the Fourier symbol. For, if the aα are constants, then for the Fourier transform

û(ξ) = (2π)−
n
2

∫
u(x)e−iξx dx,

we have
L̂u(ξ) = P (ξ)û(ξ).
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1.3 The Cauchy problem, characteristics and symbols

1.3.7 Example. For the three operators from Example 1.2.4, we have:

Operator Symbol Principal symbol
∆

∑n
k=1 ξ

2
k = |ξ|2 |ξ|2 ξ ∈ Rn

∂
∂t
−∆ τ − |ξ|2 −|ξ|2 (τ, ξ) ∈ R× Rn−1

∂2

∂t2
−∆ τ 2 − |ξ|2 τ 2 − |ξ|2 (τ, ξ) ∈ R× Rn−1

Observe again that if n = 2, then the equation symbol = k (k ≥ 0, say) yields, respectively,
an ellipse, a parabola, and an hyperbola.

1.3.8 Definition. Suppose L is quasilinear of order m = 2, i.e.3

Lu =
n∑

i,j=1

aij(x, u,Du)
∂2

∂xi∂xj
+ a0(x, u,Du), (1.3.7)

with principal symbol

p(x, z, w, ξ) =
n∑

i,j=1

aij(x, z, w)ξiξj, x ∈ Ω, z ∈ R, w ∈ Rn, ξ ∈ Rn,

where without loss of generality aij = aji. Then in the set U ⊂ Ω×R×Rn the operator L is

(a) elliptic if the coefficient matrix A = A(x, z, w) := (aij) is positive or negative definite for
each fixed (x, z, w) ∈ U (note that if n = 2, this means exactly that 4a11a22 − a2

12 > 0,
cf. Definition 1.3.3(a));

(b) parabolic if A is positive or negative semi-definite with one zero eigenvalue, for each
(x, z, w) ∈ U ;

(c) hyperbolic if A is indefinite but non-degenerate (i.e. 0 is not an eigenvalue) and n − 1
eigenvalues have the same sign, for each (x, z, w) ∈ U .

Observe that now even for second order equations this classification is not complete! For equa-
tions of higher order there is even less: there seems to be no general definition of parabolic
equations, for example, although the terms elliptic and hyperbolic can be meaningfully gen-
eralised. We also note that if L is elliptic, then ∂

∂t
− L is (i.e. will be called) parabolic and

∂2

∂t2
− L is hyperbolic.

1.3.9 Definition. The quasilinear operator L =
∑
|α|≤m aαD

α is elliptic (in a set U ⊂ Ω ×
R× . . .× Rnm−1

) if its principal symbol

p(x, z1, . . . , zm−1, ξ) =
∑
|α|=m

aα(x, z1, . . . , zm−1)ξα

has no real roots, i.e.,

p(x, z1, . . . , zm−1, ξ) 6= 0 ∀ ξ ∈ Rn ∀ (x, z1, . . . , zm−1) ∈ U.
3In the lecture this was originally given for semilinear L. Here and in Definition 1.3.9 etc. we combine this

with parts of Definition 3.2.1 from the lecture.
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1 Introduction and classification of PDEs

Note that this is genuinely a generalisation of Definitions 1.3.3(a) and 1.3.8(a)!

1.3.10 Lemma. If L is elliptic, then its order m is even.

Proof. Fix an arbitrary point (x, z1, . . . , zm−1); we write y := (x, z1, . . . , zm−1) for brevity, and
let ξ ∈ Rn. Then p(y, ξ) 6= 0. Noting that p(y, · ) is homogeneous of degree m, if η ∈ Rn is
any vector linearly independent of ξ, then

p(y, η + tξ) (∈ R)

is a polynomial of degree m in t with leading coefficient p(y, ξ) 6= 0. If m is odd, then p has
at least one real root t0 ∈ R, i.e., p(y, η + t0ξ) = 0, a contradiction.

As a consequence of Lemma 1.3.10, we shall instead write the degree of a general elliptic
operator as 2m for m ∈ N. Then for each y = (x, z1, . . . , zm−1) the expression

p(y, ξ)

|ξ|2m

is homogeneous of degree zero and well defined on the sphere |ξ| = 1 (or indeed for all ξ 6= 0).
Since the sphere is compact and for each fixed y p is just a polynomial in ξ, ellipticity is
therefore equivalent to the existence of constants c = c(y) > 0 and C = C(y) > 0 such that

c(y)|ξ|2m ≤ p(y, ξ) ≤ C(y)|ξ|2m ∀ ξ ∈ Rn. (1.3.8)

(In the literature, this is often taken as the definition of ellipticity.)

1.3.11 Remark. For elliptic operators of second order (1.3.7), this condition is generally
written in the form

c(y)|ξ|2 ≤
n∑

i,j=1

aij(y)ξiξj ≤ C(y)|ξ|2 ∀ ξ ∈ Rn, (1.3.9)

as, for example, in the book of Gilbarg–Trudinger [5, Chapter 9].4 In this case, c and C may
be taken as the smallest and largest eigenvalues of the matrix (aij), respectively.

1.3.12 Definition. Let c, C > 0 be as in (1.3.8). We say that the elliptic operator L is

(a) strongly elliptic in U ⊂ Ω × R × . . . × Rnm−1
if there exists c0 > 0 such that c(y) ≥ c0

for all y ∈ U ;

(b) uniformly elliptic in U if C(y)/c(y) remains bounded in U .

1.4 Some examples

Here is a list of some of the most common equations found in the literature; we will study many
of these in more detail in the sequel. We will omit the proofs of the claimed classifications,
except in one exemplary case (the p-Laplacian), which we work through in more detail below:
at this juncture we merely observe (i.e. claim) that our very incomplete classification scheme
above nevertheless covers a wide variety of important equations.

4Be aware that they use the convention of omitting the summation sign in their version of (1.3.8) (the
“summation convention”).
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1.4 Some examples

1.4.1 Example. (a) Nonlinear Poisson equations

−∆u = f(u)

for a suitable f : R → R (semilinear, elliptic; a common choice of f is f(u) = |u|p,
p > 1).

(b) The p-Laplacian

−∆pu := − div(|Du|p−2Du) = 0 or f(u),

where p ∈ (1,∞) is fixed; see Example 1.4.2 (quasilinear, elliptic).

(c) Scalar reaction-diffusion equations

∂u

∂t
−∆u = f(u)

(semilinear, parabolic), or the “p-variant”

∂u

∂t
−∆u = f(u)

(quasilinear, parabolic).

(d) The porous medium equation

∂u

∂t
−∆(uγ) = 0,

where γ ∈ [1,∞) is fixed (quasilinear, parabolic).5

(e) The minimal surface equation

div

(
Du√

1 + |Du|2

)
= 0

(quasilinear, (non-uniformly) elliptic).

(f) The Monge–Ampère equation

det(D2u) = f

(fully nonlinear, elliptic).6

(g) The m-Laplacian (m ≥ 1)

(−∆m)u := −∆(−∆(. . . (−∆u))) = f

(linear, elliptic).

5In fact this equation is considered degenerate parabolic, since the term ∆(uγ) can vanish even if u and its
derivatives of highest order are nonzero; see Example 1.4.2 for a similar phenomenon in the case of the
p-Laplacian.

6Although we have only introduced the notion of ellipticity for quasilinear equations, it turns out to be useful
and correct to classify this equation as elliptic.
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1 Introduction and classification of PDEs

1.4.2 Example. 7 We look at the p-Laplacian more closely. A fairly long but elementary
calculation shows that it is in fact quasilinear elliptic:

∆pu = div(|Du|p−2Du) =
n∑
i=1

∂

∂xi

( n∑
k=1

(
∂u

∂xk

)2
) p−2

2
∂u

∂xi


...

=
n∑
i=1

( n∑
k=1

(
∂u

∂xk

)2
) p−2

2

+ (p− 2)

(
∂u

∂xi

)2
(

n∑
k=1

(
∂u

∂xk

)2
) p

2
−2


︸ ︷︷ ︸
aii(x,u,Du)

∂2u

∂x2
i

,

where the important thing to note is that the coefficients aii do not depend on the second-order
derivatives of u, i.e.

aij(x, z, w) =

{
(
∑n

k=1w
2
k)

p−2
2 + (p− 2) (

∑n
k=1 w

2
k)

p
2
−2
w2
i if i = j,

0 if i 6= j.
(1.4.1)

In particular, aii(x, z, w) ≥ 0 for all i = 1, . . . , n and aii = 0 only if p 6= 2 and w = 0, that
is, Du = 0. In this case we speak of a degeneracy. (Note that whether p > 2 or p < 2 will
have consequences for the behaviour of the aii: if p < 2 then we have a singularity whenever
Du = 0; if p > 2, then we have a genuine degeneracy aii = 0.)

7Example 3.2.2 in the lectures.
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2 Weak solutions

2.1 Test functions

Throughout, we suppose Ω ⊂ Rn (n ≥ 1) is an arbitrary open set.

2.1.1 Definition. We denote by

C∞c (Ω) = C∞c (Ω,K)

the set of test functions on Ω, i.e. ϕ ∈ C∞c (Ω) if and only if

(1) ϕ ∈ C∞(Ω) :=
⋂
k∈N

Ck(Ω), and

(2) suppϕ := {x ∈ Ω : ϕ(x) 6= 0} ⊂⊂ Ω (ϕ is “compactly supported” in Ω).

We also write ϕ ∈ Ck
c (Ω) (k ∈ N0; C0

c (Ω) ≡ Cc(Ω)) if ϕ ∈ Ck(Ω) and condition (2) holds.

In the literature one sometimes finds the notation C∞0 (Ω), Ck
0 (Ω) instead.

2.1.2 Lemma. We have

Ck
c (Ω) ⊂ Cj

c (Ω) if 0 ≤ j ≤ k ≤ ∞

and
Ck
c (Ω) ⊂ Lp(Ω) for all 0 ≤ k ≤ ∞ and all 1 ≤ p ≤ ∞.

Moreover, if Ω ⊂ Ω̃, then Ck
c (Ω) may be canonically identified with a subset of Ck

c (Ω̃) for
0 ≤ k ≤ ∞ (extension of elements of Ck

c (Ω) by zero outside Ω).

We write Ck
c (Ω) ⊂ Ck

c (Ω̃) (0 ≤ k ≤ ∞). The proof is obvious and omitted.

2.1.3 Theorem. C∞c (Ω) is dense in Lp(Ω) for any 1 ≤ p <∞.

2.1.4 Corollary. Lp(Ω) ∩ Lq(Ω) is dense in Lp(Ω) for any 1 ≤ p <∞ and any 1 ≤ q ≤ ∞.

We will not give a full proof of Theorem 2.1.3 here, but merely outline some of the ideas of
the proof:

1. Show that Cc(Ω) is dense in Lp(Ω) (a deep measure-theoretic result which can be found
for example in [10, Theorem 3.14]);

2. Show that any ϕ ∈ Cc(Ω) can be approximated by ϕn ∈ C∞c (Ω) in the Lp-norm, for
example using mollifiers :

2.1.5 Definition. A function η ∈ C∞c (Rn) is called a mollifier if

17



2 Weak solutions

(1) supp(η) ⊂ B(0, 1), and

(2)

∫
Rn
η dx = 1.

If, in addition, η satisfies

(3) η(x) ≥ 0 for all x ∈ Rn, and

(4) η(x) = ζ(|x|) for some function ζ : [0,∞)→ R,

then we say η is a positive symmetric mollifier.

If η is any mollifier and ε > 0, then we set

ηε := ε−nη
(x
ε

)
.

2.1.6 Example. A typical example of a positive symmetric mollifier is

η(x) =

{
c exp

(
1

1−|x|2

)
, |x| < 1,

0 otherwise,

where c > 0 is chosen to ensure
∫
Rn η dx = 1.

For a function f ∈ L1
loc(Rn) := {u : Rn → K measurable : u ∈ L1(K) for all K ⊂

Rn compact} (we say f is “locally integrable”), we may then define the convolution

(f ∗ ηε)(x) := ε−n
∫
Rn
f(t)η

(
x− t
ε

)
dt.

2.1.7 Theorem. Suppose f ∈ L1
loc(Rn), η is a positive symmetric mollifier and ε > 0. Then

(a) f ∗ ηε ∈ C∞(Rn);

(b) f ∗ ηε → f in Lp(Rn) as n→∞, if f ∈ Lp(Rn) for some 1 ≤ p ≤ ∞;

(c) if f ∈ C(Rn) and supp f ⊂ U , then

supp(f ∗ ηε) ⊂ U ε := {x ∈ Rn : dist(x, U) ≤ ε}.

Moreover, if f ∈ Lp(Rn) and f = 0 a.e. outside U ⊂ Rn, then supp(f ∗ ηε) ⊂ U ε;

(d) if a ≤ f(x) ≤ b for all x ∈ Rn, then a ≤ (f ∗ ηε)(x) ≤ b for all x ∈ Rn;

(e) if f ∈ C1(Rn), then
∂

∂xi
(f ∗ ηε) =

∂f

∂xi
∗ ηε

for all i = 1, . . . , n.

The proof, which uses various tools from measure theory (Fubini’s theorem, interchange of
derivative and integral, Jensen’s inequality, continuity of ‖ · ‖p with respect to translation,. . . ),
is omitted. Statements (a), (b) and (c) hold for general mollifiers.

Step 2 of the proof of Theorem 2.1.3 follows by approximating ϕ ∈ C∞c (Ω) by ϕ ∗ ηε:
1. ϕ ∗ ηε ∈ C∞(Ω) by Theorem 2.1.7(a);
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2.2 Distributions

2. supp(ϕ ∗ ηε) ⊂ Ω for ε > 0 small enough by Theorem 2.1.7(c), so that ϕ ∗ ηε ∈ C∞c (Ω)
for such ε;

3. ϕ ∗ ηε → ϕ in Lp(Ω) by Theorem 2.1.7(b), noting that ϕ ∈ Lp(Ω) by Lemma 2.1.2.

2.1.8 Definition. We denote by D = D(Ω) the topological vector space consisting of (the

vector space) C∞c (Ω) equipped with the following notion of convergence: ϕn
D→ ϕ if and only

if

1.
⋃
n∈N

suppϕn ⊂⊂ Ω, and

2. for all α ∈ Nn
0 we have Dαϕn → Dαϕ uniformly in x ∈ Ω.

We write D(Ω) and C∞c (Ω) interchangeably, the former usually only when we are explicitly
interested in the introduced notion of convergence.

2.2 Distributions

Let Ω and K be as in Section 2.1.

2.2.1 Definition. A distribution (over D = D(Ω)) is a continuous linear functional f : D →
K,

f : ϕ 7→ f [ϕ] ≡ 〈f, ϕ〉 ∈ K,

that is,

1. for ϕ, ψ ∈ D and µ, λ ∈ K, we have

〈f, µϕ+ λψ〉 = µ〈f, ϕ〉+ λ〈f, ψ〉 (linearity), and

2. for all ϕn, ϕ ∈ D with ϕn
D→ ϕ, we have 〈f, ϕn〉 → 〈f, ϕ〉 in K as n→∞ (continuity).

2.2.2 Remark. (a) Two distributions f and g are equal if and only if 〈f, ϕ〉 = 〈g, ϕ〉 for all
ϕ ∈ D. We say f = g in the distributional sense (or the sense of distributions).

(b) To show a linear functional f : D → K is continuous, due to the linearity it suffices to
check continuity at 0, i.e., to check if ϕn → 0 in D always implies 〈f, ϕn〉 → 0.

(c) The set of distributions is a vector space.

2.2.3 Definition. We set D′ = D′(Ω) to be the topological vector space of all distributions
equipped with the induced convergence

fn → f in D′ :⇐⇒ 〈fn, ϕ〉 → 〈f, ϕ〉 for all ϕ ∈ D.

Obviously, this recalls the notion of the dual space of a normed vector space, except that
there is no norm on C∞c (Ω) compatible with the topology we have introduced (this is a deep
statement whose proof we omit). We also omit the proof of the next lemma, which can be
found in [9, Theorem 6.17]; we refer more generally to [9, Chapter 6] for more details on the
spaces D(Ω) and D′(Ω) and their topologies.
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2 Weak solutions

2.2.4 Lemma (“Completeness” of D′). Let (fn)n∈N be a sequence in D′ and suppose that
limn→∞〈fn, ϕ〉 =: `ϕ ∈ K exists for each ϕ ∈ D. Then there exists f ∈ D′ such that `ϕ = 〈f, ϕ〉.

If U ⊂ Ω is open, then we write f |U = 0 (where f ∈ D′(Ω)) if 〈f, ϕ〉 = 0 for all ϕinD(U), noting
that we may identify D(U) in the obvious way with a subspace of D(Ω) (extend functions by
zero on Ω \ U).

2.2.5 Definition. The support of a distribution f ∈ D′(Ω) is defined to be the closed set

supp f := Ω \
⋃

U⊂Ω open
f |U=0

U.

Suppose now that

f ∈ L1
loc(Ω) := {u : Ω→ K measurable : u|K ∈ L1(K) for all K ⊂ Ω compact}.

Claim: The mapping

D 3 ϕ 7→
∫

Ω

fϕ dx =: 〈f, ϕ〉 ∈ K

defines a distribution.

Proof. Linearity is immediate from linearity of the integral. For continuity: suppose ϕn → 0
in D. Then, if U is any bounded open set containing

⋃
n∈N suppϕn such that U ⊂ Ω, which

exists by definition of ϕn → ϕ, we have

|〈f, ϕ〉| =
∣∣∣∣∫

Ω

fϕn dx

∣∣∣∣ =

∣∣∣∣∫
U

fϕn dx

∣∣∣∣ ≤ sup
x∈U
|ϕn(x)|︸ ︷︷ ︸

→0 by assumption

∫
U

|f(x)| dx︸ ︷︷ ︸
<∞ fixed

→ 0 as n→∞.

Hence we identify the function f with the corresponding distribution.1 This is in particular
well defined, i.e.

f = g in D′, i.e.

∫
Ω

fϕ dx =

∫
Ω

gϕ dx for all ϕ ∈ C∞c (Ω), ⇐⇒ f = g in L1
loc(Ω),

due to:

2.2.6 Theorem (du Bois-Reymond/Fundamental Lemma of the Calculus of Variations).
Suppose Ω ⊂ Rn is open and f ∈ L1

loc(Ω) is such that∫
Ω

fϕ dx = 0 for all ϕ ∈ C∞c (Ω).

Then f = 0 a.e. in Ω.

1Analogous to the way we identify a function in Lp
′
(Ω) with an element of the dual space of Lp(Ω), if

1
p + 1

p′ = 1. The difference is that not every element of D′ can be described this way, as we will see shortly.
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2.3 Weak derivatives and Sobolev spaces

Proof. Let η be a positive symmetric mollifier and fix U ⊂⊂ Ω. If ε > 0 is small enough,
then for any x ∈ U , ηε(x − · ) ∈ C∞(Rn) is compactly supported in B(x, ε ⊂ Ω, and so by
assumption

f ∗ ηε(x) =

∫
Ω

f(t)ηε(x− t) dt = 0,

for each fixed x ∈ U . Now by Theorem 2.1.7(b), f ∗ ηε → f in L1
loc(Rn), hence f = 0 a.e. in

U . Since U ⊂⊂ Ω was arbitrary, we conclude f = 0 a.e. in Ω.

In this way, we may identify L1
loc(Ω) with a subset of D′(Ω). In particular, up to this identifi-

cation, C∞c (Ω), Lp(Ω) etc. are subsets of D′(Ω).

2.2.7 Definition. A distribution f ∈ D′(Ω) is called regular if f ∈ L1
loc(Ω) and singular

otherwise.

2.2.8 Example (The delta distribution2). Suppose 0 ∈ Ω. Define δ ∈ D′(Ω) by 〈δ, ϕ〉 = ϕ(0).
We first check that this really is a distribution: linearity is as usual immediate, and for
continuity, if ϕn → 0 in D, then in particular ϕn(x)→ 0 uniformly in Ω; hence

〈δ, ϕn〉 = ϕn(0)→ 0.

One can show that supp δ = {0} and hence conclude δ must be singular (make a contradiction
assumption and use Theorem 2.2.6 to conclude that δ = 0 a.e. in Ω \ {0} and hence in Ω);
nevertheless, one often writes

ϕ(0) =

∫
Ω

δ(x)ϕ(x) dx.

2.3 Weak derivatives and Sobolev spaces

Suppose now that Ω ⊂ Rn is smooth and bounded, with outer unit normal ν = (ν1, . . . , νn).
If f ∈ C1(Ω) and ϕ ∈ C∞c (Ω), then we may apply the integration by parts formula, i.e., the
Theorem of Gauß–Green in the form∫

Ω

∂u

∂xi
ϕdx =

∫
∂Ω

uνi dσ (i = 1, . . . , n) (2.3.1)

to u = fϕ to obtain∫
Ω

∂f

∂xi
ϕdx = −

∫
Ω

f
∂ϕ

∂xi
dx+

∫
∂Ω

fϕ νi dσ︸ ︷︷ ︸
=0 since ϕ∈C∞c (Ω)

for all i = 1, . . . , n.

More generally, if Ω ⊂ Rn is open, α ∈ Nn
0 , f ∈ C |α|(Ω) and ϕ ∈ C∞c (Ω), then applying

Gauß–Green |α| times on any smooth set U such that suppϕ ⊂⊂ U ⊂⊂ Ω, we have∫
Ω

Dαfϕ dx = (−1)|α|
∫

Ω

fDαϕdx.

This motivates the following definition.

2Also called the Dirac delta distribution or, more sloppily, the Dirac delta function. Obviously we could take
any x ∈ Ω in place of 0 in this definition.
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2 Weak solutions

2.3.1 Definition. Suppose Ω ⊂ Rn is open, f ∈ D′(Ω) and α ∈ Nn
0 . Then the αth distribu-

tional (partial) derivative Dαf ∈ D′(Ω) is given by

〈Dαf, ϕ〉 := (−1)|α|〈f,Dαϕ〉 for all ϕ ∈ D(Ω).

Let us check that this is in fact well defined (we give the argument in some detail explicitly
as an example of how to work with these definitions):

1. ϕ ∈ D(Ω) =⇒ Dαϕ ∈ D(Ω) (in fact for all α ∈ Nn
0 ), so in particular 〈f,Dαϕ〉 makes

sense.

2. Linearity: using the definition of Dαf and the linearity of f , we have

〈Dαf, µϕ+ λψ〉 = (−1)|α|〈f,Dα(µϕ+ λψ)〉 = (−1)|α|〈f, µDαϕ+ λDαψ〉
= (−1)|α|µ〈f,Dαϕ〉+ (−1)|α|λ〈f,Dαψ〉 = µ〈Dαf, ϕ〉+ λ〈Dαf, ψ〉.

3. Continuity: it follows from the definition that if ϕn → ϕ in D(Ω), then Dαϕn → Dαϕ
in D(Ω) and hence

〈Dαf, ϕn〉 = (−1)|α|〈f,Dαϕn〉 → (−1)|α|〈f,Dαϕ〉 = 〈Dαf, ϕ〉.

2.3.2 Example (Heaviside function). Set

Θ(x) =

{
1 x ≥ 0,

0 x < 0.

Then Θ ∈ L1
loc(R) may be identified with an element of D′(R). For ϕ ∈ D(R), using compact

support,

〈Θ′, ϕ〉 = −
∫
R

Θ(x)ϕ′(x) dx = −
∫ ∞

0

ϕ′(x) dx = ϕ(0) = 〈δ, ϕ〉.

Hence Θ′ = δ in the sense of distributions.

Note that if f ∈ C |α|(Ω) ⊂ L1
loc(Ω) ⊂ D′(Ω), then the distribution Dαf ∈ D′(Ω) agrees

with the classical derivative Dαf ∈ C(Ω). (This is an exercise using Gauß–Green and Theo-
rem 2.2.6.)

2.3.3 Definition. Suppose f ∈ L1
loc(Ω) ⊂ D′(Ω) and α ∈ Nn

0 . If Dαf ∈ D′(Ω) is itself in
L1
loc(Ω) (i.e. regular), then we call it the αth weak (partial) derivative of f . That is, g is the

αth weak partial derivative of f if and only if g ∈ L1
loc(Ω) and∫

Ω

fDαϕdx = (−1)|α|
∫

Ω

gϕ dx for all ϕ ∈ C∞c (Ω).

Example 2.3.2 shows that not every f ∈ L1
loc(Ω) possesses an αth weak partial derivative,

although the corresponding distributional derivative always exists.

An example: in fact Θ = f ′ in the weak sense, where

f(x) =

{
x x ≥ 0,

0 x < 0.

Note that weak derivatives, if they exist, are unique by Theorem 2.2.6.
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2.3 Weak derivatives and Sobolev spaces

2.3.4 Definition. Suppose 1 ≤ p ≤ ∞ and k ∈ Nn
0 . We set

W k,p(Ω) := {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ Nn
0 with |α| ≤ k}.

If p = 2, we write Hk(Ω) for W k,2(Ω).

If k = 0, then obviously W 0,p(Ω) = Lp(Ω) and H0(Ω) = L2(Ω). In general, functions in
W k,p(Ω, Hk(Ω) are only defined almost everywhere.3

We also write f ∈ W k,p
loc (Ω) if f ∈ W k,p(U) for all U ⊂⊂ Ω. We denote by supp f the closure

of the smallest set U such that f = 0 a.e. on Ω \ U .

2.3.5 Theorem (Elementary properties of weak derivatives). Suppose f, g ∈ W k,p(Ω) and
|α| ≤ k, where k ≥ 0 and 1 ≤ p ≤ ∞. Then

(a) Dα ∈ W k−|α|,p(Ω) and Dβ(Dαf) = Dα(Dβf) = Dα+βf for all α, β ∈ Nn
0 with |α|+ |β| ≤

k.

(b) λf + µg ∈ W k,p(Ω) for all λ, µ ∈ K and Dα(λf + µg) = λDαf + µDαg for all |α| ≤ k.
In particular, W k,p(Ω) is a vector space.

(c) If U ⊂ Ω is open, then f |U ∈ W k,p(U).

(d) If ϕ ∈ C∞c (Ω), then fϕ ∈ W k,p(Ω) and

Dα(fϕ) =
∑
β≤α

(
α
β

)
DβϕDα−βf (Leibniz’ formula).

For (d), we note β ≤ α :⇐⇒ βi ≤ αi for all i = 1, . . . , n and(
α
β

)
=

α!

β!(α− β)!
=

n∏
i=1

αi!

βi!(αi − βi)!
.

The proof is elementary and omitted (see [3, Section 5.2.3]).

2.3.6 Theorem. With respect to the norm

‖f‖Wk,p(Ω) :=


(∑

|α|≤k
∫

Ω
|Dαf |p dx

)1/p

1 ≤ p <∞)∑
|α|≤k ess supΩ|Dαf | (p =∞)

the space W k,p(Ω) is a Banach space; Hk(Ω) is a Hilbert space with inner product

(f, g)Hk(Ω) :=
∑
|α|≤k

∫
Ω

Dαf Dαg dx.

This can be proved by using the definition of weak derivatives to show that W k,p(Ω) may be
identified with a closed subspace of the Banach space

Lp(Ω)︸ ︷︷ ︸
3f

×Lp(Ω)n︸ ︷︷ ︸
3Df

×Lp(Ω)n
2︸ ︷︷ ︸

3D2f

× . . .× Lp(Ω)n
k︸ ︷︷ ︸

3Dkf

.

Oberve that C∞c (Ω) ⊂ W k,p(Ω) for all 1 ≤ p ≤ ∞ and all k ∈ N0.

3More precisely, as with Lp-functions we really mean that the “functions” are equivalence classes of functions
which agree almost everywhere in Ω.
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2 Weak solutions

2.3.7 Definition. We denote by W k,p
0 (Ω) the closure of C∞c in W k,p(Ω) and write Hk

0 (Ω) for
W k,2

0 (Ω) (1 ≤ p ≤ ∞ and k ∈ N0).

Roughly speaking, W k,p
0 (Ω) consists of those f ∈ W k,p(Ω) for which Dαf = 0 on ∂Ω” in some

sense for all 0 ≤ |α| ≤ k − 1. (This will be made somewhat more precise when we discuss
traces below.) It can be shown that W k,p(Rn) = W k,p

0 (Rn) for all k ∈ N0 and all 1 ≤ p <∞,
but in general W k,p(Ω) 6= W k,p

0 (Ω) if Ω ( Rn.

Question: how smooth are W k,p-functions? Two complementary directions:

1. Sobolev inequalities/embeddings;

2. density of smooth (C∞) functions in W k,p(Ω).

In what follows, we will use the notation Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} to denote the part
of Ω up to distance ε > 0 to the boundary. If ε = 1/i, we will write Ωi in place of Ω1/i.

2.3.8 Theorem. Suppose Ω ⊂ Rn is bounded and open4 and f ∈ W k,p(Ω) for some 1 ≤ p <∞
and k ∈ N0. Then there exist fm ∈ C∞(Ω) ∩W k,p(Ω) such that fm → f in W k,p(Ω).5

We will use the following lemma without proof.

2.3.9 Lemma. Suppose f ∈ W k,p(Ω) and set fε := f ∗ ηε in Ωε, where ηε is as in Defini-
tion 2.1.5 (or rather just after it). Then fε ∈ C∞(Ωε) for each ε > 0 and fε → f in W k,p

loc (Ω)
as ε→ 0.

Proof of Theorem 2.3.8. Fix f ∈ W k,p(Ω) and δ > 0. We will prove the existence of g ∈
C∞(Ω) ∩W k,p(Ω) such that ‖f − g‖Wk,p(Ω) < δ.

1. We have, in the notation introduced above, Ω = ∪i∈NΩi. Set

Ui := Ωi+3 \ Ωi+1

(“overlapping onion rings”, which become finer near ∂Ω), and choose any U0 ⊂⊂ Ω open so
that

Ω =
⋃
i∈N0

Ωi.

Further, let {ϕi}i∈N0 be a smooth partition of unity subordinate to the open sets {Ui}i∈N0 , i.e.

ϕi ∈ C∞c (Ui), 0 ≤ ϕi ≤ 1 and
∞∑
i=0

ϕi(x) = 1 for all x ∈ Ω.

By Theorem 2.3.5(d), fϕi ∈ W k,p(Ω), and since ϕi ≡ 0 outside Ui, it follows that fϕi = 0
a.e. outside Ui.

4Actually, the theorem is valid with essentially the same proof without the assumption of boundedness on Ω.
It suffices to “cut off” the sets Ωi in an appropriate way, e.g., consider Ω̃i := Ωi ∩B(0, i) in place of Ωi in
the above proof.

5We could have defined W k,p(Ω) to be the abstract completion of the space of smooth functions with respect
to the W k,p(Ω), i.e., C∞-functions with finite W k,p-norm, as some books do. This theorem (together with
Theorem 2.3.6) shows that the two definitions are equivalent.
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2.3 Weak derivatives and Sobolev spaces

2. For each i ≥ 0 choose εi > 0 small enough that fi := (fϕi) ∗ ηεi ∈ C∞c (Ω) satisfies

‖fi − (fϕi)‖Wk,p(Ω) ≤
δ

2i+1
,

supp fi ⊂ Ωi+1 \ Ωi (⊃ Ui, i ≥ 1),
(2.3.2)

which we can do by Lemma 2.3.9 and Theorem 2.1.7(d), respectively.

3. Write g :=
∑∞

i=0 fi, then g ∈ C∞(Ω, since for each U ⊂⊂ Ω there are at most finitely many
nonzero terms in the sum. Since f =

∑∞
i=0 fϕi by choice of the ϕ, we have

‖f − g‖Wk,p(Ω) =

∥∥∥∥∥
∞∑
i=0

(fϕi − fi)

∥∥∥∥∥
Wk,p(Ω)

≤
∞∑
i=0

‖fϕi − fi‖Wk,p(Ω) ≤ δ

1

2i+1∑
i=0

= δ,

where for the last inequality we have used (2.3.2).

Note however that the approximating function g is not necessarily continuous up to the bound-
ary. If we wish to find approximating functions in C∞(Ω), then we need to assume that ∂Ω is
not “too wild”.6

2.3.10 Theorem. Assume Ω ⊂ Rn is bounded and open with C1 boundary ∂Ω. Suppose
f ∈ W k,p(Ω) for some 1 ≤ p < ∞ and k ∈ N0. Then there exist fm ∈ C∞(Ω) such that
fm → f in W k,p(Ω).

Proof. See [3, Section 5.3.3]

2.3.11 Theorem. Assume Ω ⊂ Rn is bounded and open with C1 boundary and let Ω̃ ⊃⊃ Ω
be open. Then there exists a bounded linear operator E : W 1,p(Ω) → W 1,p(Rn) such that for
each f ∈ W 1,p(Ω)

(a) Ef = f a.e. in Ω,

(b) suppEf ⊂ Ω̃, and

(c) ‖Ef‖W 1,p(Rn) ≤ C‖f‖W 1,p(Ω), where C > 0 depends only on p, Ω and Ω̃.

We call Ef an extension of f to Rn.

Proof. See [3, Section 5.4]

Since we are interested in Sobolev functions as “weak” solutions of PDEs on Ω (this will be
defined later; see Definition 2.6.1 and Remark 2.6.7) we need to be able to assign “boundary
values” along ∂Ω. The problem is that W k,p-functions are only defined almost everywhere,
and ∂Ω usually has measure zero.

2.3.12 Theorem. Suppose Ω ⊂ Rn is bounded and open with C1 boundary and 1 ≤ p < ∞.
Then there exists a bounded linear operator

tr : W 1,p(Ω)→ Lp(∂Ω)

such that
6The next two theorems will not be needed in the sequel; we include their statements for the sake of “com-

pleteness” and refer to the book of Evans [3, Chapter 5] for the proofs.
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(a) tr f = f |∂Ω if f ∈ W 1,p(Ω) ∩ C(Ω), and

(b) ‖ tr f‖Lp(∂Ω) ≤ C‖f‖W 1,p(Ω) for all f ∈ W 1,p(Ω), where C > 0 depends only on p and Ω.

We call tr the trace (dt: Spur) of f on ∂Ω. The proof, which we again omit (see [3, Section 5.5]),
roughly speaking consists in taking the “closure” of the restriction mapping C(Ω)→ C(∂Ω),
f 7→ f |∂Ω, with respect to the W 1,p- and Lp-norms.

