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What is functional analysis?

One might say that functional analysis is the branch of mathematics that tries to capture
fundamental properties of common analytical objects by setting them in a more abstract general
framework. More specifically, functional analysis deals with infinite dimensional vector spaces
and mappings acting between them. Occasionally, finite dimensional vector spaces are also
considered. However, functional analytical theory of finite dimensional vector spaces usually
goes under the name of linear algebra. A nice account of linear algebra based on a truly functional
analytic approach is given in [9].

Functional analysis is essentially a science of the 20th century. One might argue that its
birthday coincides with the development of the notion of “Hilbert space” around 1905 by Er-
hard Schmidt, a scholar of David Hilbert, and almost simultaneously by Maurice René Fréchet.
(Hilbert spaces arose from Hilbert’s investigations on concrete integral equations. In fact, a
famous factoid of dubious origin reports that Hilbert once asked Richard Courant after a talk
“Richard, what exactly is a Hilbert space?”). This opened the doors to the development of
completely new methods, aiming at reformulating analytical assertions in an abstract way and
then proving relevant results by techniques based, among others, on linear algebra and topol-
ogy. A beautiful example for this approach is Stone’s generalization (obtained in 1937) of the
Weierstraß’ classical result that each continuous function may be approximated by polynomials,
see Theorem 4.32.

Very complete historical excursi can be found in [20]. However, it can be argued that the
history of functional analysis has often been the history of individual scientists and their ideas.
Short biographies of some of the most brilliant men and women of functional analysis appear
in [19]. In the beautiful book [15], the early history of functional analysis is shown to be
intertwined with the drama of Nazi occupation of Europe.

This manuscript has been developed for the course of introductory functional analysis held
during the summer term 2009 at the University of Ulm. Due to the time limitations of the
course only selected topics in functional analysis could be treated. I have decided to discuss
almost exclusively Hilbert space theory.

As almost all human products, this manuscript is highly unlikely to be free of mistakes, in
spite of the careful proof-reading of my assistent Manfred Sauter. Critics and corrections are
welcome via e-mail to delio.mugnolo@uni-ulm.de.

Ulm, August 2, 2011.
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CHAPTER 1

Metric, normed and Banach spaces

We assume the notion of vector space as well as some basic topological facts as known. In
the following we will always consider a field K as being either R or C.

Definition 1.1. Let X be a vector space over K. A distance d on X is a mapping d : X×X →
R+ such that for all x, y, z ∈ X
(1) d(x, y) = 0⇔ x = y,
(2) d(x, y) = d(y, x), and
(3) d(x, z) ≤ d(x, y) + d(y, z).

Then, (X, d) is called a metric space.

Definition 1.2. Let (X, d) be a metric space.

(1) A subset A of X is called open if for all x ∈ A there exists r > 0 such that

Br(x) := {y ∈ X : d(x, y) < r} ⊂ A.

It is called closed if X \ A is open. An element x ∈ A is called interior point of A if
there exist δ > 0 and y ∈ X such that y ∈ Bδ(y) ⊂ A.

(2) We say that a sequence (xn)n∈N ⊂ X converges to x ∈ X, or that x is limit of (xn)n∈N,
if limn→∞ d(xn, x) = 0. We say that (xn)n∈N ⊂ X is a Cauchy sequence if for all ε > 0
there exists N ∈ N such that d(xn, xm) < ε for all n,m > N .

(3) X is called complete if for each Cauchy sequence (xn)n∈N ⊂ X there exists x ∈ X such
that x is limit of (xn)n∈N.

(4) A subset Y of X is called dense in X if each element of X is limit of a suitable sequence
(yn)n∈N such that yn ∈ Y for all n ∈ N, or equivalently if for all x ∈ X and all ε > 0 there
is an y ∈ Y such that d(x, y) < ε.

Metric spaces were introduced by Maurice René Fréchet in 1906.

Example 1.3. The Euclidean distance d on the complex vector space Cn is defined by d(x, y) :=√
|x1 − y1|2 + . . .+ |xn − yn|2.

Example 1.4. Let X be a set. Then we can define the discrete distance by setting d(x, y) =
δxy, where δ is the Kronecker delta, i.e., d(x, x) = 1 and d(x, y) = 0 if x 6= y. In particular, any
non-empty set is metrisable, i.e., there is always a metric space associated to it.

The following fundamental result has been proved in 1899 by René Louis Baire.
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Theorem 1.5. Let (X, d) be a complete metric space and (Gn)n∈N a sequence of nonempty open
and dense subsets of X. Then also their intersection is dense in X.

Proof. Our aim is to show that for all x ∈ X and all ε > 0 there exists y ∈
⋂
n∈NGn such

that d(x, y) < ε.
Since G1 is dense in X, we can find y1 ∈ G1 ∩ Bε(x). Since both G1, Bε(x) are open, also

G1 ∩ Bε(x) is open, i.e., there exists ε1 > 0 such that Bε1(y1) ⊂ G1 ∩ Bε(x). Again because G2

is dense in X, we can find y2 ∈ G2 ∩ Bε̃1(y1), where ε̃1 := min{ ε1
2
, 1}. Since both G1, Bε̃1(x)

are open, also G1 ∩ Bε̃1(y1) is open, i.e., there exists ε2 > 0 such that Bε2(y2) ⊂ G2 ∩ Bε̃1(y1).
Clearly, it is possible to extend this construction to obtain sequences (yn)n∈N of vectors and
(εn)n∈N of strictly positive numbers such that

Bεn+1(yn+1) ⊂ Gn+1 ∩Bε̃n(yn), n ∈ N,
where ε̃n+1 := min{ εn

2
, 1
n
}. Take now m,n ∈ N, m > n, and observe that

d(yn, ym) < ε̃n <
1

n
,

hence (yn)n∈N is a Cauchy sequence. Because X is complete, (yn)n∈N converges to some y ∈ X.
Since moreover ym ∈ Gn+1 ∩Bε̃n(yn) ⊂ Bε̃n(yn) for all m > n, it follows that

y ∈ Bε̃n(yn) ⊂ Bεn(yn) ⊂ Gn, n ∈ N,
and accordingly y ∈

⋂
n∈NGn. Moreover y ∈ Bε1(y1) ⊂ Bε(x), i.e., d(x, y) < ε. This concludes

the proof. �

Remark 1.6. One can see that an equivalent formulation of Baire’s theorem is the following:
Let (X, d) be a complete metric space and (Fn)n∈N a sequence of closed subsets of X such

that
⋃
n∈N Fn = X. Then there exist x ∈ X, ε > 0 and n0 ∈ N, such that Bε(x) ⊂ An0 , i.e., at

least one set An0 has an interior point.
A subset U in X is called nowhere dense if U has no interior point. Any subset of X that

can be written as
⋃
n∈N Un for a sequence (Un)n∈N of nowhere dense subsets of X is said to be

of first Baire category. A subset of X that is not of first category is said to be of second
Baire category. Now, we may formulate Baire’s theorem in yet another way by stating that

Each nonempty complete metric space is of second Baire category.
One of the first applications of Baire’s theorem is to the proof of the following fact – which

was actually first shown by Vito Volterra:
No function from R to R can be continuous at each rational number and discontinuous at

each irrational number.

Exercise 1.7. 1) Show that Q is of first Baire category in R.
2) Show that R \Q and R are of second Baire category in R.
3) Show that R is of first Baire category in C.

A special class of metric space is presented in the following.

Definition 1.8. Let X be a vector space over a field K. A norm ‖ · ‖ on X is a mapping
X → R+ such that for all x, y ∈ X and all λ ∈ K
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(1) ‖x‖ = 0⇔ x = 0,
(2) ‖λx‖ = |λ|‖x‖, and
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Then, (X, ‖ · ‖) is called a normed vector space. A complete normed vector space is called a
Banach space.

Example 1.9. 1) Consider the Euclidean distance d on the complex vector space Cn. Then

‖x‖2 := d(0, x) :=
√
|x1|2 + . . .+ |xn|2 defines a norm on Cn.

2) The vector space `1 of all summable sequences becomes a normed vector space after intro-
ducing ‖x‖1 :=

∑
n∈N |xn|.

3) Both the vector space c0 of all sequences that converge to 0 and the vector space `∞ of all
bounded sequences become a normed vector spaces after introducing ‖x‖∞ := supn∈N |xn|.

4) Let Ω be a σ-finite measure space. The Lebesgue space Lp(Ω) of p-summable functions on
Ω is a normed vector space for all p ∈ [1,∞) with respect to the norm defined by

‖f‖p :=

(∫
Ω

|f(x)|pdx
) 1

p

.

Same holds for the Lebesgue space L∞(Ω) of essentially bounded functions on Ω, normed by

‖f‖∞ := ess sup
x∈Ω

‖f(x)‖.

Exercise 1.10. Prove that the norms ‖ · ‖2 and ‖ · ‖1 introduced in Exercise 1.9.(1)-(2), respec-
tively, turn the respective vector spaces into Banach spaces. What about the norm introduced in
Exercise 1.9.(3)?

Remark 1.11. We observe that Lp(Ω) is a Banach space for all p ∈ [1,∞) as well as for p =∞,
see e.g. [1, § 1.3] for a proof.

Example 1.12. Let (X1, d1), (X2, d2) be metric spaces.

(1) Prove that

d((x1, y1), (x2, y2)) := d1(x1, x2) + d2(y1, y2), x1, x2 ∈ X1, y1, y2 ∈ X2,

defines a metric on X1 ×X2.
(2) Show that if X1, X2 are normed (resp., complete), then also X1 × X2 is normed (resp.,

complete) with respect to the norm defined by

‖(x1, x2)‖X := ‖x1‖X1 + ‖x2‖X2 , x1 ∈ X1, x2 ∈ X2.

Definition 1.13. Two norms ‖ · ‖ and || · || on X are called equivalent if there exists c > 0 such
that

c‖x‖ ≤ ||x|| ≤ 1

c
‖x‖ for all x ∈ X.

Remark 1.14. Observe that in particular if a sequence converges with respect to a norm ‖ · ‖,
then it converges with respect to any further norm that is equivalent to ‖ · ‖. Therefore, if a
vector space is complete with respect to a norm ‖ · ‖, then it is complete also with respect to any
further norm that is equivalent to ‖ · ‖.
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Exercise 1.15. Consider the space C([0, 1]) of all continuous functions on [0, 1] and define the
sup-norm by

‖f‖∞ := max
x∈[0,1]

|f(x)| and ‖f‖1 :=

∫ 1

0

|f(x)|dx.

Show that

(1) C([0, 1]) endowed with ‖ · ‖∞ becomes a Banach space;
(2) ‖ · ‖1 defines a norm on C([0, 1]), too;
(3) if a sequence (fn)n∈N of functions in C([0, 1]) converges with respect to ‖ · ‖∞, then it also

converges with respect to ‖ · ‖1;
(4) define the functions fk(t) := tk for k ∈ N, and f(t) := 0 (t ∈ [0, 1]). Then the sequence

(fk)k∈N converges to f with respect to ‖ · ‖1;
(5) the norms ‖ · ‖∞ and ‖ · ‖1 are not equivalent (Hint: use (4));
(6) the norm ‖| · |‖ defined by

‖|f |‖ := ‖f‖∞ + ‖f‖1

is equivalent to ‖ · ‖∞.



CHAPTER 2

Operators

A central notion in functional analysis is that of operator.

Definition 2.1. Let X, Y be vector spaces. A mapping T from X to Y is usually called an
operator, and we usually write Tx := T (x).

We will devote our attention almost exclusively to linear operators, i.e., to operators that
satisfy

T (x+ y) = Tx+ Ty and T (λx) = λTx for all x, y ∈ H, λ ∈ K.

Clearly, each n×m-matrix is a linear operator mapping Km to Kn.

Definition 2.2. Let X, Y be normed vector spaces. A linear operator T is called bounded,
and we write T ∈ L(X, Y ), if

(2.1) ‖T‖L(X,Y ) := sup
‖x‖X≤1

‖Tx‖Y <∞.

The null space and range of T are defined by

KerT := {x ∈ X : Tx = 0}
and

RanT := {Tx ∈ Y : x ∈ X},
respectively.

We will mostly write ‖T‖ instead of ‖T‖L(X,Y ).

Remark 2.3. Let X, Y be normed vector spaces and T ∈ L(X, Y ). By definition, ‖Tx‖Y ≤
‖T‖‖x‖X for all x ∈ X. Let additionally Z be a normed vector space and S ∈ L(Y, Z). Then
we obtain ‖STx‖Z ≤ ‖S‖‖Tx‖Y ≤ ‖S‖‖T‖‖x‖X , i.e., ST ∈ L(X,Z) and

‖ST‖ ≤ ‖S‖‖T‖.
One says that the operator norm is submultiplicative.

Remark 2.4. Let X, Y be normed vector spaces. It is easy to see that a linear operator from X
to Y is bounded if and only if

(2.2) ‖T‖ = sup
x6=0

‖Tx‖Y
‖x‖X

<∞.

9
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Exercise 2.5. Let X be a normed vector space and T be a bounded liner operator on X. Show
that the square of T defined by

T 2 : x 7→ TTx, x ∈ X,

and more generally the nth-power of T defined by

T n : x 7→ T . . . T︸ ︷︷ ︸
n times

x, x ∈ X,

define bounded linear operators on X for all n ∈ N.

Example 2.6. Define operators T, S acting on a space of sequences (to be made precise later)
by

T (xn)n∈N := (0, x1, x2, . . .)

and

S(xn)n∈N := (x2, x3, . . .).

It is clear that T, S are linear. They are called the right and left shift, respectively.
One also sees that STx = x for each sequence x. We can consider both T and S as operators

acting on several sequence spaces, including `1, `2, `∞.