The trace has a natural relation to the spaces W 1,p
0 (Ω).

2.3.13 Theorem. Suppose Ω ⊂ Rn is bounded and open with C1 boundary7 and f ∈ W 1,p(Ω).
Then

f ∈ W 1,p
0 (Ω) ⇐⇒ tr f = 0.

The direction “ =⇒ ” is easy: take fm ∈ C∞c (Ω) such that fm → f in W 1,p(Ω). Since fm ≡ 0
on ∂Ω, we have tr fm = 0 for all m ∈ N. Since tr is bounded,

‖ tr fm︸ ︷︷ ︸
=0

− tr f‖Lp(∂Ω) ≤ C‖fm − f‖W 1,p(Ω) −→ 0

as m→∞. The other direction is much deeper, and we again refer to Evans [3, Section 5.5]
for the proof.

2.4 Sobolev inequalities

We give a short summary of the most important inequalities satisfied by Sobolev functions.
The general principle is that a function in W k,p(Ω) is “smoother” than a general function
in Lp(Ω) and so automatically belongs to other spaces; this is shown by finding inequalities
controlling the norm in the target space of a (sufficiently smooth) function in terms of its
W k,p-norm. In many cases, the resulting embeddings turn out to be of extreme importance to
the nonlinear theory. We will prove a couple of the results on which we will rely most heavily in
the future, but a full treatment of all the generally very technical proofs would unfortunately
take far too long. Omitted proofs can generally be found in Evans’ very accessible book [3,
Chapter 5], or alternatively in [5, Chapter 7]. The classical books on Sobolev space theory
[1, 7] are not recommended for beginners.

Throughout this section, we always assume Ω ⊂ Rn is a bounded, open set with C1 boundary,
unless otherwise stated.

2.4.1 Definition. If 1 ≤ p < n, the Sobolev conjugate of p is

p∗ :=
np

n− p
.

That is,
1

p∗
=

1

p
− 1

n
,

and in particular p∗ > p.

7Most statements about Sobolev functions which are true for “C1 boundary”, including this one, continue to
hold when the boundary is merely Lipschitz, i.e., locally the graph of a Lipschitz function. However, the
proofs become considerably more technical and can, for example, no longer be found in the highly readable
– and recommended – book of Evans.
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2.4 Sobolev inequalities

2.4.2 Theorem (Gagliardo–Nirenberg–Sobolev inequality). Suppose 1 ≤ p < n. Then

‖f‖Lp∗ (Rn) ≤ C(p, n)‖Df‖Lp(Rn) for all f ∈ C1
c (Rn). (2.4.1)

By C(p, n) we mean that the constant C > 0 depends only on p and n. Note that the
assumption that f have compact support is obviously necessary (consider, e.g., f ≡ 1), but
the constant does not depend on the size of supp f .

Proof. The proof proceeds by applying the (one-dimensional) fundamental theorem of calculus
in each coordinate direction and then the generalised Hölder inequality, which can be obtained
by applying inductively the usual Hölder inequality: if 1 ≤ p1, . . . , pm ≤ ∞ with 1

p1
+. . .+ 1

pm
=

1 and uk ∈ Lpk(Ω) for k = 1, . . . ,m, then∫
Ω

|u1 . . . um| dx ≤
m∏
k=1

‖uk‖Lpk (Ω). (2.4.2)

1. Suppose p = 1. Then for each i = 1, . . . , n and x = (x1, . . . , xn) ∈ Rn, the fundamental
theorem of calculus implies

f(x) =

∫ xi

−∞

∂f

∂xi
(x1, . . . , xi−1, yi, xi+1, . . . , xn) dyi

since f has compact support; since ∣∣∣∣ ∂f∂xi
∣∣∣∣ ≤ |Df |

pointwise, in particular

|f(x)| ≤
∫ ∞
−∞
|Df(x1, . . . , yi, . . . , xn)| dyi, i = 1, . . . , n.

Multiplying the n inequalities together and taking 1/(n− 1)-th powers,

(|f(x)|n)
1

n−1 ≤

(
n∏
i=1

∫ ∞
−∞
|Df(x1, . . . , yi, . . . , xn)| dyi

) 1
n−1

=
n∏
i=1

(∫ ∞
−∞
|Df(x1, . . . , yi, . . . , xn)| dyi

) 1
n−1

.

We now integrate with respect to x1:∫ ∞
−∞
|f(x)|

n
n−1 dx1 ≤

∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞
|Df(x1, . . . , yi, . . . , xn)| dyi

) 1
n−1

dx1.

Since the first term (i = 1) does not depend on x1, we may pull it outside the outer integral:∫ ∞
−∞
|f(x)|

n
n−1 dx1 ≤

(∫ ∞
−∞
|Df | dy1

) 1
n−1
∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|Df(x1, . . . , yi, . . . , xn)| dyi

) 1
n−1

dx1

≤

(∫ ∞
−∞
|Df | dy1︸ ︷︷ ︸
=:I1

) 1
n−1 n∏

i=2

(∫ ∞
−∞

∫ ∞
−∞
|Df | dx1dyi︸ ︷︷ ︸

=:Ii, i≥2

) 1
n−1
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using (2.4.2) with m = n− 1 and p2 = . . . = pn = 1/(n− 1). We now integrate wit respect to
x2 ∫ ∞

−∞

∫ ∞
−∞
|f(x)|

n
n−1 dx1dx2 ≤

(∫ ∞
−∞

∫ ∞
−∞
|Df | dx1dy2︸ ︷︷ ︸
I2

) 1
n−1 ∫ ∞

−∞

n∏
i=1
i 6=2

I
1

n−1

i dx2

and again apply (2.4.2) with m = n− 1 and p1 = p3 = . . . = pn = 1/(n− 1):∫ ∞
−∞

∫ ∞
−∞
|f(x)|

n
n−1 dx1dx2 ≤

(∫ ∞
−∞

∫ ∞
−∞
|Df | dx1dy2

) 1
n−1
(∫ ∞
−∞

∫ ∞
−∞
|Df | dy1dx2

) 1
n−1

·

n∏
i=3

(∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|Df | dx1dx2dyi

) 1
n−1

.

Proceeding inductively, we obtain∫
Rn
|f |

n
n−1 dx ≤

n∏
i=1

(∫ ∞
−∞
· · ·
∫ ∞
−∞
|Df | dx1 . . . dyi . . . dxn

) 1
n−1

=

(∫
Rn
|Df | dx

) n
n−1

.

Thus we have shown
‖f‖

n
n−1

L
n
n−1 (Rn)

≤ ‖Df‖
n
n−1

L1(Rn), (2.4.3)

which is (2.4.1) when p = 1 and so p∗ = n/(n− 1).

2. Now suppose 1 < p < n. We apply (2.4.3) to the function g := |f |γ for some γ > 1 to be
chosen later: (∫

Rn
|f |

γn
n−1 dx

)n−1
n

≤
∫
Rn
|D|f |γ| dx = γ

∫
Rn
|f |γ|Df | dx

≤ γ

(∫
Rn
|f |(γ−1) p

p−1 dx

) p−1
p
(∫

Rn
|Df |p dx

) 1
p

by Hölder’s inequality. Here we have also made use of the chain rule to obtain D|f |γ =
|f |γ−1Df a.e. in Rn: this is certainly true (pointwise) whenever f 6= 0; and one may show (for
a general differentiable function g) that Dg = 0 a.e. on {g = 0}.
Now we choose γ so that

γn

n− 1
= (γ − 1)

p
p−1 , i.e. γ :=

p(n− 1)

n− p

in order to equate the powers of |f | appearing on the left- and right-hand sides; since p < n,
we have γ > 1. We also note that with this choice

γn

n− 1
= (γ − 1)

p

p− 1
=

np

n− p
= p∗.

Thus

1

γ

(∫
Rn
|f |p∗ dx

)n−1
n
− p−1

p

≤
(∫

Rn
|Df |p dx

) 1
p

.
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2.4 Sobolev inequalities

Since
n− 1

n
− p− 1

p
=
n− p
np

=
1

p∗
,

we finally obtain (∫
Rn
|f |p∗ dx

) 1
p∗

≤ p(n− 1)

n− p︸ ︷︷ ︸
=:C(n,p)

(∫
Rn
|Df |p dx

) 1
p

,

which is (2.4.1).

Theorem 2.4.2 together with the Extension Theorem 2.3.11 leads to

2.4.3 Theorem. If f ∈ W 1,p(Ω) for some 1 ≤ p < n, then f ∈ Lp∗(Ω) and

‖f‖Lp∗ (Ω) ≤ C(p, n,Ω)‖f‖W 1,p(Ω).

See [3, Section 5.6.1]. We write W 1,p(Ω) ↪→ Lp
∗
(Ω (“embeds continuously”); by Hölder’s

inequality, this also implies W 1,p(Ω) ⊂ Lq(Ω) for all q ∈ [1, p∗], since we are assuming Ω is
bounded.

A consequence is the assertion that ‖Df‖Lp(Ω) is an equivalent norm on W 1,p
0 (Ω); in fact, this

holds for all p ∈ [1,∞).

2.4.4 Theorem (Poincaré’s inequality). Suppose f ∈ W 1,p
0 (Ω) for some 1 ≤ p < ∞ and

1 ≤ q ≤ p∗.8 Then
‖f‖Lq(Ω) ≤ C(p, q, n,Ω)‖Df‖Lp(Ω).

In particular,
‖f‖Lp(Ω) ≤ C(p, n,Ω)‖Df‖Lp(Ω).

Proof. Let fm ∈ C∞c (Ω) such that fm → f in W 1,p(Ω). We may extend each function fm by 0
on Rn\Ω to obtain a function which we still denote by fm ∈ C∞c (Rn). Then by Theorem 2.4.2,
for each m,

‖fm‖Lp∗ (Ω) = ‖fm‖Lp∗ (Rn) ≤ C‖Dfm‖Lp(Rn) = C‖Dfm‖Lp(Ω).

Passing to the limit as m → ∞, we have ‖fm‖Lp∗ (Ω) → ‖f‖Lp∗ (Ω) by Theorem 2.4.3. Since Ω
is bounded, we therefore have

‖f‖Lq(Ω) ≤ C(p, q,Ω)‖f‖Lp∗ (Ω) ≤ C̃(p, q, n,Ω)‖Df‖Lp(Ω)

for any 1 ≤ q ≤ p∗.

If p > n, then W 1,p(Ω)-functions are even (Hölder) continuous. We recall that for k ∈ N0 and
γ ∈ [0, 1] the Hölder space Ck,γ(Ω) is defined by

f ∈ Ck,γ(Ω) :⇐⇒ ‖f‖Ck,γ(Ω) :=
∑
|α|≤k

‖Dαf‖C(Ω) +
∑
|α|=k

sup
x,y∈Ω
x 6=y

|Dαf(x)−Dαf(y)|
|x− y|γ︸ ︷︷ ︸

γth Hölder seminorm of Dαf

<∞.

This is a Banach space with respect to the given norm.

8In the lecture we assumed 1 ≤ p < n and noted afterwards that this is true for all p <∞.
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2.4.5 Theorem (Morrey’s inequality). Assume n < p ≤ ∞.

(a) ‖f‖
C

0,1−np (Rn)
≤ C(p, n)‖f‖W 1,p(Rn) for all f ∈ W 1,p(Rn).

(b) Suppose f ∈ W 1,p(Ω). Then f ∈ C0,1−n
p (Ω) (more precisely, there exists a Hölder contin-

uous representative of f as an equivalence class of functions agreeing almost everywhere)
with

‖f‖
C

0,1−np (Ω)
≤ C(p, n,Ω)‖f‖W 1,p(Ω)

The proof can be found in [3, Section 5.6.2], a brief discussion of the subtle borderline case
p = n in [3, 5.8.1].

2.4.6 Remark. Applying the estimates in Theorems 2.4.3 and 2.4.5 repeatedly, we can obtain
more general Sobolev inequalities such as

1. f ∈ W k,p(Ω), k < n
p
, and 1

q
= 1

p
− 1

n
implies f ∈ Lq(Ω) and

‖f‖Lq(Ω) ≤ C(k, p, n,Ω)‖f‖Wk,p(Ω), (2.4.4)

i.e. W k,p(Ω) ↪→ Lq(Ω), or more generally

2. if k > l and 1 ≤ p < q <∞ such that (k − l)p < n and

1

q
=

1

p
− k − l

n
, then W k,p(Ω) ↪→ W l,q(Ω), (2.4.5)

as well as

3.
k − l − α

n
=

1

p
for some α ∈ (0, 1) =⇒ W k,p(Ω) ↪→ C l,α(Ω). (2.4.6)

It is an important observation that in many cases the embeddings W k,p(Ω) ↪→ Lq(Ω) are com-
pact, by which we mean that each bounded sequence in W k,p(Ω) has a convergent subsequence
in Lq(Ω).

2.4.7 Theorem (Rellich–Kondrachov). We continue to suppose that Ω ⊂ Rn is bounded and
open. Then

(a) the embeddings W 1,p
0 (Ω) ↪→ Lp(Ω) and W k,p

0 (Ω) ↪→ W k−1,p
0 (Ω) are compact.

If in addition Ω has C1 boundary, then also

(b) W 1,p(Ω) ↪→ Lp(Ω) (1 ≤ p ≤ ∞) and more generally W k,p(Ω) ↪→ W k−1,p(Ω), as well as

(c) W 1,p(Ω) ↪→ Lq(Ω) (1 ≤ p < n and 1 ≤ q < p∗)

are compact.

The proof relies on the Arzelà–Ascoli theorem. See [3, Section 5.7].

2.5 The dual spaces W−k,p(Ω) and H−k(Ω)

For 1 ≤ p ≤ ∞, denote by p′ the conjugate exponent, 1
p

+ 1
p′

= 1, with the usual convention

1/0 =∞ and 1/∞ = 0.
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2.5 The dual spaces W−k,p(Ω) and H−k(Ω)

2.5.1 Definition. For k ∈ N, we define the dual space

W−k,p′(Ω) :=
(
W k,p

0 (Ω)
)′
.

This can be identified with a space of distributions:9

W−k,p′(Ω) = {f ∈ D′(Ω) : f =
∑
|α|≤k

Dαgα for some gα ∈ Lp
′
(Ω)}. (2.5.1)

This is a Banach space when equipped with the canonical dual space norm

‖f‖W−k,p′ (Ω) := sup
0 6=g∈Wk,p(Ω)

|〈f, g〉|
‖g‖Wk,p(Ω)

= sup{〈f, g〉 : ‖g‖Wk,p(Ω) ≤ 1}, (2.5.2)

where 〈 · , · 〉 denotes the dual pairing between W−k,p′(Ω) and W k,p(Ω). Also observe that Dα

is a bounded operator from W k,p(Ω) to W k−|α|,p(Ω) for all k ∈ Z (by definition of Dα and
(2.5.1)).

If p = q = 2, then we set H−k(Ω) := W−k,2(Ω) = (Hk
0 (Ω))′, a Hilbert space. We do not

identify Hk
0 with its dual; instead, we consider

Hk
0 (Ω) ↪→ L2(Ω) ↪→ H−k(Ω).

Let us consider this more carefully in the special case of H1
0 (Ω).

2.5.2 Proposition. (a) If f ∈ H−1(Ω), then there exist f0, f1, . . . , fn ∈ L2(Ω) such that

〈f, g〉 =

∫
Ω

f0g +
n∑
i=1

fi
∂g

∂xi
dx for all g ∈ H1

0 (Ω). (2.5.3)

(b) ‖f‖H−1(Ω) = inf


(∫

Ω

n∑
i=0

|fi|2 dx

)1/2

: f satisfies (2.5.3) for some f0, . . . , fn ∈ L2(Ω)

 .

(c) For all f ∈ L2(Ω) ⊂ H−1(Ω), we have

(f, g)L2(Ω) = 〈f, g〉 for all g ∈ H1
0 (Ω).

Thus if f ∈ H−1(Ω) is additionally in L2(Ω), then the H−1–H1
0 duality in this case agrees with

the L2-inner product. We write

f = f0 −
n∑
i=1

∂fi
∂xi

if (2.5.3) holds; this is to be interpreted in the distributional sense.

9This is the principal reason for taking W k,p
0 (Ω) and not W k,p(Ω): we wish to consider the space of test

functions equipped with the W k,p-norm.
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Proof. (a) If u, v ∈ H1
0 (Ω), then their inner product is given by

(u, v)H1
0 (Ω) =

∫
Ω

Du ·Dv + uv dx.

Suppose now f ∈ H−1(Ω). By the Riesz Representation Theorem10, there exists a unique
u ∈ H1

0 (Ω) such that

(u, v)H1
0 (Ω) = 〈f, v〉 for all v ∈ H1

0 (Ω),

that is, ∫
Ω

Du ·Dv + uv dx = 〈f, v〉 for all v ∈ H1
0 (Ω).

(2.5.3) follows immediately with f0 = u, fi = ∂u
∂xi

, i = 1, . . . , n.

(c) follows immediately from (a), since if f ∈ L2(Ω), then f = f0, and (b) is left as an
exercise.

2.6 Weak solutions

Consider the linear equation
Lu :=

∑
|α≤k

aα(x)Dαu(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

(2.6.1)

on an open set Ω ⊂ Rn, where aα ∈ C∞(Ω). Then (2.6.1) may be interpreted classically, that
is, f ∈ C(Ω) and we seek a solution u ∈ Ck(Ω) ∩ C(Ω).

Or we can note that Lu ∈ D′(Ω) whenever u ∈ D′(Ω), since aαD
αu acts as a distribution via

〈aαDαu, ϕ〉 = 〈u,Dαaαϕ︸ ︷︷ ︸
∈D(Ω)

〉 for all ϕ ∈ D(Ω).

Thus (2.6.1) may be interpreted in the sense of distributions: given f ∈ D′(Ω), a solution u is
an element of D′(Ω) satisfying

〈Lu, ϕ〉 = 〈f, ϕ〉 for all ϕ ∈ D(Ω). (2.6.2)

Problem: Finding C2-solutions is difficult (even proving their existence), since the requirement
that a function be C2 is very strong. But (2.6.2) does not reflect the boundary condition;
finding “solutions” might be easy, but there might be too many, and they might have too
little connection to the original equation.

Now suppose L is second order strictly elliptic and in divergence form:Lu := −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj
(x)

)
+

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.

(2.6.3)

10Also known as the Fréchet–Riesz theorem, i.e., that a Hilbert space is canonically isometrically isomorphic
to its dual.
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2.6 Weak solutions

We write Lu = − div(ADu) + b · Du + cu, where A = (aij) is without loss of generality
symmetric, A, b = (b1, . . . , bn) and c are smooth enough, and f ∈ L2(Ω). Multiplying this
equation by ϕ ∈ C∞c (Ω)11 and applying Gauß–Green as in the definition of weak derivatives
to the principal term,

a(u, ϕ) :=

∫
Ω

n∑
i,j

aij
∂u

∂xi

∂ϕ

∂xj
+

n∑
i=1

bi
∂u

∂xi
ϕ+ cuϕ dx =

∫
Ω

fϕ dx ≡ (f, ϕ)L2(Ω) (2.6.4)

for all ϕ ∈ C∞c (Ω). This is analogous to (2.6.2) and makes sense if u, ϕ ∈ H1
0 (Ω); but it also

encodes the boundary condition u = 0 on ∂Ω, cf. Theorem 2.3.13. Moreover, if (2.6.4) holds
and u, f and ∂Ω are smooth enough (C2 is certainly sufficient), then (2.6.3) holds pointwise
(exercise; use Gauß–Green and Theorems 2.2.6 and 2.3.13).

2.6.1 Definition. (a) If u ∈ C2(Ω)∩C(Ω) satisfies (2.6.3) pointwise, it is called a classical
solution (of (2.6.3)).

(b) If u ∈ H1
0 (Ω), div(ADu) ∈ L2(Ω) and (2.6.3) holds pointwise a.e., then u is a strong

solution.

(c) If u ∈ H1
0 (Ω) satisfies (2.6.4), i.e. a(u, v) = (f, v)L2(Ω) for all v ∈ H1

0 (Ω), it is a weak (or
generalised) solution.

(d) If u ∈ D′(Ω) satisfies (2.6.2) (where we assume the coefficients of L are smooth enough
that (2.6.2) makes sense), it is a distributional solution.

(e) If u ∈ H1
0 (Ω) satisfies a(u, v) ≥ (f, v)L2(Ω) (≤) for all 0 ≤ v ∈ H1

0 (Ω), it is a weak super-
(sub-) solution.

Obviously (a) =⇒ (b) =⇒ (c) =⇒ (d). Most of these definitiions can be generalised to
most PDEs,12 although in many cases it can be a difficult question to determine the correct
spaces in which to work and hence the “correct” definition of “weak solution”.

Much of the theory of PDEs is concerned with two distinct questions arising from these
definitions:

Existence theory: search for (or prove existence of) a weak solution of Lu = f .

Regularity theory: show that a weak solution is in fact classical (or at least strong) if f , Ω and
the coefficients of L are smooth enough, using structural properties of the equation.

In this course we will be concerned with existence theory; as a first example we will give a
proof of the existence of a unique weak solution of (2.6.3) (for any given f ∈ L2(Ω) under
suitable assumptions on L. This will also help to motivate our entry into the general nonlinear
theory.

2.6.2 Lemma. Suppose aij, bi, c ∈ L∞(Ω). Then a : H1
0 (Ω) × H1

0 (Ω) → R is a bounded,
bilinear13 form, i.e. for all u, v, w ∈ H1

0 (Ω) and all λ, µ ∈ R, we have

a(λu+ µv, w) = λa(u,w) + µa(v, w)

a(u, λv + µw) = λa(u, v) + µa(u,w)

11We emphasise again that C∞c (Ω) ≡ D(Ω); here we are no longer interested in the topology on C∞c (Ω).
12Note however that (d) in this form requires both the linearity of the equation and the C∞-smoothness of

the coefficientsof L.
13Here we will always be interested in real problems and solutions, i.e., all our functions are real-valued. If

one allows complex values, then a will become sesquilinear.
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2 Weak solutions

and there exists C > 0 such that

|a(u, v)| ≤ C‖u‖H1
0 (Ω)‖v‖H1

0 (Ω) for all u, v ∈ H1
0 (Ω).

Proof. Linearity is obvious. For u, v ∈ H1
0 (Ω),

|a(u, v)| ≤
n∑

i,j=1

‖aij‖L∞(Ω)

∫
Ω

|Du||Dv|dx+
n∑
i=1

‖bi‖L∞(Ω)

∫
Ω

|Du||v| dx+ ‖c‖L∞(Ω)

∫
Ω

|u||v|dx

≤ C‖u‖H1
0 (Ω)‖v‖H1

0 (Ω)

using Cauchy–Schwarz on each integral and taking C > 0 large enough.

The key theoretical tool in the existence proof will be the following theorem from functional
analysis.

2.6.3 Theorem (Lax–Milgram lemma). Suppose H is a real Hilbert space and a : H×H → R
is a bounded, bilinear form satisfying the coercivity condition

a(u, u) ≥ c‖u‖2
H for all u ∈ H,

for some c > 0. Then for any f ∈ H ′ there exists a unique u ∈ H such that

a(u, v) = 〈f, v〉H′,H for all v ∈ H.

If a( · , · ) is symmetric (i.e. a(u, v) = a(v, u) for all u, v ∈ H), then a( · , · ) is an equivalent
inner product on H hand Theorem 2.6.3 is the Riesz Representation Theorem.

The next theorem uses the ellipticity assumption on L to show that the bilinear form given by
(2.6.4) is “almost” coercive; more precisely, it becomes coercive on H1

0 (Ω) if we add enough
L2-norm.

2.6.4 Theorem (Energy estimates). Suppose a( · , · ) is given by (2.6.4), where aij, bi, c ∈
L∞(Ω). Then there exist constants ω, α > 0 such that

a(u, u) + ω‖u‖2
L2(Ω) ≥ α‖u‖2

H1
0 (Ω) for all H1

0 (Ω).

Proof. Let u ∈ H1
0 (Ω). Strict ellipticity of L (see Definitions 1.3.8 and 1.3.12) implies∫

Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx ≥ c0

∫
Ω

|Du|2 dx,

where c0 > 0 may be chosen as the constant c > 0 appearing in Definition 1.3.12. Now∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
dx = a(u, u)−

∫
Ω

n∑
i=1

bi
∂u

∂xi
u+ cu2 dx

≤ a(u, u) +
n∑
i=1

‖bi‖L∞(Ω)

∫
Ω

|Du||u| dx+ ‖c‖L∞(Ω)

∫
Ω

u2 dx.
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2.6 Weak solutions

We need to control the integral terms on the right-hand side of the above inequality. To this
end, we use the inequality

ab ≤ εa2 +
b2

4ε
(a, b > 0, ε > 0) (2.6.5)

with a = |Du|, b = |u| at every point in Ω and integrate:∫
Ω

|Du||u| dx ≤ ε

∫
Ω

|Du|2 dx+
1

4ε

∫
Ω

u2 dx

and choose ε > 0 small enough that

ε
n∑
i=1

‖bi‖L∞(Ω) ≤
c0

2

to obtain
c0

2

∫
Ω

|Du|2 dx ≤ a(u, u) +

(
‖c‖L∞(Ω) +

1

4ε

)
︸ ︷︷ ︸

=:ω

∫
Ω

u2 dx.

Poincaré’s inequality, Theorem 2.4.4, guarantees that the left-hand side of the above inequality
is an equivalent norm on H1

0 (Ω); in particular, there exists C̃ > 0 such that

‖u‖2
H1

0 (Ω) ≤ C̃‖Du‖L2(Ω) for all u ∈ H1
0 (Ω).

Hence
c0

2C̃︸︷︷︸
=:α

‖u‖2
H1

0 (Ω) ≤ a(u, u) + ω‖u‖2
L2(Ω).

Now we can combine the two theorems above to prove existence.

2.6.5 Theorem. There exists ω ≥ 0 such that for all λ ≥ ω and all f ∈ L2(Ω) there exists a
unique weak solution u ∈ H1

0 (Ω) of the problem{
Lu+ λu = f in Ω,

u = 0 on ∂Ω,
(2.6.6)

with L as in (2.6.3), where aij, bi, c ∈ L∞(Ω). The constant ω > 0 may be taken as in
Theorem 2.6.4.

Note that the form

aλ(u, v) := a(u, v) + λ(u, v)L2(Ω)

corresponds to the shifted operator Lu+λu in the sense that weak solutions of (2.6.6) should
satisfy

aλ(u, v) ≡ a(u, v) + λ(u, v)L2(Ω) = (f, v)L2(Ω) for all v ∈ H1
0 (Ω).
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2 Weak solutions

Proof. Let ω ≥ 0 be as in Theorem 2.6.4 and suppose λ ≥ ω. Then aλ( · , · ) satisfies the
hypotheses of the Lax–Milgram lemma, Theorem 2.6.3. Now fix f ∈ L2(Ω) and consider f as
a bounded linear functional on H1

0 (Ω) which acts via

〈f, v〉 := (f, v)L2(Ω) for all v ∈ H1
0 (Ω),

as in Proposition 2.5.2. Then by Lax–Milgram there exists a unique u ∈ H1
0 (Ω) satisfying

aλ(u, v) = 〈f, v〉 = (f, v)L2(Ω) for all v ∈ H1
0 (Ω).

Hence u is the unique weak solution of (2.6.6).

2.6.6 Remark. The proof of Theorem 2.6.5 also shows that (2.6.6) has a unique weak solution
u ∈ H1

0 (Ω) if f ∈ H−1(Ω); in this case we mean

aλ(u, v) = 〈f, v〉 for all v ∈ H1
0 (Ω).

2.6.7 Remark (Other boundary conditions). Suppose we wish to solve the same equation
with an inhomogeneous Dirichlet condition,{

Lu = f in Ω,

u = g on ∂Ω
(2.6.7)

weakly (as in the sense of (2.6.4)), where we now search for u ∈ H1(Ω) and interpret u = g
on ∂Ω as meaning tru = g in L2(∂Ω) (cf. Theorem 2.3.12). We need to assume g = trw for
some w ∈ H1(Ω). Then ũ := u − w ∈ H1

0 (Ω) by Theorem 2.3.13 and u is a weak solution of
(2.6.7) if and only if ũ is a weak solution of{

Lũ = f̃ in Ω,

ũ = 0 on ∂Ω

with f̃ := f − Lw ∈ H−1(Ω).

The “natural” Neumann condition (see Section 1.2) corresponding to the operator Lu =
− div(ADu) + b ·Du+ cu is not ∂u

∂ν
≡ Du · ν = 0, but rather

ADu · ν = 0 on ∂Ω.

To see this, multiplying the equation Lu = f by a test function ϕ ∈ H1(Ω) ∩ C∞(Ω) and
integrating, ∫

Ω

(− div(ADu))ϕ+ b ·Duϕ+ cuϕ dx =

∫
Ω

fϕ dx.

If we now apply Gauß–Green to the principal term, we obtain∫
Ω

ADu ·Dϕdx+

∫
∂Ω

ϕADu · ν dσ +

∫
Ω

b ·Duϕ+ cuϕ dx =

∫
Ω

fϕ dx

for all ϕ. Since we want the boundary term to vanish (as in the case where A = I if we assume
Du · ν = 0), our condition in the “strong” or “classical” form now reads ADu · ν = 0. A weak
solution should now satisfy∫

Ω

ADu ·Dϕ+ (b ·Du+ cu)ϕdx =

∫
Ω

fϕ dx.
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2.6 Weak solutions

But note that the left-hand side is exactly a(u, ϕ) from (2.6.4). In order to “see” that ADu·ν =
0 for a weak solution u ∈ H1(Ω), we therefore require that all ϕ ∈ H1(Ω) be allowed as test
functions. Thus the only difference between the Dirichlet and the Neumann problems is that
we replace the space H1

0 (Ω) with H1(Ω).

The expression ADu · ν is sometimes called the conormal derivative of u (with respect to the
operator L).

Obviously this method cannot be generalised directly to nonlinear equations. But we still wish
to exploit the structural condition of ellipticity without requiring the linearity.
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3 Variational methods

3.1 Energy functionals

Suppose V is a Banach space (or a closed subset of one), U ⊂ V is an open set and E : U → R
is a (not necessarily linear) functional, i.e. a mapping. We often refer to E as an “energy
functional”.

3.1.1 Definition. We say E is Fréchet differentiable at a point u ∈ U if a bounded linear
map A : V → R (i.e. A ∈ V ′) exists such that

lim
‖ϕ‖V→0

|E(u+ ϕ)− E(u)− Aϕ|
‖ϕ‖V

= 0. (3.1.1)

The operator A =: E ′(u) is called the Fréchet derivative of E in u.

3.1.2 Example. If E : Rn → R and x, y ∈ Rn, then E ′(x)y = DE(x) · y, since obviously

lim
|h|→0

|E(x+ h)− E(x)−DE(x) · h|
|h|

= 0, that is,
E(x+ h)− E(x)

|h|
h→0∼ DE(x) · h

|h|
.

3.1.3 Definition. Suppose u ∈ U and ϕ ∈ V is fixed, so that the map t 7→ E(u+ tϕ) is well
defined for t ∈ R small enough (since U is open). If this map is differentiable in t = 0, then

δE(u)(ϕ) :=
d

dt
E(u+ tϕ)

∣∣∣
t=0

(3.1.2)

is called the first variation of E in u, in the direction ϕ.

This generalises the notion of a classical derivative. In particular, if E ′(u) exists, then

δE(u)(ϕ) = E ′(u)ϕ for all ϕ ∈ V. (3.1.3)

If E reaches a maximum or a minimum in u∗ ∈ U , i.e. E(u∗) ≥ E(u) or E(u∗) ≤ E(u) for all
u ∈ U , respectively, and is Fréchet differentiable in U , then E ′(u∗) = 0. (Exercise. Note that
by (3.1.3), it suffices to show δE(u∗)(ϕ) = 0 for all ϕ ∈ V .)

3.1.4 Example. Suppose U = V = H1
0 (Ω) and

E(u) =
1

2

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
+ cu2− 2fu dx, u ∈ H1

0 (Ω),

where aij, c ∈ L∞(Ω) and f ∈ L2(Ω) are given and aij = aji. Suppose also that u ∈ H1
0 (Ω) is

a critical point E . Let ϕ ∈ H1
0 (Ω) and t ∈ R, then

E(u+ tϕ) =
1

2

∫
Ω

n∑
i,j=1

aij

(
∂u

∂xi
+ t

∂ϕ

∂xi

)(
∂u

∂xj
+ t

∂ϕ

∂xj

)
+ c(u2 + 2tuϕ+ t2ϕ2) + 2f(u+ tϕ) dx.
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3 Variational methods

For δE(u)(ϕ) = limt→0
1
t
(E(u+ tϕ)− E(u)) we need the coefficients of t:

δE(u)(ϕ) =
1

2

∫
Ω

n∑
i,j=1

aij

(
∂u

∂xi

∂ϕ

∂xj
+
∂u

∂xj

∂ϕ

∂xi

)
︸ ︷︷ ︸

=2
∑n
i,j=1 aij

∂u
∂xi

∂ϕ
∂xj

since aij=aji

+2cuϕ− 2fϕ dx.

That is,

0 = δE(u)(ϕ) =

∫
Ω

n∑
i,j=1

aij
∂u

∂xi

∂ϕ

∂xj
cuϕ dx−

∫
Ω

fϕ dx for all ϕ ∈ H1
0 (Ω).

Comparing this with (2.6.4), we see u ∈ H1
0 (Ω) is a weak solution ofLu := −

n∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ cu = f in Ω,

u = 0 on ∂Ω.

Special case: aij = δij, c = f = 0: a minimiser1 of the Dirichlet integral (occasionally referred
to as the Dirichlet energy)

E(u) =
1

2

∫
Ω

|Du|2 dx

is a (weak) solution of ∆u = 0, i.e. a (weakly) harmonic function. This is called Dirichlet’s
principle.

General principle: interpret the weak form of a PDE as

δE(u)(ϕ) ≡ E ′(u)ϕ = 0 for all ϕ ∈ V (3.1.4)

for an appropriate Banach space V and energy functional E , so that solution(s) of the PDE
are critical points of E( · ).
A (differential) equation in the form (3.1.4) is said to be in variational form; it is also called
the (weak form of the) Euler–Lagrange equation associated with E .