Example 2.7. Let X1, X2 be normed spaces and consider the set X := X1 ×X2. It is easy to
show that ∥∥∥∥(xy

)∥∥∥∥
X

:= ‖x‖X1 + ‖y‖X2 , x ∈ X1, y ∈ X2,

defines a norm on X – with respect to which X is in fact a Banach space provided that X1, X2

are Banach spaces.
Now, consider four operators A ∈ L(X1), B ∈ L(X2, X1), C ∈ L(X1, X2), and D ∈ L(X2).

Then, the mapping

X 3
(
x
y

)
7→
(
Ax+By
Cx+Dy

)
defines a bounded linear operator on X × Y which is usually denoted by(

A B
C D

)
in analogy with the rule of composition between a matrix and a vector in linear algebra.

Example 2.8. Erik Ivar Fredholm preformed a thoroug study of a class of so-called integral
equations in several investigations at the turn of the 20th century. With this purpose, he followed
an abstract approach and introduced what is now called the Fredholm operator Fk by

(Tf)(x) :=

∫ 1

0

k(x, y)f(y)dy, f ∈ C([0, 1]), x ∈ [0, 1].
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If k ∈ C([0, 1]× [0, 1]), then T is linear and bounded and its norm can be estimated from above
by ‖k‖∞ := max0≤x,y≤1 |k(x, y)|. To see this, observe that for all x ∈ [0, 1]

|(Tf)(x)| =
∣∣∣ ∫ 1

0

k(x, y)f(y)dy
∣∣∣ ≤ ‖k‖∞ ∫ 1

0

|f(y)|dy ≤ ‖k‖∞ max
0≤x≤1

|f(x)|.

Accordingly,
‖Tf‖∞ = max

0≤x≤1
|(Tf)(x)| ≤ ‖k‖∞‖f‖∞,

i.e., ‖T‖ ≤ ‖k‖∞. The function k is often called kernel of the operator T .

The following example shows that a bounded linear operator – say, from X to Y – is always
defined everywhere in X.

Example 2.9. The operator T defined by

(Tf)(x) := xf(x), f ∈ C([0, 1]), x ∈ [0, 1],

is linear and bounded on C([0, 1]). It is called position operator in the context of quantum
mechanics.

Not each linear operator is bounded. For example, the momentum operator S defined by

(Sf)(x) := f ′(x), f ∈ C1([0, 1]), x ∈ [0, 1],

also relevant in quantum mechanics, is linear but not bounded since continuous functions on a
compact interval need not have bounded first derivative.

Example 2.10. Let X, Y be normed vector spaces.

(1) The operator mapping each x ∈ X to 0 ∈ Y , called the zero operator, is linear and bounded
with norm 0. Its null space is clearly X and its range {0}.

(2) The operator Id mapping each x ∈ X to itself, called the identity, is linear and bounded on
X. If X 6= {0}, then Id has norm 1. Its null space is {0} and its range is X.

(3) By Remark 2.3, if T ∈ L(X, Y ) is invertible, then

1 = ‖ Id ‖ = ‖TT−1‖ ≤ ‖T‖‖T−1‖,
and therefore ‖T‖−1 ≤ ‖T−1‖.

Exercise 2.11. Let X be a Banach space. Show that a linear operator on X is bounded if and
only if it is continuous if and only if it is Lipschitz continuous.

Exercise 2.12. Let Y be a normed vector space and n ∈ N. Show that each linear operator
from Kn to Y is bounded.

Exercise 2.13. Let X be a Banach space. Show that a linear operator on X is injective if and
only if its null space is {0}.

Remark 2.14. Let X, Y be normed vector spaces and T ∈ L(X, Y ). It is clear that KerT and
RanT are vector spaces. Since T is continuous, T−1C is a closed subset of X for all closed
subsets C of Y . In particular, KerT = T−1{0} is a closed subspace of X, while RanT need not
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be closed. Can you find an example? A characterization of operators with closed range can be
found in [2, § II.7].

The set L(X, Y ) of linear operators from X to Y has a vector space structure, after letting

(S + T )x := Sx+ Tx and (λT )x := λTx for all S, T ∈ L(X, Y ), λ ∈ K, x ∈ X.

In fact, L(X, Y ) becomes a normed vector space when endowed with ‖ · ‖. More can be said.

Exercise 2.15. Let X be a normed vector space and Y a Banach space. Show that L(X, Y ) is
complete, hence a Banach space.

A most important consequence of Baire’s theorem is the following, proved in 1927 by Stefan
Banach and Hugo Steinhaus.

Theorem 2.16 (Uniform boundedness principle). Let X be a Banach space and Y be a normed
vector space. Le (Tj)j∈J be a family of bounded linear operators from X to Y . If supj∈J ‖Tjx‖Y <
∞ for all x in X, then supj∈J ‖Tj‖ <∞.

Proof. Define a sequence of closed sets Xn by

Xn := {x ∈ X : sup
j∈J
‖Tjx‖Y ≤ n}, n ∈ N,

so that X =
⋃
n∈NXn. Since in particular X is a complete metric space, Baire’s theorem – in

the version presented in Remark 1.6 – applies. Thus, at least one Xn0 has an interior point,
i.e., there exist y ∈ Xn0 and δ > 0 such that Bδ(y) ⊂ Xn0 . Pick some z ∈ X such that
‖z‖X = ‖(z + y) − y‖X < δ. In this way, y + z ∈ Bδ(y) ⊂ Xn0 and hence for all j ∈ J ,
‖Tjz‖Y ≤ ‖Tj(y + 6z)‖Y + ‖Tjy‖Y ≤ 2n0 . Thus, ‖Tj‖ ≤ 2n0

δ
for all j ∈ J , and the claim

follows. �

A classical application of the uniform boundedness principle results in the proof of the
following result, first obtained in 1929 by Stefan Banach. Usually, it goes under the name of
Open mapping theorem.

Theorem 2.17. If X and Y are Banach spaces and T ∈ L(X, Y ) is surjective, then T is open,
i.e., T (U) is open in Y for all open subsets U of X.

Proof. To begin with, set

Yn := nT (B1(0)) := {ny ∈ Y : y ∈ T (B1(0))}.

Because T is surjective one has Y =
⋃
n∈N Yn. By Baire’s theorem – again in the version

presented in Remark 1.6 – at least one Yn0 has an interior point, hence in particular T (B1(0))

has nonempty interior, i.e., there are y ∈ Y and ε > 0 such that B4ε(y) ⊂ T (B1(0)). In particular

both y and (by similar reasons) −y belong to T (B1(0)). Adding up we obtain

B4ε(0) ⊂ T (B1(0)) + T (B1(0)) := {y1 + y2 ∈ Y : y1, y2 ∈ T (B1(0))}.
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Since T (B1(0)) is convex (why?) we conclude that T (B1(0)) + T (B1(0)) = 2T (B1(0)), and this
finally implies that

(2.3) B2ε(0) ⊂ T (B1(0)) for some ε > 0.

We will use (2.3) in order to prove that

(2.4) Bε(0) ⊂ T (B1(0)) for some ε > 0.

Let z ∈ Y with ‖z‖Y ≤ ε. It suffices to find x ∈ X such that ‖x‖ < 1 and Tx = z. In fact, it
follows by recurrence from (2.3) that for all n ∈ N there exists xn ∈ X such that

‖xn‖ <
1

2n
and

∥∥∥z − T n∑
k=1

xk

∥∥∥ < ε

2n
.

Accordingly, the series
∑

k∈N xk converges by the Cauchy criterion. Let us denote x :=
∑

k∈N xk.
Then clearly ‖x‖X < 1 and z = Tx, by continuity of T .

We are finally in the position to prove the claim. Let G ⊂ X be open and y ∈ TG.
Pick x ∈ X such that x = Ty. Then Bδ(x) ⊂ G. By linearity there exists ε > 0 such that
Bε(0) ⊂ TBδ(0). Then we conclude that

Bε(y) = y +Bε(0) ⊂ y + TBδ(0) = Tx+ TBδ(0) = TBδ(x) ⊂ TG.

This concludes the proof. �

The following is usually called bounded inverse theorem.

Corollary 2.18. If X and Y are Banach spaces and T ∈ L(X, Y ) is bijective, then T−1 ∈
L(Y,X).

Proof. Checking linearity of T−1 is an easy exercise. Let now y ∈ Y such that y = Tx.
Then (2.4) implies that if ‖Tx‖Y ≤ ε, then ‖x‖X ≤ 1, and by linearity this shows that T−1 is
bounded. �

Definition 2.19. Let X, Y be normed spaces and T a bounded linear operator from X to Y .
If T is bijective, then it is called an isomorphism, and in this case the spaces X, Y are called
isomorphic, and we write X ∼= Y . If T satisfies ‖Tx‖Y = ‖x‖X for all x ∈ X, then T is called
an isometry.

Observe in particular that if a normed space X is isomorphic to a Banach space Y , then X
is a Banach space, too.

Example 2.20. The right shift is clearly an isometry with respect to all norms `1, `2, `∞, whereas
the left shift is not – take e.g. the sequence (1, 0, 0, 0, . . .).

Exercise 2.21. Prove that each isometry is injective and in particular it has closed range.

Theorem 2.22. Let (X, ‖ · ‖X) be a normed space. If there is n ∈ N such that X is isomorphic
to Rn, then any further norm on X is equivalent to ‖ · ‖X .
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Proof. Denote by ‖ · ‖2 the norm associated with the Euclidean distance on Rn. Let Φ be
an isomorphism from Rn to X. Then in particular Φ, and hence the mapping φ : Rn 3 x 7→
‖Φx‖X ∈ R are continuous. Consider the unit sphere Sn−1 of Rn, i.e., the set of all vectors of Rn

of unitary norm. Since Sn−1 is compact, the restriction of φ to Sn−1 has a (necessarily positive)
minimum m. Let now 0 6= x ∈ Rn and observe that

‖Φ‖‖x‖2 ≥ Φx‖X = ‖x‖2

∥∥∥Φ
x

‖x‖2

∥∥∥
X
≥ m‖x‖2.

Let || · ||X be a further norm on X and denote by ||Φ|| the norm of Φ with respect to || · ||X . As
above we obtain

||Φx||x‖2 ≥ ||Φx||X ≥ m‖x‖2.

Denote by m the minimum of φ on the unit sphere defined with respect to the norm || · ||X .
Then for y ∈ X and x ∈ Rn such that Φx = y we have

||y||X = ||Φx||X ≤ ||Φ||‖x‖2 ≤
||Φ||
m
‖y‖X .

One proves likewise that

‖y‖X ≤
‖Φ‖
m
||y||X .

This completes the proof. �

Exercise 2.23. Is the right shift operator an isomorphism on either `1, `2, or `∞? Is it an
isometry?

Exercise 2.24. Denote by c the vector space of converging sequences. Define an operator from
c to c0 by

T (xn)n∈N := ( lim
n→∞

xn, x1 − lim
n→∞

xn, x2 − lim
n→∞

xn, . . .).

Show that T is an isomorphism.

Exercise 2.25. Let Ω be a bounded open subset of Rn. Consider an essentially bounded and
measurable qΩ→ K and define an operator Mq on Lp(Ω), called multiplication operator, by

(Mqf)(x) := q(x)f(x) for all f ∈ Lp(Ω) and a.e. x ∈ Ω.

Then Mq defines a bounded linear operator on Lp(Ω) due to the Hölder inequality. Show that
‖Mq‖ = ‖q‖∞ and that Mq has a bounded inverse if and only if 0 is not in the essential range
of q, i.e., in the set

{z ∈ K : µ({x : |f(x)− z| < ε}) > 0 for all ε 6= 0}.
In this case, determine the inverse.



CHAPTER 3

Hilbert spaces

Definition 3.1. Let H be a vector space over a field K. An inner product (·|·) on H is a
mapping H ×H → K such that for all x, y ∈ H and all λ ∈ K
(1) (x|x) ≥ 0 and (x|x) = 0⇔ x = 0,
(2) (λx|y) = λ(x|y),
(3) (x|y + z) = (x|y) + (x|z).

Furthermore, it is required that

(4) (x|y) = (y|x) for all x, y ∈ H
if K = C. Then, (H, (·|·)H) is called a pre-Hilbert space.

Exercise 3.2. Let (H1, (·|·)1), (H2, (·|·)2) be pre-Hilbert spaces. Prove that

((x1, y1)|(x2, y2)) := (x1|x2)H1 + (y1|y2)H2 , x1, x2 ∈ H1, y1, y2 ∈ H2,

defines an inner product on H1 ×H2.

Remark 3.3. Observe that accordingly

(x+ y|x+ y)H = (x|x)H + 2(x|y) + (y|y)H for all x, y ∈ H
if H is a real pre-Hilbert space (or (x+y|x+y)H = (x|x)H +2Re(x|y)+(y|y)H if H is a complex
pre-Hilbert space).

The following important estimate from above for inner products has been proved in 1821 by
Augustin Louis Cauchy in the case of sums of scalars. It has been obtained in 1859 by Viktor
Yakovlevich Bunyakovsky (and rediscovered in 1888 by Hermann Amandus Schwarz) in the case
of integrals of products of functions.

Lemma 3.4 (Cauchy–Schwarz inequality). Let H be a pre-Hilbert space. Then for all x, y ∈ H
one has

|(x|y)|2 ≤ (x|x)(y|y).

Proof. Let x, y ∈ H. If y = 0, the assertion is clear. Otherwise, for all λ ∈ K = C we have

0 ≤ (x− λy|x− λy)H = (x|x)H + |λ|2(y|y)H − 2Re(λ(x|y)H).

Setting λ = (x|y)H
(y|y)H

we obtain

0 ≤ (x|x)H +
|(x|y)H |2

(y|y)H
− 2
|(x|y)H |2

(y|y)H
= (x|x)H −

|(x|y)H |2

(y|y)H
.

15
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Accordingly,

(x|x)H ≥
|(x|y)H |2

(y|y)H
,

whence the claim follows. (As usual, the case of K = R can be discussed similarly.) �

Exercise 3.5. Let H be a pre-Hilbert space and define a mapping ‖ · ‖ by

(3.1) ‖x‖ :=
√

(x|x), x ∈ H.
(1) Prove that ‖ · ‖ satisfies ‖x+ y‖2 ≤ (‖x‖+ ‖y‖)2.
(2) Conclude that H is also a normed vector space with respect to the norm ‖ · ‖.
Definition 3.6. If a pre-Hilbert space H is complete with respect to the canonical norm intro-
duced in (3.1) (i.e., if each Cauchy sequence with respect to this norm is also convergent), then
H is called a Hilbert space.

Example 3.7. The vector space C([0, 1]) of continuous real-valued functions on [0, 1] is a pre-

Hilbert space with respect to the inner product (f |g) :=
∫ 1

0
f(x)g(x)dx. However, this pre-Hilbert

space is not complete, i.e., it is not a Hilbert space. Still, this inner product induces a Hilbert
space structure on the larger space L2(0, 1) of square summable functions.

Example 3.8. The vector space `2 of all square-summable (complex-valued) sequences becomes
a Hilbert space after introducing (x|y)2 :=

∑
n∈N xnyn, x, y ∈ `2.

Exercise 3.9. Let H be a Hilbert space.

(1) Show that each closed subspace of a Hilbert space H is again a Hilbert space with respect to
the inner product induced by H.

(2) Deduce that the sets of square summable functions on R that are positive or even (see
Exercise 3.18) are Hilbert spaces.

Exercise 3.10. Let H be a pre-Hilbert space and T ∈ L(H). Define the quadratic form
associated with T by a(x) := (Tx|x)H .

(1) Show that if K = C and a(x) = 0 for all x ∈ H, then T = 0, i.e., Tx = 0 for all x ∈ H.

(2) Consider the linear mapping T :=

(
0 1
−1 0

)
on R2 in order to show that a(x) may vanish

for all x ∈ H even if T 6= 0 in the case K = R.

Exercise 3.11. Let (xn)n∈N, (yn)n∈N be convergent sequences in a pre-Hilbert space H. Show
that also the sequence of scalars ((xn|yn)H)n∈N is convergent and

lim
n→∞

(xn|yn) =
(

lim
n→∞

xn| lim
n→∞

yn

)
.

Definition 3.12. Let H be a pre-Hilbert space. Two vectors x, y ∈ H are said to be orthogonal
to each other if (x|y)H = 0, and we denote x ⊥ y.

If two subsets A,B of H satisfy (x|y)H = 0 for all x ∈ A and all y ∈ B, also A,B are said
to be orthogonal to each other. Moreover, the set of all vectors of H that are orthogonal to
each vector in A is called orthogonal complement of A and is denoted by A⊥.
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Exercise 3.13. Let H be a pre-Hilbert space and x ∈ H, and λ ∈ K. Then for all y ∈ H such
that ‖y‖H = 1 one has (x− λy) ⊥ y if and only if λ = (x|y)H .

Exercise 3.14. Let H be a pre-Hilbert space. Prove the following assertions.

(1) If x, y are orthogonal to each other, then ‖x‖2
H + ‖y‖2

H = ‖x+ y‖2
H .

(2) More generally, 2‖x‖2
H + 2‖y‖2

H = ‖x+ y‖2
H + ‖x− y‖2

H for all x, y ∈ H.
(3) Also, for all x, y ∈ H one has

4(x|y)H = ‖x+ y‖2
H − ‖x− y‖2

H

if K = R, and

4(x|y)H = ‖x+ y‖2
H + i‖x+ iy‖2

H − ‖x− y‖2
H − i‖x− iy‖2

H

if K = C.
(4) If A is a subset of H, then A⊥ is a closed subspace of H.
(5) If A is a subset of H, then A ⊂ (A⊥)⊥.
(6) The orthogonal complement H⊥ agrees with {0}.

Remark 3.15. The result in Exercise 3.14.(1) can be compared with Pythagoras’ theorem).
Beware: the converse is not true. Consider the vectors (1, i), (0, 1) ∈ C2: then the real part of
their inner product vanishes, but they are not orthogonal to each other.

The formulae presented in Exercise 3.14.(2)–(3) are usually known as parallelogram law
and polarisation identity, respectively. Observe that in particular a normed vector space
(X, ‖ · ‖X) is a pre-Hilbert space – i.e., ‖ · ‖X comes from an inner product – if and only if
‖ · ‖X satisfies the parallelogram law. Also observe that the polarisation identity implies joint
continuity of the mapping (·|·)H : H ×H → C.

One of the fundamental differences between Hilbert spaces and general Banach spaces is
given in the following.

Theorem 3.16. Let H be a Hilbert space. Let A be closed and convex subset of H and let
x0 ∈ H.

1) Then there exists exactly one vector x of best approximation to x0 in A, i.e., there
exists a unique vector x ∈ A such that

‖x− x0‖H = inf
y∈A
‖y − x0‖H .

2) Such a best approximation x of x0 is characterized by the inequality

(3.2) (x0 − x|y − x) ≤ 0 for all y ∈ K if K = R, or by

(3.3) Re(x0 − x|y − x) ≤ 0 for all y ∈ K if K = C.

Such an x is usually denoted by PA(x0) and called orthogonal projection of x0 onto A.
Somehow confusingly, also the operator PA is commonly called orthogonal projection of H
onto A.
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Proof. 1) One can assume without loss of generality that x0 = 0 6∈ A.
i) In order to prove existence of the vector of best approximation, let z := infy∈A ‖y‖H and

consider a sequence (yn)n∈N ⊂ A such that limn→∞ ‖yn‖H = z. Then by the parallelogram law
(see Exercise 3.14.(2))

lim
m,n→∞

∥∥∥∥yn + ym
2

∥∥∥∥2

H

+ lim
m,n→∞

∥∥∥∥yn − ym2

∥∥∥∥2

H

= lim
m,n→∞

1

2

(
‖yn‖2

H + ‖ym‖2
H

)
= z2.

Because A is convex yn+ym
2
∈ A, so that by definition ‖yn+ym

2
‖2
H ≥ z2. One concludes that

lim
m,n→∞

∥∥∥∥yn − ym2

∥∥∥∥2

H

= 0,

i.e., (yn)n∈N is a Cauchy sequence. By completeness of H there exists a x := limn→∞ yn, which
belongs to A since A is closed. Clearly, ‖x‖ = limn→∞ ‖yn‖ = z.

ii) In order to prove that a vector of best approximation is unique, assume that both x, x∗

satisfy ‖x‖H = ‖x∗‖H = z. If x 6= x∗, then ‖x + x∗‖2
H < ‖x + x∗‖2

H + ‖x − x∗‖2
H , and by the

parallelogram law∥∥∥∥x+ x∗

2

∥∥∥∥2

H

<

∥∥∥∥x+ x∗

2

∥∥∥∥2

H

+

∥∥∥∥x− x∗2

∥∥∥∥2

H

=
1

2
(‖x‖2

H + ‖x∗‖2
H) = z2.

In other words, x+x∗

2
would be a better approximation of x. Since x+x∗

2
∈ A, this would contradict

the construction of x as vector of best approximation of x0 in A. Hence, x = x∗.
2) Let w ∈ A and set yt := (1− t)x + tw, where t ∈ (0, 1] is a scalar to be optimized in the

following. Since A is convex, yt ∈ A and accordingly

‖x0 − x‖H < ‖x0 − yt‖H ,
since yt is not the (unique!) best approximation of x0 in A. Accordingly,

‖x0 − x‖H < ‖x0 − (1− t)x− tw‖H = ‖(x0 − x) + t(x− w)‖H ,
and squaring both sides we obtain by Remark 3.3

‖x0 − x‖2
H < ‖(x0 − x)‖2

H + t2‖(x− w)‖2
H − 2tRe(x0 − x|w − x).

It follows that t2‖(x − w)‖2
H > 2tRe(x0 − x|w − x) for all t ∈ (0, 1]. Therefore, 0 ≥ 2Re(x0 −

x|w − x) in the limit t→ 0 and the claimed inequality holds.
Conversely, let x satisfy (3.3). Then for all y ∈ A

‖x− x0‖2
H − ‖y − x0‖2

H = 2Re(x0 − x|y − x)− ‖y − x‖2
H ≤ 0,

i.e., ‖x− x0‖2
H ≤ ‖y− x0‖2

H . It follows that x is the best approximation of x0 in A. (In the case
K = R the assertions can be proved in just the same way). �

Exercise 3.17. Let H be a Hilbert space. Let A1, A2 be closed and convex subsets of H and
denote by P1, P2 the orthogonal projections onto A1, A2, repsectively. Prove that P1A2 ⊂ A2 if
and only if P2A1 ⊂ A1 if and only if P1, P2 commute, i.e., P1P2x = P2P1x for all x ∈ H.
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Exercise 3.18. Define A1, A2 ⊂ L2(R) as the sets of all square summable functions that are
a.e. even and positive, respectively.

(1) Show that A1, A2 are closed convex subsets of L2(R).
(2) Prove that the orthogonal projections PA1 , PA2 onto A1, A2 are given by

PA1f(x) =
f(x) + f(−x)

2
and PA2f(x) =

|f(x)|+ f(x)

2
for a.e. x ∈ R.

Exercise 3.19. Let H be a Hilbert space and A be a closed convex subset of H.

(1) Show that the orthogonal projection PA is linear if and only if A is a closed subspace of H.
(2) Prove that PA is Lipschitz continuous with Lipschitz constant 1.

Exercise 3.20. Let H be a Hilbert space and Y be a closed subspace of H.

(1) Show that if Y 6= {0}, then the orthogonal projection PY of H onto Y satisfies ‖PY ‖ = 1
and KerPY = Y ⊥.

(2) Prove that each x ∈ H admits a unique decomposition as x = y + z, where y = PY x ∈ Y
and z = PY ⊥x ∈ Y ⊥.

Recall that the linear span of two vector spaces Y, Z whose interection is {0} is called their
direct sum, and we write Y ⊕ Z. Accordingly, under the assumptions of Exercise 3.20 H is
the direct sum of Y and Y ⊥. We also denote by x = y ⊕ z the decomposition introduced in
Exercise 3.20.(2).

The following is one of the fundamental results in functional analysis. It has been first proved
by Eduard Helly in 1912, although it is commonly dubbed the Hahn–Banach Theorem, after
Hans Hahn and Stefan Banach who rediscovered it independently at the end of the 1920s.

Theorem 3.21 (Hahn–Banach Theorem). Let H be a real Hilbert space and C a nonempty
convex set. Let x0 ∈ H \ C. Then there exists x∗ ∈ H, x∗ 6= 0, such that

(x∗|x)H > (x∗|x0) for all x ∈ C.

Proof. The desired vector x∗ can be written down explicitly: it is given by x∗ := PCx0−x0,
where the existence of the orthogonal projection PC of H onto the closed convex set C is ensured
by Theorem 3.16.(1). Observe that since x0 6∈ C, PCx0 6= x0 and therefore x∗ 6= 0.

In order to check that such an x∗ has the claimed properties, observe that by Theorem 3.16.(2)
for all x ∈ C we have

0 ≤ (x∗|x− PCx0)H

= (x∗|x− x0 + x0 − PCx0)H

= (x∗|x− x0)H − (x∗|PCx0 − x0)H

= (x∗|x)H − (x∗|x0)− ‖x∗‖2
H .

Accordingly, (x∗|x)H ≥ ‖x∗‖2
H + (x∗|x0) > (x∗|x0) and the claim follows. �

Exercise 3.22. Mimic the proof of Theorem 3.21 in order to proof the following weaker result:
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Let H be a real Hilbert space and C a nonempty, open and convex set. Let x0 ∈ H \C. Then
there exists x∗ ∈ H such that

inf
x∈C

(x∗|x)H ≥ (x∗|x0).

Remark 3.23. It is a fundamental fact of functional analysis that the Hahn–Banach theorem
also holds in general Banach (rather than Hilbert) spaces. The proof is however much lengthier
and we omit it. Observe that, unlike in the Hilbert space setting, the Banach space version of
the Hahn–Banach theory relies upon the Axiom of choice.

The above Hahn–Banach theorem has a manifold of more or less direct consequences in
functional analysis. E.g., Chapter 1 of [2] is devoted to the Hahn–Banach theorems. Let us
mention one of the most prominent.

Corollary 3.24. Let H be a Hilbert space, A,B to convex, nonempty and disjoint subsets of H.
If A is open, then there exists a closed hyperplane that separates A,B in a broad sense,
i.e., there exist x∗ ∈ H, x∗ 6= 0, and α ∈ K such that (x∗|x)H ≥ α for all x ∈ A and (x∗|x)H ≤ α
for all x ∈ B.

Proof. Consider the convex set C = A− B. Then C is open, since it is the union of open
sets (it can be written as C =

⋃
y∈B A− {y}) and 0 6∈ C, since there is no x ∈ A ∩B. Then by

Exercise 3.22 there exists x ∈ H such that infx∈C(x∗|x)H ≥ 0, i.e., such that (x∗|x)H ≥ (x∗|y)

for all x ∈ A and all y ∈ B. The claim now follows setting α :=
infx∈A(x∗|x)H−supy∈B(x∗|y)

2
. �

Exercise 3.25. Consider an open subset D ⊂ C, a Hilbert space H and a mapping f : D → H.
Deduce from the theorem of Hahn–Banach that f is holomorphic1 if and only if 〈φ, f(·)〉 : D → C
is holomorphic for all φ ∈ H.