Now consider

E(u) =

∫
Ω

F (x, u,Du) dx (3.1.5)

for Ω ⊂ Rn bounded and open with sufficiently smooth boundary and u ∈ W 1,p
0 (Ω) (1 ≤ p <

∞), where F : Ω× R× Rn → R, often called the Lagrangian, is also sufficiently smooth. We
also implicitly assume that F is of the right form so that (3.1.5) is actually well defined for
all u ∈ W 1,p

0 (Ω) (we will give sufficient conditions – which also influence the choice of p – for
this later; see Section 3.4 and in particular Theorem 3.4.11).

We write2

F (x, z, w) for x ∈ Ω, z ∈ R, w ∈ Rn,

1Actually any critical point has this property, but it turns out this functional only has the one, which is a
global minimum. Also note that one usually minimises this integral over a subset of H1(Ω) such as of the
form {u ∈ H1(Ω) : tru = g} for some given g ∈ L2(∂Ω). But the principle is the same.

2The notation (x, z, p) is more common.
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3.1 Energy functionals

as well as

DxF =

(
∂F

∂x1

, . . . ,
∂F

∂xn

)
DzF =

∂F

∂z

DwF =

(
∂F

∂w1

, . . . ,
∂F

∂wn

)
.

3.1.5 Proposition. The (formal) Euler–Lagrange equation associated with the functional E
given by (3.1.5) is given by3∫

Ω

n∑
i=1

∂F

∂wi
(x, u,Du)

∂ϕ

∂xi
+
∂F

∂z
(x, u,Du)ϕdx = 0 for all ϕ ∈ W 1,p

0 (Ω) (3.1.6)

(weak form), or

−
n∑
i=1

∂

∂xi

(
∂F

∂wi
(x, u,Du)

)
+
∂F

∂z
(x, u,Du) = 0 (3.1.7)

(strong/classical form).

We will see later that this covers a wide variety of (second order elliptic) quasilinear equations.

Proof. We first show that (3.1.6) corresponds to δE(u)(ϕ) = 0, ϕ ∈ W 1,p
0 (Ω):

E(u+ tϕ) =

∫
Ω

F (x, u+ tϕ,Du+ tDϕ) dx

d

dt
E(u+ tϕ) =

∫
Ω

∂F

∂z
(x, u+ tϕ,Du+ tϕ)ϕ+

n∑
i=1

∂F

∂wi
(x, u+ tϕ,Du+ tDϕ)

∂ϕ

∂xi
dx.

Hence

δE(u)(ϕ) =
d

dt
E(u+ tϕ)

∣∣∣
t=0

=

∫
Ω

∂F

∂z
(x, u,Du)ϕ+

n∑
i=1

∂F

∂wi
(x, u,Du)

∂ϕ

∂xi
dx,

which yields (3.1.6) if u is a critical point. If u is sufficiently smooth, then applying Gauß–
Green to (3.1.6) with ϕ ∈ C∞c (Ω) ⊂ W 1,p

0 (Ω) arbitrary and using Theorem 2.2.6 yields (3.1.7).

3.1.6 Definition. A function u : Ω → R is a weak solution of the (formal Euler–Lagrange)
equation{

−
n∑
i=1

∂

∂xi

(
∂F

∂wi
(x, u,Du)

)
+
∂F

∂z
(x, u,Du) = 0 in Ω, u = 0 on ∂Ω, (3.1.8)

if u ∈ W 1,p
0 (Ω) and4∫

Ω

n∑
i=1

∂F

∂wi
(x, u,Du)

∂ϕ

∂xi
+
∂F

∂z
(x, u,Du)ϕdx = 0 for all ϕ ∈ W 1,p

0 (Ω). (3.1.9)

3At this stage we are merely writing down formal identities; we assume that F is “nice” enough to justify
finiteness of the integrals, exchange of derivative and integral etc.; we will give examples of functions F for
which this holds later (see Theorem 3.4.11). Alternatively, one may for now assume ϕ ∈ C∞c (Ω) and F is
smooth and even bounded, say.

4Again, we are implicitly assuming here that this integral is well defined and finite for all ϕ ∈W 1,p
0 (Ω).

41



3 Variational methods

3.2 Important examples

We recall the second-order quasilinear equation

Lu :=
∑
|α|=2

aα(x, u,Du)Dαu+ a0(x, u,Du) = f

is in divergence form if

Lu = − divA(x, u,Du) + ã0(x, u,Du)

for some A = (A1, . . . , An), that is, with the aij as in (1.3.7),

aij(x, z, w) =
1

2

(
∂

∂wi
Aj(x, z, w) +

∂

∂wj
Ai(x, z, w)

)
.

(Any quasilinear equation in divergence form satisfies this relation; on the other hand, a general
semilinear equation can be written in divergence form provided the leading-order coefficients
are smooth enough; we leave the proof as an exercise.)

To be in variational form, i.e., to be the Euler–Lagrange equation

n∑
i=1

∂

∂xi

(
∂F

∂wi
(x, u,Du)

)
− ∂F

∂z
(x, u,Du) = 0

of the functional

E(u) =

∫
Ω

F (x, u,Du) dx

(with F : Ω× R× Rn → R sufficiently smooth), we need to have

Ai(x, z, w) =
∂F

∂wi
(x, z, w),

that is,

aij(x, z, w) =
∂2F

∂wi∂wj
(x, z, w), i, j = 1, . . . , n. (3.2.1)

3.2.1 Example. 5

(a) The p-Laplacian:

E(u) =
1

p

∫
Ω

|Du|p − fu dx, u ∈ W 1,p
0 (Ω)

with Euler–Lagrange equation∫
Ω

|Du|p−2Du ·Dϕdx =

∫
Ω

fϕ dx for all ϕ ∈ W 1,p
0 (Ω).

5Example 3.2.3 from the lectures.

42



3.3 The second variation

(b) The nonlinear Poisson equation −∆u = f(u): let

F (t) :=

∫ t

0

f(s) ds , t ∈ R.

Then

E(u) =

∫
Ω

1

2
|Du|2 − F (u(x)) dx, u ∈ H1

0 (Ω),∫
Ω

Du ·Dϕdx =

∫
Ω

f(u)ϕdx for all ϕ ∈ H1
0 (Ω).

(c) The minimal surface equation

E(u) =

∫
Ω

(1 + |Du|2)1/2 dx, u ∈ H1
0 (Ω),∫

Ω

(1 + |Du|2)−1/2Du ·Dϕdx = 0 for all ϕ ∈ H1
0 (Ω).

We recall the strong form

div

(
Du

(1 + |Du|2)1/2

)
= 0.

Minimal surfaces, which by definition are minimisers of E , thus correspond to solutions
of the minimal surface equation (hence the name). Since the mean curvature of the
graph of u is given by

1

n
div

(
Du

(1 + |Du|2)1/2

)
,

this yields the fundamental observation that minimal surfaces have zero mean curvature.

3.3 The second variation

Let V be a Banach space, U ⊂ V be open and E : U → R be a functional.6

3.3.1 Definition. The second variation of u ∈ U in the direction ϕ ∈ V is defined to be

δ2E(u)(ϕ) :=
d2

dt2
E(u+ tϕ)

∣∣∣
t=0
,

assuming it exists.

3.3.2 Lemma. Suppose u∗ ∈ U is a local minimum (maximum) of E. Then

δ2E(u)(ϕ) ≥ 0 (≤ 0) for all ϕ ∈ V.

whenever it exists.

6In the lectures Definition 3.3.1 and Lemma 3.3.2 were only given for the case V = W 1,p
0 (Ω) and for minima,

but obviously they hold in general.
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Suppose now that we have, as in (3.1.5), a functional

E(u) =

∫
Ω

F (x, u,Du) dx

defined on a subset of W 1,p
0 (Ω) (1 ≤ p <∞), where F : Ω×R×Rn → R is sufficiently smooth.

What does the assertion of Lemma 3.3.2 say in this case?7

Recall

d

dt
E(u+ tϕ) =

∫
Ω

∂F

∂z
(x, u+ tϕ,Du+ tDϕ)ϕ+

n∑
i=1

∂F

∂wi
(x, u+ tϕ,Du+ tDϕ)

∂ϕ

∂xi
dx

so

d2

dt2
E(u+ tϕ) =

∫
Ω

∂2F

∂z2
(x, u+ tϕ,Du+ tDϕ)ϕ2 + 2

n∑
i=1

∂2F

∂z∂wi
(x, u+ tϕ,Du+ tDϕ)ϕ

∂ϕ

∂xi

+
n∑

i,j=1

∂2F

∂wi∂wj
(x, u+ tϕ,Du+ tDϕ)

∂ϕ

∂xi

∂ϕ

∂xi
dx,

that is,

0
!

≤ δ2E(u)(ϕ) =

∫
Ω

∂2F

∂z2
(x, u,Du)ϕ2 + 2

n∑
i=1

∂2F

∂z∂wi
(x, u,Du)ϕ

∂ϕ

∂xi

+
n∑

i,j=1

∂2F

∂wi∂wj
(x, u,Du)

∂ϕ

∂xi

∂ϕ

∂xi
dx (3.3.1)

for all ϕ ∈ W 1,p
0 (Ω). We now make a specific choice of ϕ: suppose ψ ∈ C∞c (Ω) is arbitrary

and ρ : R→ R is the “sawtooth” (or “tent”) function given by

ρ(x) =


x if 0 ≤ x ≤ 1

2
,

1− x if 1
2
< x ≤ 1,

x+ 1 for all x ∈ R,

so that |ρ′(x)| = 1 a.e.. Choosing, for fixed ξ ∈ Rn,

ϕ(x) := ερ

(
x · ξ
ε

)
ψ(x), x ∈ Ω,

we claim (without proof) that ϕ ∈ W 1,p
0 (Ω) and

∂ϕ

∂xi
= ρ′

(
x · ξ
ε

)
ξiψ + ερ

(
x · ξ
ε

)
∂ψ

∂xi︸ ︷︷ ︸
=O(ε) as ε→0

7As this is again a kind of motivation for the following sections, the calculations will be formal : we will not
give precise conditions on F or justify the interchange of integral and derivative, etc..
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3.4 Minimisation of energy functionals

in Lp(Ω). Since ϕ = O(ε) as well, substituting this into (3.3.1) yields

0 ≤
∫

Ω

n∑
i,j=1

∂2F

∂wi∂wj
(x, u,Du) ξiξj ψ

2 ·
(
ρ′
(
x · ξ
ε

))2

︸ ︷︷ ︸
=1 a.e.

dx+O(ε).

Letting ε→ 0, we see ∫
Ω

n∑
i,j

∂2F

∂wi∂wj
(x, u,Du) ξiξj ψ

2 dx ≥ 0

for all ψ ∈ C∞c (Ω), which, similar to the Fundamental Lemma of the Calculus of Variations
implies, assuming F is smooth enough,

∂2F

∂wi∂wj
(x, u,Du) ξiξj ≥ 0 in Ω, for all ξ ∈ Rn. (3.3.2)

This structural condition on F needs to be satisfied in order for a minimum to exist. But
this is guaranteed whenever F is associated with an elliptic operator (in fact this characterises
second-order elliptic operators in variational form, assuming everything is smooth enough);
cf. (3.2.1).

3.4 Minimisation of energy functionals

Suppose V is a reflexive Banach space and E : U ⊂ V → R is a functional which is bounded
from below, i.e. there exists c ∈ R such that

E(u) ≥ c for all u ∈ U. (3.4.1)

Without loss of generality, we may assume E is defined on the whole of V by setting

Ẽ(u) :=

{
E(u) if u ∈ U,
∞ if u ∈ V \ U ;

we will identify E und Ẽ . Obviously there exists a minimising sequence uk ∈ V such that
E(uk)→ inf{E(u) : u ∈ V } as k →∞.

Simple one-dimensional examples show that we need additional assumptions on E to ensure
the existence of a minimiser: take, e.g., E(x) = ex or E(x) = 1/(1 + x) (x ∈ R). We need a
property which ensures E(u)→∞ as ‖u‖V →∞:

3.4.1 Definition. The functional E is coercive if there exist constants c1, c2, p > 0 such that

c1E(u) + c2 ≥ ‖u‖pV for all u ∈ V. (3.4.2)

This implies in particular that the sublevel sets

{u ∈ V : E(u) ≤ α} (3.4.3)

are bounded for all α ∈ R. (Sometimes this is taken as the definition of coercivity.) Note also
that coercive functionals are automatically bounded from below.
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3 Variational methods

We also need a form of continuity. Requiring actual continuity (i.e. uk → u in V implies
E(uk)→ E(u)) is however too strong.8 Recall that uk ⇀ u weakly in V if

〈ϕ, uk〉 → 〈ϕ, u〉

in R for every fixed ϕ ∈ V ′.

3.4.2 Definition. E is (sequentially) weakly lower semicontinuous (in V ) if

uk ⇀ u in V =⇒ E(u) ≤ lim inf
k→∞

E(uk). (3.4.4)

3.4.3 Theorem. Suppose V is a reflexive Banach space and E : V → R∪{∞} is a functional
which is not identically ∞. If E is coercive and weakly lower semicontinuous, then there exists
a global minimiser u ∈ V of E, i.e.

E(u) = inf{E(v) : v ∈ V }.

Proof. Let a ∈ R be this infimum; this is indeed a real number by coercivity (and E 6≡ ∞).
Suppose (uk) ⊂ V is a minimising sequence, i.e. E(uk) → a as k → ∞. Since the sequence
(E(uk)) is bounded, the same is true of (uk) in V , cf. (3.4.3). Since V is reflexive, (uk) has
a subsequence, which we shall again denote by (uk), which converges weakly to some u ∈ V .
Weak lower semicontinuity implies

E(u) ≤ lim inf
k→∞

E(uk) = lim
k→∞
E(uk) = a.

Two natural questions:

1. When is the minimiser unique?

2. Can we replace weak lower semicontinuity with an easier condition?

In both cases the notion of convexity provides an answer.

3.4.4 Definition. The functional E : V → R is convex if

E(tu+ (1− t)v) ≤ tE(u) + (1− t)E(v)

for all t ∈ [0, 1] and all u, v ∈ V , and strictly convex if for u 6= v and t ∈ (0, 1)

E(tu+ (1− t)v) < tE(u) + (1− t)E(v).

Obviously, a strictly convex functional can have at most one minimiser, while we can show for
convex functionals in general:

3.4.5 Proposition. Suppose V is a Banach space and E : V → R∪{∞} is convex and lower
semicontinuous. Then E is also weakly lower semicontinuous.

8Or else in many practical examples useless since we usually only have weak convergence of a minimising
sequence.
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3.4 Minimisation of energy functionals

Convexity is in practice often too strong, so we omit the proof here; it can be found in [11,
Theorem 13.8]. This idea will however motivate our approach: we now return to the question
of finding minimiser(s) of

E(u) =

∫
Ω

F (x, u,Du) dx, u ∈ W 1,p
0 (Ω)

under our previous assumptions on F , Ω, p, etc..

3.4.6 Remark. W 1,p
0 (Ω) and W 1,p(Ω) are reflexive Banach spaces if 1 < p < ∞, since they

may be identified with closed subspaces of the reflexive space Lp(Ω)n+1.

We make the following additional coercivity assumption on F : there exist constants α > 0
and β ≥ 0 such that

F (x, z, w) ≥ α|x|p − β for all (x, z, w) ∈ Ω× R× Rn. (3.4.5)

This implies the coercivity condition (3.4.2) for E on W 1,p
0 (Ω), since then

E(u) ≥ α‖Du‖pLp(Ω) − β|Ω|,

and by Poincaré’s inequality (Theorem 2.4.4), ‖Du‖Lp(Ω) defines an equivalent norm on

W 1,p
0 (Ω).

3.4.7 Theorem. Suppose Ω ⊂ Rn is bounded and open, F ∈ C1(Ω×R×Rn) is bounded from
below as in (3.4.1), and the mapping

w 7→ F (x, z, w)

is convex, that is, for all t ∈ [0, 1] and all v, w ∈ Rn,

F (x, z, tw + (1− t)v) ≤ tF (x, z, w) + (1− t)F (x, z, v)

for each fixed x ∈ Ω and z ∈ R. Then E given by (3.1.5) is weakly lower semicontinuous on
W 1,p

0 (Ω) (or also W 1,p(Ω) if ∂Ω is of class C1), where 1 < p <∞ is fixed.

Now w 7→ F (x, z, w) being convex means that for all w ∈ Rn there exists ξ ∈ Rn such that

F (x, z, w) ≥ F (x, z, w) + ξ · (v − w) for all v ∈ Rn, (3.4.6)

where

ξ = DwF ≡
(
∂F

∂w1

, . . . ,
∂F

∂wn

)
(x, z, w)

if F is C1. If F is C2, then convexity means exactly that the Hessian matrix

D2
wF =

(
∂2F

∂wi∂wj

)
≥ 0, i.e.

n∑
i,j=1

∂2F

∂wi∂wj
ξiξj ≥ 0 for all ξ ∈ Rn

(cf. (3.3.2)). We also say that w 7→ F (x, z, w) is uniformly convex if there exists α > 0 such
that

D2
wF ≥ αI, i.e.

n∑
i,j=1

∂2F

∂wi∂wj
ξiξj ≥ α|ξ|2 for all ξ ∈ Rn, x ∈ Ω and z ∈ R.
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3 Variational methods

This corresponds to the associated Euler–Lagrange equation (3.1.7) being (stongly) elliptic,
cf. Definition 1.3.12 and (3.2.1).

The proof of Theorem 3.4.7 uses the following measure-theoretic result, which we state for the
case of Lebesgue measure in Rn.

3.4.8 Theorem (Egorov). Suppose X ⊂ Rn is measurable with |X| < ∞ and suppose (fk)
is a sequence of measurable functions such that fk → f a.e. in X. Then for any ε > 0 there
exists a measurable set E ⊂ X with |X \ E| < ε, such that fk → f uniformly in E.

Proof of Theorem 3.4.7. 1. Let (uk) ⊂ W 1,p
0 (Ω), uk ⇀ u weakly in W 1,p

0 (Ω). This implies
in particular that uk ⇀ u in Lp(Ω) and Duk ⇀ Du in Lp(Ω,Rn) (exercise). Let a :=
lim infk→∞ E(uk). Passing to a subsequence if necessary, we may assume a = limk→∞ E(uk).
We wish to show a ≥ E(u).

Now since (uk) is weakly convergent, it is bounded, and since the embedding W 1,p
0 (Ω) ↪→ Lp(Ω)

is compact (Theorem 2.4.7(a)), there exists a subsequence, which we will still denote by (uk),
such that uk → u (strongly) in Lp(Ω). In particular, passing to another subsequence, uk → u
a.e. in Ω.

2. Now fix ε > 0. Theorem 3.4.8 implies that there exists a measurable Eε ⊂ Ω, |Ω \Eε| < ε,
such that uk → u uniformly in Eε. WLOG we may also assume

0 < ε′ < ε =⇒ Eε ⊂ Eε′ .

Now write
Fε := {x ∈ Ω : |u(x)|+ |Du(x)| ≤ ε−1}

measurable (where “≤” is to be understood a.e.), so that |Ω \ Fε| → 0 as well. If we set

Gε := Eε ∩ Fε

measurable, it follows that |Ω \Gε| → 0 as ε→ 0.

3. WLOG me may assume F (x, z, w) ≥ 0 (as F is bounded from below, since otherwise we

may consider F̃ := F + c for some c > 0 large enough). Then

E(uk) =

∫
Ω

F (x, uk, Duk) dx ≥
∫
Gε

F (x, uk, Duk) dx.

Using the convexity of F in the form (3.4.6), we may write

F (x, uk, Duk) ≥ F (x, uk, Du) +DwF (x, uk, Du) · (Duk −Du)

for each x ∈ Ω and each k ∈ N; thus

E(uk) ≥
∫
Gε

F (x, uk, Du) dx+

∫
Gε

DwF (x, uk, Du) · (Duk −Du) dx︸ ︷︷ ︸
!−→0

(3.4.7)

4. Now since uk → u uniformly on Eε ⊃ Gε, since u is bounded on Fε ⊃ Gε (so in particular
uk is bounded on Gε for k large enough) and since F is Lipschitz on the compact interval
containing all values of u and uk (k large), it follows that

lim
k→∞

∫
Gε

F (x, uk, Du) dx =

∫
Gε

F (x, u,Du) dx.
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3.4 Minimisation of energy functionals

Moreover, we have DwF (x, uk, Du) → DwF (x, u,Du) uniformly in Gε and hence strongly in
Lp
′
(Gε) and Duk ⇀ Du weakly in Lp(Ω;Rn) and so in Lp(Gε;Rn); thus∫

Gε

DwF (x, uk, Du) · (Duk −Du) dx = 〈DwF (x, uk, Du), Duk −Du〉Lp′ ,Lp −→ 0.

Hence

lim
k→∞
E(uk) ≥

∫
Gε

F (x, u,Du) dx,

for all ε > 0. Letting ε→ 0, we have∫
Gε

F (x, u,Du) dx→
∫

Ω

F (x, u,Du) = E(u)

by the monotone convergence theorem by our assumptions on Gε from Step 2 and F ≥ 0.

3.4.9 Remark. The convexity of w 7→ F (x, z, w) is used to offset the fact that we only
have Duk ⇀ Du weakly (note the convexity does not imply, e.g., Duk → Du a.e. up to a
subsequence). We do not need z 7→ F (x, z, w) to be convex since uk ⇀ u strongly in Lp(Ω).

3.4.10 Corollary. Suppose F ∈ C1(Ω × R × Rn) is coercive in the sense of (3.4.5) and
w 7→ F (x, z, w) is convex in the sense of Theorem 3.4.7, where Ω ⊂ Rn is bounded and open.
Then the energy functional E : W 1,p

0 (Ω)→ R ∪ {∞} (for given 1 < p <∞),

E(u) =

∫
Ω

F (x, u,Du) dx,

admits a global minimiser u∗ ∈ W 1,p
0 (Ω).

Proof. Since 1 < p < ∞, W 1,p
0 (Ω) is reflexive; by (3.4.5), E is coercive in the sense of Defini-

tion 3.4.1, and by Theorem 3.4.7, E is weakly lower semicontinuous. Hence Theorem 3.4.3 is
applicable.

We now wish to show that any minimiser is in fact a (weak) solution of the corresponding
Euler–Lagrange equation formally derived in Proposition 3.1.5. To do so wee need more
assumptions on F .

3.4.11 Theorem. Suppose that F ∈ C1(Ω× R× Rn) satisfies the growth assumptions
|F (x, z, w)| ≤ C(|z|p + |w|p + 1)

|Dz(x, z, w)| ≤ C(|z|p−1 + |w|p−1 + 1) for all (x, z, w) ∈ Ω× R× Rn,

|Dw(x, z, w)| ≤ C(|z|p−1 + |w|p−1 + 1)

(3.4.8)

for some C > 0, where Ω ⊂ Rn is bounded and open and 1 < p <∞. If u ∈ W 1,p
0 (Ω) satisfies

E(u) = min
v∈W 1,p

0 (Ω)
E(v), where E(v) =

∫
Ω

F (x, u,Du) dx,

then u is a weak solution of (3.1.8) in the sense of Definition 3.1.6.
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3 Variational methods

Proof. Fix ϕ ∈ W 1,p
0 (Ω). For any t 6= 0 we have

E(u+ tϕ)− E(u)

t
=

∫
Ω

1

t
(F (x, u+ tϕ,Du+ tDϕ)− F (x, u,Du))︸ ︷︷ ︸

=:F t(x)

dx.

Since F is C1,

F t(x)→
n∑
i=1

∂F

∂wi
(x, u,Du)

∂ϕ

∂xi
+
∂F

∂z
(x, u,Du)ϕ (3.4.9)

pointwise a.e. in Ω as t→∞9 and for a.e. x ∈ Ω

F t(x) =
1

t

∫ t

0

d

ds
F (x, u+ sϕ,Du+ sDϕ) ds

=
1

t

∫ t

0

n∑
i=1

∂F

∂wi
(x, u+ sϕ,Du+ sDϕ)

∂ϕ

∂xi
+
∂F

∂z
(x, u+ sϕ,Du+ sDϕ)ϕds

using the chain rule for Sobolev functions.10 An elementary (but long) calculation using the
bounds 3.4.8 and the inequality

ab ≤ ap

p
+
bp
′

p′
where a, b ≥ 0 and

1

p
+

1

p′
= 1,

shows that there exists C̃ > 0 such that for a.e. x ∈ Ω

|F t(x)| ≤ C̃ (|Du(x)|p + |u(x)|p + |Dϕ(x)|p + |ϕ(x)|p + 1) ,

where the right-hand side, which is independent of t 6= 0, is in L1(Ω) since u, ϕ ∈ W 1,p
0 (Ω).

Hence the dominated convergence theorem may be applied to (3.4.9) to obtain

0 =
d

dt
E(u+ tϕ) = lim

t→0

∫
Ω

F t(x) dx =

∫
Ω

n∑
i=1

∂F

∂wi
(x, u,Du)

∂ϕ

∂xi
+
∂F

∂z
(x, u,Du)ϕdx

for all ϕ ∈ W 1,p
0 (Ω), using that u is a minimiser for the first equality.

3.4.12 Remark. In general it is possible for (3.1.9) to have solutions not corresponding to
minima of E . If, however, the mapping

(z, w) 7→ F (x, z, w)

is convex for each x ∈ Ω, i.e.

F (x, y, v) ≥ F (x, z, w) +DzF (x, z, w) · (y − z) +DwF (x, z, w) · (v − w) (3.4.10)

for all y, z ∈ R and all v, w ∈ Rn, then each weak solution of the Euler–Lagrange equation
is a (global) minimiser of E . Indeed, suppose u ∈ W 1,p

0 (Ω) solves (3.1.9) and take any other

9As in Proposition 3.1.5.
10See [5, Lemma 7.5].
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3.4 Minimisation of energy functionals

ũ ∈ W 1,p
0 (Ω). Letting z = u(x), y = ũ(x), w = Du(x) and v = Dũ(x) in (3.4.10) and

integrating over Ω, we have

E(ũ) =

∫
Ω

F (x, ũ,Dũ) dx ≥
∫

Ω

F (x, u,Du) dx︸ ︷︷ ︸
=E(u)

+

∫
Ω

∂F

∂z
(x, u,Du)(u− ũ) +

n∑
i=1

∂F

∂wi
(x, u,Du)

∂

∂xi
(u− ũ) dx.

Setting ϕ := u − ũ ∈ W 1,p
0 (Ω), by virtue of (3.1.9) the second integral on the right is zero;

hence E(u) ≥ E(ũ) for each ũ ∈ W 1,p
0 (Ω).

Finally for this section, we address the question of the uniqueness of the minimiser. Here we
need additional assumptions on F , without which it is possible that multiple (global) minima
could exist.

3.4.13 Theorem. Suppose F ∈ C2(Ω×R×Rn) (where Ω ⊂ Rn is bounded and open) satisfies

F (x, z, w) = F (x, 0, w) =: F (x,w) for all (x, z, w) ∈ Ω× R× Rn

(i.e. F does not depend on z) and there exists α > 0 such that

n∑
i,j=1

∂2F

∂wi∂wj
(x,w)ξiξj ≥ α|ξ|2 for all (x,w) ∈ Ω× Rn and all ξ ∈ Rn,

i.e. the mapping w 7→ F (x,w) is uniformly convex (and thus the Euler–Lagrange equation is
strongly elliptic). Then there exists at most one minimiser in W 1,p

0 (Ω) of

E(u) =

∫
Ω

F (x, u,Du) dx.

Proof. Assume u, ũ ∈ W 1,p
0 (Ω) are two minimisers of E in W 1,p

0 (Ω). We claim

E
(
u+ ũ

2

)
≤ E(u) + E(ũ)

2
, (3.4.11)

with strict inequality unless u = ũ a.e. in Ω. To see this, the uniform convexity implies

F (x, v) ≥ F (x,w) +DwF (x,w) · (v − w) +
α

2
|v − w|2 for all x ∈ Ω and all v, w ∈ Rn.

Set w = (Du+Dũ)/2, v = Du, and integrate over Ω:

E(u) ≥ E
(
u+ ũ

2

)
+

∫
Ω

DwF

(
x,
u+ ũ

2

)
·
(
Du−Dũ

2

)
dx+

α

2

∫
Ω

|Du−Dũ|2

4
dx.

Interchanging the roles of u and ũ,

E(ũ) ≥ E
(
u+ ũ

2

)
+

∫
Ω

DwF

(
x,
u+ ũ

2

)
·
(
Dũ−Du

2

)
dx+

α

2

∫
Ω

|Du−Dũ|2

4
dx.
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3 Variational methods

Summing these two identities, we have

E(u) + E(ũ) ≥ 2E
(
u+ ũ

2

)
+
α

2

∫
Ω

|Du−Dũ|2

4
dx,

i.e.

E
(
u+ ũ

2

)
+
α

8

∫
Ω

|Du−Dũ|2

4
dx ≤ E(u) + E(ũ)

2
,

proving (3.4.11). Since

E(u) = E(ũ) ≤ E
(
u+ ũ

2

)
as u and ũ are minimisers, this is only possible if Du = Dũ a.e. in Ω, and so ‖Du−Dũ‖Lp(Ω) =

0. Since ‖Dv‖Lp(Ω) gives an equivalent norm on W 1,p
0 (Ω), this means u = ũ in W 1,p

0 (Ω),
i.e. u = ũ a.e. in Ω.

3.4.14 Remark. Suppose ∂Ω is C1 and g ∈ Lp(∂Ω) is in tr(W 1,p(Ω)), say g = trw. The
results of this section apply in the same way if we seek solutions u ∈ W 1,p(Ω) in the affine
space

{u ∈ W 1,p(Ω) : tru = g} = W 1,p
0 + w.

In this way we may replace the boundary condition u = 0 on ∂Ω with u = g on ∂Ω.

3.5 Constraints

Often we wish to search for minimisers within a special class of functions satisfying additional
constraints. Sometimes the constraints come from the (physical) problem itself; these typically
lead to variational inequalities. Sometimes we impose “artificial” constraints on the admissible
set of functions to obtain a solution with additional properties. We will illustrate this with a
couple of prototypical examples.

Variational inequalities and a free boundary problem.

Let Ω ⊂ Rn be bounded and open and suppose h : Ω→ R is a smooth (say C2) function and
f ∈ L2(Ω). We minimise

E(u) :=

∫
Ω

1

2
|Du|2 − fu dx

on the (convex) set

A := {u ∈ H1
0 (Ω) : u ≥ h a.e. in Ω}.

Note that the minimiser in H1
0 (Ω) is a (weak) solution of −∆u = f in Ω (if it exists). The

function h is called an obstacle; the constraint u ≥ h is often referred to as unilateral (i.e. one-
sided).

3.5.1 Theorem. If A 6= ∅, then there exists a unique function u ∈ A such that

E(u) = inf
v∈A
E(v).
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3.5 Constraints

Proof. 1. Existence follows as in Section 3.4: if uk ∈ A is a minimising sequence with uk ⇀ u
weakly in H1

0 (Ω), then

E(u) ≤ lim inf
k→∞

E(uk)

since ‖Du‖L2(Ω) ≤ lim infk→∞ ‖Duk‖L2(Ω) and uk → u strongly in L2(Ω) by Theorem 2.4.7. In
particular, since uk → u pointwise a.e. (up to a subsequence) and uk ≥ h pointwise a.e., we
also have u ∈ A. (Thus A is weakly closed.)

2. Uniqueness: suppose u, ũ ∈ A are distinct, i.e. u 6= ũ on a set of positive measure; then

v :=
u+ ũ

2
∈ A

and we claim

E(v) <
E(u) + E(ũ)

2
.

Indeed

E(v) =

∫
Ω

1

2

∣∣∣∣Du+Dũ

2

∣∣∣∣2 − f u+ ũ

2
dx

=

∫
Ω

1

8
(|Du|2 + 2Du ·Dũ+ |Dũ|2)− f u+ ũ

2
dx

=

∫
Ω

1

8
(2|Du|2 + 2|Dũ|2 − |Du−Dũ|2)− f u+ ũ

2
dx

<
E(u) + E(ũ)

2
,

where we have used 2Du ·Dũ = |Du|2 + |Dũ|2 − |Du−Dũ|2 and |Du−Dũ|2 6= 0 on a set of
positive measure since u 6= ũ by assumption.

The analogue of the Euler–Lagrange equation is now an inequality; we speak of a variational
characterisation of the minimum.

3.5.2 Theorem. Let u be the unique minimiser of E on A. Then∫
Ω

Du ·D(v − u) dx ≥
∫

Ω

f(v − u) dx for all v ∈ A. (3.5.1)

Proof. 1. Since A is convex, for any fixed v ∈ A and all t ∈ [0, 1],

u+ t(v − u) = tv + (1− t)u ∈ A.

Thus

E(u) ≤ E(u+ t(v − u)) for all t ∈ [0, 1].

Hence11

d

dt
E(u+ t(v − u))

∣∣∣
t=0
≥ 0.

11Note that this derivative exists, E being defined (and C1) on the whole of H1
0 (Ω). The minimising property

of u on A delivers the inequality ≥ 0.
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2. If 0 < t ≤ 1, then

E(u+ t(v − u))− E(u)

t
=

1

t

∫
Ω

|Du+ tD(v − u)|2 − |Du|2

2
− f (u+ t(v − u)− u) dx

=

∫
Ω

Du ·D(v − u) + t
|D(v − u)|2

2︸ ︷︷ ︸
→0

−f(v − u) dx.

Letting t→ 0, we conclude ∫
Ω

Du ·D(v − u)− f(v − u) dx ≥ 0.

Although δE(u)(v − u) exists for any v ∈ A, we only have a one-sided estimate on its sign
since we can only vary in one direction.

(Formal) interpretation: a free boundary problem

It can be shown that if ∂Ω is smooth enough, then the minimiser u ∈ W 2,∞(Ω) ↪→ C(Ω)
(cf. Theorem 2.4.5 for the embedding statement). Hence

O := {x ∈ Ω : u(x) > h(x)}
C := {x ∈ Ω : u(x) = h(x)}

are open and (relatively) closed (in Ω), respectively. We claim that

−∆u = f (weakly) in O;

to see this, fix any ϕ ∈ C∞c (O); then for |t| sufficiently small u + tϕ ≥ h, so u + tϕ ∈ A. For
such ϕ, we may vary in both directions to obtain∫

Ω

Du ·Dϕ− fϕ dx = 0,

proving the claim (since C∞c (O) is dense in H1
0 (O)).

Now suppose ϕ ∈ C∞c (Ω) satisfies ϕ ≥ 0, so u+ tϕ ∈ A if t > 0. Thus∫
Ω

Du ·Dϕ− fϕ dx ≥ 0.

Since u ∈ W 2,∞(Ω), we may integrate by parts to obtain∫
Ω

(−∆u− f)ϕdx ≥ 0 for all ϕ ∈ C∞c (Ω).

This can be shown to imply −∆u = f a.e. in Ω.

Conclusion: u solves {
u ≥ h, −∆u ≥ f a.e. in Ω,

−∆u = f in Ω ∩ {u > h} = O.

The set F := ∂O ∩ Ω is called the free boundary.
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3.5 Constraints

3.5.3 Remark. More generally, if V is a reflexive Banach space, A is a weakly closed set in
V and E : A → R∪{∞} is coercive and weakly lower semicontinuous, then there exists u ∈ A
with E(u) = infv∈A E(v). If A is in addition convex and δE(u)(ϕ) exists for any ϕ ∈ V ,12 then
u satisfies the variational inequality

δE(u)(v − u) ≥ 0 for all v ∈ A.

3.5.4 Example (Weak sub- and supersolutions: a variational version of Perron’s method).
Suppose Ω ⊂ Rn is smooth, bounded, and g : Ω×R→ R is smooth with a growth constraint:
there exists a smooth ψ : R→ R such that

|g(x, u(x))| ≤ ψ(‖u‖L∞(Ω)), u ∈ L∞(Ω).

Denote by

G(x, u) =

∫ u

0

g(x, t) dt

the antiderivative of g with G(x, 0) = 0. We consider{
−∆u = g( · , u) in Ω,

u = h on ∂Ω,
(3.5.2)

where h ∈ trH1(Ω).

3.5.5 Definition. u ∈ H1(Ω) is called a (weak) subsolution of (3.5.2) if u ≤ h a.e. on ∂Ω and∫
Ω

Du ·Dϕ− g( · , u)ϕdx ≤ 0 for all ϕ ∈ C∞c (Ω) with ϕ ≥ 0;

u is a (weak) supersolution if −u is a weak subsolution.

3.5.6 Theorem. Suppose u, u ∈ H1(Ω) are weak sub- and supersolutions of (3.5.2), respec-
tively, such that

−∞ < c ≤ u ≤ u ≤ c <∞ a.e. in Ω

for some constants c, c ∈ R. Then there exists a weak solution u ∈ H1(Ω) of (3.5.2) satisfying

u ≤ u ≤ u a.e. in Ω.

Sketch of proof. 13 WLOG h = 0. The associated functional is

E(u) =

∫
Ω

1

2
|Du|2 −G(x, u) dx, u ∈ H1

0 (Ω).

Note that E does not have to be bounded from below (or differentiable) on all of H1
0 (Ω);

instead we consider
A := {u ∈ H1

0 (Ω) : u ≤ u ≤ u a.e. in Ω}.
Then by assumption A ⊂ L∞(Ω) and there exists c > 0 such that

|G(x, u)| ≤ c for all u ∈ A,
12We are also assuming implicitly that E(u) <∞.
13Full details can be found in [12, Section 1.2.3].
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3 Variational methods

so that E is coercive on A. The set A is weakly closed and convex and E is weakly lower
semicontinuous on A since∫

Ω

G(x, uk) dx→
∫

Ω

G(x, u) dx if uk ⇀ u weakly in A ⊂ H1
0 (Ω),

which follows from the dominated convergence theorem using |G(x, uk)| ≤ c for all k ∈ N.

By Remark 3.5.3, there exists a minimiser of E in A. To show it is a weak solution of (3.5.2),
we fix ϕ ∈ C∞c (Ω) and ε > 0 and set

vε := min{u,max{u, u+ εϕ}} ∈ A

(i.e. we cut it off at u and u; this is then again in H1
0 (Ω) by an argument similar to Exercise

6). Then ∂E(u)(vε − u) exists. A rather long calculation using δE(u)(ϕ) ≥ 0 and a passage
to the limit shows δE(u)(ϕ) ≥ 0. Replacing ϕ with −ϕ and repeating yields δE(u)(ϕ) = 0 for
all ϕ ∈ C∞c (Ω); since C∞c (Ω) it follows that u is genuinely a weak solution of (3.5.2).

Lagrange multipliers and (nonlinear) eigenvalue problems.

Here we are interested in the special case in Remark 3.5.3 where A is the zero set of a mapping
J : V → R (V being a reflexive Banach space). More precisely, we assume J ∈ C1(V,R) (or
C1(V,Rn)) and set

N := {u ∈ V : J(u) = 0}.
We wish to find u ∈ N such that

E(u) = inf
v∈N
E(v). (3.5.3)

3.5.7 Theorem. Suppose V is a reflexive Banach space and the set N = {J = 0} is weakly
closed. If E : N → R ∪ {∞}, E(u) 6≡ ∞, is coercive and weakly lower semicontinuous, then
there exists u ∈ N satisfying (3.5.3).

The proof is exactly the same as for Remark 3.5.3. The question is which equation the
minimiser satisfies: obviously ∂E(u)(ϕ) = 0 only for some ϕ in general: more precisely, this
holds for those ϕ which are tangent vectors to N at u.

3.5.8 Theorem (Lagrange multipliers). Suppose V = H is a Hilbert space, J ∈ C1(H,R) is
a mapping and u ∈ N = {J = 0} solves (3.5.3) under the assumptions of Theorem 3.5.7. If
the linear mapping J ′(u) : H → R is surjective, then there exists λ ∈ R such that

δE(u)(ϕ) = λJ ′(u)ϕ for all ϕ ∈ H. (3.5.4)

Proof. 1. We decompose H into the orthogonal direct sum

H = ker J ′(u)︸ ︷︷ ︸
=:H1

⊕ (ker J ′(u))⊥︸ ︷︷ ︸
=:H0

.

Since J ′(u) is surjective, we have dimH0 = 1 and J ′(u)|H0 is bijective with continuous inverse
(as the inverse of a one-dimensional bounded linear map). We consider the mapping

Λ : R→ R, y 7→ δE(u)
(

(J ′(u)|H0)
−1

(y)
)
.
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3.5 Constraints

This is linear, so there exists λ ∈ R such that Λ(y) = λy for all y ∈ R. We claim that λ
satisfies (3.5.4).

2. We first suppose that ϕ = ϕ0 ∈ H0 and check (3.5.4): indeed, setting y := J ′(u0)ϕ0, we
have

λJ ′(u0) = λy = δE(u)
(
(J ′(u0)|H0)−1J ′(u)ϕ

)
= δE(u)(ϕ0).

3. Now suppose ϕ = ϕ1 ∈ H1; since H0 ⊕ H1 is an orthogonal decomposition, to finish the
proof, it suffices to prove (3.5.4) for ϕ1. In this case we have J ′(u)ϕ1 = 0 since ϕ1 ∈ ker J ′(u);
we need to show

δE(u)ϕ1 = 0.

To that end we use that ϕ1 is a variation which is tangential to N and u is a minimum. We
use the implicit function theorem, which is valid in general Banach spaces:14

In a neighbourhood of u ∈ N , the set N can be represented as the graph of a (C1-) mapping
N : H1 → H0, i.e. for v ∈ N near u, v = v0 + v1 ∈ H0 ⊕ H1, we have N(v1) = v0.15 In
particular, u = u0 + u1 for some u0 ∈ H0 and u1 ∈ H1. We consider the path

γ : (−ε, ε)→ N , t 7→ (u1 + tϕ1) +N(u1 + tϕ1)

and the corresponding energies

F := E ◦ γ : (−ε, ε)→ R.

We claim that N ′(u1)ϕ1 = 0. This together with the fact that E and hence F are minimal for
t = 0 yield

0 =
d

dt
F(u1 + tϕ1)

∣∣∣
t=0

= δE(u)(ϕ1 +N ′(u1)ϕ1) = δE(u)(ϕ1),

as desired. The claim follows since J(γ(t)) = 0 for all t ∈ (−ε, ε), which implies

0 =
d

dt
J(γ(0)) = J ′(u)γ′(0) = J ′(u)(ϕ1 +N ′(u1)ϕ) = J ′(u)N ′(u1)ϕ1,

where the last equality follows since J ′(u)ϕ1 = 0 as ϕ1 ∈ ker J ′(u). Since N ′(u1)ϕ1 ∈ H0 =
(ker J ′(u))⊥, it follows that N ′(u1)ϕ1 = 0, as claimed.

3.5.9 Example (Nonlinear eigenvalue problems). We minimise

E(u) =
1

2

∫
Ω

|Du|2 dx, u ∈ H1
0 (Ω),

where Ω ⊂ Rn is bounded, open and connected, subject to the following constraint: for a given
C1-function G : R→ R, g = G′, we assume

J(u) :=

∫
Ω

G(u) dx

Claim: If
|g(z)| ≤ C(|z|+ 1) for all z ∈ R,

so that also
|G(z)| ≤ C̃(|z|2 + 1) for all z ∈ R,

then {J = 0} is weakly closed.

14See [6, Theorem I.5.9].
15Note that here we have used the surjectivity assumption on J ′(u).
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Proof. Suppose uk ⇀ u weakly in H1
0 (Ω). Then as usual uk → u strongly in L2(Ω) and so,

since
|G(u(x))−G(uk(x))| ≤ sup

z∈u(x),uk(x)

|g(z)||u(x)− uk(x)|

pointwise,

|J(u)− J(uk)| ≤
∫

Ω

|G(u)−G(uk)| dx ≤ C

∫
Ω

|u− uk|(1 + |u|+ |uk|) dx

≤ C‖u− uk‖L2(Ω) ‖1 + |u|+ |uk|‖L2(Ω)︸ ︷︷ ︸
bounded

→ 0.

Theorem 3.5.7 yields a solution u; if u 6≡ 0, we have in particular

J ′(u)ϕ =

∫
Ω

g(u)ϕdx for all ϕ ∈ H1
0 (Ω).

We claim g(u) 6≡ 0 in Ω unless u = 0 a.e., from which follows the surjectivity of J ′(u) (just
take ϕ ∈ H1

0 (Ω) such that ∫
Ω

g(u)ϕdx 6= 0

and consider t 7→ tϕ, t ∈ R). Suppose that in fact g(u) = 0 a.e. in Ω. By assumption,

DxG(u(x)) = g(u(x))Du(x) = 0 a.e..

Since Ω is connected, G(u) is constant a.e. in Ω.16 Since

J(u) =

∫
Ω

G(u) dx = 0,

in fact G(u) = 0 a.e.. Since u = 0 in the trace sense, for any ε > 0 the set {x ∈ Ω : |u(x)| < ε}
has positive measure; as G is continuous, it follows that G(0) = 0. But then for u to be a
minimiser, we need u = 0 a.e.; otherwise

E(u) > E(0) = 0,

and we have shown 0 to be admissible. (Obviously if u = 0 is a minimiser, then it will still
trivially solve (3.5.4).)

So we assume u 6≡ 0 and may then apply Theorem 3.5.8: there exists λ ∈ R such that∫
Ω

Du ·Dϕdx = δE(u)(ϕ) = λJ ′(u)ϕ = λ

∫
Ω

g(u)ϕdx for all ϕ ∈ H1
0 (Ω).

This is the weak form of −∆u = λg(u). The value λ is given by∫
Ω
|Du|2 dx∫

Ω
ug(u) dx

.

16Note that G ◦ u is weakly differentiable in Ω and by our growth assumptions and Cauchy–Schwarz G ◦ u ∈
W 1,1(Ω) at least. Hence a standard variant of the Fundamental Lemma of the Calculus of Variations
implies that having zero derivative a.e. is sufficient to ensure G ◦ u is genuinely constant a.e..
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Special case:17

J(u) =
1

2

(∫
Ω

u2 dx− 1

)
, i.e. G(z) =

1

2

(
z2 − 1

|Ω|

)
, g(z) = z.

Then there exists ψ1 ∈ H1
0 (Ω) such that∫

Ω

ψ2
1 dx = 1 and −∆ψ1 = λψ1 weakly,

where ∫
Ω

|Dψ1|2 dx = inf

{∫
Ω

|Dv|2 dx :

∫
Ω

v2 = 1

}
,

that is,18

λ = inf
06=v∈H1

0 (Ω)

∫
Ω
|Dv|2 dx∫
Ω
v2 dx

, (3.5.5)

which is > 0 by Poincaré’s inequality, Theorem 2.4.4. This is the variational characterisation
of the first (smallest) eigenvalue λ = λ1 of the Dirichlet Laplacian; the quotient on the right
is called the Rayleigh quotient (of v).

Note −∆v = µv for v ∈ H1
0 (Ω) holds if and only if, by definition,∫

Ω

Dv ·Dϕdx = µ

∫
Ω

vϕ dx for all ϕ ∈ H1
0 (Ω),

so choosing ϕ = v, any such eigenvalue µ is given by

µ =

∫
Ω
|Dv|2 dx∫
Ω
v2 dx

.

In particular, λ1 is the smallest eigenvalue; this also gives the optimal constant in Poincaré’s
inequality when p = 2.

Higher eigenvalues may be found inductively by replacing H1
0 (Ω) with the smaller Hilbert

space (spanψ1)⊥ to find a new minimiser ψ2, then (span{ψ1, ψ2})⊥ for ψ3, etc.. This yields a
sequence of eigenpairs (λk, ψk)k∈N,

0 < λ1 ≤ λ2 ≤ . . . .

The spectral theorem guarantees that this sequence is discrete and {ψk} can be chosen to be
an orthonormal basis of L2(Ω).

3.5.10 Example. Suppose Ω ⊂ Rn is bounded and open with C1-boundary and let p > 2; if
n ≥ 3, we also assume p < 2∗ = 2n/(n− 2) (cf. Definition 2.4.1). For λ ∈ R we consider{

−∆u+ λu = |u|p−2u in Ω,

u = 0 on ∂Ω.
(3.5.6)

Claim: Denote by λ1 the first eigenvalue from Example 3.5.9. Then for any λ > −λ1 there
exists a nonzero, positive (a.e.) weak solution u ∈ H1

0 (Ω) of (3.5.6).

17Obviously u = 0 cannot be a solution here.
18Since both

∫
Ω
|Dv|2 dx and

∫
Ω
v2 dx scale the same way if v is multiplied by a constant.
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Proof. First note that under our assumptions on p, H1
0 (Ω) ↪→ Lp(Ω) and this embedding is

compact (Theorems 2.4.3 and 2.4.7). The functional corresponding to (3.5.6) is

Ẽu =
1

2

∫
Ω

|Du|2 + λu2 dx− 1

p

∫
Ω

|u|p dx,

but since ‖u‖2
L2(Ω) and ‖u‖pLp(Ω) scale differently, this is not bounded from below (or above)

on H1
0 (Ω). Instead we apply Theorem 3.5.8 to

E(u) :=
1

2

∫
Ω

|Du|2 + λu2 dx on H1
0 (Ω),

with19

J(u) :=

∫
Ω

|u|p dx− 1;

as before, {J = 0} is weakly closed, since uk ⇀ u weaky in H1
0 (Ω) implies uk → u strongly in

Lp(Ω), and if J(u) = 0, then ∫
Ω

|u|p dx = 1,

so J ′(u) is surjective, since

J ′(u)ϕ =

∫
Ω

|u|p−2uϕ dx

(and now take, e.g., ϕ = tu, t ∈ R). As usual, E is weakly lower semicontinuous, cf. Theo-
rem 3.4.7. We check coercivity: we may assume λ ∈ (−λ1, 0), since otherwise this is immediate.
Then for u ∈ H1

0 (Ω), since ∫
Ω

|Du|2 dx ≥ λ1

∫
Ω

u2 dx,

we have

E(u) =
1

2

∫
Ω

− λ

λ1︸︷︷︸
∈(0,1)

|Du|2 +

(
1 +

λ

λ1

)
︸ ︷︷ ︸
∈(0,1)

|Du|2 + λ|u|2 dx

≥
∫

Ω

−λu2 +

(
1 +

λ

λ1

)
|Du|2 + λu2 dx =

1

2

(
1 +

λ

λ1

)∫
Ω

|Du|2 dx ≥ C‖u‖2
H1

0 (Ω).

Theorem 3.5.8 yields the existence of u ∈ H1
0 (Ω) and µ ∈ R such that∫

Ω

Du ·Dϕ+ λuϕ dx = δE(u)(ϕ) = µJ ′(u)ϕ = µ

∫
Ω

|u|p−2uϕ dx (3.5.7)

for all ϕ ∈ H1
0 (Ω).

Observe that E(u) = E(|u|) and J(u) = J(|u|);20 thus if u is a minimiser, then so is |u|, and
hence we may assume that u in (3.5.7) is positive. Setting ϕ = u in (3.5.7),

2E(u) = µ

∫
Ω

|u|p dx︸ ︷︷ ︸
=1⇒u6≡0

= µ > 0.

19Alternatively, we could apply Remark 3.5.3 to E on A := {u ∈ H1
0 (Ω) :

∫
Ω
|u|p dx = 1}.

20Cf. Exercise 6: if u ∈ H1
0 (Ω) then |u| ∈ H1

0 (Ω) and |D|u|| = |Du| as L2-functions.
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We now rescale u: set
u∗ := µ

1
p−2u ∈ H1

0 (Ω);

then (3.5.7) implies∫
Ω

Du∗ ·Dϕ+ λu∗ϕdx =

∫
Ω

|u∗|p−2u∗ϕdx for all ϕ ∈ H1
0 (Ω).
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4 Critical points and minimax methods

We will now search for saddle points of E ; i.e. u ∈ V (Banach) such that E ′(u) = 0 but E does
not necessarily reach a maximum or a minimum at u. This requires studying the topology of
the sublevel sets

Sβ = {u ∈ V : E(u) ≤ β}, β ∈ R.
To that end, we will always assume that E ∈ C1(V,R) (at least), that is, E ′ exists as a Fréchet
derivative (and is continuous).

Notation: For β ∈ R we will always write

(a) Sβ := {u ∈ V : E(u) ≤ β} for the sublevel set of E (at the level β);

(b) Kβ := {u ∈ V : E(u) = β and E ′(u) = 0} for the critical points of E at the level β.

4.1 Mountain pass theorems

Suppose E ∈ C1(Rn,R) is coercive in the sense that Sβ is bounded for each β ∈ R. Then one
way to find saddle points is as follows.

4.1.1 Theorem. Suppose x1 6= x2 are local minima of the coercive function E ∈ C1(Rn,R),
i.e. there exist open neighbourhoods U1 3 x1 and U2 3 x2 such that

E(x1) ≤ E(y) for all y ∈ U1, E(x2) ≤ E(z) for all z ∈ U2.

Then E has a critical point x3 6= x1, x2 given by

E(x3) = inf
γ∈Γ

max{E(γ(t)) : t ∈ [0, 1]},

where
Γ = {γ ∈ C([0, 1],Rn) : γ(0) = x1, γ(1) = x2}.

We think of the sets γ as being “paths” between the low points (“valleys”) at x1 and x2. If
we take the lowest possible path connecting x1 to x2, then at its highest point we must cross
a “mountain ridge” (at a “mountain pass”, a low point along this ridge).

We will not give the proof of Theorem 4.1.1 in the finite-dimensional case,1 but instead wish
to generalise it to the infinite-dimensional case. Having two local minima is however too
restrictive. What do we need?

Principle 1: The set {x : E(x) ≤ β} should be disconnected for some (energy level) β ∈ R.
However, even in the finite-dimensional case this is not enough: consider

E(x, y) = e−y − x2, (x, y) ∈ R2.

1This can be found in [12, Section II.1].
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Since E(0, y) > 0 for all y ∈ R, the set

intS0 = {(x, y) ∈ R2 : E(x, y) < 0}

is disconnected (and consists of two connected components). Clearly,

inf{max{E(x, y) : (x, y) ∈ γ} : γconnects these two connected components} = 0,

but 0 6= maxγ E for any admissible γ.

If we take a minimising sequence of paths γk, then WLOG E reaches its maximum on γk at
a point (0, yk), yk →∞. Then E((0, yk))→ 0, ∇E((0, yk))→ 0, but the sequence ((0, yk))k∈N
does not have an accumulation point.

Principle 2: We need a “compactness” assumption on E .

Now suppose E ∈ C1(V,R), where V is a (reflexive) Banach space.

4.1.2 Definition. (a) A sequence (uk) in V is a Palais–Smale (P.-S.) sequence (for E) if

(i) (E(uk)) is bounded (in R), and

(ii) ‖E ′(uk)‖V ′ → 0 as k →∞.

(b) The functional E satisfies the Palais–Smale condition if every Palais–Smale sequence is
precompact in V , i.e., it contains a convergent subsequence.

There are several variants of this condition in the literature, although this is probably the
most common.

4.1.3 Example. (a) Suppose E ∈ C1(Rn,R) is such that the function |∇E|+ |E| : Rn → R
is coercive (in the sense that its sublevel sets are bounded). Then every P.-S. sequence
is bounded and so has a convergent subsequence; hence E satisfies the Palais–Smale
condition.

(b) If E : Rn → R is a quadratic polynomial:

E(x) =
n∑

i,j=1

aijxixj +
n∑
i=1

bixi + c, x = (x1, . . . , xn) ∈ Rn, aij, bi, c ∈ R

such that D2E(x) = (aij) is invertible, then E satisfies the Palais–Smale condition. This
seems to be unknown if E is instead a general polynomial E(x) =

∑
|α|≤m aαx

α such that

D2E(x) is non-degenerate for each x ∈ Rn.2

For the rest of this section, we will assume V = H is a Hilbert space.

4.1.4 Lemma. Suppose E ∈ C1(H,R). Then for each u ∈ H there exists a unique vector
v ∈ H such that

E ′(u)ϕ = (v, ϕ)H for all ϕ ∈ H.

In this case we write v = ∇E(u) or, if there is no danger of confusion, v = E ′(u). Note also
that

‖E ′(u)‖L(H,R) = ‖∇E(u)‖H .
2See [12, Section II.2].
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Proof. Since E ′(u) is, for any fixed u, a bounded linear map from H to R, this follows imme-
diately from the Riesz Representation Theorem.

We will also assume for the rest of the section that E ′ : H → H is Lipschitz continuous on
bounded sets; we write E ∈ C1,1

loc (H,R).

We recall that u ∈ H is a critcal point of E if E ′(u) = 0 (in H) and say that β is a critical
value (of E) if the set of critical points Kβ 6= ∅.
Principle: if β ∈ R is not a critical value of E (and E is “nice enough”), then we can smoothly
deform the set Sβ+ε into the set Sβ−ε for ε > 0 small enough

4.1.5 Theorem (Deformation theorem). Suppose E ∈ C1,1
loc (H,R) satisfies the Palais–Smale

condition and suppose Kβ = ∅ for some β. Then for any sufficiently small ε > 0, there exists
δ > 0 and a function (family of deformations)

Φ ∈ C([0, 1]×H,H)

such that the mappings

Φt(u) ≡ Φ(t, u) (0 ≤ t ≤ 1, u ∈ H)

satisfy

(i) Φ0 = Id, i.e. Φ0(u) = u for all u ∈ H;

(ii) Φ1(u) = u if E(u) 6∈ [β − ε, β + ε];

(iii) E(Φt(u)) ≤ E(u) for all u ∈ H and all t ∈ [0, 1];

(iv) Φ1(Sβ+δ) ⊂ Sβ−δ.

The idea here is to solve an appropriate ordinary differential equation (ODE) in H, modelled
on dΦ

dt
= E ′(Φ(u)), and following the resulting flow “downhill”; this can be done if no critical

points are in the way. (We will see similar ideas later, in Chapter 5, when we come to gradient
flows.)

We will need the following lemma. For A,B ⊂ H and u ∈ H we denote by

dist(u,A) = inf{‖u− v‖H : v ∈ A},
dist(A,B) = inf{‖u− v‖H : u ∈ A, v ∈ B} = inf{dist(u,B) : u ∈ A}.

4.1.6 Lemma. For any nonempty A ⊂ H, the function u 7→ dist(u,A) is Lipschitz continuous
(with Lipschitz constant 1).

Proof. By the triangle inequality applied to sequences approaching the corresponding infimum,
if u, v ∈ H, then

dist(u,A) ≤ ‖u− v‖H + dist(v, A)

dist(v,A) ≤ ‖u− v‖H + dist(u,A).
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4 Critical points and minimax methods

Proof of Theorem 4.1.5. 1. The Palais–Smale condition implies the existence of constants
0 < γ, ε(< 1) such that

‖E ′(u)‖H ≥ γ for all u ∈ Sβ+ε \ Sβ−ε ≡ {v ∈ H : β − ε < E(v) ≤ β + ε}. (4.1.1)

Indeed, if not, we could find sequences γk → 0, εk → 0 and uk ∈ H such that

uk ∈ Sβ+εk \ Sβ−εk , ‖E ′(uk)‖H ≤ γk.

This says exactly that (uk) is a P.-S. sequence, so up to a subsequence uk → u in H. Since
E ∈ C1, it follows that E(u) = β and E ′(u) = 0, contradicting Kβ = ∅.
2. Now fix δ > 0 such that

0 < δ < min

{
ε,
γ2

2

}
and set

A := {u ∈ H : E(u) ≤ β − ε or E(u) ≥ β + ε}
B := {u ∈ H : β − δ ≤ E(u) ≤ β + δ}.

Claim: On any bounded set M ⊂ H, there exists a constant c = cM > 0 such that

dist(u,A) + dist(u,B) ≥ cM for all u ∈M.

Indeed, if dist(M,A) or dist(M,B) > 0, then there is nothing to prove; otherwise, by enlarging
M if necessary, WLOG we have A ∩M,B ∩M 6= ∅ and hence

dist(u,A) + dist(u,B) ≥ dist(M ∩ A,M ∩B)

by the triangle inequality. Now since

|E(u)− E(v)| ≤ sup
w∈M
|E ′(w)|‖u− v‖H ,

where supw∈M |E ′(w)| <∞ by assumption, and

|E(u)− E(v)| ≥ ε− δ if u ∈ A, v ∈ B,

we have

‖u− v‖H ≥
ε− δ

supw∈M |E ′(w)|
for all u ∈M ∩ A and all v ∈M ∩B.

This proves the claim.

Combined with Lemma 4.1.6, it follows that the function

g(u) :=
dist(u,A)

dist(u,A) + dist(u,B)
, u ∈ H,

is (well defined and) Lipschitz continuous on bounded sets, i.e., locally Lipschitz, with

0 ≤ g ≤ 1, g|A = 0, g|B = 1.
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Finally, we let ξ : H → H be defined by

ξ(u) := −g(u)
E ′(u)

max{1, ‖E ′(u)‖H}
, u ∈ H, (4.1.2)

which is once again bounded and locally Lipschitz.

3. We now consider, for any given u ∈ H, the ODE3

dΦ

dt
(t) = ξ(Φ(t))

Φ(0) = u.

Since ξ is bounded and locally Lipschitz continuous, the Picard–Lindelöf theorem4 yields the
existence of a solution for all t ∈ [0, 1], which we denote by

Φ(t, u) ≡ Φt(u);

then obviously Φ ∈ C([0, 1] ×H,H) satisfies (i), and if E(u) 6∈ [β − ε, β + ε], then u ∈ A, so
that g(u) = 0 and ξ(u) = 0. It follows that Φt(u) = u for all t ≥ 0, so (ii) is satisfied.

4. To show (iii), we compute, using the chain rule, the ODE property, the definition of ξ and
the fact that g ≥ 0, respectively,

d

dt
E(Φt(u)) =

(
E ′(Φt(u)),

d

dt
Φt(u)

)
H

= (E ′(Φt(u)), ξ(Φt(u))H

= −g(Φt(u))
1

max{1, ‖E ′(u)‖H}
‖E ′(Φt(u))‖2

H ≤ 0

for all u ∈ H and all t ∈ [0, 1].

5. Finally, to show (iv), fix any u ∈ Sβ+δ. If Φt0(u) 6∈ B for some t0 ∈ [0, 1], then by (iii)
it follows that E(Φt(u)) < β − δ for all t ≥ t0, so there is nothing to prove. Hence suppose
Φt ∈ B for all t ∈ [0, 1]. Then g(Φt(u)) = 1 for all t ∈ [0, 1] and

d

dt
E(Φt(u)) = − ‖E ′(Φt(u))‖2

H

max{1, ‖E ′(Φt(u))‖H}
.

If ‖E ′(Φt(u))‖H ≥ 1, then

d

dt
E(Φt(u)) = −‖E ′(Φt(u))‖H ≤ −γ ≤ −γ2

by (4.1.1), as Φt(u) ∈ B ⊂ Sβ+ε \ Sβ−ε, and γ ∈ (0, 1). If ‖E ′(Φt(u))‖H ≥ 1, then also

d

dt
E(Φt(u)) ≤ −‖E ′(Φt(u))‖2

H ≤ −γ2

by (4.1.1). It follows from the fundamental theorem of calculus that5

E(Φ1(u)) =

∫ 1

0

d

dt
E(Φt(u)) dt+ E(Φ0(u)) ≤ E(u)− γ2 ≤ β + δ − γ2 ≤ β − δ

by choice of δ. Thus Φ1(u) ∈ Sβ−δ, as desired.

3Observe that, up to our cut-off argument, we are essentially solving dΦ
dt = −E ′(Φ(t)).

4Obviously valid for a Banach space-valued ODE, since Banach’s fixed point theorem is equally valid in a
general Banach space.

5Note d
dtE(Φt(u)) is continuous as the composition of continuous functions.
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4.1.7 Remark. (a) We actually only needed a weaker, local form of the Palais–Smale con-
dition: if for any sequence (uk) such that there exists ε > 0 with |E(uk) − β| ≤ ε and
E ′(uk) → 0 as k → ∞, then the sequence is precompact. We say E satisfies a local
Palais–Smale condition at β ∈ R.

(b) If E is even, i.e. E(−u) = E(u) for all u ∈ H, then it is possible to choose Φt to be odd.
To see this, note that then E ′ : H → H is odd, and since u ∈ A or B if and only if
−u ∈ A or B, g is even in this case. Hence ξ in (4.1.2) is odd, and so the solution Φ as
well.

(c) Suppose Kβ 6= ∅ is compact for some β ∈ R. Then if O ⊃ Kβ is any open neighbourhood
of Kβ, we may obtain, with essentially the same method of proof, a deformation Φt

satisfying (i)-(iii) of Theorem 4.1.5, the conclusion of Remark 4.1.7(b) and

(iv’) Φ1(Sβ+δ \ O) ⊂ Sβ−δ.

(d) The theorem (and remarks) continue to hold if H is replaced either with a (smooth)
Hilbert manifold M , or more generally a Banach space/manifold V . (The proofs are
far more technical and require more sophisticated tools.) A Hilbert manifold M is a
separable Hausdorff space in which each point u ∈ M has a neighbourhood which is
homeomorphic to a Hilbert space, e.g. M = {u ∈ H : ‖u‖H = r}.

More details on (c) and (d) can be found in [8, Appendix A].

Now we can give a model mountain pass theorem for functionals.

4.1.8 Theorem (Mountain pass theorem). Suppose that E ∈ C1,1
loc (H,R) satisfies the Palais–

Smale condition of Definition 4.1.2 and

(i) E(0) = 0,

(ii) there exist r, α > 0 such that E(u) ≥ α whenever ‖u‖H = r, and

(iii) there exists v ∈ H such that ‖v‖H > r and E(v) ≤ 0.

Set

Γ := {γ ∈ C([0, 1], H) : γ(0) = 0, γ(1) = v}.

Then

β := inf
γ∈Γ

max
0≤t≤1

E(γ(t)) (4.1.3)

is a critical value of E, i.e. Kβ 6= ∅.

Obviously, by considering Ẽ(x) := E(x− y) for fixed y ∈ H, we may shift the location of the
points 0 and v arbitrarily. We also only need to assume the local Palais–Smale condition at β
given by (4.1.3).

Proof. By construction, β ≥ α. Suppose β is not a critical value, so that Kβ = ∅. Fix any
ε ∈ (0, α/2) sufficiently small. Then by Theorem 4.1.5, there exist δ ∈ (0, ε) and Φ = Φ1 :
H → H such that Φ(Sβ+δ) ⊂ Sβ−δ and Φ(u) = u if E(u) 6∈ [β − ε, β + ε]. Now suppose γ ∈ Γ
satisfies

max
0≤t≤1

E(γ(t)) ≤ β + δ.
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Then Φ ◦ γ ∈ Γ as well, since Φ(γ(0)) = Φ(0) = 0 and Φ(γ(1)) = Φ(v) = v since E(v) ≤ 0 6∈
[β − ε, β + ε]. But then, by construction of Φ,

max
0≤t≤1

E(Φ(γ(t))) ≤ β − δ,

contradicting (4.1.3).

4.2 An application

Consider the semilinear problem (nonlinear Poisson equation){
−∆u = f(u) in Ω,

u = 0 on Ω,
(4.2.1)

where Ω ⊂ Rn is bounded and open, n ≥ 2, and f is smooth, say f ∈ C1(R,R), and satisfies
the growth conditions

|f(z)| ≤ C(1 + |z|p)
|f ′(z)| ≤ C(1 + |z|p−1)

, z ∈ R, (4.2.2)

where C > 0 is a constant and 1 < p < n+2
n−2

= 2∗−1 (the “critical exponent”; see Section 7.3).
Setting

F (z) :=

∫ z

0

f(s) ds, z ∈ R,

we also assume there exist constants C̃, c1, c2 > 0, with C̃ < 1
2
, such that

0 ≤ F (z) ≤ C̃f(z)z

c1|z|p+1 ≤ |F (z)| ≤ c2|z|p+1
, z ∈ R. (4.2.3)

In particular, F (0) = 0. A model f is f(z) = |z|p−1z, i.e. −∆u = |u|p−1u.6

4.2.1 Theorem. Under the above assumptions, (4.2.1) has at least one weak solution u 6≡ 0.

Such solutions, which are found via application of a mountain pass theorem, are often referred
to as being of mountain pass type.