1 I.e., for all z ∈ D there exists x ∈ H such that

lim
h→0

f(z + h)− f(z)− hx
h

= 0.
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Fourier analysis

Definition 4.1. Let (H, (·|·)H) be a pre-Hilbert space. Then a family {en ∈ H \ {0} : n ∈ J},
J ⊂ N, is called orthogonal if (en|em)H = 0 for all n 6= m, and orthonormal if (en|em)H =
δmn for all m,n ∈ J , where δmn denotes the Kronecker delta.

Moreover, {en ∈ H : n ∈ J} is called total if its linear span (i.e., the set of all finite linear
combinations of elements of the family) is dense in H.

An orthonormal and total family is called a Hilbert space basis of H, or simply a basis. The
smallest cardinality of a basis is called Hilbert space dimension of H.

Definition 4.2. A Hilbert space H is called separable if it contains a countable total family.

Example 4.3. The vector space Cn is a Hilbert space with respect to the inner product defined
by (x|y) :=

∑n
k=1 xkyk, x, y ∈ Cn. It is clearly separable.

Example 4.4. Let `2([0, 1]) denote the space of all functions f : [0, 1] → R that vanish on
[0, 1] \ Ef (where the exceptional set Ef is countable), and such that (f(x))x∈Ef is a square
summable sequence. Define a mapping H ×H → R by

〈f, g〉 =
∑
x∈[0,1]

f(x)g(x)

(the sum is over a countable set!). Then 〈·, ·〉 defines an inner product on H, and in fact one
can check that (H, 〈·, ·〉) is a Hilbert space. However, H is not separable. In fact for the sequence
(fn)n∈N ⊂ H there exists a function f ∈ H, f 6= 0, such that

〈f, fn〉 = 0 ∀n ∈ N,
since the set {fn(x) 6= 0 : n ∈ N, x ∈ [0, 1]} is countable. Accordingly, the linear span of any
sequence (fn)n∈N is not dense in H.

Example 4.5. Each closed subspace of a separable Hilbert space is separable.

Definition 4.6. Let X be a normed space and {xn ∈ X : n ∈ J} a family of vectors. The
associated series

∑
n∈J xn is called convergent if for some x ∈ X and all ε > 0 there exists a

finite set Jε ⊂ N such that ‖x−
∑

n∈J̃ xn‖X < ε and all finite sets J̃ such that Jε ⊂ J̃ ⊂ J . It is
called absolutely convergent if (‖xn‖X)n∈N belongs to `1.

Remark 4.7. Observe that if J ⊂ N, then convergence of the series
∑

n∈J xn associated with
{xn ∈ X : n ∈ J} is equivalent to the usual notion – i.e., convergence of the sequence of partial
sums.

21
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Exercise 4.8. Let X be a normed space. Then X is complete if and only if each absolutely
convergent series is also convergent.

Corollary 4.9. Let H be a Hilbert space. Let {xn ∈ H : n ∈ N} be an orthogonal family. Then
the series

∑
n∈N xn is convergent if and only if (‖xn‖X)n∈N ⊂ R is square summable.

Proof. Applying Exercise 3.14.(1) repeatedly we deduce that∥∥∥∑
k∈J

xk

∥∥∥2

H
=
∑
k∈J

‖xk‖2
H

for any finite subset J of N. Taking the limit we can extend this equality to the case of series
associated with infinite sequences. Hence, ‖

∑
k∈N xk‖H <∞ if and only if∥∥∥∑

k∈N

xk

∥∥∥2

H
=
∑
k∈N

‖xk‖2
H <∞.

This completes the proof. �

Theorem 4.10. Let H be a pre-Hilbert space. Let {en ∈ H : n ∈ J} be an orthonormal family.
Then the following assertions hold.

(1)
∑

n∈J |(x|en)H |2 ≤ ‖x‖2
H for all x ∈ H. If in particular H is complete, then the series∑

n∈J(x|en)Hen converges.
(2) If J ⊂ N and x =

∑
n∈J anen, then ‖x‖2

H =
∑

n∈J |an|2 and an = (x|en)H for all n ∈ J .

The assertions in (1) and (2) are usually called Bessel’s inequality and Parseval’s iden-
tity identity, after Friedrich Bessel and Marc-Antoine Parseval des Chênes. The scalars an in
(2) are called Fourier coefficients of x.

Proof. (1) Upon going to the limit, it suffices to prove the claimed inequality for any finite
orthonormal family {e1, . . . , eN}. Then one has

0 ≤
∥∥∥x− N∑

n=1

(x|en)Hen

∥∥∥2

= ‖x‖2
H −

N∑
n=1

(x|en)H(en|x)H −
N∑
n=1

(x|en)H(en|x)H +
( N∑
n=1

(x|en)en

∣∣∣ N∑
m=1

(x|em)em

)
= ‖x‖2

H − 2
N∑
n=1

|(x|en)H |2 +
N∑
n=1

|(x|en)H |2.

If moreover H is complete, then convergence of
∑

n∈J(x|en)Hen can be deduced showing its
absolute convergence, i.e., applying Corollary 4.9 to the sequence ((x|en)Hen)n∈N.

(2) If J is finite, say J = {1, . . . , N}, then the first assertion is clear: in fact, due to
orthogonality one has ∥∥∥ N∑

k=1

akek

∥∥∥2

H
=

N∑
k=1

‖akek‖2
H =

N∑
k=1

|ak|2.
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If J is infinite – and hence without loss of generality J = N – then

‖x‖2
H = lim

n→∞

∥∥∥ n∑
k=1

akek

∥∥∥2

H
= lim

n→∞

n∑
k=1

|ak|2 =
∑
n∈J

|an|2.

Moreover, since x =
∑

n∈J anen, i.e., limn→∞ ‖
∑n

k=1 anen − x‖H = 0, one sees that for fixed
m ∈ N and all n ≥ m ( n∑

k=1

anen|em
)
H
− (x|em)H =

( n∑
k=1

anen − x|em
)
H
,

and by the Cauchy–Schwarz inequality∣∣∣( n∑
k=1

anen − x|em
)
H

∣∣∣ ≤ ∥∥∥ n∑
k=1

anen − x
∥∥∥
H
‖em‖H =

∥∥∥ n∑
k=1

anen − x
∥∥∥
H
.

Accordingly,

lim
n→∞

( n∑
k=1

anen|em
)
H

= (x|em).

Furthermore,( n∑
k=1

akek|em
)
H

=
n∑
k=1

(akek|em)H =
n∑
k=1

ak(ek|em)H =
n∑
k=1

akδkm = am.

This concludes the proof. �

Proposition 4.11. Let H be a Hilbert space. An orthonormal family {en : n ∈ N} is in fact
total (i.e., a basis) if and only if the only vector orthogonal to each en is 0.

Proof. Let f ∈ H. Let {en : n ∈ N} be a basis such that (f |ek)H = 0 for all k ∈ N.
Fix an ε > 0. By totality of {en : n ∈ N} there exists a finite set {a1, . . . , an} such that
‖f −

∑n
k=1 akek‖H < ε. Accordingly,

‖f‖2
H =

∣∣∣‖f‖2
H −

(
f
∣∣ n∑
k=1

akek
)
H

∣∣∣
=

∣∣∣∣∣(f ∣∣f −
n∑
k=1

akek

)
H

∣∣∣∣∣
≤ ‖f‖H

∥∥∥f − n∑
k=1

akek

∥∥∥
H

< ε‖f‖H .

Therefore, ‖f‖H < ε for all ε > 0, i.e., ‖f‖H = 0, hence f vanishes a.e.
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Conversely, let the only vector orthogonal to each en be 0. Define (sn)n∈N by

sn :=
n∑
k=1

(f |ek)H ,

which is a Cauchy sequence by Theorem 4.10.(1), hence convergent towards g :=
∑∞

k=1(f |ek)Hek ∈
H. By Theorem 4.10.(2), (g|ek)H = (f |ek)H or rather (g − f |ek) = 0 for all k ∈ N. By Exer-
cise 3.14.(6) this means that f = g. I.e., any f ∈ H can be expressed as a Fourier series with
respect to (en)n∈N. It follows that (en)n∈N is total. �

Remark 4.12. Completeness of H was only used to prove the latter implication. In fact, the
former one holds for general pre-Hilbert spaces. On the other hand, the latter implication does
fail in general pre-Hilbert spaces. This has been shown by J. Dixmier,

Example 4.13. The vector space `2 of all square-summable sequences is separable, since the
family (en)n∈N defined by setting en := (δnm)m∈N (where δn· denotes the Kronecker delta associ-
ated with n) is orthonormal and total. In particular, totality can be proved by Proposition 4.11.

Exercise 4.14. Let H be a separable Hilbert space with an orthornormal basis (en)n∈J . Show
that a sequence (an)n∈J of scalars belongs to `2 if and only if

∑
n∈J anen converges.

Lemma 4.15. Let (H, (·|·)H) be a Hilbert space. Let {en ∈ H : n ∈ J} be an orthonormal
family and denote by Y its linear span. Then the orthogonal projection PY of H onto Y is given
by

PY x =
∑
n∈J

(x|en)Hen, x ∈ H.

Observe that the above series converges by Bessel’s inequality.

Proof. Let x ∈ H. Then clearly PY x ∈ Y and moreover

(x− PY x|em)H = (x|em)H −
∑
n∈J

(x|en)H(en|em)H = (x|em)H − (x|em)H

due to orthonormality, i.e., (x − PY x|em)H = 0 for all m ∈ J . We deduce that x − PY x ∈ Y ⊥,
and accordingly each x ∈ H can be written as x = PY x + (x − PY x), the unique sum of two
terms in Y and Y ⊥, respectively. We conclude that H = Y ⊕ Y ⊥, and the claim follows. �

Remark 4.16. It follows from the above proof that the orthogonal projection on Y ⊥ is given by
P⊥Y = (Id−PY ).

Theorem 4.17. Let (H, (·|·)H) be a separable Hilbert space. Let {xn ∈ H : n ∈ J}, J ⊂ N,
be a total family of linearly independent vectors. Set en := fn

‖fn‖H
, where the sequence (fn)n≥1 is

defined recursively by

(4.1) f1 := x1, fn := xn −
n−1∑
k=1

(xn|ek)Hek, n = 1, 2, . . . .

Then {en ∈ H : n ≥ 1} is a basis.
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The recursive process described in (4.1) is called Gram–Schmidt orthonormalisation,
after Jørgen Pedersen Gram and Erhard Schmidt who discovered it independently in 1883 and
1907, respectively (but it was already known to Pierre-Simon Laplace und Augustin Louis
Cauchy).

Proof. We only consider the case of J = N, since if J is finite the assertion agrees with
validity of the usual linear algebraic Gram–Schmidt orthonormalisation process in finite dimen-
sional spaces.

Observe that by Lemma 4.14 fn = xn−Pn−1xn = P⊥n−1xn, where Pn−1 denotes the orthogonal
projection onto the space span{xk : k = 1, . . . , n − 1} of all linear combinations of vectors
x1, . . . , xn−1. In other words, fn ∈ span{xk : k = 1, . . . , n − 1}⊥. This shows that the family is
orthonormal.

It remains to show totality of {en ∈ H : n ∈ J}. Observe that each xn lies in the linear span
of {en ∈ H : n ∈ J}, and conversely one can prove by induction that each en lies in the linear
span of {xn ∈ H : n ∈ J}. Accordingly, the closure of the linear span of both {en ∈ H : n ∈ J}
and {xn ∈ H : n ∈ J} agree. �

Exercise 4.18. Consider the subset M = {fn : n ∈ N} of L2(−1, 1), where fn(t) := tn for a.e.
t ∈ (−1, 1). Perform the Gram–Schmidt orthonormalisation process on M . The vectors of the
basis obtained in this way are called Legendre polynomials, as they have been introduced in
1784 by Adrien-Marie Legendre.

Exercise 4.19. Show that the Rademacher functions {rn : n ∈ N} define an orthonormal
family of L2(0, 1), where rn(t) = sign sin(2nπt) for a.e. t ∈ (0, 1). Rademacher functions have
been proposed by Hans Adolph Rademacher in 1922.

Exercise 4.20. Let φ ∈ L2(R). The countable family {φjk : j, k ∈ Z} is called a wavelet if it
defines a basis of L2(R), where φjk is defined by

φjk(t) := 2
k
2φ(2kt− j) for a.e. t ∈ (0, 1).

Show that if φ(t) = 1[0, 1
2

) − 1[ 1
2
,1) for a.e. t ∈ (0, 1), then {φjk : j, k ∈ Z} is a wavelet, the

so-called Haar wavelet discovered in 1909 by Alfred Haar.

Exercise 4.21. Show that the family {1, cos 2πn·, sin 2πm· : n,m = 1, 2, 3, . . .} is orthonormal
in L2(0, 1;R). Finite linear combinations of elements of this family are called trigonometric
polynomials.

Exercise 4.22. Show that the family {e2πikt : k ∈ Z} is orthonormal in L2(0, 1;C). Observe
that trigonometric polynomials are also finite linear combinations of elements of this family.

Remark 4.23. It should be observed that (rn)n∈N does not define a basis of L2(0, 1), since e.g.
the function t 7→ cos 2πt is orthogonal to all Rademacher functions. Also, remark that the Haar
wavelet does not consist of continuous functions, unlike Legendre polynomials and the other most
common bases of L2.
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Remark 4.24. One can easily generalize the above examples and show that each Lebesgue space
L2(I) is separable, where I ⊂ R is an interval (either bounded or unbounded).

Remark 4.25. The notion of basis, i.e., of a subset {en : n ∈ N} such that for each vector x
there is a unique sequence (an)n∈N such that

lim
n→∞

∥∥∥x− n∑
k=1

akek

∥∥∥ = 0

can be defined also in the Banach space case – in this context it is then called a Schauder basis,
after Juliusz Schauder who first introduced them in an axiomatic way in 1927. Although most
common spaces do have a Schauder basis, Per Enflo has exhibited in 1973 a Banach space without
a Schauder basis. Observe that constructing general operators is almost impossible if no Schauder
basis is available – this makes it extremely difficult to construct (nontrivial) counterexamples in
Banach spaces without a Schauder basis.