Proof. 1. We wish to apply Theorem 4.1.8 to

E(u) =

∫
Ω

1

2
|Du|2 − F (u) dx, u ∈ H1

0 (Ω),

since solutions of E ′(u)ϕ = 0 for all ϕ ∈ H1
0 (Ω) are (by definition) weak solutions of (4.2.1).

We work in H = H1
0 (Ω) with norm

‖u‖H = ‖u‖H1
0 (Ω) =

(∫
Ω

|Du|2 dx
)1/2

6This particular f was already treated in Example 3.5.10 via completely different methods – note that λ = 0
is always allowed in (3.5.6) and that the p of Example 3.5.10 corresponds to p+ 1 here.
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and corresponding inner product

(u, v)H =

∫
Ω

Du ·Dv dx.

Then

E(u) =
1

2
‖u‖2

H −
∫

Ω

F (u) dx =: E1(u)− E2(u).

2. Claim: E ∈ C1,1
loc (H,R).

Proof. Here we need the assumptions on f and F . For u, v ∈ H, since E1(u) = 1
2
‖u‖2

H ,

(E ′1(u), v)H = E ′1(u)v =

∫
Ω

Du ·Dv dx = (u, v)H .

Thus E ′1(u) exists and equals u for all u ∈ H, cf. Lemma 4.1.4. Hence E1 ∈ C1,1
loc .

For E2, we first recall that for each g ∈ H−1(Ω) = H ′ there is a unique weak solution v ∈ H1
0 (Ω)

of {
−∆v = g in Ω,

v = 0 on ∂Ω;
(4.2.4)

see Theorem 2.6.5 and Remark 2.6.6 (and note that we may choose ω = 0 for the Laplacian,
cf. Theorem 2.6.4). It follows that the mapping

K : H−1(Ω)→ H1
0 (Ω), g 7→ v,

is a bijection. Then in fact K is an isometry by the Riesz Representation Theorem, since
(4.2.4) says that

(v, u)H = 〈g, u〉 for all u ∈ H1
0 (Ω).

Now if w ∈ L
2n
n+2 (Ω), then, since

〈w∗, u〉 :=

∫
Ω

wudx u ∈ H1
0 (Ω)

defines a (bounded) linear functional, w∗ ∈ H−1(Ω); in a slight abuse of notation, we identify

w and w∗ and write L
2n
n+1 ↪→ H−1. Observe next that

p · 2n

n+ 2
<
n+ 2

n− 2
· 2n

n+ 2
= 2∗.

The growth assumption (4.2.2) implies that∫
Ω

|f(u)|
2n
n+2 dx ≤

∫
Ω

|u|p
2n
n+2 dx+ C|Ω| ≤

∫
Ω

|u|2∗ dx+ C|Ω|;

hence, using Theorem 2.4.3, we have shown that

f(u) ∈ L
2n
n+2 (Ω) ↪→ H−1(Ω) whenever u ∈ H1

0 (Ω).

In particular, this means there exists k = kf > 0 such that

‖f(u)‖H−1(Ω) ≤ k‖f(u)‖
L

2n
n+1 (Ω)

.
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Let u ∈ H1
0 (Ω) be fixed. We now show that

E ′2(u) = K(f(u)) (4.2.5)

by proving

E2(v) = E2(u) + (K(f(u)), v − u)H + o(‖u− v‖H) as ‖u− v‖H → 0. (4.2.6)

Since F ′ = f , integrating by parts gives

F (a+ b) = F (a) + f(a)b+

∫ 1

0

(1− s)f ′(a+ sb) ds b2, a, b ∈ R.

Hence, for v ∈ H1
0 (Ω),

E2(v) =

∫
Ω

F (v) dx =

∫
Ω

F ( u︸︷︷︸
a

+ v − u︸ ︷︷ ︸
b

) dx

=

∫
Ω

F (u) + f(u)(v − u)︸ ︷︷ ︸
f(u)∈H−1(Ω)

dx+R

= E2(u) +

∫
Ω

D(K(f(u))) ·D(v − u) dx+R,

where, using the growth assumption on f ′,

|R| ≤
∫

Ω

|v − u|2
∫ 1

0

(1− s)|f ′(u+ s(v − u))| ds dx

≤
∫

Ω

|v − u|2 · C
∫ 1

0

(1− s)(1 + |u+ s(v − u)|p−1) ds dx

≤ Ĉ

∫
Ω

|v − u|2(1 + |u|p−1 + |v − u|p−1) dx

since ∫ 1

0

(1− s)|a+ s(b− a)|p−1 ds ≤ c(p)(|a|p−1 + |b|p−1).

Hence, by Hölder’s inequality with exponents (p+ 1)/2 and (p+ 1)/(p− 1),

|R| ≤ Ĉ

∫
Ω

|v − u|2 + |v − u|p+1 dx+ Ĉ

(∫
Ω

|u|p+1 dx

) p−1
p+1

︸ ︷︷ ︸
≤ const. ‖u‖p+1

H

(∫
Ω

|v − u|p+1 dx

) 2
p+1

.

Since 2, p+ 1 < 2∗, this is o(‖v − u‖H) since (using Poincaré’s inequality, Theorem 2.4.4)∫
Ω

|v − u|2 dx ≤ c‖v − u‖2
H∫

Ω

|v − u|p+1 dx ≤ c‖v − u‖p+1
H(∫

Ω

|v − u|p+1 dx

) 2
p+1

≤ c‖v − u‖2
H .
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This proves (4.2.6) and hence E ′2(u) = K(f(u)). We still have to show that E ′2 is Lipschitz on
bounded sets: if u, v ∈ H1

0 (Ω) and ‖u‖H , ‖v‖H ≤ m for some given m > 0, then

‖E ′2(u)− E ′2(v)‖H = ‖K(f(u))−H(f(v))‖H
= ‖f(u)− f(v)‖H−1(Ω)

≤ C1‖f(u)− f(v)‖
L

2n
n+2 (Ω)

.

Using the growth condition,

|f(z)− f(w)| ≤ sup
y∈(z,w) or (w,z)

|f ′(y)||z − w| ≤ C(1 + |z|p−1 + |w|p−1)|z − w|;

hence

‖E ′2(u)−E ′2(v)‖H ≤ C1‖f(u)−f(v)‖
L

2n
n+2 (Ω)

≤ C2

(∫
Ω

(
(1 + |u|p−1 + |v|p−1)|u− v|

) 2n
n+2 dx

)n+2
2n

.

Applying Hölder’s inequality with exponents (n − 2)/(n + 2) and (n + 2)/4, the right-hand
side is no larger than

C2

(∫
Ω

|u− v|
2n
n−2 dx

)n−2
2n

︸ ︷︷ ︸
=‖u−v‖

L2∗ (Ω)

(∫
Ω

(1 + |u|p−1 + |v|p−1)
2n
n+2
·n+2

4 dx

)n+2
2n
· 4
n+2

︸ ︷︷ ︸
≤C3(m) since (p−1)n

2
< 2n
n−2

=2∗

Putting this together,

‖E ′2(u)− E ′2(v)‖H ≤ C4(m)‖u− v‖H . (4.2.7)

This shows that E2 and hence also E are in C1,1
loc (H,R), proving the claim.

3. Now we show that E satisfies the Palais–Smale condition: suppose (uk) is in H1
0 (Ω) such

that (E(uk)) is bounded and E ′(uk)→ 0 in H1
0 (Ω). We have shown that

E ′(uk) = uk −K(f(uk)).

Hence, for any ε > 0,∣∣∣∣∫
Ω

Duk ·Dv − f(uk)v dx

∣∣∣∣ = |(E ′(uk), v)H1
0 (Ω)| ≤ ε‖v‖H1

0 (Ω) for all v ∈ H1
0 (Ω), (4.2.8)

for all k large enough, where we recall f(uk) ∈ H−1(Ω) may be written in this way (as an
L2-function) since f(uk) ∈ L2∗(Ω), cf. Proposition 2.5.2.

Choosing v = uk, ∣∣∣∣∫
Ω

|Duk|2 − f(uk)uk dx

∣∣∣∣ ≤ ε‖uk‖H1
0 (Ω).

In particular, taking ε = 1,∫
Ω

f(uk)uk dx ≤ ‖uk‖2
H1

0 (Ω) + ‖uk‖H1
0 (Ω)
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for k large enough. Now since (E(uk)) is bounded,

E(uk)
1

2
‖uk‖2

H1
0 (Ω) −

∫
Ω

F (uk) dx ≤M <∞

for all k, for some M > 0. Thus, by (4.2.3),

‖uk‖2
H1

0 (Ω) ≤ 2M+2

∫
Ω

F (uk) dx ≤ 2M+2C̃

∫
Ω

f(uk)uk dx ≤ 2M+2C̃(‖uk‖2
H1

0 (Ω) +‖uk‖H1
0 (Ω)).

Since 2C̃ < 1 by assumption, it follows that (uk) is bounded in H1
0 (Ω). Thus up to a subse-

quence, uk ⇀ u weakly in H1
0 (Ω), so that uk → u in Lp+1(Ω) since p+1 < 2∗ (Theorem 2.4.7).

An argument similar to the one used to obtain (4.2.7), using L
p+1
p (Ω) ↪→ H−1(Ω), shows that

f(uk)→ f(u) in H1
0 (Ω).

(That is:

‖f(u)− f(uk)‖H−1(Ω) ≤ C1‖f(u)− f(uk)‖
L
p+1
p (Ω)

≤ C2

(∫
Ω

(
(1 + |u|p−1 + |uk|p−1)|u− uk|

) p+1
p dx

) p
p+1

≤ C2

(∫
Ω

|u− uk|p+1 dx

) 1
p+1
(∫

Ω

(1 + |u|p−1 + |uk|p−1)
p
p−1 dx

) p−1
p+1

︸ ︷︷ ︸
bounded

again using Hölder’s inequality, this time with p and p/(p− 1), for the last inequality.)

Hence also K(f(uk))→ K(f(u)) in H1
0 (Ω) since K is an isometry. Since uk −K(f(uk))→ 0,

it follows that uk → u in H1
0 (Ω).

4. We finally check the other assumptions of Theorem 4.1.8, using the growth conditions
(4.2.3) on F : obviously E(0) = 0 since F (0) = 0. If u ∈ H1

0 (Ω) and ‖u‖H1
0 (Ω) = r (to be chosen

later), then

E(u) = E1(u)− E2(u) =
r2

2
− E2(u).

By (4.2.3)

|E2(u)| =
∣∣∣∣∫

Ω

F (u) dx

∣∣∣∣ ≤ c2

∫
Ω

|u|p+1 dx = c2‖u‖p+1
Lp+1(Ω) ≤ c̃‖u‖p+1

H1
0 (Ω)
≤ c̃rp+1

using H1
0 (Ω) ↪→ Lp+1(Ω) since p+ 1 < 2∗. Thus

E(u) ≥ r2

2
− c̃rp+1 > 0

if r > 0 is small enough, since p+ 1 > 2.

Now fix 0 6≡ u ∈ H1
0 (Ω) and set v := tu for t > 0 to be chosen later. Then

E(v) = E1(tu)− E2(tu)

= t2E1(u)−
∫

Ω

F (tu) dx

≤ t2 E1(u)︸ ︷︷ ︸
fixed

−tp+1c2

∫
Ω

|u|p+1 dx︸ ︷︷ ︸
fixed

since − F (tu) ≥ −c2

∫
Ω

|u|p+1tp+1 dx

< 0

73
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if t > 0 is large enough.

5. By Theorem 4.1.8, there exists 0 6≡ u ∈ H1
0 (Ω) such that

E ′(u) = u−K(f(u)) = 0.

This means (cf. (4.2.8))∫
Ω

Du ·Dϕdx =

∫
Ω

f(u)ϕdx for all ϕ ∈ H1
0 (Ω).

4.3 Multiple critical points via symmetry and index theory

Goal: Prove the existence of infinitely many eigenpairs (λ, u) of problems such as{
−∆pu = λ|u|p−2u in Ω, u = 0 on ∂Ω,

1 < p <∞, or (in this lecture) its semilinear equivalent.

Idea: If G is a group of mappings of a Banach space to itself and E ∈ C1(V,R) is such that

E(gu) = E(u) for all g ∈ G and all u ∈ V,

then we say E is invariant under G, e.g. E is even: E(−u) = E(u), i.e. G = {id,−id} ' Z2. We
exploit this structure to find multiple critical points which have a “minimax characterisation”.
The original, finite-dimensional result:

4.3.1 Theorem (Ljusternik–Schnirelman,7 1930s). Suppose E ∈ C1(Rn,R) is even. Then
E|Sn−1 possesses at least n pairs of critical points (considered as a functional on Sn−1 := {x ∈
Rn : |x| = 1}).

When referring to minimax results in this direction we often speak of Ljusternik–Schnirelman
theory. Here we will only work with the special case of even functionals.

We need a measure of the “size” of sets invariant under the group action (here “symmetric
sets”).

4.3.2 Definition. Suppose V is a Banach space and denote by A the family of closed sets
A ⊂ V \ {0} such that x ∈ A if and only if x ∈ −A. Then the genus γ(A) of A ∈ A is the
smallest k ∈ N such that there exists an odd map ϕ ∈ C(A,Rk \{0}), or∞ if no such k exists.
We also set γ(∅) = 0.

4.3.3 Example. (a) If B ⊂ V is closed and B ∩ (−B) = ∅, then A := B ∪ (−B) ∈ V and
γ(A) = 1 since we may set

ϕ =

{
1, x ∈ B,
−1, x ∈ −B,

then ϕ ∈ C(A,R \ {0}).
7As with Chebyshev, there are many different spellings of these names.
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4.3 Multiple critical points via symmetry and index theory

(b) If V = Rn and A = Sn−1, then γ(A) = n.8

(c) If A ∈ A and γ(A) > 1, then A contains infinitely many points, since if A were finite,
then we could write A = B ∪ (−B) as in (a).

This is well adapted to even functionals E since the sublevel sets Sα = {u ∈ V : E(u) ≤ α}
are in A.9

4.3.4 Proposition. Let A,B ∈ A.

(a) Mapping property: if there exists an odd f ∈ C(A,B), then γ(A) ≤ γ(B).

(b) Monotonicity: if A ⊂ B, then γ(A) ≤ γ(B).

(c) Subadditivity: γ(A ∪B) ≤ γ(A) + γ(B).

(d) “Continuity”: if A is compact, then γ(A) <∞ and there is a δ > 0 such that

Aδ := {u ∈ V : dist(u,A) < δ} ∈ A and γ(Aδ) = γ(A).

Proof. We may assume WLOG in (a), (b) and (c) that γ(A), γ(B) < ∞, since otherwise the
statements are trivial.

(a) If γ(B) = n, then there exists an odd ϕ ∈ C(B,Rn \ {0}), so ϕ ◦ f ∈ C(A,Rn \ {0}) is
also odd; hence γ(A) ≤ n.

(b) Choose f = id in (a).

(c) Suppose γ(A) = m and γ(B) = n with corresponding odd mappings ϕ ∈ C(A,Rn \ {0})
and ψ ∈ C(B,Rm\{0}). By Tietze’s Extension Theorem (see [10, Theorem 20.4]) these can be
extended to ϕ̃ ∈ C(V,Rn \ {0}), ψ̃ ∈ C(V,Rm \ {0}) (such that ϕ̃|A = ϕ, ψ̃|B = ψ). Replacing
ϕ̃ and ψ̃ with their odd parts, we may assume they are odd. Setting f : V → Rn+m, f(x) :=
(ϕ̃(x), ψ̃(x)), it follows that f |A∪B ∈ C(A ∪B,Rn+m \ {0}) is odd, and so γ(A ∪B) ≤ n+m.

(d) For each x ∈ A, set r(x) := 1
2
‖x‖V =: r(−x) and Tx := B(x, r(x)) ∪ B(−x, r(x)). Then

T x ∈ A and γ(T x) = 1 by Example 4.3.3(a). Then since A is compact, there exist x1, . . . , xk ∈
A such that A ⊂

⋃
x∈A T x. Hence

γ(A)
(b)

≤ γ

(
k⋃
i=1

T x

)
(c)

≤
k∑
i=1

γ(T x) = k

(noting that (c) obviously holds for any finite union of sets by induction). Hence γ(A) <∞.

If γ(A) = n, with ϕ ∈ C(A,Rn \ {0}) odd, then extend ϕ to an odd ϕ̃ as in (c). Since ϕ 6= 0
on the compact set A, there exists δ > 0 such that ϕ̃ 6= 0 on Aδ. Hence γ(Aδ) ≤ n = γ(A).
But γ(A) ≤ γ(Aδ) by (b).

4.3.5 Proposition. If A ⊂ V , Ω ⊂ Rk is a bounded neighbourhood of 0 and there exists an
odd homeomorphism h ∈ C(A, ∂Ω), then γ(A) = k.10

Proof. Obviously γ(A) ≤ k. If γ(A) = j < k, then there exists an odd ϕ ∈ C(A,Rj \ {0}), so
ϕ ◦ h−1 is odd and in C(∂Ω,Rj{0}). This contradicts the Borsuk–Ulam theorem.11

8See Proposition 4.3.5.
9As long as 0 6∈ Sα, of course: typically we will restrict E and hence Sα to spheres of the form {‖u‖V = r}.

10This proves Example 4.3.3(b).
11There is no continuous odd map h : Sn → Sn−1; equivalently, if f : Sn → Rn is continuous, then there exists

x ∈ Sn such that f(−x) = f(x).
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Now suppose for simplicity that V = H is a Hilbert space.

4.3.6 Proposition. Suppose X ⊂ H is a subspace of codimension k ∈ N and A ∈ A with
γ(A) > k. Then A ∩X 6= ∅.

Proof. Write H = X ⊕ Y , where Y is k-dimensional, and denote by P : H → Y the corre-
sponding projection. If A ∩X = ∅, then P ∈ C(A, Y \ {0}), and P |A is odd (as the identity
on A). Hence γ(A) ≤ γ(PA) by Proposition 4.3.4(a). The radial projection of PA into
{‖x‖H = 1} ∩ Y (via PA 3 x 7→ x

‖x‖H
) is also continuous and odd, so

γ(A) ≤ γ({‖x‖H = 1} ∩ Y ) = k

by Proposition 4.3.5.

Now we show how genus allows us to obtain critical points of functionals with a norm con-
straint.

4.3.7 Theorem. Suppose H is an (infinite-dimensional) separable Hilbert space and E ∈
C1(H,R) is even. Suppose that for some r > 0, E|{‖u‖H=r} satisfies the Palais–Smale condition
and is bounded from below. Then E|{‖u‖H=r} possesses infinitely many distinct pairs of critical
points (considered as a functional on the Hilbert manifold Mr := {‖u‖H = r} = ∂B(0, r)).

Proof. For all j ∈ N set

Γj := {A ∈ A : A ⊂Mr and γ(A) ≥ j}

(with A as in Definition 4.3.2).

Claim 1:

(a) Γj 6= ∅, for all j ∈ N;

(b) Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γj ⊃ . . .;

(c) If ϕ ∈ C(Mr,Mr) is odd, then ϕ(A) ∈ Γj whenever A ∈ Γj;

(d) If A ∈ Γj and B ∈ A with γ(B) ≤ s < j, then A \B ∈ Γj−s.

Proof of Claim 1: (a) Let {un}n∈N be an arbitrary (orthonormal) basis of H and fix j ∈ N.
Then span{u1, . . . , uj} ∩Mr ∈ A can be identified with {x ∈ Rj : |x| = r}, so it has genus j
by Proposition 4.3.5.

(b) is immediate from the definition.

(c) follows from Proposition 4.3.4(a).

(d) follows from the general observation that

γ(B) <∞ =⇒ γ(A \B) ≥ γ(A)− γ(B)

if A,B ∈ A, which follows from Proposition 4.3.4(b) and (c) since A ⊂ A \B∪B. This proves
the claim.
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4.3 Multiple critical points via symmetry and index theory

Now define
βj := inf

A∈Γj
sup
u∈A
E(u), j ∈ N, (4.3.1)

so that β1 ≤ β2 ≤ β3 ≤ . . .. We claim that {βj} is an infinite set of critical levels: we first use
the Deformation Theorem 4.1.5 (on the Hilbert manifold Mr as in Remark 4.1.7(d)) to show
that every level βj is in fact critical. Note that the Palais–Smale condition implies that

Kβ = {u ∈Mr : E(u) = β and E|′Mr
(u) = 0} (4.3.2)

is compact for any β ∈ R, since any sequence in Kβ satisfies the Palais–Smale condition.

Claim 2: If βj = . . . βj+p = β for some p ≥ 0 (with βj as in (4.3.1)), then

γ(Kβ) ≥ p+ 1.

(In particular, Kβ 6= ∅, i.e., this is a critical level.)

The theorem now follows from Claim 2 and Example 4.3.3(c), since if βj = βj+1 for some j,
then Kβj is an infinite set, and if not, then Kβj ∩Kβi = ∅ (i 6= j), so

⋃
j∈NKβj is an infinite

set.

Proof of Claim 2: Suppose γ(Kβ) ≤ p. Then since Kβ is compact, by Proposition 4.3.4(d)
(and (b)), there exists η > 0 such that

γ({u ∈Mr : dist(u,Kβ) < η}) ≤ p.

We now use Theorem 4.1.5 in the following modified form (with Remark 4.1.7(b)–(d)): setting

O := {u ∈Mr : dist(u,Kβ) < η}

open and taking ε ≤ 1 small enough, there exist Φ ∈ C([0, 1] ×Mr,Mr) odd and 0 < δ < ε
such that

Φ(Sβ+δ \ O) ⊂ Sβ−δ

(where Sα = {u ∈Mr : E(u) = α}).
Now choose A ∈ Γj+p such that supu∈A E(u) ≤ β+δ. SinceO satisfies γ(O) ≤ p, by Claim 1(d),
we have

Sβ+δ \ O ⊃ A \ O ∈ Γj.

By Claim 1(c) applied to Φ, we have Φ(A \ O) ∈ Γj and hence Φ(A \ O) ⊂ Sβ−δ. Thus

β = βj = inf
A∈Γj

sup
u∈A
E(u) ≤ sup

u∈Φ(A\O)

E(u) ≤ β − δ,

a contradiction.

4.3.8 Remark. (a) The minimax values βj may be characterised geometrically as

βj = inf{α ∈ R : γ(Sα) ≥ j}, (4.3.3)

i.e., the βj are the numbers at which Sα = {u ∈ Mr : E(u) = α} changes genus. (We
emphasise Sα ∈ A since E is even.) Indeed, denote the right-hand side of (4.3.3) by β̄j.
If α > β̄j, then γ(Sα) ≥ j, so Sα ∈ Γj and thus

βj ≤ sup
u∈Sα
E(u) = α.
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4 Critical points and minimax methods

Taking the infimum over α > β̄j yields βj ≤ β̄j. If βj < β̄j, then set

β :=

{
βj + 1 if β̄j =∞,
1
2
(βj + β̄j) if β̄j <∞;

then there is an A ∈ Γj such that supu∈A E(u) ≤ β. Hence γ(Sβ) ≥ γ(A) ≥ j since
A ⊂ Sβ (see Proposition 4.3.4(d)). But β < β̄j, contradicting the definition of β̄j.

(b) The requirement in Theorem 4.3.7 that E|Mr satisfy the Palais–Smale condition can be
significantly weakened (and is too strong for many applications). We needed it in two
places in the proof:

1. compactness of the Kβj , and

2. the application of the Deformation Theorem 4.1.5 at the levels βj.

In both cases it suffices to assume E|Mr satisfies the local Palais–Smale condition at the
levels βj in the sense of Remark 4.1.7(a).

4.3.9 Example. Consider {
−∆u = λ|u|p−2u in Ω,

u = 0 on ∂Ω,
(4.3.4)

where 1 < p < 2∗ = 2n
n−2

. We set

E(u) :=
1

p

∫
Ω

|u|p dx, u ∈ H1
0 (Ω),

which is even and in C1(H1
0 (Ω),R) by our assumption on p. At a critical point u of

E|M1={‖u‖
H1

0(Ω)
=1}, since M1 is the zero set of

J(u) = ‖u‖2
H1

0 (Ω) − 1,

by Theorem 3.5.8 there exists µ ∈ R such that12

E ′(u)ϕ = µ(u, ϕ)H1
0 (Ω) for all ϕ ∈ H1

0 (Ω), (4.3.6)

that is, ∫
Ω

|u|p−2uϕ dx = µ

∫
Ω

Du ·Dϕdx for all ϕ ∈ H1
0 (Ω).

Thus critical points of E|M1 correspond to weak solutions of (4.3.4) with µ = λ−1.

We check the conditions of Theorem 4.3.7. First note that E is weakly continuous (and
bounded from below on M1) due to the compactness of the embedding H1

0 (Ω) ↪→ Lp(Ω)
(Theorem 2.4.7).

12Actually, Theorem 3.5.8 was only stated for minima. But an inspection of the proof shows that the same
conclusion holds for any critical point of E on {J = 0}. Alternatively, following through the reasoning of
Theorem 3.5.8, for any u ∈M1, we have

E|′M1
(u) = E ′(u)− (E ′(u), u)Hu (4.3.5)

(where we regard E|′M1
(u) as an element of H = H1

0 (Ω)). If u is a critical point, then u = ϕ ∈M1, we have
µ = E ′(u)u and thus (4.3.5) equals 0 for such u. This yields (4.3.6).
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4.3 Multiple critical points via symmetry and index theory

We now merely need to check the Palais–Smale condition, which we do in the local sense for
any β 6= 0. That is, given β 6= 0, suppose uk ∈ H1

0 (Ω), ‖uk‖ = 1, such that |E(uk)− β| < ε for
some ε < |β| independent of k, and E|′M1

(uk)→ 0 as k →∞. Then

E|′M1
(uk) = E ′(uk)− (E ′(uk), uk)H1

0 (Ω)uk → 0. (4.3.7)

We next claim that E ′ is compact as a mapping from H to H: indeed, E ′ is given by

(E ′(u), ϕ)H1
0 (Ω) ≡ 〈E ′(u), ϕ〉H−1(Ω) =

∫
Ω

|u|p−2uϕ dx, ϕ ∈ H1
0 (Ω)

If (vk) ⊂ H1
0 (Ω) is bounded, then WLOG vk ⇀ v in H1

0 (Ω). We claim E ′(vk)→ E(v) in H1
0 (Ω):

by the Riesz Representation Theorem,

‖E ′(vk)− E ′(v)‖H1
0 (Ω) = ‖E ′(vk)− E ′(v)‖H−1(Ω),

so it suffices to show E(vk) → E(v) in H−1(Ω). Now, for ϕ ∈ H1
0 (Ω), using the definition

of E ′, Hölder’s inequality (with exponents 2n/(n − 2) and 2n/(n + 2)) and the fact that

H1
0 (Ω) ↪→ L

2n
n−2 , respectively,

|〈E ′(vk)− E ′(v), ϕ〉| ≤
∫

Ω

||vk|p−2vk − |v|p−2v||ϕ| dx

≤
(∫

Ω

||vk|p−2vk − |v|p−2v|
2n
n+2 dx

)n+2
2n

‖ϕ‖
L

2n
n−2 (Ω)

≤ C

(∫
Ω

||vk|p−2vk − |v|p−2v|
2n
n+2 dx

)n+2
2n

‖ϕ‖H1
0 (Ω).

Since vk → v in L
2n
n−2 (Ω) and (p− 1) 2n

n+2
< 2n

n−2
, in particular |vk|p−2vk → |v|p−2v in L

2n
n+2 . It

follows that ‖E ′(vk)− E ′(v)‖H−1(Ω) → 0, and hence E ′ is compact, as claimed.

We return to considering our Palais–Smale sequence (uk) in M1. Since it is bounded and E ′ is
compact, there exists u ∈ H1

0 (Ω) such that (up to a subsequence) uk ⇀ u in H1
0 (Ω) and

0← E|′M1
(uk)→ E|′M1

(u) = E ′(u)− (E ′(u), u)u.

Since E is weakly continuous, E(uk) → E(u), so E(u) ∈ [β − ε, β + ε] and in particular, by
choice of ε, E(u) 6= 0. In this case u 6= 0 as well (by choice of E); hence

(E ′(u), u) =

∫
Ω

|u|p dx = pE(u) 6= 0

and so (E ′(uk), uk) 6= 0 as well, for k ∈ N large enough. It follows from (4.3.7) that we may
write

uk =
1

(E ′(uk), uk)
(E|′M1

(uk)− E ′(uk)),

which contains a convergent subsequence as E ′ is compact.

(Note that this does not hold if β = 0; any sequence uk ⇀ 0 satisfies E(uk) → 0 and
E|′M1

(uk)→ 0.)
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4 Critical points and minimax methods

Finally, we observe that 0 cannot be a critical level of E . Indeed, any critical point u of E
satisfies ∫

Ω

Du ·Dϕdx = λ

∫
Ω

|u|p−2uϕ dx

for some λ ∈ R; choosing u = ϕ ∈M1, we obtain the Rayleigh quotient expression

λ =

∫
Ω
|Du|2 dx∫

Ω
|u|p dx

(
≡ 1

(E ′(u), u)H1
0 (Ω)

)
.

But Theorem 2.4.4 ensures that

inf

{
1∫

Ω
|u|p dx

: u ∈ H1
0 (Ω) with

∫
Ω

|Du|2 dx = 1

}
> 0.

Hence the minimax levels βj defined in (4.3.1) must be > 0 for all j ∈ N. We conclude that
there exists an infinite sequence of eigenpairs (λk,±uk) solving (4.3.4) weakly, given by

λk = inf
A∈Γj

sup
u∈A

1

p

∫
Ω

|u|p dx

for some j ∈ N.

Observe:

(a) Although

λ1 = inf

{
1∫

Ω
|u|p dx

: u ∈ H1
0 (Ω) with

∫
Ω

|Du|2 dx = 1

}
,

there is no orthogonality result for the eigenfunctions in general as there was in the linear
case considered in Example 3.5.9.

(b) Equally, we cannot talk of linear subspaces of eigenfunctions: u is an eigenfunction if
and only if −u is an eigenfunction. But for u 7→ tu, if −∆u = λ|u|p−2u (weakly or
strongly), where p 6= 2, then

−∆(tu) = t(−∆u) = λt|u|p−2u =
λ

tp−2
|tu|p−2(tu),

reflecting the fact that we obtain an infinite set of critical points whenever we fix the
scaling

‖u‖H1
0 (Ω) = r > 0.

4.3.10 Remark. The same conclusion as in Example 4.3.9 holds for the p-Laplacian:13 the
equation {

−∆up = λ|u|p−2u in Ω, u = 0 on ∂Ω

(1 < p <∞) possesses an infinite sequence of eigenpairs (λk, uk) satisfying14

λk =

∫
Ω
|Du|p dx∫

Ω
|u|p dx

;

13Although we will not prove this: here we need the corresponding Ljusternik–Schnirelman theory in general
reflexive Banach spaces.

14However, it still seems to be an open problem whether this minimax method yields all eigenvalues of the
p-Laplacian, or whether there can exist others.
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4.3 Multiple critical points via symmetry and index theory

these are now invariant under rescaling uk 7→ tuk. In particular

λ1 = inf

{∫
Ω
|Du|p dx∫

Ω
|u|p dx

: 0 6= u ∈ W 1,p
0 (Ω)

}
,

again giving the optimal constant in the corresponding Poincaré inequality.
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5 Parabolic problems

Goal: Study parabolic problems of the form1
∂u

∂t
+ Au = f

u(0) = u0,

where A is a possibly nonlinear, usually elliptic operator and u0, f ∈ H (here a Hilbert space).
For given data u0, f , the solution should be a function t 7→ u(t) ∈ H, u(0) = u0. We therefore
need to start by studying Hilbert space-valued functions of a real variable.2

5.1 Bochner integrals and Bochner–Sobolev spaces

Let V be a real, separable Banach space and Ω ⊂ Rn open. We denote by A the Lebesgue
σ-algebra on Ω, µ Lebesgue measure and χM the characteristic function of a set M ⊂ Ω. We
wish to define the so-called Bochner integral∫

Ω

f dµ ∈ V

for f : Ω → V . Our treatment will be brief; more details on the construction of Bochner
integrals can be found in [13, Section V.4–5]; the classical reference is [2].

5.1.1 Definition. (a) f : Ω→ V is a step function if there exist Mk ∈ A, pairwise disjoint,
and vk ∈ V such that

f =
∑
k∈N

χMk
vk.

(b) f : Ω→ V is measurable if there exist step functions fk : Ω→ V such that fk → f in V
pointwise almost everywhere.3

5.1.2 Theorem. The function f : Ω→ V is measurable if and only if f is weakly measurable,
i.e. the mapping

Ω 3 x 7→ 〈ϕ, f(x)〉
is measurable for each ϕ ∈ V ′.

The statement is more complicated if V is not separable: we also need the existence of a null
set N ∈ A such that f(Ω \N) is separable. For the proof we refer to [13, Section V.4].

1Since we did not end up considering the corresponding hyperbolic problems ∂2u
∂t2 +Au = f , this chapter has

also been renamed accordingly.
2Or more generally Banach space-valued, since for much of the theory the difference is minimal.
3If V = R, this is equivalent to the preimage of measurable sets being measurable.
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5.1.3 Lemma. Suppose V and W are real, separable Banach spaces.

(a) Every continuous function f : Ω→ V is measurable.

(b) If f : Ω→ V is measurable, then ‖f‖V : Ω→ R is measurable.

(c) If f : Ω → V is measurable and g : V → W is continuous, then g ◦ f : Ω → W is
measurable.

(d) If f : Ω→ V and g : Ω→ R are measurable, then so is fg : Ω→ V .

(e) If f : Ω→ V and g : Ω→ V ′ are measurable, then so is 〈g, f〉 : Ω→ R.

(f) If fk : Ω→ V are measurable and fk → f pointwise a.e., then f is measurable.