Proposition 4.26. Each separable Hilbert space has a countable basis.

Proof. Let H be a separable Hilbert space. Consider a dense countable set M ⊂ H.
Without loss of generality we can assume the elements of M to be linearly independent. Apply
the Gram–Schmidt orthonormalisation process to the elements of M to find a countable, total,
orthonormal family. �

Corollary 4.27. Each separable Hilbert space is isometric isomorphic to `2.

Proof. Let H be a separable Hilbert space and (fn)n∈N be a countable basis of H, which
exists by Proposition 4.25. Define an operator T by Tfn := en for all n ∈ N, where en is
the canonical basis of `2 introduced in Example 3.8. Then T is clearly an isomorphism, and
moreover by construction ‖Tf‖`2 = ‖f‖H . �

Definition 4.28. Let f : [0, 1]→ C. Introduce a sequence (Snf)n∈N of functions defined by

(Snf)(t) =
∑
|k|≤n

(f |ek)L2(0,1)ek(t) =
∑
|k|≤n

∫ 1

0

f(x)e2πki(t−x)dx, t ∈ [0, 1],

where the orthonormal family (en)n∈N is defined as in Exercise 4.20. If (Snf)n∈N converges to
f , then it is called the Fourier series associated with f .

The above definition of Fourier series is admittedly vague. What kind of convergence is the
sequence (Snf)n∈N requested to satisfy? A natural guess would be the uniform or pointwise
convergence. In fact a century ago it has been realize that a notion of convergence coarser
than these was necessary in order to fully understand approximation property of Fourier series
has been one of the earlier successes of Hilbert space theory. The following result, proven
independently in 1907 by Frigyes Riesz and Ernst Sigismund Fischer, is the starting point of the
modern theory of Fourier analysis.

In the proof we will exploit completeness of the space L2, which we have mentioned in
Remark 1.11.
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Theorem 4.29. The orthonormal family introduced in Exercise 4.21 is a basis of L2(0, 1).
Accordingly, for all f ∈ L2(0, 1;C) the Fourier series associated with it converges to f with
respect to the L2-norm, i.e.,

lim
n→∞

∫ 1

0

∣∣∣∣∣∣f(t)−
∑
|k|≤n

∫ 1

0

f(x)e2πik(t−x)dx

∣∣∣∣∣∣
2

dt = 0.

Proof. It has been already proved in Exercise 4.20 that the family {en := e2πin· : n ∈ Z} is
orthonormal in L2(0, 1;R). By Proposition 4.11, it is a basis if and only if

(4.2) (f |en)L2(0,1) = 0 for all n ∈ Z implies that f(x) = 0 for a.e. x ∈ (0, 1).

Observe that if (f |en)L2(0,1) = 0 for all n ∈ Z, then we also have (f |en)L2(0,1) = 0 for all n ∈ Z
and summing these both relations we deduce that both the real and imaginary parts of f are
orthgonal to all basis vectors. Accordingly, it suffices to check condition (4.2) for any real-valued
function f .

We first consider a continuous function f : [0, 1]→ R and observe that if f 6= 0, then there
is x0 ∈ [0, 1] such that f(x0) 6= 0. Without loss of generality we can assume f(x0) to be a
positive maximum of f . Due to continuity there exists a neighbourhood (x0 − δ, x0 + δ) such
that 2f(x) > f(x0) for all x ∈ [x0 − δ, x0 + δ]. Consider a linear combination p of basis vectors
such that

m ≤ p(y) for some m > 1 and all y ∈ [x0 −
δ

2
, x0 +

δ

2
]

and

|p(y)| ≤ 1 for all y 6∈ [x0 − δ, x0 + δ].

(Such a function p surely exists, consider e.g. the trigonometric polynomial

p(x) := 1− cos 2πδ + cos 2π(x0 − x)).

It follows from the assumption in (4.2) that f is orthogonal to pn for each n ∈ N, and hence

0 =

∫ 1

0

f(x)pn(x)dx

=

∫ x0−δ

0

f(x)pn(x)dx+

∫ x0+δ

x0−δ
f(x)pn(x)dx+

∫ 1

x0+δ

f(x)pn(x)dx.

Moreover, for all n ∈ N one has∣∣∣∣∫ x0−δ

0

f(x)pn(x)dx

∣∣∣∣+

∣∣∣∣∫ 1

x0+δ

f(x)pn(x)dx

∣∣∣∣ ≤ ∫ x0−δ

0

|f(x)pn(x)|dx+

∫ 1

x0+δ

|f(x)pn(x)|dx

≤
∫ x0−δ

0

|f(x)|dx+

∫ 1

x0+δ

|f(x)|dx

≤ ‖f‖L1(0,1) <∞,
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since in particular f ∈ L1(0, 1). Still, one sees that∫ x0+δ

x0−δ
f(x)pn(x)dx ≥

∫ x0+ δ
2

x0− δ2

f(x)mndx ≥ f(x0)

2
mn δ

2
,

and therefore limn→∞
∫ x0+δ

x0−δ f(x)pn(x)dx =∞, a contradiction to the assumption that
∫ 1

0
f(x)pn(x)dx =

0 for all n ∈ N.
Let us now consider a possibly discontinuous function g ∈ L2(0, 1;R) ⊂ L1(0, 1;R) and

consider the continuous function G :=
∫ ·

0
g(x)dx. Since by assumptions g is orthogonal to

each function e2πik·, k ∈ Z, integrating by parts one clearly obtains that also G −
∫ 1

0
G(x)dx

is orthogonal to each function e2πik·, k ∈ Z. (In fact, the corrective term
∫ 1

0
G(x)dx is needed

since G is in general not orthogonal to 1 = e0). Due to continuity of G −
∫ 1

0
G(x)dx, we can

apply the result obtained above and deduce that G−
∫ 1

0
G(x)dx ≡ 0, i.e., g(x) = G′(x) ≡ 0 for

a.e. x ∈ (0, 1). Here we are using the well-known fact that if a function h : [0, 1] → C satisfies∫ t
0
h(t)dt = 0 for all t ∈ (0, 1), then h ≡ 0.
Moreover, L2-convergence of Fourier series is a direct consequence of Bessel’s inequality, as

already deduced in the proof of Proposition 4.11. �

Theorem 4.30. Let f : [0, 1] → C be a continuously differentiable function such that f(0) =
f(1). Then (Snf)n∈N converges uniformly to f .

Although the result deals with spaces of continuous functions and the sup-norm, the proof
is based on properties of the Hilbert space L2(0, 1).

Proof. Let k 6= 0 and observe that

(f |ek)L2(0,1) =

∫ 1

0

f(t)e−2πkitdt =
1

2kπi

∫ 1

0

f ′(t)e−2πkitdt =
1

2πki
(f ′|ek)L2(0,1).

Accordingly, (Snf)n∈N is a Cauchy sequence with respect to ‖ · ‖∞, because for all n,m ∈ N
with n < m

‖Snf − Smf‖∞ ≤
1

2π

m∑
|k|=n+1

|(f ′|ek)L2(0,1)|
1

k
≤ 1

2π

m∑
|k|=n+1

|(f ′|ek)L2(0,1)|2
m∑

|k|=n+1

1

k2
.

due to the Cauchy–Schwarz inequality: in fact, both sums in the right hand side define converge
to 0 due to Bessel’s inequality and the convergence of the geometric series, respectively. Denote
by g ∈ C([0, 1]) the uniform limit of (Snf)n∈N. Then by Theorem 4.28 there holds

0 ≤ ‖g − f‖L2(0,1) = lim
n→∞

‖g − Snf‖2 ≤ lim
n→∞

‖g − Snf‖∞.

It follows that f = g a.e., and the claim follows because g ∈ C[0, 1]. �

Fourier series have been first developed in a fundamental book published by Joseph Fourier
in 1822. Fourier claimed that such series always converge – more precisely, that limn→∞ Snf = f
uniformly “for all functions f”.
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In fact, it is clear that if a Fourier series converges uniformly, then it necessarily converges to a
continuous function (excluding several interesting but discontinuous functions). More generally,
Johann Peter Gustav Lejeune Dirichlet showed in 1828 that the Fourier series associated with
a piecewise continuous function converges pointwise on each closed interval not containing any
point of discontinuity. This arises the question about convergence of Fourier series of functions
having infinitely many discontinuities. Studying this problem led Georg Cantor to develop his
theory of infinite sets, as nicely and thoroughly discussed in [5].

It became clear soon that Fourier’s approach was ingenious but rather heuristical, and that
a more detailed proof is in order. In fact, Paul Du Bois-Reymond in 1873 was the first mathe-
matician who could find a continuous function whose associated Fourier series did not converge
uniformly. It was then realized that the right approach was to weaken the notion of convergence
as a tradeoff to be able to keep on representing functions by nice trigonometric series. This
marked the birth of harmonic analysis. Several further results on Fourier series can be found
in [22, § IV.2].

Lemma 4.31. Let f : [0, 1] → R be a continuous function such that f(0) = f(1). Extend f to
R by periodicity and denote this extension again by f . Then

(Snf)(t) =

∫ 1

0

f(s+ t)Dn(s)ds, t ∈ [0, 1], n ∈ N,

where the Dirichlet kernel is defined by

Dn(t) :=
sin
(
(2n+ 1)πt

)
sin πt

, t ∈ [0, 1], n ∈ N.

Proof. There holds

sin
(
(2n+ 1)πt

)
sin πt

=
e(2n+1)πit − e−(2n+1)πit

eπit − e−πit

= e2nπit e
−(2n+1)2πit − 1

e−2πit − 1

= e2nπit

2n∑
k=0

(e−2πit)k

=
∑
|k|≤n

e−2kπit.
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Therefore one has

(Snf)(t) =
∑
|k|≤n

(∫ 1

0

f(s)e−2kπisds

)
e2kπit

=
∑
|k|≤n

∫ 1

0

f(s+ t)e−2kπisds

=

∫ 1

0

f(s+ t)Dn(s)ds.

This completes the proof. �

In fact, continuity is not even sufficient to ensure pointwise convergence of the Fourier series.

Proposition 4.32. There exists a continuous function f : [0, 1] → R such that f(0) = f(1)
whose associated Fourier series is divergent in (at least) one point x ∈ [0, 1].

Proof. Define a family of operators (Tn)n∈N from {f ∈ C([0, 1]) : f(0) = f(1)} to R by

Tnf := (Snf)(0), n ∈ N, f ∈ C([0, 1]),

where the operators Sn have been introduced in Definition 4.27. We are going to show that the
linear operators Tn are bounded with limn→∞ ‖Tn‖ =∞.

First of all, observe that

|Tnf | = sup
‖f‖∞≤1

∣∣∣∣∫ 1

0

f(t)Dn(t)dt

∣∣∣∣ ≤ ∫ 1

0

|Dn(t)|dt.

Moreover, consider some sequence (gk)k∈N of continuous functions from [0, 1] to R such that
gk(0) = gk(1) for all k ∈ N and such that

(1) ‖gk‖∞ ≤ 1 for all k ∈ N and
(2) limk→∞ gk(t) agrees with signDn(t) ∈ {−1, 1} (the sign of Dn(t)) for all t ∈ [0, 1].

Then one even has ‖Tn‖ =
∫ 1

0
|Dn(t)|dt, since ‖Tn‖ ≥

∫ 1

0
Dn(t)gk(t)dt for all k ∈ N and therefore

‖Tn‖ ≥ lim
k→∞

∫ 1

0

Dn(t)gk(t)dt =

∫ 1

0

Dn(t)signDn(t) =

∫ 1

0

|Dn(t)|dt,
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where the first identity follows from Lebesgue’s Dominated Convergence Theorem. To complete
the proof, observe that ∫ 1

0

|Dn(t)|dt ≥
∫ 1

0

| sin
(
(2n+ 1)πt|

)
πt

dt

=

∫ 2n+1

0

| sin πs|
πs

ds

=
2n+1∑
k=1

∫ k

k−1

| sin πs|
πs

ds

≥
2n+1∑
k=1

1

kπ

∫ k

k−1

| sin πs|ds

=
2

π2

2n+1∑
k=1

1

k
.

Since this last series is divergent, we conclude by the uniform boundedness principle that also
limn→∞ |Tnf | = limn→∞ |Snf(0)| =∞ for some f ∈ C([0, 1]). �

It should be observed that the assumptions of Theorem 4.29 can be weakened and yield that
in fact not only continuously differentiable functions, but also Lipschitz and more generally even
Hölder continuous functions can be approximated uniformly by the associated Fourier series.

Karl Theodor Wilhelm Weierstraß proved in 1885 that every continuous function defined on
a compact interval can be approximated in ‖·‖∞ by a polynomial. Marshall Harvey Stone proved
in 1937 the following interesting generalisation. In the following, a subspace A of C(K,K) is
called a subalgebra if it is closed under all its operations (sum, scalar product, vector product),
and carrying the induced operations.

Theorem 4.33 (Stone–Weierstrass Theorem). Let K be a compact subset of Rn, A a subalgebra
of C(K,K), such that

(1) A contains the constant functions of C(K,K),
(2) if f ∈ A, then f ∈ A, and
(3) A separates the points of K, i.e., for all x, y ∈ K such that x 6= y there exists g ∈ A

such that g(x) 6= g(y).

Then A is dense in C(K,K).

The second condition is clearly void if K = R.
In the proof of the Stone–Weierstrass Theorem we will need the following result, which we

state without proof – see e.g. [22, Satz VI.4.6].

Lemma 4.34. Let K be a compact subset of Rn, (fn)n∈N a sequence in C(K,R). Let this
sequence be monotonically increasing, in the sense that fn(x) ≤ fn+1(x) for all n ∈ N and all
x ∈ K. If the sequence converges pointwise to some f ∈ C(K,R), then the convergence is also
uniform.
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Proof. Let us first assume that K = R.
To begin with, we proof an auxiliary result: The mapping [0, 1] 3 t 7→

√
t ∈ [0, 1] is the limit

(with respect to uniform convergence) of a sequence of polynomials.
This can be seen by defining a sequence (pn)n∈N recursively by

p0(t) := 0, pn+1(t) := pn(t) +
1

2
(t− pn(t))2, t ∈ [0, 1], n ∈ N.

Then one can prove by induction that pn(t) ≤
√
t for all t ∈ [0, 1] and all n ∈ N. This shows

that (pn(t))n∈N is a bounded and monotonically increasing sequence for all t ∈ [0, 1], hence it
converges – and in fact one sees that its limit is

√
t, cf. [20, Beispiel I.1.1]. Then the claim

follows from Lemma 4.33.
Let us now prove that if f ∈ A, then |f | : K 3 x 7→ |f(x)| ∈ R+ belongs to the closure A of

A. This is clear if f = 0. If f 6= 0, let (pn)n∈N be the above introduced approximating sequence
and observe that

|f | = ‖f‖∞

√
f 2

‖f‖2
∞

= ‖f‖∞ lim
n→∞

pn

( f 2

‖f‖2
∞

)
.

This allows to show that if f, g belong to the closure A of A, then also inf{f, g} := 1
2
(f+g−|f−g|)

and sup{f, g} := 1
2
(f + g + |f − g|) belong to A.

Let now x, y ∈ K with x 6= y and α, β ∈ R. Then there exists f ∈ A such that f(x) = α
and f(y) = β – simply take f defined by

f(z) := α + (β − α)
g(z)− g(x)

g(y)− g(x)
, z ∈ K,

where g is an element of A that separates x, y, which exists by assumption.
Finally, we are in the position to prove density of A in C(K,R). To this aim, take ε > 0

and f ∈ C(K,R). Take moreover x ∈ K. Then for all y ∈ K we can pick a function gy ∈ A
such that gy(x) = f(x) and gy(y) = f(y). Consider a neighbourhood Uy of each such y such
that gy ≤ f + ε pointwise in Uy. Clearly K =

⋃
y∈K Uy, and due to compactness of K by the

Heine–Borel Theorem there exists a finite set {y1, . . . , yN} such that K =
⋃N
k=1 Uyk . Let now

hx := inf1≤k≤N gyk : as proved above, hx ∈ A. Then one sees that hx(x) = f(x) and moreover
hx ≤ f + ε, and moreover hx ≥ f − ε pointwise in a neighborhood Vx of x. Again by the
Heine–Borel Theorem there exists a finite set {x1, . . . , xM} such that K =

⋃M
k=1 Vxk . Set now

h := sup
1≤k≤M

hxk

in order to conclude the proof, since h ∈ A.
Let us now consider the case K = C. Then the proof can be led back to that of the real-

valued case. More precisely, observe that for all f ∈ A also the real and imaginary parts of f

– i.e., f+f
2

and f−f
2i

respectively – belong to A. Consider then A0 := {f ∈ A : f = f}: since
A0 clearly contains the (real) constant functions of C(K,K) and separates the points of K, it
follows that A0 is dense in C(K,R). The assertion now follows since A = A0 + iA0 – i.e., each
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function of A can be represented by its real and imaginary parts, two real-valued continuous
functions on K. �

Exercise 4.35. The trigonometric polynomials are dense in L2(0, 1), i.e., each function in
L2(0, 1) can be approximated (in ‖ · ‖2-norm) by a trigonometric polynomial.

• Prove this assertion as a consequence of Theorem 4.28.
• Prove this assertion as a consequence of Theorem 4.32.

Observe that even if H is a Hilbert space, L(H) is in general not a Hilbert space. In order to
overcome this problem, one sometimes consider a special class of operators, which indeed allows
to apply Hilbert space methods again.

Definition 4.36. Let H be a separable Hilbert space and denote by (en)n∈N a basis of H. Let
T ∈ L(H). If (Ten)n∈N ∈ `2, i.e., if

∑
n∈N ‖Ten‖2 < ∞, then T is called a Hilbert–Schmidt

operator. The class of Hilbert–Schmidt operators on H is commonly denoted by L2(H).

The above definition makes sense because one can in fact show that an operator is Hilbert–
Schmidt with respect to a given basis if and only if it is Hilbert–Schmidt with respect to any
other basis.

Exercise 4.37. Let H be a Hilbert space.

(1) Show that the class L2(H) of Hilbert–Schmidt operators on a Hilbert space H is a vector
space.

(2) Show that L2(H) becomes a Hilbert space with respect to the inner product

(T |S)L2(H) :=
∑
n∈N

(Ten|Sen)H , T, S ∈ L2(H),

for any basis (en)n∈N of H.
(3) Show that if T ∈ L2(H), then ‖T‖ ≤ ‖T‖L2(H), where as usual ‖T‖2

L2(H) = (T |T )L2(H).

Exercise 4.38. Consider the Fredholm operator K introduced in Exercise 2.8 and assume that
the kernel k is merely in L2((0, 1)× (0, 1)).

(1) Show that ‖K‖2 ≤ ‖k‖2
L2((0,1)×(0,1)).

(2) Show that K is a Hilbert–Schmidt operator.

Further properties of Hilbert–Schmidt operators can be found in [15, § 30.8].





CHAPTER 5

Functionals and dual spaces

Definition 5.1. Let X be a Banach space. A linear operator from X to K is called a linear
functional on X. The space X ′ of all bounded functionals on X is called dual space of X.

Traditionally, the evaluation of a bounded linear functional φ at x ∈ X is denoted by 〈φ, x〉,
rather than φ(x) or φx. Observe that the operator norm ‖φ‖ of φ ∈ X ′ is given by

‖φ‖ := sup
‖x‖H≤1

|〈φ, x〉|,

so that by definition

|〈φ, x〉| ≤ ‖φ‖‖x‖X for all x ∈ X.
Determining the dual space of a Banach space is in general not an easy task. We provide

the following relevant example.

Proposition 5.2. The sequence space `∞ is isometric isomorphic to the dual space of `1.

Proof. Every x ∈ `1 has a unique representation

x =
∑
k∈N

xkek,

where ek is the `1-sequence consisting of all zeroes, with the only exception of a 1 in the k-th
position. Let now φ ∈ `1′ , the dual space of `1. Since f is linear and bounded, necessarily

〈φ, x〉 =
∑
k∈N

xk〈φ, ek〉.

We do not have many possibilities in order to define an `∞-sequence out of φ: in fact, we are
going to take the sequence (〈φ, ek〉)k∈N. Observe that

|〈φ, ek〉| ≤ ‖φ‖‖ek‖1 = ‖φ‖,

whence (〈φ, ek〉)k∈N ∈ `∞. Thus, we can define an operator T : `1′ → `∞ by

Tφ := (〈φ, ek〉)k∈N.

It is clear that T is linear, and moreover it has been just shown that ‖T‖ ≤ 1.
Moreover, we show that T is surjective: if y ∈ `∞, then we define φ ∈ `1′ by

〈φ, x〉 :=
∑
k∈N

xkyk, x = (xk)n∈N ∈ `1.

35
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It is clear that φ is linear, and moreover

|〈φ, x〉| ≤ sup
k∈N
|yk|

∑
k∈N

|xk| = ‖x‖1‖y‖∞.

Taking the supremum over all x in the unit ball of `1 shows that ‖φ‖ ≤ ‖y‖∞, thus actually
φ ∈ `1′ . This also shows that ‖phi‖ ≤ ‖y‖∞ = ‖Tφ‖∞ for all f ∈ `1′ , hence T is an isometry,
too. Summing up, T is a surjective, isometric bounded linear operator, hence an isometric
isomorphism. �

Remark 5.3. Likewise, for 1 < p <∞ one introduces the space `p of all sequences x = (xn)n∈N
such that

‖x‖p :=

(∑
n∈N

|xn|p
) 1

p

<∞

and shows that the dual space of `p is isometric isomorphic to `q provided that 1
p

+ 1
q

= 1.

Similarly, one can show a similar assertion for the Lebesgue spaces: Let Ω be an open subset
of Rn. Then the dual space of Lp(Ω) is isometric isomorphic to Lq(Ω) provided that 1

p
+ 1

q
= 1.

Example 5.4. 1) Let c denote the space of all sequences (xn)n∈N ⊂ R that converge. Than
lim : c 3 x 7→ limn→∞ xn ∈ R is a functional on c.

2) The mapping
∫

: C([0, 1]) 3 f 7→
∫ 1

0
〈f(x)dx is a functional on C([0, 1]).

3) Let H be a Hilbert space. Then for all y ∈ H the mapping H 3 x 7→ (y|x)H ∈ K is a
bounded (due to the Cauchy–Schwarz inequality) linear functional on H.

The following so-called representation theorem finds wide application in mathematics
and physics. It has been proved in 1907 by Frigyes Riesz and independently also by Maurice
René Fréchet.

Theorem 5.5. Let H be a Hilbert space. For each bounded linear functional φ on H, i.e., for
all φ ∈ H ′ there exists a unique yφ ∈ H such that

(5.1) 〈φ, x〉 = (x|yφ)H for all x ∈ H.
Moreover, the mapping H 3 φ 7→ yφ ∈ H is an isometric isomorphism.

Proof. It suffices to prove that Φ : H 3 y 7→ φy := (·|y) ∈ H ′ is an isometric isomorphism.
To begin with, we prove that Φ is isometric (and therefore injective, too). Clearly, by

definition and the Cauchy–Schwarz inequality |〈φy, x〉| = |(x|y)H | ≤ ‖y‖H‖x‖H , so that the
norm of φy satisfies ‖φy‖ ≤ ‖y‖H . In order to check the equality in the non-trivial case of y 6= 0,
take x := y

‖y‖H
and observe that 〈φy, x〉 = ‖y‖H by definition.

In order to prove surjectivity of Φ, take φ ∈ H ′. If Kerφ = H, then φ = 0 and the assertion
is clear – so we can assume that Kerφ 6= H and (up to rescaling) that ‖φ‖ = 1. By Remark 2.14,
one has H = Kerφ ⊕ Kerφ⊥. Moreover, the closed subspace Kerφ⊥ has dimension 1, since
the restriction of φ to Kerφ⊥ is an isomorphism from Kerφ⊥ to K. Accordingly, there exists
ξ ∈ Kerφ⊥ – which up to rescaling can be assumed to satisfy 〈φ, ξ〉 = 1 – such that each
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z ∈ Kerφ⊥ has the form z = λξ for some λ ∈ K, and in particular each x ∈ H admits the
decomposition x = PKerφx⊕ λξ. Then

〈φ, x〉 = 〈φ, PKerφx+ λξ〉 = λ〈φ, ξ〉 = λ

as well as
(x|ξ)H = (PKerφx+ λξ|ξ)H = λ‖ξ‖2

H ,

where we have used the fact that PKerφx and ξ belong to subspaces that are orthogonal to each
other. We deduce that

〈φ, x〉 = λ =
(x|ξ)H
‖ξ‖2

H

=: (x|yφ)H ,

for all x ∈ H, and we conclude that Φ is sujective. This concludes the proof. �

Remark 5.6. By the Representation theorem of Riesz–Fréchet, the dual H ′ of a Hilbert space
H may always be identified with H. However, one does not necessarily have to do so – in fact,
it is not always a smart idea to consider H = H ′. An interesting discussion about pros and cons
can be found in [2, § V.2].

Example 5.7. Let H be a separable Hilbert space. Then each functional in L2(H)′ can be
represented by a suitable Hilbert–Schmidt operator A, i.e., by

L2(H) 3 B 7→ (A|B)L2(H) ∈ C.
An interesting application of the Representation theorem of Riesz–Fréchet concerns the solv-

ability of elliptic equations like

(5.2) u(x)− u′′(x) = f(x), x ∈ [0, 1],

with – say – Dirichlet boundary conditions

(5.3) u(0) = u(1) = 0.

One of the most fruitful mathematical ideas of the last century is the weak formulation of
differential equations. One weakens the notion of solution of a boundary/initial value differential
problem, looks for a solution in a suitably larger class (which in turn allows to use standard
Hilbert space methods, like the Representation theorem) and eventually proves that the obtained
solution is in fact also a solution in a classical sense. This method is thoroughly explained in [2]
and [21]. The essential idea behind this approach is that of weak derivative, one which is based
on replacing the usual property of differentiability by one prominent quality of differentiable
functions – the possibility to integrate by parts.

Definition 5.8. Let I ⊂ R be an open interval. A function f ∈ L2(I) is said to be weakly
differentiable if there exists g ∈ L2(I) such that

(5.4)

∫
I

f(x)h′(x)dx = −
∫
I

g(x)h(x) for all h ∈ C1
c (I).

The set of weakly differentiable functions f ∈ L2(I) such that their weak derivative is also in
L2(I) is denoted by H1(I) and called first Sobolev space. They were introduced in 1936 by
Sergei Lvovich Sobolev.
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Remark 5.9. Observe that since any two continuosly differentiable functions f, h satisfy (5.4)
(which is nothing but the usual formula of integration by parts), by definition C1(I) ⊂ H1(I) –
i.e., each function in C1(I) is representative of a weakly differentiable L2-function whose weak
derivative is again in L2.

For an open interval I ⊂ R we have here denoted by C1
c (I) the vector space of continuously

differentable functions with compact support, i.e., continuously differentiable functions f : I →
K such that f(x) = f ′(x) = 0 for all x outside some compact subset of I.

Exercise 5.10. Let I ⊂ R be an open interval. Let f ∈ L2(I). Show that if a function g
satisfying (5.4) exists, then it is unique.

This motivates to introduce the following.