5.1.4 Definition. (a) f : Ω→ V is integrable if f is measurable and∫
Ω

‖f‖V dµ <∞.

(We emphasise ‖f‖V : Ω→ R is a real-valued function.)

(b) If f : Ω → V is an integrable step function, f =
∑

k∈N χMk
vk, we define its Bochner

integral to be ∫
Ω

f dµ :=
∑
k∈N

µ(Mk)vk,

the series converging absolutely due to the integrability assumption.

(c) If f : Ω→ V is a general integrable function, we set∫
Ω

f dµ := lim
k→∞

∫
Ω

fk dµ,

where fk : Ω → V are any step functions such that fk → f pointwise a.e. and ‖fk‖V ≤
‖f‖V .

We claim without proof that (b) is independent of the representation of f and (c) of the
approximating sequence, whose existence we also assume without proof.

5.1.5 Theorem. (a) If f is integrable, then∥∥∥∥∫
Ω

f dµ

∥∥∥∥
V

≤
∫

Ω

‖f‖V dµ.

(b) If f, g : Ω→ V are integrable, then so is f + g, and∫
Ω

αf + βg dµ = α

∫
Ω

f dµ+ β

∫
Ω

g dµ (α, β ∈ R).

(c) If f is integrable and T : V → W is continuous and linear, then Tf : Ω → W is
integrable and ∫

Ω

Tf dµ = T

∫
Ω

f dµ.
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5.1 Bochner integrals and Bochner–Sobolev spaces

(d) (Dominated convergence theorem) Suppose fk : Ω→ V are measurable, fk → f pointwise
a.e., and there exists an integrable g : Ω→ R such that ‖f‖k ≤ g for all k ∈ N. Then f
is integrable and ∫

Ω

f dµ = lim
k→∞

∫
Ω

fk dµ.

If Ω = (a, b) ⊂ R, we will also write

∫ b

a

f(x) dx for

∫
(a,b)

f dµ.

As in the scalar case, we identify functions which agree for almost all x ∈ Ω. With this
convention:

5.1.6 Definition. For p ∈ [1,∞] we define the Bochner–Lebesgue space

Lp(Ω, V ) := {f : Ω→ V measurable : ‖f‖Lp(Ω,V ) <∞},

where

‖f‖Lp(Ω,V ) :=

(∫
Ω

‖f‖p dµ
)1/p

.

if p ∈ [1,∞), and
‖f‖L∞(Ω,V ) := inf{c ≥ 0 : µ({‖f‖V ≥ c}) = 0}.

These are Banach spaces; moreover, if Ω ⊂ Rn is bounded4 and 1 ≤ p ≤ q ≤ ∞, then by
Hölder’s inequality

C(Ω, V ) ⊂ L∞(Ω, V ) ⊂ Lq(Ω, V ) ⊂ Lp(Ω, V ) ⊂ L1(Ω, V ).

We also define Lploc(Ω, V ) in the usual way.

5.1.7 Theorem. Let V be a real, separable Banach space.

(a) If p ∈ [1,∞), then Lp(Ω, V ) is separable.

(b) If p ∈ (1,∞) and V is reflexive, then Lp(Ω, V ) is reflexive and

Lp(Ω, V )′ ' Lp
′
(Ω, V ′),

1

p
+

1

p′
= 1. (5.1.1)

The identification (5.1.1) still holds when p = 1.

(c) If V = H is a Hilbert space, then so is L2(Ω, H) with inner product

(f, g)L2(Ω,H) :=

∫
Ω

(f(x), g(x))H dµ, f, g ∈ L2(Ω, H(.

The proof of (a) proceeds by showing that if (fk) ⊂ Lp(Ω) = Lp(Ω,R) and (vj) ⊂ V are
countable dense sets, then for

M := {fkvj : Ω→ V : k, j ∈ N}

we have that spanQM is countable and dense in Lp(Ω, V ).

4Or more generally has finite Lebesgue measure.
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5 Parabolic problems

To understand (5.1.1), suppose f ∈ Lp(Ω, V ) and g ∈ Lp
′
(Ω, V ). By using that

|〈g(x), f(x)〉V ′,V | ≤ ‖g(x)‖V ′‖f(x)‖V pointwise a.e. in Ω) and then applying Hölder’s inequal-
ity to ‖g‖V ′ ∈ Lp

′
(Ω,R) and ‖f‖V ∈ Lp(Ω,R),∣∣∣∣∫
Ω

〈g, f〉V ′,V dµ
∣∣∣∣ ≤ ∫

Ω

‖g‖V ′‖f‖V dµ ≤ ‖f‖Lp(Ω,V )‖g‖Lp′ (Ω,V ′).

Moreover, as usual,

‖g‖Lp′ (Ω,V ′) = sup
‖f‖Lp(Ω,V )=1

∣∣∣∣∫
Ω

〈g, f〉V ′,V dµ
∣∣∣∣ .

Thus Lp
′
(Ω, V ′) may be identified with a (closed) subspace of Lp(Ω, V )′; as usual, they are

equal in the reflexive case.

If Ω = (a, b), a, b ∈ R, then we will write Lp(a, b;V ) in place of Lp(Ω, V ). We can define the
weak derivative of a Lp(a, b;V )-function in the following way.

5.1.8 Definition. (a) v ∈ L1
loc(a, b;V ) is the weak derivative of u ∈ L1

loc(a, b;V ) if5∫ b

a

uϕ′ dx = −
∫ b

a

vϕ dx for all ϕ ∈ C∞c (a, b) ≡ C∞c (a, b;R).

(This is uniquely determined if it exists by an easy variant of the Fundamental Lemma
of the Calculus of Variations, Theorem 2.2.6.)

(b) For p ∈ [1,∞] and k ∈ N0 we set

W k,p(a, b;V ) := {u ∈ Lp(a, b;V ) : u′, . . . , u(k) exist and ∈ Lp(a, b;V )},

with norm

‖u‖Wk,p(a,b;V ) =

(
k∑
j=0

‖u(j)‖pLp(a,b;V )

)1/p

if p ∈ [1,∞) and

‖u‖Wk,∞(a,b;V ) = sup
{
‖u(j)‖L∞(a,b;V ) : j = 0, . . . , k

}
.

We also set

W k,p
0 (a, b;V ) := C∞c (a, b;V )

Wk,p

and, if V = H is a Hilbert space,

Hk(a, b;H) := W k,2(a, b;H), Hk
0 (a, b;H) := W k,2

0 (a, b;H).

5.1.9 Theorem. Let V be a real, separable Banach space and H a real, separable Hilbert
space.

(a) W k,p(a, b;V ) and W k,p
0 (a, b;V ) are Banach spaces when equipped with the W k,p-norm,

for all p ∈ [1,∞] and all k ∈ N0. Moreover, Hk(a, b;H) and Hk
0 (a, b;H) are Hilbert

spaces with respect to the canonical inner product.

(b) If p ∈ [1,∞), then W k,p(a, b;V ) is separable.

5Higher order derivatives are defined accordingly.
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5.2 Gradient flows

(c) If p ∈ (1,∞) and V is reflexive, then W k,p(a, b;V ) is reflexive.

Proof. As in the real-valued case, the linear mapping W k,p(a, b;V ) → Lp(a, b;V )k+1, u 7→
(u, u′, . . . , u(k)), allows us to identify W k,p(a, b;V ) with a closed subspace of Lp(a, b;V )k+1

(closed using the definition of weak derivatives). Hence the assertions follow from the corre-
sponding assertions for Lp(a, b;V ).

5.1.10 Theorem. Let (a, b) ⊂ R be bounded, let p ∈ [1,∞] and let u ∈ W 1,p(a, b;V ), v ∈
W 1,p(a, b;R).

(a) For almost every x, y ∈ [a, b],

u(y)− u(x) =

∫ y

x

u′(t) dt.

In particular, if u′ = 0 a.e., then u is constant a.e..

(b) (Sobolev embedding theorem) W 1,p(a, b;V ) ↪→ C([a, b], V ). In particular, there exists a
constant c = c(a, b, p) > 0 such that

‖u‖L∞(a,b;V ) ≤ c‖u‖W 1,p(a,b;V ) for all u ∈ W 1,p(a, b;V ).

(c) (Product rule) uv ∈ W 1,p(a, b;V ) and (uv)′ = u′v + uv′.

(d) (Integration by parts)∫ b

a

u′v dx = u(b)v(b)− u(a)v(a)−
∫ b

a

uv′ dx.

(e) u ∈ W 1,p
0 (a, b;V ) if and only if u ∈ W 1,p(a, b;V ) and u(a) = u(b) = 0.

(f) (Poincaré’s inequality) If p ∈ [1,∞), then there exists c = c(a, b, p) > 0 such that∫ b

a

‖u‖pV dx ≤ c

∫ b

a

‖u′‖pV dx for all u ∈ W 1,p
0 (a, b;V ).

In particular, ‖u′‖Lp(a,b;V ) defines an equivalent norm on W 1,p
0 (a, b;V ).

The proof of (a) is analogous to the real-valued case; (b) follows from (a) and the Closed
Graph Theorem (the identity mapping W 1,p → C is closed). (c), (d) and (e) make sense, i.e.,
the formulae are well defined, due to (b). The direction “only if” in (e) is immediate from the
definition and (b); the “if” direction is the harder part. Most of the proofs can be found in
[4, Chapter 5].

We will write u̇ for u′ = du
dt

if u ∈ W 1,p(a, b;V ).

5.2 Gradient flows

Suppose V is a Banach space and E ∈ C1(V,R). Suppose also that H is a Hilbert space such
that V is continuously and densely embedded into H, i.e. there exists a bounded, injective,
linear mapping i : V → H with dense range.

(Prototype: V = W 1,p(Ω) or W 1,p
0 (Ω), H = L2(Ω), where Ω ⊂ Rn is bounded and open and

p ≥ 1 is large enough.)
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5 Parabolic problems

5.2.1 Definition. The gradient ∇HE : D(∇HE) ⊂ V → H of E ∈ C1(V,R) with respect to
the inner product ( · , · )H is given by{

D(∇HE) := {u ∈ V : there exists v ∈ H such that E ′(u)ϕ = (v, ϕ)H for all ϕ ∈ V ↪→ H}
∇HE(u) := v.

That is,
E ′(u)ϕ = (∇HE(u), ϕ)H for all ϕ ∈ V,

if E ′(u) may be identified in this way as an element ofH. In the special case that i = id, i.e. V =
H up to isometric isomorphism, then this coincides with the statement of Lemma 4.1.4. In
the general case, this depends on the space H. The gradient of a vector u ∈ V is however
always unique, if it exists, since V is dense in H.

5.2.2 Definition. (a) A (non-autonomous)6 gradient flow (sometimes called gradient sys-
tem) is a differential equation of the form{

u̇+∇HE(u) = f,

u(0) = u0,
(5.2.1)

where t ∈ I := (0, T ) ⊂ R, T > 0, and f ∈ L2(I,H), u0 ∈ V .

(b) We define a solution of (5.2.1) to be a function

u ∈ H1(I,H) ∩ L∞(I, V )
Thm 5.1.10(b)

↪→ C(I,H)

such that, for almost every t ∈ I, u(t) ∈ D(∇HE) and (5.2.1) holds, and limt→0 u(t) = u0

in H.

With this definition, both terms on the left-hand side of (5.2.1) have the same degree of
regularity, i.e., they are both in L2(I,H), exactly the same as f . In this case we speak of
maximal regularity (obviously we cannot expect more regularity in general without stronger
assumptions on f).

Since V is dense in H, by definition of ∇HE , u is a solution of (5.2.1) if and only if u ∈
H1(I,H) ∩ L∞(I, V ), u(t)→ u0 in H as t→ 0, and u is a solution of the variational form of
the gradient flow

(u̇, ϕ)H + E ′(u)ϕ = (f, ϕ)H for all ϕ ∈ V, (5.2.2)

for almost every t ∈ I.

5.2.3 Theorem. Suppose in addition to the above assumptions on V and H that V is a real,
reflexive, separable Banach space and E ∈ C1(V,R) satisfies

(i) E is convex (in the sense of Definition 3.4.4);

(ii) E is coercive in the sense that Sα = {u ∈ V : E(u) ≤ α} is bounded in V for all α ∈ R
(cf. (3.4.3));

6“Non-autonomous” refers to the fact that the right-hand side, i.e. f , may depend on t.
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5.2 Gradient flows

(iii) E ′ maps bounded sets in V into bounded sets in V ′, i.e. sup{‖E ′(u)‖V : u ∈ M} < ∞
whenever M is bounded in V .

Then for any T ∈ (0,∞), any f ∈ L2(0, T ;H) and any u0 ∈ V the gradient flow (5.2.1) has
a unique solution u ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) in the sense of Definition 5.2.2(b). For this
solution and for almost every t ∈ (0, T ), the energy inequality∫ t

0

‖u̇(s)‖2
H ds+ E(u(t))− E(u0) ≤

∫ t

0

(f(s), u̇(s))H ds (5.2.3)

holds.

This is a global existence result, since we obtain solutions on the whole interval where f is
defined.

5.2.4 Example. Suppose V = W 1,p
0 (Ω) and H = L2(Ω), where Ω ⊂ Rn is bounded and open

and p ∈ [ 2n
n+2

,∞) (or p ∈ (1,∞) if n = 2), so that the embedding V ↪→ H is continuous and
dense (see Theorems 2.4.3 and 2.1.3). We take

E(u) =
1

p

∫
Ω

|Du|p dx, u ∈ W 1,p
0 (Ω),

so that

E ′(u)ϕ =

∫
Ω

|Du|p−2Du ·Dϕdx, u, ϕ ∈ W 1,p
0 (Ω).

We claim (without proof) that E satisfies (i)–(iii). The equation

E ′(u)ϕ = (∇L2E(u), ϕ)L2(Ω)

reads ∫
Ω

|Du|p−2Du ·Dϕdx =

∫
Ω

∇L2E(u)ϕdx for all ϕ ∈ W 1,p
0 (Ω),

that is, g := ∇L2E(u) is the weak solution of{
−∆pu = g in Ω, u = 0 on ∂Ω,

and u ∈ D(∇L2E) if and only if this equation has a weak solution, i.e., its (distributional)
p-Laplacian ∆pu is in Lp(Ω).

Thus Theorem 5.2.3 yields a unique (weak) solution of the evolution equation
u̇−∆pu = f, t ∈ [0, T ],

u = 0 on ∂Ω× [0, T ],

u(0) = u0,

where T > 0, u0 ∈ W 1,p
0 (Ω) and f ∈ L2(0, T ;L2(Ω)).7

7The boundary condition u = 0 on ∂Ω × [0, T ] is satisfied in the sense that u(t) ∈ W 1,p
0 (Ω) (and hence

tru = 0) for almost every t ∈ [0, T ], including u(0) = u0 ∈W 1,p
0 (Ω).
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5 Parabolic problems

5.2.5 Remark. Instead of taking the gradient with respect to ( · , · )H , we may allow the inner
product and gradient to depend on u ∈ V : we suppose g is a metric, i.e. a function which
maps each u ∈ V to an inner product ( · , · )g(u) on H, such that (v, w)g(un) → (v, w)g(u) for
all v, w ∈ H whenever un → u in V (we say g is strongly convergent. Note that by “inner
product” we mean “bounded, coercive, bilinear form”). Then the gradient ∇gE(u) ∈ H (with
respect to g) is given by

E ′(u)ϕ = (∇gE(u), ϕ)g(u) for all ϕ ∈ V,

if there exists a vector with this property. The corresponding gradient flow is given by

u̇+∇gE(u) = f,

with variational form

(u̇, ϕ)g(u) + E ′(u)ϕ = (f, ϕ)g(u) for all ϕ ∈ V.

Such problems often arise in geoemtric flows, for example. Under slightly stronger convergence
conditions on g, we can obtain an analogue of Theorem 5.2.3.8

Proof of Theorem 5.2.3: Uniqueness. The uniqueness statement is an easy consequence of the
convexity and differentiability of E , and we deal with it first.

We first observe that convexity implies

〈E ′(u)− E ′(v), u− v〉 ≥ 0 for all u, v ∈ V (5.2.4)

(exercise!). Hence, if u1, u2 are any two solutions of (5.2.1), then for almost every t ∈ [0, T ],
using the chain rule and the solution property, respectively,

d

dt
‖u1(t)− u2(t)‖2

H = 2(u1(t)− u2(t), u̇1(t)− u̇2(t))H

= −2〈E ′(u1(t)− E ′u2(t), u1(t)− u2(t)〉 ≤ 0

by (5.2.4). Hence, by the fundamental theorem of calculus (noting that ‖u1 − u2‖2
H ∈

H1(0, T ;R) by definition of solutions and properties of H1-functions),

‖u1(t)− u2(t)‖2
H − ‖u1(0)− u2(0)‖2

H︸ ︷︷ ︸
=0

≤ 0

for all t > 0, so u1 = u2 for almost every x ∈ Ω and all t > 0.

Existence: We prove existence by constructing a sequence of solutions of approximating finite-
dimensional gradient flow problems. These will be shown to be global solutions via norm and
energy bounds; these bounds also allow us to obtain a weakly convergent subsequence whose
weak limit solves (5.2.1). This method is sometimes known as the Ritz–Galerkin approxima-
tion method; one also speaks of Galerkin approximation.

Step 1: A finite-dimensional existence result.

8See [4, Chapter 8].
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5.2 Gradient flows

5.2.6 Theorem (Carathéodory). Let Ω ⊂ R×Rn be an open set, n ≥ 1, and let F : Ω→ Rn,
F = F (t, z), satisfy the Carathéodory conditions:

(i) F ( · , z) is measurable for each fixed z,

(ii) F (t, · ) is continuous for each fixed t, and

(iii) for every (t0, z0) ∈ Ω there exist α > 0, r > 0 and g ∈ L1(t0, t0 + α) such that

|F (t, z)| ≤ g(t) for all t ∈ (t0, t0 + α) and all z ∈ B(z0, r)

(“locally uniform integrability”).

Then for every (t0, u0) ∈ Ω the ODE {
u̇+ F (t, u) = 0

u(t0) = u0

(5.2.5)

admits a local solution, that is, there exist I = [t0, t0 + β] ⊂ R, β > 0, and u ∈ C(I,Rn) such
that

u(t) = u0 −
∫ t

t0

F (s, u(s)) ds for all t ∈ I.

Proof. We construct approximate solutions and use Arzelà–Ascoli: let (t0, u0) ∈ Ω and α, r >
0, g be as in (iii), and define

G(t) :=

∫ t

t0

g(s) ds, t ∈ [t0, t0 + α].

Then G is continuous with G(t0) = 0. By taking α > 0 smaller if necessary, we may assume

|G(t)| ≤ r for all t ∈ [t0, t0 + α].

For k ≥ 2 we define uk ∈ C([t0, t0 + α],Rn) by

uk(t) :=

{
u0 if t ∈ [t0, t0 + α

k
],

u0 −
∫ t−α

k

t0
F (s, u0(s)) ds if t ∈ (t0 + α

k
, t0 + α],

where this definition is to be understood iteratively, i.e., the definition up to t0 + α
k

allows us
to define the integral expression for t ∈ (t0 + α

k
, t0 + 2α

t
], and thus for t ∈ (t0 + 2α

k
, t0 + 3α

t
],

etc.. The Carathéodory conditions ensure that the integral is well defined and

|uk(t)− u0| ≤
∫ t−α

k

t0

|F (s, uk(s))| ds.

Since |F (s, uk(s))| ≤ g(s) if 2α/k because then uk(s) ∈ B(u0, r), this means

|uk(t)− u0| ≤
∫ t

t0

g(s) = G(t) ≤ r

for all t up to 2α/k; thus we may repeat this argument to obtain |uk(t)− u0| ≤ r for all t up
to 3α/k, and so on, so that

|uk(t)− u0| ≤ r for all t ∈ [t0, t0 + α]. (5.2.6)
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In particular, since this holds independently of k, the sequence (uk) is uniformly bounded.

Equicontinuity: fix ε > 0. Since G is uniformly continuous on [t0, t0 + α], there exists δ > 0
such that

|t− t′| ≤ δ implies |G(t)−G(t′)| ≤ ε. (5.2.7)

Moreover, for all k ≥ 2 and all t, t′ ∈ [t0, t0 + α] such that t′ ≥ t,

|uk(t′)− uk(t)| ≤


∫ t′−α

k

t−α
k
|F (s, uk(s))| ds ≤ |G(t′ − α

k
)−G(t− α

k
)| if t′ ≥ t ≥ t0 + α

k
,∫ t−α

k

t0
|F (s, uk(s))| dx ≤ |G(t′ − α

k
)−G(t0)︸ ︷︷ ︸

=0

| if t′ ≥ t0 + α
k
≥ t,

0 if t0 + α
k
≥ t′ ≥ t

≤ ε if |t′ − t| ≤ by (5.2.7).

By the Arzelá–Ascoli theorem there exist a subsequence (ukj) and u ∈ C([t0, t0 +α],Rn) such
that ukj → u uniformly in [t0, t0 + α]. By (ii),

lim
j→∞

F (t, ukj(t)) = F (t, u(t)) for each t ∈ [t0, t0 + α].

Now by (iii) (using (5.2.6),

|F (t, u(t))| ≤ g(t) for all k ≥ 2 and all t ∈ [t0, t0 + α].

Hence, by the dominated convergence theorem, for any t ∈ [t0, t0 + α],

u(t) = lim
j→∞

ukj(t) = u0 − lim
j→∞

∫ t− α
kj

t0

F (s, ukj(s)) ds

= u0 − lim
j→∞

∫ t

t0

χ[t0,t− α
kj

]F (s, ukj(s)) ds = u0 −
∫ t

t0

F (s, ukj(s)) ds.

A solution u : [t0, t0 + α)→ Rn, α ∈ (0,∞], of the ODE (5.2.5) is called maximal if it cannot
be extended to a solution on a larger interval [t0, t0 + β), β > α. (We mean that v is an
extension of u if it is a solution on [t0, t0 + β), β > α, and v|[t0,t0+α) = u.)

5.2.7 Corollary. Under the assumptions of Theorem 5.2.6, for every (t0, u0) there exists a
maximal solution of (5.2.5).

Proof. This uses Zorn’s Lemma: denote by S the set of all pairs (α, u), α ∈ (0,∞], u ∈
C([t0, t0 + α),Rn) solving (5.2.5). Theorem 5.2.6 shows S 6= ∅. Define a partial ordering ≺
on S as follows: (α, u) ≺ (β, v) if α ≤ β (in (0,∞]) and v|[t0,t0+α) = u. Then every totally
ordered subset has a maximal element (exercise).

Step 2: Construction of approximating finite-dimensional problems.

Since V is separable, there exists a sequence (wn) ⊂ V such that, setting

Vn := span{wk : 1 ≤ k ≤ n}, n ∈ N,
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5.2 Gradient flows

we have

V =
⋃
n∈N

Vn.

Given u0 ∈ V and f ∈ L2(0, T ;H) (the data from (5.2.1)), and noting Vn ⊂ Vn+1 ⊂ . . ., we
choose un0 ∈ Vn such that un0 → u0 in V .

We now wish to find un ∈ W 1,2
loc (0, Tn;Vn) (Tn ≤ T ) solving{

(u̇n, ϕ)H + E ′(un)ϕ = (f, ϕ)H for all ϕ ∈ Vn and a.e. t ∈ (0, Tn),

un(0) = un0 .
(5.2.8)

Since ϕ ∈ Vn and Vn is finite dimensional, setting Hn = Vn equipped with the inner product
induced by H, solving (5.2.8) is equivalent to finding a variational solution un of{

u̇n +∇HnEn(un) = Pnf

un(0) = un0 ,
(5.2.9)

where En := E|Vn , ∇HnEn is the gradient of En in Vn with respect to ( · , · )H = ( · , · )Hn , and
Pn : H → H is the orthogonal projection of H onto Hn with respect to ( · , · )H .

It is immediate that ∇HnEn(u) exists and belongs to Vn, since En is C1 and Vn is finite
dimensional. Moreover, the mapping (t, z) 7→ ∇HnEn(z) obviously satisfies the Carathéodory
conditions of Theorem 5.2.6; hence (5.2.9) admits a maximal solution un ∈ C(0, Tn;Vn) by
Corollary 5.2.7 (that is, either Tn = T , or Tn < T and un cannot be extended. Also note that
the proof of the uniqueness statement in Theorem 5.2.3 given above also applies here, to show
that un is unique).

Now un is by construction weakly differentiable (in t) with derivative ∇HnEn(un(t)); we will
see in the next step that in fact u̇n is in L2

loc(0, Tn;Hn) ' L2
loc(0, Tn;Vn).

Step 3: Bounds on the un.

We claim that the un are global solutions (i.e. Tn = T ) and that

(un) is a bounded sequence in H1(0, T ;H) ∩ L∞(0, T ;V ). (5.2.10)

Taking ϕ = u̇n in (5.2.8) and integrating over [0, t] for t ∈ (0, Tn),∫ t

0

‖u̇(s)‖2
H ds+

∫ t

0

E ′(un(s))u̇n(s)︸ ︷︷ ︸
= d
dt
E(un(s))

ds =

∫ t

0

(f(s), u̇n(s))H ds.

Since

|(f(s), u̇n(s))H | ≤ ‖f(s)‖H‖u̇n‖H ≤
1

2
(‖f(s)‖2

H + ‖u̇n(s)‖2
H)

for almost every s > 0 and since E(un( · )) is weakly differentiable as the composition of a C1

with a weakly differentiable function (which in particular justifies the calculation of d
dt
E(un(t)),

meaning that we may apply the fundamental theorem of calculus to it, i.e.,∫ t

0

E ′(un(s))u̇n(s) ds =

∫ t

0

(∇HnEn(un), u̇n)H ds =

∫ t

0

d

dt
E(un(s)) ds = E(un(t))− E(un0 ),
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we obtain∫ t

0

‖u̇n(s)‖2
H ds+ E(un(t))− E(un0 ) ≤ 1

2

∫ t

0

‖f(s)‖2
H ds+

1

2

∫ t

0

‖u̇n(s)‖2
H ds (5.2.11)

for all t > 0 (noting E(un( · )) is continuous).

Now since un0 → u in V and E is continuous, we have E(un0 ) → E(u0) and so in particular
(E(un0 )) is bounded. Hence there exists a constant C > 0 independent of n such that

1

2

∫ t

0

‖u̇n‖2
H ds︸ ︷︷ ︸

≥0

+E(un(t)) ≤ C +
1

2

∫ T

0

‖f(s)‖2
H ds︸ ︷︷ ︸

independent of n and t∈(0,Tn)

for all t ∈ (0, Tn).

It follows that
{un(t) : n ∈ N, t ∈ (0, Tn)} ⊂ Sα = {v ∈ V : E(v) ≤ α},

where

α := C +
1

2

∫ T

0

‖f(s)‖2
H ds <∞.

Since E is coercive, Sα is bounded, and so

sup
n∈N

sup
t∈(0,Tn)

‖un(t)‖V <∞.

Moreover, E is bounded from below on V as a continuous, convex, coercive functional on V
(exercise). Hence we also obtain

sup
n∈N
‖u̇n‖L2(0,Tn;H) <∞.

In particular, u̇n is integrable (L1) on [0, Tn) as Tn ≤ T < ∞, meaning un may be extended
to a continuous function on the closed interval [0, Tn]. If Tn < T , then Theorem 5.2.6 yields
an extension of un to a larger interval [0, Tn + ε), contradicting the assumption of maximality.
Hence Tn = T and un is a global solution on [0, T ].

Thus (un) is bounded in L∞(0, T ;V ) and (u̇n) is bounded in L2(0, T ;H); by continuity of the
embedding V → H, (5.2.10) follows. Moreover, since E ′ : V → V ′ maps bounded sets into
bounded sets, the boundedness of (un) in L∞(0, T ;V ) implies

(E ′(un)) is bounded in L∞(0, T ;V ′).

Step 4: (un) has a convergent subsequence.

H1(0, T ;H) is a Hilbert space and, since V is reflexive,

L∞(0, T ;V ) ' L1(0, T ;V ′)′

L∞(0, T ;V ′) ' L1(0, T ;V )′;

see Theorem 5.1.7(b). Moreover, L1(0, T ;V ) is separable by separability of V and Theo-
rem 5.1.7(a). Hence there exist a subsequence of (un), which we shall again denote by (un),
and u ∈ H1(0, T ;H), v ∈ L∞(0, T ;V ), w ∈ L∞(0, T ;V ′) such that

un ⇀ u in H1(0, T ;H),

un
∗
⇀ v in L∞(0, T ;V ),

E ′(un)
∗
⇀ w in L∞(0, T ;V ′).
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It is an exercise in the uniqueness of weak limits to show that u = v, so in particular

u ∈ H1(0, T ;H) ∩ L∞(0, T ;V ),

and moreover
u̇n ⇀ u̇ in L2(0, T ;H),

un(0) ⇀ u(0) in H,

un(T ) ⇀ u(T ) in H

(the last two following from continuity and linearity of the embeddings H1(0, T ;H) ↪→
C([0, T ], H) ↪→ H, cf. Theorem 5.1.10). This means that∫ T

0

〈ϕ, un〉 dt→
∫ T

0

〈ϕ, u〉 dt for all ϕ ∈ L1(0, T ;V ′),∫ T

0

(u̇n, ϕ)H dt→
∫ T

0

(u̇n, ϕ)H dt for all ϕ ∈ L2(0, T ;H)∫ T

0

〈E ′(un), ϕ〉 dt→
∫ T

0

〈w,ϕ〉 dt for all ϕ ∈ L1(0, T ;V ).

Step 5: u is a solution.

We have un(0) ⇀ u(0) in H and un0 → u0 in V by choice of un0 . Since V ↪→ H, u(0) = u0,
i.e. u satisfies the initial condition in (5.2.1). We need to show∫ T

0

(u̇, ϕ)H dt+

∫ T

0

〈E ′(u), ϕ〉 dt =

∫ T

0

(f, ϕ)H dt for all ϕ ∈ L2(0, T ;V ) (5.2.12)

using (5.2.8)/(5.2.9). Taking the corresponding weak form of (5.2.8) and inserting ϕ( · )v as a
test function, where v ∈ Vn and ϕ ∈ L2(0, T ;R),∫ T

0

(u̇m(t), ϕ(t)v)H dt+

∫ T

0

〈E ′(um(t)), ϕ(t)v〉 dt =

∫ T

0

(f(t), ϕ(t)v)H dt for all m ≥ n.

Letting m→∞ and using the convergence results from Step 4, we obtain∫ T

0

(u̇(t), ϕ(t)v)H dt+

∫ T

0

〈w(t), ϕ(t)v〉 dt =

∫ T

0

(f(t), ϕ(t)v)H dt.

(Here we have used that ϕv ∈ L1(0, T ;V ′)∩L2(0, T ;H)∩L1(0, T ;V ), since Vn is finite dimen-
sional and ϕ ∈ L2(0, T ;R) ↪→ L1(0, T ;R).)

Now

span

{
ϕ( · )v : v ∈

⋃
n∈N

Vn, ϕ ∈ L2(0, T ;R)

}
is dense in L2(0, T ;V ) (and L2(0, T ;H) etc.), cf. the sketch of proof of Theorem 5.1.7(a). It
follows that∫ T

0

(u̇, ψ)H dt+

∫ T

0

〈w,ψ〉 dt =

∫ T

0

(f, ψ)H dt for all ψ ∈ L2(0, T ;V ); (5.2.13)

comparing this with (5.2.12), it remains to show w = E ′(u).
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5 Parabolic problems

Again using the weak form of (5.2.8) with un as a test function (for any n ∈ N),∫ T

0

E ′(un)un dt =

∫ T

0

(f, un)H dt−
∫ T

0

(u̇n, un)H dt

=

∫ T

0

(f, un)H dt−
∫ T

0

1

2

d

dt
‖un‖2

H dt

=

∫ T

0

(f, un)H dt−
1

2
(‖un(T )‖1

H − ‖un0‖2
H).

Now since un ⇀ u in H1(0, T ;H), the same is true in C([0, T ], H), so in particular

‖u(T )‖2
H ≤ lim inf

n→∞
‖un(T )‖2

H .

Moreover, since un0 → u0 in V ↪→ H,

‖un0‖2
H → ‖u0‖2

H ,

and since u⇀u in L2(0, T ;H),∫ T

0

(f, u)H dt = lim
n→∞

∫ T

0

(f, un)H dt.

Hence

lim sup
n→∞

∫ T

0

E ′(un)un dt ≤
∫ T

0

(f, u)H dt−
1

2
‖u(T )‖2

H +
1

2
‖u0‖2

H

=

∫ T

0

(f, u)H dt−
∫ T

0

1

2

d

dt
‖u‖2

H︸ ︷︷ ︸
=(u̇,u)H

dt

=

∫ T

0

〈w, u〉 dt

by (5.2.13). On the other hand, using the convexity property (5.2.4),∫ T

0

〈E ′(un), un − u〉 dt ≥
∫ T

0

〈E ′(u), un − u〉 dt.

Since un
∗
⇀ u and E ′(un)

∗
⇀ w in L∞(0, T ;V ), it follows that

lim inf
n→∞

∫ T

0

〈E ′(un), un〉 dt ≥
∫ T

0

〈w, u〉 dt,

and hence

lim
n→∞

∫ T

0

〈E ′(un), un〉 dt =

∫ T

0

〈w, u〉 dt. (5.2.14)

Now let ϕ ∈ L∞(0, T ;V ) and λ ∈ R be arbitrary. Then (5.2.4) implies∫ T

0

〈E ′(un)− E ′(u+ λϕ), un − u− λϕ〉 dt ≥ 0 for all n ∈ N.
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5.3 Nonlinear semigroups

Letting n→∞ and using the weak convergences un
∗
⇀ u, E ′(un)

∗
⇀ w and (5.2.14),

−
∫ T

0

〈w, λϕ〉+ 〈E ′(u+ λϕ), λϕ〉 dt ≥ 0,

that is,

−λ
∫ T

0

〈w,ϕ〉 dt ≥ −λ
∫ T

0

〈E ′(u+ λϕ), ϕ〉 dt for all λ ∈ R.

If λ > 0, dividing by λ and letting λ→ 0+ yields∫ T

0

〈w,ϕ〉 dt ≤
∫ T

0

〈E ′(u), ϕ〉 dt;

if λ < 0 and λ→ 0−, we obtain “≥”.