Definition 5.11. Let I ⊂ R be an open interval. Let f ∈ L2(I) be weakly differentiable. The
unique function g introduced in Definition 5.8 is called the weak derivative of f and with an
abuse of notation we write f ′ = g.

Remark 5.12. Consider the momentum operator S : f 7→ f ′. We have already remarked that
S is not bounded on C1([0, 1]) – and in fact, also on L2(0, 1). However, it is clear that S is a
bounded linear operator from H1(0, 1) to L2(0, 1).

Example 5.13. Let I = (−1, 1). The prototypical case of a weakly differentiable function that
does not admit a classical derivative in some point is given by

f(x) :=
|x|+ x

2
=

{
0 if x ≤ 0,
x if x > 0.

Take some function h ∈ C1
c ((−1, 1)) and observe that∫ 1

−1

f(x)h′(x)dx =

∫ 0

−1

f(x)h′(x)dx+

∫ 1

0

f(x)h′(x)dx

=

∫ 1

0

xh′(x)dx

=
[
xh(x)

]1

0
−
∫ 1

0

h(x)dx

= −
∫ 1

0

h(x)dx,

where the last equality follows from compactness of support of h (whence h(1) = 0). In other
words, ∫ 1

−1

f(x)h′(x)dx =

∫ 1

−1

H(x)h(x)dx

for all h ∈ C1
c (I), where H is defined by

H(x) :=

{
0 if x ≤ 0,
1 if x > 0.
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This shows that f is weakly differentiable with f ′ = H, where H is called the Heaviside func-
tion after Oliver Heaviside.

Integrating by parts one clearly sees that each continuously differentiable function is also
weakly differentiable, i.e., C1(I) ⊂ H1(I). In general a function that is merely in C1(I) need
not be in L2(I), but in fact each u ∈ C1(I) ∩ L2(I) such that u′ ∈ L2(I) also belongs to H1(I).

Lemma 5.14. Let I be an interval. Then the set H1(I) is a separable Hilbert space with respect
to the inner product

(f |g)H1(I) := (f |g)L2(I) + (f ′|g′)L2(I) =

∫ 1

0

f(x)g(x)dx+

∫ 1

0

f ′(x)g′(x)dx.

Proof. It is easy to see that (·|·)H1(I) is an inner product, since in particular (·|·)L2(I) is.
In order to show completeness, take a Cauchy sequence in H1(I), i.e., a sequence (fn)n∈N of
weakly differentiable functions such that both (fn)n∈N and (f ′n)n∈N are Cauchy in L2(I). By
completeness of L2(I) both sequences converge, say to φ, ψ respectively. Furthermore,∫

I

fn(x)h′(x)dx = −
∫
I

f ′n(x)h(x) for all h ∈ C1
c (I),

so that∫
I

φ(x)h′(x)dx = lim
n→∞

∫
I

fn(x)h′(x)dx = − lim
n→∞

∫
I

f ′n(x)h(x)dx = −
∫
I

ψ(x)h(x)dx for all h ∈ C1
c (I).

This shows that φ′ = ψ, so that H1(I) is in fact a Hilbert space.
Consider the bounded operator H1(I) 3 f 7→ (f, f ′) ∈ L2(I) × L2(I). It is apparent that

this operator is bounded and in fact an isometry whose range is closed in the product Hilbert
space L2(I)× L2(I) (cf. Exercise 3.2), hence by Exercise 4.5 a separable Hilbert space. �

Exercise 5.15. Let I be an interval.

(1) Let f ∈ L2(I) such that
∫
I
f(x)h′(x)dx = 0 for all h ∈ C1

c (I). Show that there exists a
constant c ∈ K such that f(x) = c for a.e. x ∈ I.

(2) Let g ∈ L2(I) and x0 ∈ I. Define G : I 3 x 7→
∫ x
x0
g(t)dt ∈ K. Show that G ∈ C(I) and

moreover
∫
I
G(x)h′(x)dx = −

∫
I
g(x)h(x)dx for all h ∈ C1

c (I).

(3) Conclude that each f ∈ H1(I) has a continuous representative f̃ in C(I) such that f(x) =

f̃(x) for a.e. x ∈ I. Moreover, ‖f‖C(I) ≤ ‖f‖H1(I) for all f ∈ C([0, 1]).

Remark 5.16. Accordingly, it is common (although a slight abuse of language) to say that
weakly differentiable functions are continuous. It is worthwile to emphasize that this important
property is exclusive of the 1-dimensional case, even though Sobolev spaces can also be introduced
for functions acting on subsets of Rn for n > 1. In particular, this allows to talk about point
evaluation of functions in H1(I).

The converse is not true, i.e., there exist continuous functions that are not weakly differ-
entiable. In fact, it can be proved that a weakly differentiable function is differentiable (in the
classical sense) almost everywhere. Hence, a continuous but nowhere differentiable function
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will do the job: this is the famous Weierstraß function, introduced by Karl Theodor Wilhelm
Weierstraß in 1872.

Exercise 5.17. Prove the so-called Poincaré inequality: For all f ∈ H1(0, 1) such that
f(0) = f(1) = 0 there holds

‖f‖2
2 ≤ ‖f ′‖2

2.

Let I ⊂ R be an open interval, say I = (a, b). Motivated by the above exercise we introduce
the vector space

H1
0 (I) := {f ∈ H1(I) : f(a) = f(b) = 0}.

Definition 5.18. A function u ∈ H1
0 (I) is called a weak solution of the elliptic problem (5.2)–

(5.3) if

(5.5)

∫ 1

0

u(x)h(x)dx+

∫ 1

0

u′(x)h′(x)dx =

∫ 1

0

f(x)h(x)dx for all h ∈ C1
c (I).

This definition does not come out of the blue. In fact, each “classical” solution u of (5.2)–
(5.3), once integrated “against a C1-function” (i.e., upon multiplying it by any h ∈ C1

c (I) and
the integrating over I) satisfies (5.5) after integration by parts.

Theorem 5.19. For all f ∈ L2(I) the elliptic problem (5.2)–(5.3) has a unique weak solution.

Proof. Consider the mapping φ : H1
0 (I) 3 h 7→ (h|f)L2(I) ∈ K, which is clearly linear. This

linear functional is bounded, since

|〈φ, h〉| = |(h|f)L2(I)| ≤ ‖h‖L2(I)‖f‖L2(I) ≤ ‖h‖H1
0 (I)‖f‖L2(I)

for all h ∈ H1(I). Then by the Representation theorem of Riesz–Fréchet there exists a unique
u ∈ H1

0 (I) (continuously depending on f) such that 〈φ, h〉 = (u|h)H1(I) = (u|h)L2(I) +(u′|h′)L2(I).
By definition of weak solution, this completes the proof. �

Sometimes it is necessary to deal with elliptic problems that do not have the nice symmetric
structure assumed in the Representation theorem. However, it is often still possible to apply
the following result.

Exercise 5.20. Let A be a bounded linear operator on a Hilbert space H such that

|(Ax|x)H | ≥ α‖x‖2 for all x ∈ H
for some α > 0.

(1) Show that ‖Ax‖ ≥ α‖x‖ for all x ∈ H. (Hint: use the Cauchy–Schwarz inequality.)
(2) Show that A is injective and A(H) is closed.

(3) Show that A(H) = H. (Hint: Show that (A(H))⊥ = {0}.)
(4) Conclude that A is invertible.
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The statement of the above exercise can be reformulated as follows. This result has been
obtained in 1954 by Peter David Lax and Arthur Norton Milgram and is commonly known as
the Lax–Milgram Lemma. In the following, a a (bi)linear mapping from V × V to K, V a
Hilbert space, is called coercive if there exists c > 0 such that Rea (u, u) ≥ c‖u‖2 for all u ∈ V .

Exercise 5.21. Let V be a Hilbert space and a a (bi)linear mapping from V × V to K. Let
a be bounded and coercive. Then, for any φ ∈ V ′ there is a unique solution u =: Tφ ∈ V to
a(u, v) = 〈φ, v〉 – which also satisfies ‖u‖ ≤ 1

c
‖φ‖V ′. Moreover, T is an isomorphism from V ′

to V .

Let H1, H2 be Hilbert spaces and T be a bounded linear operator from H1 to H2. It is
sometimes useful for applications to consider an operator T ∗ such that

(5.6) (Tx|y)H2 = (x|T ∗y)H1 for all x ∈ H1 and y ∈ H2.

Proposition 5.22. Let H1, H2 be Hilbert spaces and T be a bounded linear operator from H1

to H2. Then there exists exactly one bounded linear operator T ∗ from H2 to H1 such that (5.6)
holds. Moreover, there holds ‖T‖ = ‖T ∗‖.

Proof. Let y ∈ H2. Then φy : H1 3 x 7→ (Tx|y)H2 ∈ K defines a bounded linear functional,
since by the Cauchy–Schwarz inequality |φy(x)| ≤ ‖T‖‖x‖H1‖y‖H2 . Therefore, by Theorem 5.5
there exists a vector T ∗y ∈ (H1)′ ∼= H1 such that (Tx|y)H2 = 〈φy, x〉 = (x|T ∗y)H1 . This defines
an operator T ∗ : H2 3 y 7→ T ∗y ∈ H1.

To check linearity of T ∗, take y1, y2 ∈ H2 and observe that for all x ∈ H1

(x|T ∗(y1 + y2)− T ∗y1 − T ∗y2)H1 = (x|T ∗(y1 + y2))H2 − (x|T ∗y1)H1 − (x|T ∗y2)H1

= (Tx|y1 + y2)H1 − (Tx|y1)H2 − (Tx|y2)H2 = 0.

Accordingly, T ∗(y1 +y2)−T ∗y1−T ∗y2 belongs to H⊥ = {0} for all y1, y2. Similarly, take y ∈ H2

and λ ∈ K and observe that for all x ∈ H1

(x|T ∗(λy)− λT ∗y)H1 = (x|T ∗(λy))H2 − (x|λT ∗y)H1

= (Tx|λy)H1 − λ(Tx|y) = 0,

i.e., T ∗(λy)− λT ∗y belongs to H⊥ = {0} for all y ∈ H2 and all λ ∈ K.
Boundedness of T ∗ follows by boundedness of T , since for all y ∈ H2

‖T ∗y‖H1 ≤ ‖φy‖ ≤ ‖T‖‖y‖H2 .

This shows that ‖T ∗‖ ≤ ‖T‖. Conversely, take x ∈ H1 with ‖x‖H1 ≤ 1 and observe that

‖Tx‖2
H2

= (Tx|Tx)H2 = (T ∗Tx|x)H1 ≤ ‖T ∗Tx‖H1‖x‖H1 ≤ ‖T ∗T‖ ≤ ‖T ∗‖‖T‖.
Accordingly, ‖T‖2 ≤ ‖T ∗‖‖T‖ and in particular ‖T‖ ≤ ‖T ∗‖. This completes the proof. �

Exercise 5.23. Let H1, H2 be Hilbert spaces and T be a bounded linear operator from H1 to H2.
Show that T ∗∗ = T .

Definition 5.24. Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2). The unique operator T ∗ ∈
L(H2, H1) that satisfies (5.6) is called the adjoint of T .

If H1 = H2 and T ∗ = T , then the operator T is called self-adjoint.
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Corollary 5.25. Let H be a Hilbert space and T be a bounded linear self-adjoint operator on
H. Then (Tx|x)H ∈ R for all x ∈ H and ‖T‖ = sup‖x‖H=1 |(Tx|x)H |.

Proof. One sees that (Tx|x)H ∈ R for all x ∈ H because

(Tx|x)H = (x|Tx)H = (x|T ∗x)H = (Tx|x)H .

To begin with, it clearly follows from the Cauchy–Schwarz inequality and the definition of
norm that sup‖x‖H=1 |(Tx|x)H | ≤ ‖T‖.

Conversely, one easily checks that (T (x+y)|x+y)H−(T (x−y)|x−y)H = 2(Tx|y)H+2(Ty|x)H
and 2Re(Tx|y)H = (Tx|y)H + (Ty|x)H for all x, y ∈ H. Accordingly, for all x, y ∈ H such that
‖x‖H = ‖y‖H = 1 we have

4Re(Tx|y)H ≤ sup
‖x‖H=1

|(Tx|x)H |
(
‖x+ y‖2

H + ‖x− y‖2
H

)
≤ 2 sup

‖x‖H=1

|(Tx|x)H |
(
‖x‖2

H + ‖y‖2
H

)
,

by the parallelogram law and because

|(Tx|x)H | = |(T
x

‖x‖H
| x

‖x‖H
)H |‖x‖2

H ≤ sup
‖z‖H=1

|(Tz|z)H |‖x‖2
H for all 0 6= x ∈ H.

We conclude that for all x, y ∈ H such that ‖x‖H = ‖y‖H = 1 we have

Re(Tx|y)H = Re|(Tx|y)H |eiarg(Tx|y)H = |(Tx|y)H |Re(Tx|e−iarg(Tx|y)Hy)H ≤ sup
‖z‖H=1

|(Tz|z)H |.

Since this holds for all y, by linearity one concludes that

|(x|Ty)|H = |(Tx|y)H | ≤ sup
‖z‖H=1

(Tz|z) for all y ∈ H such that ‖y‖H ≤ 1.

It follows from the Cauchy–Schwarz inequality that

‖T‖ = sup
‖y‖H≤1

‖Ty‖ = sup
‖y‖H≤1

sup
‖x‖H=1

‖Ty‖ ≤ sup
‖x‖H=1

(Tx|x).

This concludes the proof. �

Remark 5.26. The set N := {(Tx|x)H : x ∈ H, ‖x‖H = 1} is called numerical range of
T ∈ L(H). There is a rich theory on numerical ranges with several applications in numerical
analysis, see e.g. [7] and [10, Chapter 22].

Example 5.27. If H = Cn and T ∈ L(H) = Mn(C), then T ∗ = T T , where T T denotes the
transposed matrix of T .