Since ϕ ∈ L∞(0, T ;V ) was arbitrary, it finally follows that

w = E ′(u).

Recalling (5.2.12), this completes the existence proof.

Step 6: Energy inequality.

Again denote by (un) the (sub-) sequence of solutions of the approximating problems obtained
in Step 4. We recall the identity (5.2.12):∫ t

0

‖u̇n‖2
H ds+ E(un(t))− E(un0 ) =

∫ t

0

(f, u̇n)H ds.

Now u̇n ⇀ u̇ in L2(0, T ;H) implies u̇n ⇀ u̇ in L2(0, t;H) for all t ∈ [0, T ] and hence

lim
n→∞

∫ t

0

(f, u̇n)H ds =

∫ t

0

(f, u̇)H ds for all t ∈ [0, T ],

as well as ∫ t

0

‖u̇‖2
H ds = ‖u̇‖2

L2(0,t;H) ≤ lim inf
n→∞

‖u̇n‖2
L2(0,t;H) =

∫ t

0

‖u̇n‖2
H ds.

Also recall that E(un0 )→ E(u0). Hence for the energy inequality (5.2.3) we still need

E(u(t)) ≤ lim inf
n→∞

E(un(t)).

Now E is convex and continuous and hence weakly lower semicontinuous (cf. Proposition 3.4.5),
so we need un(t) ⇀ u(t) in V for a.e. t. Since un ⇀ u in H1(0, T ;H) implies un(t) ⇀ u(t)
in H for each t ∈ [0, T ] (via weak convergence in C([0, T ], H)). Since (un) is bounded in
L∞(0, T ;V ), it follows (exercise) that indeed un(t) ⇀ u(t) in V t-a.e..

5.3 Nonlinear semigroups

5.3.1 Definition. Let H be a Hilbert space. A family (T (t))t≥0 of (nonlinear) operators is
called a nonlinear semigroup if it satisfies the following conditions:
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5 Parabolic problems

(i) T (0) = Id, i.e. T (0)u = u for all u ∈ H;

(ii) T (t+ s)u = T (t)T (s)u for all t, s ≥ 0 and all u ∈ H;

(iii) the mapping t 7→ T (t)u is continuous from [0,∞) into H for each u ∈ H.

If in addition

(iv) ‖T (t)u− T (t)v‖H ≤ ‖u− v‖H for all u, v ∈ H,

then T is called a contraction semigroup.

Solutions of u̇ + Au = 0 (with initial and boundary condition) always satisfy (i) and (ii), as
long as they exist and are unique.

5.3.2 Theorem. Under the assumptions of Theorem 5.2.3, the solution operator mapping
u0 ∈ V to the solution of the autonomous problem{

u̇(t) +∇HE(u(t)) = 0

u(0) = u0

(5.3.1)

extends to a contraction semigroup on H, which we denote by (T (t))t≥0.

One can in fact show that for every u0 ∈ H there exists u(t) = T (t)u0 such that u ∈ D(∇HE)
for a.e. t ∈ [0, T ] and u solves (5.3.1) for a.e. t ∈ [0, T ].

Sketch of proof. First note that Theorem 5.2.3 immediately yields the semigroup properties
(i)–(iii) of solutions if u0 ∈ V , (i) since limt→0 u(t) = u0, (ii) for almost every s ≥ 0 by
uniqueness of solutions: if u0 ∈ V , then, denoting by T (t)u0 the corresponding solution u(t)
at time t,

T (t+ s)u0 = T (t)T (s)u0 (5.3.2)

whenever T (s)u0 ∈ V , and (iii) since H1(0, T ;H) ↪→ C([0, T ], H). This embedding also shows
that (5.3.2) holds as an identity in H for all t, s ≥ 0. We next show that (iv) holds for all
initial conditions u0, v0 ∈ V : suppose u(t), v(t) are the corresponding solutions. Then, by the
usual convexity argument,

d

dt
‖u(t)− v(t)‖2

H = 2(u̇(t)− v̇(t), u(t)− v(t))H = −2〈E ′(u(t))− E ′(v(t)), u(t)− v(t)〉 ≤ 0

for a.e. t. Since u, v ∈ H1(0, T ;H), the fundamental theorem of calculus holds and hence

‖T (t)u0 − T (t)v0‖H = ‖u(t)− v(t)‖H ≤ ‖u0 − v0‖H for all t ≥ 0,

so (iv) holds on V .

We have shown that (T (t))t≥0 is densely defined and contractive on H. Hence there exists a
unique extension to the whole of H: if u0 ∈ H and un ∈ V with un → u0 in H, then (un(t))
is Cauchy in H for each t ∈ [0, T ]; the limit will once again satisfy the properties (i)–(iv).
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6 Non-variational methods

6.1 Fixed point theorems

We recall the following fixed point theorems.

6.1.1 Theorem (Banach’s fixed point theorem = contraction mapping theorem). Suppose V
is a Banach space and A : V → V is a mapping such that

‖Ax− Ay‖V ≤ c‖x− y‖V for all x, y ∈ V,

for some c < 1. Then A has a unique point x, i.e., such that Ax = x.

6.1.2 Theorem (Brouwer’s fixed point theorem). Denote by B(0, 1) the closed unit ball in
Rn. If u : B(0, 1)→ B(0, 1) is continuous, then u has (at least) one fixed point in B(0, 1).

The theorem continues to hold if B(0, 1) is replaced with a more general compact set K ⊂ Rn,
say, which is homeomorphic to the unit ball. In Banach spaces the compactness is necessary:
Theorem 6.1.2 does not hold in the closed unit ball of a general Banach space. Here is one of
the most common generalisations.

6.1.3 Theorem (Schauder’s fixed point theorem). Suppose V is a Banach space and ∅ 6=
K ⊂ V is compact and convex. If A : K → K is continuous, then A has a fixed point.

Proof. 1. Fix ε > 0 and choose x1, . . . , xNε ∈ K such that {B(xi, ε)}Nεi=1 is an open cover of
K. Denote by Kε the closed convex hull of {x1, . . . , xNε}, i.e. the smallest closed convex set
containing {x1, . . . , xNε},

Kε :=

{
Nε∑
i=1

λixi : 0 ≤ λi ≤ 1,
Nε∑
i=1

λi = 1

}
.

Then Kε ⊂ K since K is convex. We define a mapping Pε : K → Kε by

Pε :=

∑Nε
i=1 dist(x,K \B(xi, ε))xi∑Nε
i=1 dist(x,K \B(xi, ε))

, x ∈ K.

(Thus Pεx is a weighted combination of the xi, the weighting only being nonzero for given i if
x ∈ B(xi, ε).) This is well defined since

Nε∑
i=1

dist(x,K \B(x, ε)) 6= 0,
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6 Non-variational methods

which in turn follows since K ⊂
⋃
iB(xi, ε). Moreover, Pε is continuous (as the same is true

of dist) and

‖Pεx− x‖V ≤
∑Nε

i=1 dist(x,K \B(xi, ε))‖xi − x‖V∑Nε
i=1 dist(x,K \B(xi, ε))

< ε for all x ∈ K (6.1.1)

since the coefficient of ‖xi − x‖V in the sum in the numerator is only nonzero if x ∈ B(xi, ε,
and then ‖xi − x‖V < ε.

2. Observe that Kε is homeomorphic to the closed unit ball in RMε for some Mε ≤ Nε. If we
define an operator Aε : Kε → Kε by

Aε = PεAx, x ∈ Kε,

then Brouwer’s fixed point theorem implies there exists xε ∈ Kε such that Aεxε = xε.

3. Since K is compact there exist εj → 0 and x ∈ K such that xεj → x in V . Then x is a
fixed point of A since

‖x− Ax‖V ← ‖xεj − Axεj‖V = ‖Aεjxεj − Axεj‖V = ‖Pεj(Axεj)− Axεj‖V
(6.1.1)

≤ εj → 0.

6.1.4 Definition. A mapping A : V → V (V a Banach space) is called compact if for any
bounded sequence (xk) in V , (Axk) is precompact in V .

There are several alternate forms of Theorem 6.1.3 for compact operators; for example, if A
is compact, then K may be closed and bounded in place of compact. The following variant
eliminates the need to identify a convex set K:

6.1.5 Theorem. Suppose V is a Banach space and A : V → V is a continuous and compact
mapping such that the set

{x ∈ V : x = λAx for some 0 ≤ λ ≤ 1}

is bounded. Then A has a fixed point.

Proof. 1. Choose M > 0 large enough that

{x ∈ V : x = λAx for some 0 ≤ λ ≤ 1} ⊂ B(0,M). (6.1.2)

Now define

Ãx :=

{
Ax if ‖Ax‖V ≤M,

M · Ax
‖Ax‖V

if ‖Ax‖V > M.

Then Ã : B(0,M) → B(0,M). Set K to be the closed convex hull of Ã(B(0,M)). Since

A is compact, so is Ã; hence K is compact and convex, and obviously Ã : K → K since
K ⊂ B(0,M).

2. By Theorem 6.1.3, there exists x ∈ K such that Ãx = x; we claim that Ax = x as well.
Indeed, if not, then by construction of Ã, ‖Ax‖V ≥M (since otherwise Ax = Ãx), and

x =
M

‖Ax‖V︸ ︷︷ ︸
=:λ<1

·Ax.

But ‖x‖V = ‖Ãx‖V = M , contradicting the choice of M in (6.1.2).
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6.2 Applications of fixed point theorems

Typical strategy/metaprinciples:

1. Banach: perturbation, e.g. a “small” nonlinear perturbation of a linear equation where
existence is known.

2. Schauder/Schaefer: need some sort of compactness, usually works if dealing with inverses
of linear elliptic PDEs, which are smoothing (if u ∈ L2(Ω) and ∆u ∈ L2(Ω), then
u ∈ H1(Ω) and often even H2(Ω)).

3. Schaefer: if we can bound any possible fixed points of λA, 0 ≤ λ1, then a fixed point
of A exists. That means: if we can prove appropriate estimates for solutions of a PDE
under the assumption that they exist, then they do in fact exist! This is the method of
a priori solutions.

6.2.1 Example. We will use Banach’s fixed point theorem and the results of Section 5.2 to
prove existence of solutions to the reaction-diffusion equation (cf. Example 1.4.1(c))1

u̇−∆u = f(u) in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],

u(0) = u0 on Ω× {t = 0},
(6.2.1)

where Ω ⊂ Rn is bounded with sufficiently smooth boundary, u0 ∈ H1
0 (Ω), T > 0, and

f : R→ R is globally Lipschitz, which in particular implies the existence of C > 0 such that

|f(z)| ≤ C(|z|+ 1) for all z ∈ R. (6.2.2)

If f is allowed to grow more quickly (a “stronger” nonlinearity), then it is possible that
solutions could “blow up” in finite time (see Section 7.2 below).

As in Section 5.2, we understand a solution of (6.2.1) to be a function

u ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)) ↪→ C([0, T ], L2(Ω))

such that u̇, Dxu ∈ L2(Ω) for almost all t ∈ [0, T ] and

(u̇(t), ϕ)L2 + (Dxu(t), Dxϕ)L2 = (f(u(t)), ϕ)L2 (6.2.3)

for all ϕ ∈ H1
0 (Ω) and almost all t ∈ [0, T ]. (Here Dxu denotes the gradient of u = u(x, t)

with respect to the x-variables.)

6.2.2 Theorem. There exists a solution of (6.2.1) in the sense of (6.2.3).

Proof. We will apply Theorem 6.1.1 in the space V := C([0, T ], L2(Ω)); we note explicitly that

‖u‖V = max
t∈[0,T ]

‖u(t)‖L2(Ω).

1. We define the operator A : V → V as follows. Given u ∈ V , set g(t)(= gu(t)) := f(u(t)),
t ∈ [0, T ]. Then certainly g ∈ L2(0, T ;L2(Ω)) by (6.2.2), so the (linearised) problem

v̇ −∆v = f(v) in Ω× (0, T ),

v = 0 on ∂Ω× [0, T ],

v(0) = v0 on Ω× {t = 0},
1The same statement holds, with the same arguments, for systems.
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has a (unique weak) solution

v ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)) ↪→ V

satisfying v̇, Dxv ∈ L2(Ω) and

(v̇(t), ϕ)L2 + (Dxv(t), Dxϕ)L2 = (g(t), ϕ) for all ϕ ∈ H1
0 (Ω) (6.2.4)

for almost every t ∈ [0, T ], by Theorem 5.2.3 (see also Example 5.2.4). We now define A :
V → V by setting Au =: v (= v(g(u))).

2. Claim: If T > 0 is small enough, then A is a contraction on V .

Proof. Let u, ũ ∈ V , g := f(u), g̃ := f(ũ), and v := Au, ṽ := Aũ, as above. Then

d

dt
‖v − ṽ‖2

L2 = 2(v − ṽ, v̇ − ˙̃v)L2

(6.2.4)
= 2(v − vṽ, g − g̃)L2 − 2(Dv −Dṽ,Dv −Dṽ)L2

≤ ε‖v − ṽ‖L2 + C(ε)‖g − g̃‖2
L2 − 2‖Dv −Dṽ‖2

L2 (ε > 0)

≤ (C̃ε− 2)‖Dv −Dṽ‖2
L2 + C(ε)‖f(u)− f(ũ)‖2

L2 ,

the last inequality following from Poincaré’s inequality. Hence, fixing any ε < 2/C̃, setting
C := C(ε) > 0, we have

d

dt
‖v − ṽ‖2

L2 ≤ C‖f(u)− f(ũ)‖2
L2 ≤ C1‖u− ũ‖L2

since f is Lipschitz continuous. Integrating this inequality,

‖v(t)− ṽ(t)‖2
L2 ≤ C1

∫ t

0

‖u(s)− ũ(s)‖2
L2 ds ≤ C1T max

t∈[0,T ]
‖u(t)− ũ(t)‖2

L2︸ ︷︷ ︸
=‖u−ũ‖2V

. (6.2.5)

Maximising over t ∈ [0, T ],

‖Au− Aũ‖2
V = ‖v − ṽ‖2

V ≤ C1T‖u− ũ‖2
V .

Hence A is a (strict) contraction as long as
√
C1T < 1. This proves the claim.

Note that C1 depends only on Ω (via Poincaré’s inequality) and the Lipschitz constant of f .2

3. Now assume T > 0 is arbitrary. Then there exists some T1 ∈ (0, T ] depending nly on Ω
and f such that A (as above) is a contraction on V = C([0, T ], L2(Ω). By Banach’s fixed
point theorem, there exists a unique u ∈ C([0, T ], L2(Ω)) such that u ∈ Range (A), meaning
u ∈ H1(0, T1;L1(Ω)) ∩ L∞(0, T1;H1

0 (Ω)) and u(0) = u0 etc., and u = Au, so that

(u̇, ϕ)L2 + (Dxu,Dxϕ)L2 = (f(u), ϕ)L2 for all ϕ ∈ H1
0 (Ω),

for almost every t ∈ [0, T ]. Since u(t) ∈ H1
0 (Ω) for almost every t ∈ [0, T ], we may assume

u(T1) ∈ H1
0 (Ω) by taking T1 slightly smaller if necessary. Hence we may repeat the above

argument to extend u to a solution on [T1, 2T1], since T1 depends only on f and Ω. Repeating
inductively, we obtain a solution on the whole of [0, T ].

2This will allow us to obtain a global existence result despite the contraction argument in Step 2 only being
local, i.e., proving existence for sufficiently small T > 0.
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6.2.3 Remark. The solution in Theorem 6.2.2 is unique; this follows from Gronwall’s in-
equality : if h : [0, T ]→ [0,∞) is integrable with

h(t) ≤ a

∫ t

0

h(s) ds+ b for a.e. t ∈ [0, T ],

where a, b ≥ 0, then

h(t) ≤ b(1 + aeat) for a.e. t ∈ [0, T ];

in particular, if b can be chosen to be zero, then h = 0 a.e.. Indeed, if u and ũ are two weak
solutions, then by (6.2.5) and the fixed point property u = v, ũ = ṽ,

‖u(t)− ũ(t)‖2
L2︸ ︷︷ ︸

=:h(t)

≤ C1

∫ t

0

‖u(s)− ũ(s)‖2
L2 ds for all t ∈ [0, T ].

6.2.4 Example. We apply Schaefer’s fixed point theorem to find a solution of the semilinear
PDE {

−∆u+ b(Du) + µu = 0 in Ω,

u = 0 on ∂Ω,
(6.2.6)

where Ω ⊂ Rn is bounded and open and ∂Ω and b : Rn → R are sufficiently smooth; we
assume in addition that b is globally Lipschitz, so that there exists C > 0 such that

|b(z)| ≤ C(|z|+ 1) for all z ∈ Rn.

6.2.5 Theorem. If µ > 0 is sufficiently large, then there exists a (weak) solution H2(Ω) ∩
H1

0 (Ω) of (6.2.6).

Proof. 1. Given u ∈ H1
0 (Ω), set

f (= fu) := −b(Du);

then f ∈ L2(Ω) since b is globally Lipschitz and Du ∈ L2(Ω). Hence there exists a (unique)
weak solution v ∈ H1

0 (Ω) of the linear problem{
−∆v + µv = f in Ω,

v = 0 on ∂Ω,

if µ > 0 is large enough (depending only on Ω), see Theorem 2.6.5. It can be shown (linear
regularity theory; see [3, Section 6.3.2]) that v ∈ H2(Ω) and

‖v‖H2(Ω) ≤ C(Ω)‖f‖L2(Ω)

(here we need that ∂Ω is smooth enough, say C2), for some C = C(Ω) > 0. Write Au := v.
Then, recalling the definition of f ,

‖Au‖H2(Ω) ≤ C(Ω)‖b(Du)‖L2(Ω) ≤ C1(‖Du‖L2(Ω) + 1) ≤ C1(‖u‖H1
0 (Ω) + 1). (6.2.7)

2. Claim: A : H1
0 (Ω)→ H1

0 (Ω) is continuous and compact.
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Continuous: if uk → u in H1
0 (Ω), then supk ‖Auk‖H2(Ω) < ∞ by (6.2.7). Since H2(Ω) ∩

H1
0 (Ω) ↪→ H1

0 (Ω) is compact (Theorem 2.4.7(b)), there exist v ∈ H1
0 (Ω) and a subsequence

(ukj) such that Auk → v in H1
0 (Ω). By definition of A and weak solutions,∫

Ω

DAukj ·Dϕ+ µAukjϕdx = −
∫

Ω

b(Dukj)ϕdx for all ϕ ∈ H1
0 (Ω).

But convergence in H1
0 (Ω) implies∫

Ω

DAukj ·Dϕ+ µAukjϕdx→
∫

Ω

Dv ·Dϕ+ µvϕ dx,

while the convergence Dukj → Du in L2(Ω) and the assumption that b is Lipschitz continuous
imply ∫

Ω

b(Dukj)ϕdx→
∫

Ω

b(Du)ϕdx.

Thus v = Au, that is, if uk → u in H1
0 (Ω), then for a subsequence Aukj → Au in H1

0 (Ω). The
hair-splitting lemma implies Auk → Au for the whole sequence.

Compact: again, if (uk) is bounded in H1
0 (Ω), then (6.2.7) shows (Auk) is bounded in H2(Ω)∩

H1
0 (Ω), so it has a convergent subsequence in H1

0 (Ω).

3. We now show that if µ > 0 is large enough, then

{u ∈ H1
0 (Ω) : u = λAu for some λ ∈ [0, 1]}

is bounded in H1
0 (Ω). So assume u ∈ H1

0 (Ω) and u = λAu for λ ∈ (0, 1]. Then, since
u/λ = Au, we have u ∈ H2(Ω) ∩H1

0 (Ω) and

−∆u+ µu = −λb(Du)

(both weakly and strongly, i.e. a.e. in Ω, since u ∈ H2). In particular, taking u as a test
function in the corresponding weak form and using the growth assumption on b,∫

Ω

|∇u|2 + µu2 dx = −λ
∫

Ω

b(Du)u dx

≤ |λ|︸︷︷︸
≤1

C1

∫
Ω

(|Du|+ 1)|u| dx

≤ 1

2

∫
Ω

|Du|2 dx+ C2

∫
Ω

|u|2 + 1 dx,

where C2 > 0 is independent of λ ∈ (0, 1]. If µ > C2, this implies

‖u‖H1
0 (Ω) ≤ C3(b,Ω, µ),

independent of λ.

4. Hence we may apply Theorem 6.1.5 to obtain a fixed point u ∈ H2(Ω)∩H1
0 (Ω) of A, which

by construction satisfies (6.2.6) pointwise almost everywhere (and weakly).
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6.3 Monotone operators

6.3 Monotone operators

Suppose V is a reflexive Banach space, f ∈ V ′, and we wish to solve

Au = f, (6.3.1)

where we think of A : V → V ′ as being a PDO. Recall (Chapter 3/Calculus of Variations)
that if E : V → R is a C1 energy functional and A = E ′ in L(V, V ′), then we interpret (6.3.1)
as

.〈E ′(u), ϕ〉V ′,V = 〈f, ϕ〉V ′,V for all ϕ ∈ V
If E is convex, i.e.

〈E ′(u)− E ′(v), u− v〉V ′,V ≥ 0 for all u, v ∈ V

and coercive, then (6.3.1) has a solution (see Theorem 3.4.3 and Proposition 3.4.5). This
motivates:

6.3.1 Definition. Let V be a Banach space and K ⊂ V . An operator A : K → V ′ is called
monotone if

〈Au− Av, u− v〉V ′,V ≥ 0 for all u, v ∈ K, (6.3.2)

and strictly monotone if equality implies u = v.

(This is another, non-variational, way in which we can interpret and exploit the structural
condition of ellipticity.)

If K = V = R, then “monotone” is equivalent to “monotonically increasing”.

Goal: A (strictly) monotone + technical/auxiliary conditions =⇒ (6.3.1) has a (unique)
solution.

6.3.2 Remark. We remark explicitly: if E ∈ C1(V,R) is convex, then E ′ : V → V ′ is
monotone.

6.3.3 Example. (a) The p-Laplacian with Dirichlet boundary conditions −∆p = − div(|D ·
|p−2D · ) : W 1,p

0 (Ω)→ W 1,p
0 (Ω)′ (p ∈ (1,∞)) given by

〈−∆pu, ϕ〉 =

∫
Ω

|Du|p−2Du ·Dϕdx, u, ϕ ∈ W 1,p
0 (Ω),

is monotone, being associated with the convex functional

E(u) =
1

p

∫
Ω

|Du|p dx on W 1,p
0 (Ω)

(see Examples 1.4.2 and 3.2.1(a); we will return to this in Example 6.3.12).

(b) More generally, suppose a : Rn → Rn is a sufficiently smooth vector field such that

(a(z)− a(w)) · (z − w) ≥ 0 for all z, w ∈ Rn

(a is monotone). Then A := − div(a(D · )) is monotone. If a(z) = DF (z) for some
F : Rn → R, then

E(u) =

∫
Ω

F (Du) dx

is the associated energy functional.
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6.3.4 Lemma. Suppose V is a Banach space and A : V → V ′ is monotone. Then A is locally
bounded: for all u ∈ V there exist r, ε > 0 such that ‖Av‖V ′ ≤ r for all v ∈ B(u, ε).

Proof. Suppose for a contradiction that there exist u ∈ V and (uk) ⊂ V such that uk → u
and ‖Auk‖V ′ →∞. Since A is monotone, for any v ∈ V ,

0 ≤ 〈Auk − Av, uk − v〉 = 〈Auk − Av, u− v〉+ 〈Auk − Au, uk − u〉.

Setting w := v − u,
〈Auk, w〉 ≤ 〈Av,w〉+ 〈Auk − Av, uk − u〉.

Since 〈Av,w〉 is independent of k and WLOG |〈Av, uk − u〉| ≤ ‖Av‖V ′‖uk − u‖V ≤ ‖Av‖V ′ ,
we may write

〈Auk, w〉 ≤ C(w) + ‖Auk‖V ′‖uk − u‖V ,

where we assume WLOG that C(w) ≥ 1. Set

ak := 1 + ‖Auk‖V ′‖uk − u‖V

and consider the renormalisation ϕk ∈ V ′ given by

〈ϕk, w〉 := 〈a−1
k Auk, w〉 ≤ a−1

k C(w)ak = C(w).

In particular,
sup
k∈N
〈ϕ,w〉 ≤ C(w) for all w ∈ V.

The Uniform Boundedness Principle implies

c0 := sup
k∈N
‖ϕk‖V ′ <∞.

Hence for the Auk,
‖Auk‖V ′ ≤ c0ak = c0(1 + ‖Auk‖V ′‖uk − u‖V ).

Since ‖uk − u‖V ′ → 0, this implies ‖Auk‖V ′ remains bounded as k →∞, a contradiction.

6.3.5 Definition. A mapping A : K → V ′, K ⊂ V , is called continuous on finite-dimensional
subspaces if for every finite-dimensional subspace M ⊂ V of V the restriction A|M : M ∩K →
V ′ is continuous in the sense that

M ∩K 3 u 7→ 〈Au, v〉 ∈ R

is continuous for each fixed v ∈ V .

6.3.6 Theorem (Minty’s Lemma). Suppose V is a Banach space, K ⊂ V , A : K → V ′ is
monotone and continuous on finite-dimensional subspaces, and u ∈ intK. Then the following
are equivalent:

(i) Au = f for some f ∈ V ′;
(ii) 〈Av − f, v − u〉 ≥ 0 for all v ∈ K.

The expression in (ii) is linear in u. (ii) is sometimes called a variational inequality (cf. Sec-
tion 3.5 and in particular Theorem 3.5.2).

106



6.3 Monotone operators

Proof. (ii) =⇒ (i) is exactly (6.3.2).

(ii) =⇒ (i): Let w ∈ V , t > 0, and consider the “variation” v := u+ tw. Then v ∈ K if t is
small enough, since u ∈ intK, and hence

〈Av − f, v − u〉 = 〈A(u+ tw)− f, tw〉 ≥ 0.

We now divide by t > 0 and pass to the limit:

lim inf
t→0

〈A(u+ tw)− f, w〉 ≥ 0.

Now A is continuous restricted to the one-dimensional space {u + tw : t ∈ R}; hence A(u +
tw)→ Au as t→ 0 and therefore

〈Au− f, w〉 ≥ 0.

Replacing w with −w, we obtain the reverse inequality and conclude

〈Au− f, w〉 = 0 for all w ∈ V.

Hence Au = f in V ′.

6.3.7 Corollary. Suppose A : V → V ′ is monotone and continuous on finite-dimensional
subspaces. If for uk, u ∈ V

(i) uk ⇀ u in V ,

(ii) Auk
∗
⇀ f in V ′, and

(iii) 〈Auk, uk〉 → 〈f, u〉,
then Au = f .

Condition (iii) is automatically satisfied if the convergence in (i) or (ii) is strong.

Proof. By Minty’s Lemma, it suffices to show

〈Av − f, v − u〉 ≥ 0 for all v ∈ V.

So suppose v ∈ V . Then, using that A is monotone,

0 ≤ 〈Auk − Av, uk, v〉
= 〈Auk − f, uk − v〉+ 〈Av − f, v − uk〉
→ 〈f, u− v〉 − 〈f, u− v〉+ 〈Av − f, v − u〉
= 〈Av − f, v − u〉.

6.3.8 Theorem (Browder and Minty). Let V be a separable, reflexive Banach space, let
A : V → V ′ be monotone and continuous on finite-dimensional subspaces, and suppose A is
coercive in the sense that

〈Au, u〉
‖u‖V

→∞ as ‖u‖V →∞. (6.3.3)

Then for all f ∈ V ′ there exists u ∈ V such that Au = f .
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6.3.9 Remark. If A : K ⊂ V → V ′ is strictly monotone and f ∈ V ′, then the equations
Au = f and 〈Av − f, v − u〉 ≥ 0 for all v ∈ K have at most one solution. (Exercise!)

For the proof of Theorem 6.3.8 we first need a finite-dimensional existence result, which relies
on Brouwer’s fixed point theorem.

6.3.10 Lemma. Suppose A : Rn → Rn is continuous and coercive in the sense of (6.3.3).
Then for all v ∈ Rn there exists u ∈ Rn such that Au = v.

Proof. 1. We may assume WLOG that v = 0; indeed, if v 6= 0, then consider Ãu := Au − v,
so that Ãu = 0 if and only if Au = v. Then Ã is obviously continuous, and coercivity follows
from

Ãu · u
|u|

≥ Au · u
|u|

− |v||u|
|u|

→ ∞ as |u| → ∞.

2. Coercivity (6.3.3) implies in particular the existence of a constant R > 0 such that

Au · u ≥ 0 for all |u| ≥ R. (6.3.4)

Then obviously Au = 0 does not have a solution outside B(0, R) ⊂ Rn, so we shall restrict
our attention to this ball.

3. We wish to apply a fixed point argument to u 7→ u−Au, but this does not necessarily map
B(0, R) to itself. Hence we consider the mapping T : B(0, R)→ B(0, R),

Tu :=

{
u− Au if u− Au ∈ B(0, R),

R · u−Au|u−Au| otherwise,

which is in particular continuous. By Theorem 6.1.2, T has a fixed point u0 ∈ B(0, R).

4. If u0−Au0 ∈ B(0, R), then we have u0 = Tu0 = u0−Au0 and hence Au0 = 0. We claim that
indeed u0 − Au0 ∈ B(0, R). If not, then Tu0 = u0 − Au0 ∈ ∂B(0, R), i.e., |u0| = |Tu0| = R.
Now

u0 = tu0 =
R

|u0 − Au0|︸ ︷︷ ︸
=:λ∈(0,1)

(u0 − Au0).

Rearranging,

(1− λ)u0 = −λAu0.

Taking the scalar product of both sides with u0,

0 < (1− λ)|u0|2 = −λAu0 · u0,

but Au0 · u0 > 0 by (6.3.4) since |u0| ≥ R.

Proof of Theorem 6.3.8. As in the proof of Theorem 5.2.3, we start by constructing a sequence
of finite-dimensional approximations and then use “a priori estimates” to pass to the limit.

Step 1: Finite-dimensional (Galerkin) approximation.
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Since V is separable, there exists a sequence (wk) ⊂ V such that for Vn := span{wk : 1 ≤ k ≤
n}, we have

V =
⋃
n∈N

Vn.

We write Aku for (Au)|Vk : Vk → R and fk := f |V ′k'Vk etc.. Then Ak : Vk → V ′k ' Vk is coercive
and continuous; hence by Lemma 6.3.10 there exists, for each k ∈ N, a solution uk ∈ Vk of
Akuk = fk.

Step 2: A priori estimates.

Set R := ‖f‖V ′ . Coercivity of A implies the existence of C > 0 such that

〈Au, u〉 > R‖u‖V whenever ‖u‖V ≥ C.

In particular, ‖uk‖V ≤ C for all k ∈ N, since

〈Auk, uk〉
uk∈Vk= 〈fk, uk〉 = 〈f, uk〉 ≤ R‖uk‖V .

Since V is reflexive, there exists a subsequence (uk) and u ∈ V such that uk ⇀ u.3

Now since A is monotone,

〈Auk, v〉 ≤ 〈Auk, uk〉 − 〈Av, uk − v〉 = 〈f, uk〉 − 〈Av, uk − v〉 for all v ∈ V.

Fix k ∈ N and ε > 0. Taking the supremum over all v ∈ B(0, ε), we obtain

ε‖Auk‖V ′ = sup
v∈B(0,ε)

〈Auk, v〉 ≤ C‖f‖V ′ + C sup
v∈B(0,ε)

‖Av‖V ′ + sup
v∈B(0,ε)

‖Av‖V ′‖v‖V

(with C > 0 as in Step 2). We apply Lemma 6.3.4 with u = 0 to obtain, for ε > 0 small
enough,

‖Auk‖V ′ ≤
C

ε
‖f‖V ′ +

C

ε
r + r

for some r > 0. Hence (Auk) is bounded in the reflexive space V ′. Up to another subsequence,

Auk
∗
⇀ g for some g ∈ V ′.

Step 3: Limit.

We claim f = g and Au = f . To that end fix v ∈ V arbitrary and choose vk ∈ Vk such that
vk → v in V . Then 〈Auk, vk〉 → 〈g, v〉 since Auk

∗
⇀ g and vk → v strongly, hence

〈g, v〉 ← 〈Auk, vk〉 = 〈f, vk〉 → 〈f, v〉,

and so f = g in V ′. We now pass to the limit using Corollary 6.3.7: we have shown (i) uk ↪→ u

in V and (ii) Auk
∗
⇀ f in V ′; by construction, (iii)

〈Auk, uk〉 = 〈f, uk〉 → 〈f, u〉.

We conclude that Au = f .

3At this point we know ‖Akuk‖V ′ = ‖fk‖V ′ ≤ ‖f‖V ′ is bounded, but we do not yet know anything about
Auk: this is where we need that A is monotone.
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6.3.11 Remark. We emphasise that in general uk ⇀ u does not imply Auk ⇀ Au if A
is nonlinear (and, say, continuous); we overcame this problem in the above proof using the
assumption that A was monotone.

6.3.12 Example (p-Laplacian). We now interpret the operator −∆p = − div(|D · |p−2D · )
(1 < p <∞) on Ω ⊂ Rn as a mapping from W 1,p

0 (Ω) to W 1,p
0 (Ω)′ ' W−1,p′(Ω).4 As before we

interpret {
−∆pu = f ∈ W−1,p′(Ω) in Ω,

u = 0 on ∂Ω,

via ∫
Ω

|Du|p−2Du ·Dϕdx = 〈f, ϕ〉 for all ϕ ∈ W 1,p
0 (Ω); (6.3.5)

this is well defined since by Hölder’s inequality

〈−∆pu, ϕ〉 ≤ ‖|Du|p−2Du‖Lp′ (Ω)‖Dϕ‖Lp(Ω)

=

(∫
Ω

|Du|(p−1)p′ dx

)p′
‖Dϕ‖Lp(Ω)

= ‖Du‖p−1
Lp(Ω)‖ϕ‖W 1,p

0 (Ω)

using p′ = p/(p− 1), i.e., (p− 1)p′ = p.

6.3.13 Theorem. For each f ∈ W−1,p′(Ω) there exists a unique solution u ∈ W 1,p
0 (Ω) of

(6.3.5).

Note Lp
′
(Ω) ↪→ W−1,p′(Ω) in the obvious way (e.g., use the representation from Exercise 4),

so this holds in particular for all f ∈ Lp′(Ω).

Proof. It suffices to check the assumptions of Theorem 6.3.8 and Remark 6.3.9, where V =
W 1,p

0 (Ω) is separable and reflexive and A = −∆p is as above:

1. −∆p is coercive:

〈−∆pu, u〉 =

∫
Ω

|Du|p dx = ‖u‖p
W 1,p

0 (Ω)
,

and so
〈−∆pu, u〉
‖u‖W 1,p

0 (Ω)

= ‖u‖p−1

W 1,p
0 (Ω)

→∞

as ‖u‖ → ∞ since p > 1.

2. −∆p is strictly monotone:5 The functional Φ : Rn → R, Φ(ξ) = 1
p
|ξ|p is (strictly) convex

and differentiable everywhere (including 0 since p > 1) with gradient

〈DΦ(ξ), η〉 = |ξ|p−2ξ · η;

by Exercise 9(i), it follows that

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) = 〈DΦ(ξ)−DΦ(η), ξ − η〉 ≥ 0 for all ξ, η ∈ Rn. (6.3.6)

4Cf. Exercise 4 for this identification.
5Here we essentially use the convexity of the associated functional E(u) = 1

p

∫
Ω
|Du|p dx, or rather, this

argument also shows that the functional is convex.
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Choosing ξ = Du(x) and η = Dv(x) for given functions u, v ∈ W 1,p
0 (Ω) and integrating over

x ∈ Ω,

〈(−∆pu)− (−∆pv), u− v〉 =

∫
Ω

(|Du|p−2Du− |Dv|p−2Dv) · (Du−Dv) dx ≥ 0, (6.3.7)

which says exactly that −∆p is monotone. Since (6.3.6) implies the integrand is non-negative
a.e., equality in (6.3.7) implies the integrand is in fact 0 a.e., that is, there is equality in
(6.3.6) for a.e. x ∈ Ω (with ξ = Du(x) etc.). Since Φ is strictly convex, it follows that ξ = η,
i.e. Du(x) = Dv(x) a.e. in Ω. It follows that ‖u− v‖W 1,p

0 (Ω) = 0 and hence u = v a.e.. Hence

−∆p is in fact strictly convex.

3. −∆p is continuous : Suppose uk → u in W 1,p
0 (Ω); up to a subsequence Duk → Du pointwise

a.e. in Ω, so the same is true of |Duk|p−2Duk → |Du|p−2Du.

Claim: this convergence is strong in Lp
′
(Ω).

Assuming the claim, we have

〈−∆puk+∆pu, ϕ〉 ≤ ‖|Duk|p−2Duk − |Du|p−2Du‖Lp′ (Ω)︸ ︷︷ ︸
→0

‖Dϕ‖Lp(Ω) for all ϕ ∈ W 1,p
0 (Ω),

implying (since ‖Dϕ‖Lp(Ω) = ‖u‖W 1,p
0 (Ω)) that ‖ − ∆upuk + ∆up‖W 1,p

0 (Ω)′ → 0 for this subse-

quence; the hair-splitting lemma yields convergence of the whole sequence.

Hence it remains to prove the claim; we shall attempt to apply the dominated convergence
theorem by dominating ∣∣|Duk|p−2Duk − |Du|p−2Du

∣∣p′
in L1(Ω). Since for any a, b ≥ 0 and q ≥ 1,

(a+ b)q ≤ 2q(aq + bq)

(exercise; WLOG a ≤ b) we have, choosing a = |Duk|p−1, b = |Du|p−1, q = p′,∣∣|Duk|p−2Duk − |Du|p−2Du
∣∣p′ ≤ 2p

′
(|Duk|p + |Du|p)

pointwise. The right-hand side converges strongly in L1(Ω); hence a straightforward generali-
sation of the dominated convergence theorem implies∣∣|Duk|p−2Duk − |Du|p−2Du

∣∣p′ → 0

in L1(Ω), i.e. |Duk|p−2Duk → |Du|p−2Du in Lp
′
(Ω), as claimed.

4. We may now apply Theorem 6.3.8 and Remark 6.3.9 to obtain a unique solution of (6.3.5)
for each f ∈ W−1,p′(Ω).
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7 Long-time behaviour and (non-)
existence of solutions

7.1 Long-time behaviour

Consider again the equation from Example 6.2.1:
u̇−∆u = f(u) in Ω× (0,∞),

u = 0 on ∂Ω× [0,∞),

u(0) = u0 ∈ H1
0 (Ω) on Ω× {t = 0},

where Ω ⊂ Rn is bounded and sufficiently smooth and f is lobally Lipschitz (so there exists
C > 0 such that |f(z)| ≤ C(|z|+ 1) for all z ∈ R, as usual).

Question: What happens to u as t→∞?1

Suppose for the above problem that

F (z) :=

∫ z

0

f(s) ds

is bounded from above on R.2 Let u(t) = T (t)u0 be the corresponding solution from Theo-
rem 6.2.2 satisfying, for all T > 0,

u ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1
0 (Ω))

and
(u̇, ϕ)L2(Ω) + (Dxu,Dxϕ)L2(Ω) = (f(u), ϕ)L2(Ω)

for all ϕ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ] and denote by

E(u) :=

∫
Ω

1

2
|Du|2 − F (u)︸ ︷︷ ︸

=:G(x,u,Du)

dx, u ∈ H1
0 (Ω). (7.1.1)

the energy functional.

7.1.1 Theorem. With the above assumptions and notation, if we have the additional regularity
E(u( · )) is absolutely continuous3 and ∇L2(Ω)E(u) ∈ L2(Ω) for almost all t > 0, then there exist

1We observe that since Theorem 6.2.2 guarantees the existence of a global solution on (0, T ] for any T > 0,
we may extend this to obtain a solution on (0,∞).

2f(z) = −z is admissible, for example.
3Or rather E(u( · )) can be extended on the null set where u(t) 6∈ H1

0 (Ω) to an absolutely continuous function
on [0, T ]
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7 Long-time behaviour and (non-) existence of solutions

a sequence tk → ∞ and u∞ ∈ H1
0 (Ω) such that u(tk) ⇀ u∞ in H1

0 (Ω) as k → ∞. Moreover,
u∞ is a weak solution of the stationary equation{

−∆u = f(u) in Ω,

u = 0 on ∂Ω.
(7.1.2)

7.1.2 Remark. (a) Problem (7.1.2) always has (at least) one solution under our assump-
tions: in the notation of (7.1.1), F is bounded from above, G is coercive in the sense of
(3.4.5). Since w 7→ G(x, z, w) is convex, E admits a global minimiser in H1

0 (Ω) by Corol-
lary 3.4.10; by Theorem 3.4.11, this is also a weak solution of (7.1.2) since G satisfies
the necessary growth estimates:

|G(x, z, w)| ≤ |w|2 +

∫ z

0

C(|s|+ 1) ds ≤ C̃(|w|2 + |z|2 + 1),

|DzG(x, z, w)| ≤ |f(z)| ≤ C̃(|w|+ |z|+ 1),

|DwG(x, z, w)| = |w| ≤ C̃(|w|+ |z|+ 1).

(b) Theorem 7.1.1 holds for more general elliptic equations than (7.1.2) (although not all,
even when solutions exist for all t > 0); for this reason, elliptic equations are sometimes
called stationary equations: if u0 solves the stationary equation, then u(t) = u0 solves
the time-dependent (i.e. non-stationary) equation for all t > 0.

Proof of Theorem 7.1.1. 1. Since u is a solution, u(t) ∈ H1
0 (Ω) for a.e. t > 0 and, using our

additional regularity assumptions,

(∇L2(Ω)u(t), ϕ)L2(Ω) = 〈E ′(u(t)), ϕ〉 = (Du(t), Dϕ)L2(Ω) − (f(u(t)), ϕ)L2(Ω) = −(u̇(t), ϕ)L2(Ω)

for all ϕ ∈ H1
0 (Ω). Since H1

0 (Ω) is dense in L2(Ω), we obtain the relation

(∇L2(Ω)E(u(t)), ϕ)L2(Ω) = −(u̇(t), ϕ)L2(Ω)

for all ϕ ∈ L2(Ω), and hence, choosing ϕ = u̇,

d

dt
E(u(t)) = (∇L2(Ω)E(u(t)), u̇)L2(Ω) = −(u̇(t), u̇(t))L2(Ω) ≤ 0 (7.1.3)

for a.e. t ≥ 0. Since E(u( · )) is absolutely continuous by assumption, it is in particular
monotonically decreasing.

2. By our assumptions on F , E is coercive in the sense that there exist α > 0 and β ∈ R such
that

E(v) ≥ α‖v‖2
H1

0 (Ω) − β for all v ∈ H1
0 (Ω)

(cf. Remark 7.1.2(a)). Since E(u( · )) is monotonically decreasing, it is therefore bounded in
t ≥ 0. Integrating (7.1.3) with respect to t,

0 ≥ −
∫ T

0

‖u̇‖2
L2(Ω) dt = E(u(T ))− E(u(0)) for all T > 0.

Thus
∫ T

0
‖u̇‖2

L2(Ω) dt is bounded from above uniformly in T ; in particular,
∫∞

0
‖u̇‖2

L2(Ω) dt exists
and ∫ ∞

T

‖u̇‖2
L2(Ω) dt→ 0 as T →∞. (7.1.4)
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7.2 Blow-up

3. Now since {E(u(t))}t≥0 is bounded and E is coercive, there exists C > 0 such that

‖u(t)‖H1
0 (Ω) ≤ C for (almost) allt > 0.

Choose tk → ∞ such that u(tk) ∈ H1
0 (Ω), u̇(tk) ∈ L2(Ω) (both holding at least almost

everywhere) and
‖u̇(tk)‖L2(Ω) → 0 as k →∞.

Then there exist a subsequence, which we shall also denote by (tk), and u∞ ∈ H1
0 (Ω) such

that utk ⇀ u∞ in H1
0 (Ω) as k →∞. Then

(Du(tk), Dϕ)L2(Ω) → (Du∞, Dϕ)L2(Ω) for all ϕ ∈ H1
0 (Ω),

and since f is Lipschitz continuous,

(f(u(tk))− f(u∞), ϕ)L2(Ω) ≤ ‖f(u(tk))− f(u∞)‖L2(Ω)‖ϕ‖L2(Ω)

≤ Lip(f)‖u(tk)− u∞‖L2(Ω)‖ϕ‖L2(Ω) → 0.

Hence

(u̇(tk), ϕ)L2(Ω) + (Du(tk), Dϕ)L2(Ω) = (f(u(tk)), ϕ)L2(Ω) for all ϕ ∈ H1
0 (Ω).

Passing to the limit as k →∞, since ‖u̇(tk)‖ → 0, we obtain

(Du∞, Dϕ)L2(Ω)(f(u∞), ϕ)L2(Ω) for all ϕ ∈ H1
0 (Ω).

7.1.3 Remark. (a) Modulo the additional regularity assumptions, this gives another
method of proof of the existence of a solution u∞ of (7.1.2) (which we did not need
to assume): take any initial condition and “evolve” it to obtain a solution of the elliptic
equation in the (weak) limit.

(b) If (7.1.2) only has one solution, then, for any u0 ∈ H1
0 (Ω), by the hair-splitting lemma

u(tk) ⇀ u∞ for any sequence tk → ∞ such that u(tk) ∈ H1
0 (Ω), u̇(tk) ∈ L2(Ω) and

‖u̇(tk)‖L2(Ω) → 0 as k →∞.

7.2 Blow-up

7.2.1 Example (ODEs). Consider

(a) u̇ = u;

(b) u̇ = u2;

(c) u̇+ u = u2.

Then (a) has the solution u(t) = cet and thus global existence for any initial condition u(0) = c,
with at most exponential growth. For (b) all solutions have the form

u̇(t) =
1

c− t
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7 Long-time behaviour and (non-) existence of solutions

and thus u(t)→∞ as t→ c−: for any initial condition, the solution “blows up” in finite time
and cannot be continuously extended. Solutions of (c) are given by

u(t) =
1

1− cet
.

If 0 < u(0) < 1, then c < 0 and hence we have global existence and convergence to 0 as
t → ∞; if u(0) = 1, then u ≡ 1 for all t (these are of course the two solutions of u = u2). If
u(0) > 1, then 0 < c < 1 and the solution blows up at t = − ln c.

Heuristic idea: A strong enough nonlinearity implies blow-up in finite time. A “damping
term” means such a blow-up might only occur for large enough initial data.

For PDEs, “blow-up” can mean the solution itself becomes unbounded (e.g. in some Lp-norm),
or also that the solution cannot be extended smoothly beyond a finite point of time (e.g. the
formation of singularities, unboundedness of (spatial) derivatives).4 Here we will consider two
prototypical (and common) examples.

7.2.2 Example. Consider
u̇−∆u = u2 in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],

u(0) = u0 ∈ H1
0 (Ω),

(7.2.1)

where Ω ⊂ Rn is bounded and sufficiently smooth, say C2. (Compare with Example 6.2.1.)

Claim: if u0 ≥ 0 and T > 0 are “large enough”, then (7.2.1) does not have a smooth solution.

Denote by λ1 > 0 the smallest eigenvalue and ψ1 ∈ H2(Ω)∩H1
0 (Ω) (∩C(Ω)) the corresponding

eigenfunction of {
−∆ψ1 = λ1ψ1 in Ω,

ψ1 = 0 on ∂Ω,

where WLOG ψ1 > 0 in Ω and
∫

Ω
ψ1 dx = 1.5

7.2.3 Theorem. Suppose 0 ≤ u0 ∈ H1
0 (Ω) satisfies

(u0, ψ1)L2(Ω) > λ1.

Then if T > 0 is large enough, there does not exist a classical solution

u ∈ C2(Ω× (0, T )) ∩ C(Ω× [0, T ])

4There does not seem to be a precise, universally accepted definition of “blow-up” available, although in
practice, for any particular equation it is usually clear when one observes it.

5See Example 3.5.9 for existence. That ψ1 can be chosen ≥ 0 everywhere in Ω follows since if ψ1 minimises
the Rayleigh quotient (3.5.5), then so too does |ψ1| ∈ H1

0 (Ω). It then follows from the strong maximum
principle that ψ1 cannot be zero in the interior of Ω; see [5, Theorem 8.19] for a version valid for weak
solutions. Then

∫
Ω
ψ1 dx = ‖ψ‖L1(Ω) <∞ since obviously H1

0 (Ω) ↪→ L1(Ω), so the assumed normalisation
is also possible. The H2-regularity of ψ1 follows from Theorem 4 of [3, Section 6.3.2], by taking f = λu
(which is certainly in L2(Ω)). In fact, if we assume ∂Ω is of class C∞, then since u ∈ H2(Ω), by Theorem 5
of the same section, we obtain u ∈ H4(Ω), and then u ∈ H6(Ω), and so on. By using the embedding
theorem stated in Remark 2.4.6(3), we eventually obtain u ∈ Cl(Ω) for all l ∈ N, i.e., u ∈ C∞(Ω). This
argument is known as a bootstrapping argument.
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7.2 Blow-up

of (7.2.1).6

Proof. Suppose u = u(t) is a smooth solution. We show that

η(t) := (u(t), ψ1)L2(Ω)

satisfies a differential inequality whose solutions blow up in finite time. Observe that η(0) > λ1

by assumption.

Now η is well defined and is in C1 as long as u exists (and is sufficiently smooth), with

d

dt
η(t) = (u̇, ψ1)L2(Ω) = −(Du,Dψ1)L2(Ω) + (u2, ψ1)L2(Ω)

= −λ1 (u, ψ1)L2(Ω)︸ ︷︷ ︸
=η

+(u2, ψ1)L2(Ω),

where we have used that u is a (weak) solution of (7.2.1) and ψ1 is a (weak) solution of
the eigenvalue equation (Dψ1, Dϕ)L2(Ω) = λ1(ψ1, ϕ)L2(Ω) for all ϕ ∈ H1

0 (Ω). Also, a clever
application of Cauchy–Schwarz yields

η =

∫
Ω

uψ1 dx =

∫
Ω

uψ
1/2
1 ψ

1/2
1 dx ≤

(∫
Ω

u2ψ1 dx

)1/2(∫
Ω

ψ1 dx

)1/2

︸ ︷︷ ︸
=1

,

that is, η2 ≤ (u2, ψ1)L2(Ω), and hence

η̇ ≥ −λ1η + η2 (7.2.2)

as long as u exists and is sufficiently smooth. We now show η blows up in finite time: since
η(0) > λ1, (7.2.2) implies η̇ remains positive and η > λ1 as long as it exists;7 for

ξ(t) := eλ1tη(t),

we have

ξ̇(t) = eλ1tη̇(t) + λ1e
λ1tη(t)

(7.2.2)

≥ eλ1tη2(t) = e−λ1tξ2(t).

Since η > 0, also ξ > 0, and hence we may write

d

dt

(
−1

ξ

)
=

ξ̇

ξ2
≥ e−λ1t.

Integrating from 0 to t,

− 1

ξ(t)
+

1

ξ(0)
≥ −e

λ1s

λ1

∣∣∣t
0
,

6With somewhat more work, one could weaken the smoothness assumption on u somewhat: in fact it suffices
that u̇ ∈ L2(Ω) – which holds whenever u is a weak solution in our sense – and d

dt (u(t), ψ1)L2(Ω) exists, is
smooth enough, say L2 in t, so that the fundamental theorem of calculus holds (cf. Theorem 5.1.10(a)),
and equals (u̇(t), ψ1)L2(Ω).

7Alternatively, assuming u ∈ C2, one could use the strong parabolic maximum principle to show u(t) > 0 in
Ω for all t > 0, see Theorem 12 in [3, Section 7.1.4], and then conclude η = (u, ψ1)L2(Ω) > 0 since ψ1 > 0
as well.
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7 Long-time behaviour and (non-) existence of solutions

i.e.

− 1

ξ(t)
≥ − 1

ξ(0)
+

1− e−λ1t

λ1

=
−λ1 + (1− e−λ1t)ξ(0)

ξ(0)λ1

.

Since ξ(0) = η(0), we conclude

ξ(t) ≥ η(0)λ1

λ1 − η(0)(1− e−λ1t)
,

as long as the denominator is nonzero. By assumption, η(0) > λ1; hence the right-hand side,
which is finite (and equal to η(0)) for t = 0, diverges to ∞ as

t→ t∗ := − 1

λ1

ln

(
η(0)− λ1

η(0)

)
.

It follows that ‖u(t)‖L2(Ω) ≥ (u(t), ψ1)L2(Ω) = η(t)→∞ as t→ t∗, if u remains smooth enough
to justify the above calculations (e.g., if u is a classical solution).

7.2.4 Remark. (a) Technically speaking, it is not clear from the above proof whether
‖u‖L2(Ω) →∞ in finite time, or whether the solution is not smooth enough/stops being
smooth enough for some t ∈ (0, t∗).

(b) If u0 ≥ 0 is small enough, there are several methods available to prove global existence
of solutions, although to do so would go outside the scope of this course. One possible
idea is as follows: there exists a stationary solution of −∆ψ0 = ψ2

0 by Theorem 4.2.1 (if
n ≤ 3). Then ψ(t) = ψ0 is a stationary solution for all t > 0. One can show (“comparison
principles”) that if 0 ≤ u0 ≤ ψ0 in Ω, then 0 ≤ u(t) ≤ ψ0 for all t > 0 exists for all
times.

(c) The positive solution of the ODE u̇ = f(u) blows up in finite time for any positive u(0)
if f : [0,∞)→ R satisfies f(z) > 0 for all z > 0 and∫ ∞

w

dz

f(z)
<∞ for some w > 0.

Under these assumptions on f , if in addition f is smooth and f ′′ > 0 (e.g. f(u) = |u|p),
then one can show that any C2 solution of

u̇−∆u = f(u) in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],

u(0) = u0 ≥ 0 smooth,

blows up in finite time if (u0, ψ1)L2(Ω) is large enough, for the same reason. In this case
the differential inequality (7.2.2) becomes η̇ ≥ −λ1η + f(η).

Another example exploiting “convexity”:

7.2.5 Theorem. Consider
u̇−∆u = |u|p−1u in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ]

u(0) = u0 ∈ H1
0 (Ω) ∩ Lp(Ω),

(7.2.3)
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7.2 Blow-up

where Ω ⊂ Rn is open with finite volume and p ∈ (1,∞). If u0 satisfies

E(u0) :=
1

2

∫
Ω

|∇u0|2 dx−
1

p+ 1

∫
Ω

|u0|p+1 dx < 0, (7.2.4)

then any corresponding (weak) solution u of (7.2.3) such that u ∈ D(∇HE) t-a.e. and E(u( · ))
is absolutely continuous must blow up in finite time.

For simplicity, assume p > 1 is such that H1
0 (Ω) ↪→ Lp(Ω), so that a solution is a function

u ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1
0 (Ω))

satisfying

(u̇, ϕ)L2(Ω) + (Du,Dϕ)L2(Ω) − (|u|p−2u, ϕ)L2(Ω)︸ ︷︷ ︸
= E ′(u)ϕ= (∇HE(u),ϕ)L2(Ω)

= 0 for all ϕ ∈ H1
0 (Ω) and a.e. t > 0.

(7.2.5)
Existence of solutions for T > 0 small enough could be proved, e.g., using fixed point methods,
although we are not actually asserting that they exist here.

Proof. 1. Since u ∈ D(∇HE),

(u̇, ϕ)L2(Ω) + (∇HE(u), ϕ)L2(Ω) = 0 for all ϕ ∈ L2(Ω), for a.e. t > 0.

Choosing ϕ = u̇ ∈ L2(Ω) t-a.e.,

(0 ≤ ) ‖u̇(t)‖L2(Ω) = − d

dt
E(u(t)) (7.2.6)

for almost every t > 0, so in particular, since E(u( · ) is absolutely continuous,

E(u(t)) = E(u0)−
∫ t

0

‖u̇‖2
L2(Ω) ds.

Choosing ϕ = u in (7.2.5), since d
dt
‖u‖L2(Ω) = 2(u̇, u)L2(Ω), we also have

d

dt

(
1

2

∫
Ω

u2 dx

)
+

∫
Ω

|Du|2 dx =

∫
Ω

|u|p+1 dx. (7.2.7)

2. Now define

I(t) :=

∫ t

0

‖u(s)‖2
L2(Ω) dx+ C,

for some C > 0 to be determined later. We will show that I satisfies the differential inequality

I ′′(t)I(t)− (1 + α)I ′(t)2 > 0

for a.e. t > 0. To that end, we compute

I ′(t) = ‖u(t)‖2
L2(Ω) =

∫ t

0

d

ds
‖u(s)‖2

L2(Ω) ds+ ‖u0‖2
L2(Ω) = 2

∫ t

0

(u̇, u)L2(Ω) ds+ ‖u0‖2
L2(Ω)
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7 Long-time behaviour and (non-) existence of solutions

for all t > 0 (noting that this is in H1(0, T ;R)∩C([0, T ];R) since u ∈ H1(0, T ;L2(Ω))) and so

I ′(t)2 = 4

(∫ t

0

(u̇, u)L2(Ω) ds

)2

+ 4

∫ t

0

(u̇, u)L2(Ω) ds

∫
Ω

u2
0 dx+

(∫
Ω

u2
0 dx

)2

≤ 4(1 + ε)

(∫ t

0

∫
Ω

u2 dx dt

)(∫ t

0

∫
Ω

u̇2 dx dt

)
+

(
1 +

1

ε

)(∫
Ω

u2
0 dx

)2

for any ε > 0, where we used Cauchy–Schwarz on the first term and (2.6.5) on the second.
We also have

I ′′(t) =
d

dt
‖u(t)‖2

L2(Ω)

(7.2.7)
= −2

∫
Ω

|Du|2 dx+ 2

∫
Ω

|u|p+1 dx

(7.2.4)

≥ (2− 2p)E(u(t))

=: 4(1 + δ)

(
−E(0) +

∫ t

0

‖u̇(s)‖2
L2(Ω) ds

)
,

where δ := (p − 1)/2 > 0. Combining the two estimates, and introducing another constant
α > 0 to be chosen later,

I ′′(t)I(t) + (1 + α)I ′(t)2 ≥ 4(1 + δ)

(
−E(u0) +

∫ t

0

∫
Ω

u̇2 dx

)(∫ t

0

∫
Ω

u2 dx dt+ C

)
− (1 + α)

(
4(1 + ε)

∫ t

0

∫
Ω

u̇2 dx dt

∫ t

0

∫
Ω

u2 dx dt+

(
1 +

1

ε

)(∫
Ω

u2
0 dx

)2
)

for almost every t > 0. We want this expression to be > 0; to that end, we now choose ε, α > 0
small enough that

1 + δ ≥ (1 + α)(1 + ε).

Since E(u0) < 0 by assumption, if C > 0 is large enough, e.g.

−E(u0)C >

(
1 +

1

ε

)(∫
Ω

u2
0 dx

)2

,

then indeed I ′′(t)I(t)− (1 +α)I ′(t)2 > 0 for almost every t > 0. Noting that I ′′ ∈ L2(0, T ) (so
that the fundamental theorem of calculus holds) and I(t) > 0 for all t > 0, we may write

d

dt

(
I ′(t)

Iα+1(t)

)
=
I ′′(t)Iα+1(t)− (1 + α)Iα(t)I ′(t)

Iα+1(t)2
> 0

for a.e. t > 0, and hence
I ′(t)

Iα+1(t)
≥ I ′(0)

Iα+1(0)
> 0

for all t > 0 (noting I ′ ∈ H1(0, T ) ↪→ C([0, T ])), that is,

I ′(t) ≥ cIα+1(t), c, I(0) > 0.

It follows that there exists t∗ > 0 such that

I(t) =

∫ t

0

∫
Ω

u2 dx ds+ C = ‖u‖L2(0,t;L2(Ω)) + C →∞

as t→ t∗, cf. Remark 7.2.4(c).
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7.3 Non-existence and critical exponents for elliptic
problems: Pohozaev’s identity

Prototype problem: {
−∆u = |u|p−1u in Ω,

u = 0 on ∂Ω,
(7.3.1)

where Ω ⊂ Rn is bounded and sufficiently smooth, as usual, and p > 1.

If 1 < p < n+2
n−2

= 2∗ − 1, then there exists a weak solution u 6≡ 0; see Theorem 4.2.1 (or
Example 3.5.10).

What happens if p > n+2
n−2

?

Claim: under a certain geometrical condition on Ω, if p > n+2
n−2

, then the only smooth solution
of (7.3.1) is u ≡ 0.8

We therefore say that p = n+2
n−2

is a critical exponent (for the problem (7.3.1)).

Idea: Any (sufficiently smooth) solution of (7.3.1) must satisfy a Sobolev-type inequality
which can only hold if p ≤ n+2

n−2
.9

7.3.1 Theorem (Pohozaev identity). Assume u ∈ C2(Ω) is a classical solution of (7.3.1),
where Ω ⊂ Rn is bounded and open with C1-boundary. Then(

n− 2

2

)∫
Ω

|Du|2 dx+
1

2

∫
∂Ω

|Du|2x · ν dσ =
n

p+ 1

∫
Ω

|u|p+1 dx, (7.3.2)

where ν = (ν1, . . . , νn) is the outward-pointing unit normal to ∂Ω.

(7.3.2) is also known as the Derrick–Pohozaev identity.

Proof. 1. Multiply (7.3.1) by x ·Du(x) and integrate over Ω:∫
Ω

(−∆u)(x ·Du) dx =

∫
Ω

|u|p−1u(x ·Du) dx. (7.3.3)

The left-hand side may be written as

−
n∑

i,j=1

∫
Ω

∂2u

∂x2
i

xj
∂u

∂xj
dx.

We now manipulate the integrands in order to apply Gauß–Green:∫
Ω

∂2u

∂x2
i

xj
∂u

∂xj
dx =

∫
Ω

∂2u

∂xi
xj
∂u

∂xj
+
∂u

∂xi

∂

∂xi

(
xj
∂u

∂xj

)
dx−

∫
Ω

∂u

∂xi

∂

∂xi

(
xj
∂u

∂xj

)
dx

=

∫
Ω

∂

∂xi

(
∂u

∂xi
xj
∂u

∂xj

)
dx−

∫
Ω

∂u

∂xi

∂

∂i

(
xj
∂u

∂xj

)
dx

=

∫
∂Ω

∂u

∂xi
νixj

∂u

∂xj
dx−

∫
Ω

∂u

∂xi

∂

∂xi

(
xj
∂u

∂xj

)
dx,

8The same assertion holds if we consider −∆u = f(u), where f satisfies a corresponding growth condition,
such as f(z) grows at least as fast as |z|p−1 as z → ±∞. The method of proof is also essentially the same;
we replace the term

∫
Ω
|u|p+1 dx in (7.3.2) with

∫
Ω
F (u) dx, F being the antiderivative of f with F (0) = 0.

9Again, we will assume our solutions are smooth enough to justify all necessary calculations without trying
to find the minimal possible assumptions under which everything works.
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where in the last line we applied Gauß–Green in the form (2.3.1). Hence the left-hand side of
(7.3.3) is equal to

n∑
i,j=1

∫
Ω

∂u

∂xi

∂

∂xi

(
xj
∂u

∂xj

)
dx−

n∑
i,j=1

∫
∂Ω

∂u

∂xi
νixj

∂u

∂xj
dσ =: A1 + A2.

2. Now

A1 =
n∑

i,j=1

∫
Ω

δij
∂u

∂xi

∂u

∂xj
+
∂u

∂xi
xj

∂2u

∂xi∂xj
dx

=

∫
Ω

|Du|2 +
n∑
j=1

∂

∂xj

1

2

n∑
i=1

(
∂u

∂xi

)2

︸ ︷︷ ︸
=|Du|2/2

xj dx

=

∫
Ω

|Du|2 + div

(
|Du|2

2
x

)
− n |Du|

2

2
dx

=

∫
Ω

(
1− n

2

)
|Du|2 dx+

∫
∂Ω

|Du|2

2
x · ν dσ,

by another application of Gauß–Green. For A2, since u = 0 on ∂Ω, Du(x) is parallel to ν(x)
at every x ∈ ∂Ω, so

Du(x) = ±|Du(x)|ν(x),

that is,

∂u

∂xi
= ±

√√√√ n∑
i=1

(
∂u

∂xi

)2

νi for all i = 1, . . . , n,

and so
n∑

i,j=1

∂u

∂xi
νixj

∂u

∂xj
=

n∑
i,j=1

n∑
k=1

(
∂u

∂xk

)2

︸ ︷︷ ︸
=|Du|2

(νi)2νjxj = |Du|2x · ν.

Thus

A2 = −
∫
∂Ω

|Du|2x · ν dσ.

3. The right-hand side of (7.3.3) is

n∑
j=1

∫
Ω

|u|p−1uxj
∂u

∂xj
dx =

n∑
j=1

∫
Ω

∂

∂xj

(
|u|p+1

p+ 1

)
xj dx

= −
n∑
j=1

∫
Ω

|u|p+1

p+ 1

∂

∂xj
xj dx = − n

p+ 1

∫
Ω

|u|p+1 dx,

again using Gauß–Green; the boundary integral vanishes since u = 0 on ∂Ω.
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4. Putting this together with A1, A2 and (7.3.3),

2− n
2

∫
Ω

|Du|2 dx− 1

2

∫
∂Ω

|Du|2x · ν dσ = − n

p+ 1

∫
Ω

|u|p+1 dx.

Now we will give a geometric condition on Ω which allows us to control the sign of the integral
over ∂Ω.

7.3.2 Definition. An open set Ω is called star-shaped with respect to a point x0 ∈ Ω if for
all x ∈ Ω, the line segment joining x0 and x,

{λx+ (1− λ)x0 : λ ∈ [0, 1]}

lies in Ω.

Obviously, convex sets are star-shaped but the converse is not true.

7.3.3 Lemma. Suppose ∂Ω is C1 and Ω is star-shaped with respect to 0 ∈ Ω. Then

x · ν(x) ≥ 0 for all x ∈ ∂Ω.

Proof. Fix x ∈ ∂Ω. Since ∂Ω and hence ν are C1, for all ε > 0, there exists δ > 0 such that,
for all y ∈ Ω,

|y − x| < δ implies
y − x
|y − x|

· ν(x) ≤ ε.

In particular,

lim sup
y→x
y∈Ω

y − x
|y − x|

· ν(x) ≤ 0.

Let y = λx for λ ∈ (0, 1), then y ∈ Ω since Ω is star-shaped with respect to 0, and

x

|x|
= − λx− x
|λx− x|

.

Hence
x

|x|
· ν(x) = − lim

λ→1−

λx− x
|λx− x|

· ν(x) ≥ 0.

7.3.4 Theorem. Suppose Ω is bounded, open and star-shaped with respect to 0 and ∂Ω is C1.
Suppose also that u ∈ C2(Ω) solves (7.3.1) for some p > n+2

n−2
. Then u ≡ 0 in Ω.

Proof. Since x · ν ≥ 0,
1

2

∫
∂Ω

|Du|2x · ν dσ ≥ 0,

and so Theorem 7.3.1 implies(
n− 2

2

)∫
Ω

|Du|2 dx ≤ n

p+ 1

∫
Ω

|u|p+1 dx.
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7 Long-time behaviour and (non-) existence of solutions

On the other hand, choosing u as a test function in the weak form of (7.3.1) yields∫
Ω

|Du|2 dx =

∫
Ω

|u|p+1 dx.

It follows that (
n− 2

2
− n

p+ 1

)∫
Ω

|u|p+1 dx ≤ 0.

If u 6≡ 0, then necessarily
n− 2

2
− n

p+ 1
≤ 0,

that is,

p ≤ n+ 2

n− 2
.

124



Bibliography

[1] R. A. Adams, Sobolev spaces. Academic Press, New York-London, 1975.

[2] N. Dunford and J. Schwartz, Linear operators, Vol. 1, Interscience, New York, 1958.

[3] L. C. Evans, Partial differential equations, 2nd edition, American Mathematical Society,
Providence, R. I., 2010.
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