Example 5.28. The operators 0 and Id are both self-adjoint.

An important class of self-adjoint operators is given by orthogonal projections.

Exercise 5.29. Let H be a Hilbert space and P ∈ L(H) be a projection, i.e., P 2 = P . Show
that P is the orthogonal projection of H onto some closed subspace A ⊂ H if and only if P is
self-adjoint. (Hint: P is an orthogonal projection if and only if its null space and its range are
orthogonal to each other.
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Example 5.30. For any essentially bounded measurable q : Ω→ R the multiplication operator
Mq is self-adjoint. More generally, for any essentially bounded measurable q : Ω→ C the adjoint

of Mq is given by M∗
q = Mq, where q is defined by q(x) := q(x) a.e.

Example 5.31. For any continuous k : [0, 1] × [0, 1] → R that is symmetric (i.e., such that
k(x, y) = k(y, x)) the Fredholm operator Fk is self-adjoint. More generally, for any continuous
k : [0, 1]× [0, 1] → C the adjoint of Fk is given by F ∗k = Fk∗, where k∗ is defined by k∗(x, y) :=

k(y, x) a.e.

Exercise 5.32. Let H1, H2, H3 be Hilbert spaces and T, S ∈ L(H1, H2), R ∈ L(H2, H3). Prove
the following assertions.

(1) (T + S)∗ = T ∗ + S∗;
(2) (λT )∗ = λT for all λ ∈ K;
(3) (RT )∗ = T ∗R∗;
(4) Ker(λ Id−T ) = Ran(λ Id−T ∗)⊥;
(5) T ∗ is invertible if T is, and in this case (T ∗)−1 = (T−1)∗.

Remark 5.33. Beside the already discussed vector space structure, the set L(H) of all bounded
linear operators on a Hilbert space H has also other significant properties. In particular, since
it is closed under composition of its elements (cf. Remark 2.3) it qualifies as an algebra. We
have seen that L(H) is even closed under a further operation, the so-called involution A 7→ A∗.
These both properties (together with a handful of more technical ones) turn L(H) into a C∗-
algebra, a notion introduced by Israel Gelfand and Mark Neumark in 1943 and simplified by
Irving Kaplansky in 1952. Nowadays the theory of C∗-algebras is one of the richest and most
vital fields of functional analysis, but a thorough description of its main theorems goes far beyond
the scope of this course.

Exercise 5.34. Let H1, H2 be Hilbert spaces and T be a bounded linear operator from H1 to H2.

(1) Show that the graph of T , i.e., {(f, g) ∈ H1×H2 : Tf = g} is a closed subspace of H1×H2.
(2) Prove that the subspace of H1×H2 orthogonal to the graph of T is given by {(f, g) ∈ H1×H2 :

f = −T ∗g}.
(3) Deduce from Exercise 5.20 that both I + TT ∗ and I + T ∗T are invertible.
(4) Conclude that the orthogonal projection of H1 × H2 onto the graph of T is given by the

operator matrix (
(I + T ∗T )−1 T ∗(I + TT ∗)−1

T (I + T ∗T )−1 I − (I + TT ∗)−1

)
,

in the sense of Example 2.7.

The above formula for the projection onto the graph of an operator has been first obtained
in 1950 by mathematician, quantum physicist and early computer scientist John von Neumann
in [17].





CHAPTER 6

Compactness and spectral theory

We recall the following.

Definition 6.1. Let (X, d) be a metric space. A subset M ⊂ X is called sequentially compact,
or simply compact, if each sequence in M has a subsequence that converges to an element of
M . A subset of X is called precompact if its closure is compact.

Remark 6.2. It can be proved that a subset M of a metric space X is precompact if and only if
for any ε > 0 there exists a finite subset M ′ ⊂M such that X =

⋃
x∈M ′ Bε(x). This is sometimes

called Heine–Borel condition, after Émile Borel and Eduard Heine.

Exercise 6.3. Show that a subset of a metric space is compact if and only if it is closed and
precompact.

The following assertion is a special case of Tychonoff’s theorem, proved by Andrey Niko-
layevich Tychonoff in 1930 in the case of general topological spaces.

Exercise 6.4. Let (X, d) be a metric space. Let K1, K2 be compact subsets of X. Show that
K1 ×K2 is compact in the product space X ×X with respect to the metric defined by

d×((x1, x2), (y1, y2)) := d(x1, y1) + d(x2, y2), x1, x2, y1, y2 ∈ X.

Exercise 6.5. Let H be a Hilbert space and A,B ⊂ H be nonempty, convex and disjoint. Let
additionally A,B be closed and compact, respectively. Deduce from the Hahn–Banach Theorem
that there exists x∗ ∈ H and some α, β ∈ R such that (x∗|x)H ≤ α < β ≤ (x∗|y)H for all x ∈ A
and all y ∈ B.

The following fixed point theorem is a consequence of the above corollary of the Hahn–
Banach Theorem. It is a special case of the fixed point theorem introduced by Juliusz Schauder
in 1927. In Schauder’s general version, the relevant function T is not required to be affine.

Exercise 6.6. Consider a Hilbert space H and a convex compact nonempty subset K ⊂ H.
Let a mapping T : K → K be continuous and affine, i.e., assume that T (λx + (1 − λ)y) =
λTx + (1 − λ)Ty for all x, y ∈ K and all λ ∈ [0, 1]. Show that there exists at least one fixed
point of T , i.e., one x ∈ K such that Tx = x.

(Hint: Observe that {(x, x) ∈ K × K : x ∈ K} and {(x, Tx) ∈ K × K : x ∈ K} are
convex and compact by Tychonoff’s theorem. Show that if T had no fixed point, then these sets
could be separated by the theorem of Hahn–Banach. Show that this leads to the construction
of x∗ ∈ H such that the sequence ((x∗|T nx)H)n∈N is unbounded for some x ∈ K).

45
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In order to characterize spaces in which all bounded closed subsets are compact we need the
following result, proved by Frigyes Riesz in 1918. It is commonly known as Riesz’ Lemma.

Lemma 6.7. Let X be a normed vector space and Y be a closed subspace different from either {0}
or X. Then for all r < 1 there exists x(r) ∈ X with ‖x(r)‖X = 1 such that infy∈Y ‖x(r)−y‖X > r.

Proof. Since there exists x ∈ X \Y , and hence with infy∈Y ‖x− y‖X > 0 due to closedness

of Y , there exists y0 ∈ Y such that ‖x − y0‖ < infy∈Y ‖x−y‖
r

(observe that infy∈Y ‖x− y‖ <
infy∈Y ‖x−y‖

r
, hence

infy∈Y ‖x−y‖
r

is not a lower bound of {‖x− y‖ : y ∈ Y }). Now, it suffices to set

x(r) := x−y0
‖x−y0‖X

, since in particular

inf
y∈Y
‖x(r) − y‖X = inf

y∈Y

∥∥∥∥ x− y0

‖x− y0‖X
− y
∥∥∥∥
X

=
1

‖x− y0‖X
inf
y∈Y
‖x− y0 − y‖X

(in the last step we have used the fact that Y is a linear subspace). Since y0 ∈ Y , we conclude
that

inf
y∈Y
‖x(r) − y‖X =

1

‖x− y0‖X
inf
y∈Y
‖x− y‖X > r

by construction. �

The next result follows directly.

Proposition 6.8. Let X be a normed vector space. Then the following assertions are equivalent.

(i) The closed unit ball B1(0) is compact.
(ii) Each bounded closed subset of X is compact.

(iii) X is isomorphic to Kn for some n ∈ N.

Proof. (i)⇒ (iii) We are going to show that if X is not isomorphic to Kn for any n ∈ N,

i.e., if X is not finite dimensional, then B1(0) is not compact, i.e., there exists a sequence (xn)n∈N
with ‖xn‖X ≤ 1 such that ‖xn − xm‖X ≥ 1

2
for all n,m ∈ N. Take x1 ∈ X with ‖x1‖X = 1 and

consider the linear span Y1 = {α1x1 ∈ X : α1 ∈ K} of {x1}. By Lemma 6.7 there exists x2 ∈ X
such that ‖x2‖X = 1 and ‖α1x1 − x2‖ ≥ 1

2
for all α1 ∈ K. Let us now consider the linear span

Y2 = {α1x1 +α2x2 ∈ X : α1, α2 ∈ K} of {x1, x2}. Again by Lemma 6.7 there exists x3 ∈ X such
that ‖x3‖X = 1 and ‖α1x1 +α2x2−x3‖ ≥ 1

2
for all α1, α2 ∈ K. Proceding in this way, we obtain

a sequence (xn)n∈N with ‖xn‖X ≤ 1 such that ‖xn − xm‖X ≥ 1
2

for all n,m ∈ N, i.e., such that
no subsequence satisfies the Cauchy condition.

This completes the proof, since (ii)⇒ (i) is clear and (iii)⇒ (ii) is well-known Heine–Borel
Theorem. �

The following fundamental result has been established by Giulio Ascoli in 1883 and by Cesare
Arzelà in 1895, respectively. It is commonly known as theorem of Ascoli–Arzelà.

Theorem 6.9. Let K ⊂ Rn be compact. Consider M ⊂ C(K) such that

• M is pointwise bounded, i.e., supf∈M |f(x)| <∞ for all x ∈ K and
• M is uniformly equicontinuous, i.e., for all ε > 0 there exists δ > 0 such that
|f(x)− f(y)| < ε for all f ∈M and all x, y ∈ K with |x− y| < δ.
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Then M is a precompact subset of C(K).

Proof. Observe that Qn ∩K is a countable dense subset of K, hence we define {xm : m ∈
N} := Qn ∩ K. We take a sequence (fn)n∈N and want to show that it contains a convergent
subsequence. Now observe that (fn(x1))n∈N is a bounded sequence, due to pointwise boundedness
of M . Hence, by the Theorem of Bolzano–Weierstraß it contains a convergent subsequence, say
(fn1

k
(x1))k∈N. Likewise, also (fn(x2))n∈N contains a convergent subsequence, say (fn2

k
(x2))k∈N,

and so on. This suggests to apply Cantor’s diagonal method: Take the sequence (fnkk)k∈N of
functions in M and recall that by construction

(6.1) (fnkk(xm))k∈N converges for all m ∈ N.

It now suffices to show that (fnkk)k∈N is a Cauchy sequence.
Let ε > 0. Since M is by assumption equicontinuous, there exists δ > 0 such that for all

f ∈ M one has |f(x) − f(y)| < ε for all x, y ∈ K such that |x − y| < δ. By the Theorem of
Heine–Borel there exists a finite covering of K consisting of open balls V1, . . . , Vp with radius δ

2
.

Since {xm : m ∈ N} is a countable dense subset of K, each xm is contained in at least one of
these open balls – say, m1 is the least index such that xm1 ∈ V1, m2 is the least index larger than
m1 such that xm2 ∈ V2 and so on, until xmh ∈ Vh. Now the assertion follows from a 3ε-argument:
let p, q ∈ N large enough, one has for an arbitrary x ∈ K – say, x ∈ Vh – that

|fnpp(x)− fnqq(x)| ≤ |fnpp(x)− fnpp(xmh)|+ |fnpp(xmh)− fnqq(xmh)|+ |fnqq(xmh)− fnqq(x)| < 3ε,

for p, q large enough: the first and third terms in the right hand side can be estimated using
uniform equicontinuity (due to the fact that |x− xmh| < δ) and the second term by (6.1). This
concludes the proof. �

It is worth to remark that the class of pointwise bounded, equicontinuous function sets
exhausts in fact the precompact subsets of C(K).

Exercise 6.10. Let K ⊂ Rn be compact and let M ⊂ C(K).

(1) Assume that M is equicontinuous, i.e., for all ε > 0 and all x ∈ K there exists δ > 0
such that |f(x)− f(y)| < ε for all f ∈ M and all y ∈ K with |x− y| < δ. Show that M is
uniformly equicontinuous.

(2) Show that if M is precompact, then it is equicontinuous.
(3) Conclude that the converse of Theorem 6.9 holds, i.e., the Ascoli–Arzelà condition is in fact

a characterization.

Exercise 6.11. Let I ⊂ R be a bounded open interval. Show that the sets

• C1(I) and
• {f ∈ C1(I) : ‖f‖∞ + ‖f ′‖∞ <∞}

are precompact in C(I). Is either of them also closed, hence compact?

Definition 6.12. Let X, Y be Banach spaces. An operator T from X to Y is called compact if
TB1(0) is precompact, i.e., if the closure of the image of the unit ball of X under T is compact
in Y .
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In other words, an operator is compact if and only if it maps each bounded sequences into
sequences that contain a convergent subsequence – i.e., if it maps bounded sets into precompact
sets. In particular, linear compact operators will play an important role in spectral theory.

Exercise 6.13. Let X = Kn and Y = Km. Show that a compact operator from X to Y is simply
a continuous mapping.

Proposition 6.14. Let X, Y,W,Z be Banach spaces and T be a compact linear operator from
Y to W . Let additionally S,R be bounded linear operators from X to Y and from W to Z,
respectively. Then both TS and RT are compact (from X to W and from Y to Z, respectively).

Proof. First, observe that since S is bounded, also SB1(0) is bounded in Y (where B1(0)
denotes the unit ball in X), and hence by definition of compact operator TSB1(0) is precompact
in W , yielding the claim.

Let now (xn)n∈N be a bounded sequence in Y . Then there exists a subsequence (Txnk)k∈N
that converges in W . By continuity of R, also (RTxnk)k∈N converges. This completes the
proof. �

Exercise 6.15. Let X, Y be Banach spaces and T be a linear operator from X to Y .

(1) Show that if T is compact, then it is also bounded.
(2) Show that if T is bounded and X or Y are isomorphic to Kn, then T is also compact.

Exercise 6.16. Let X, Y be Banach spaces. Show that the set of all compact linear operators
from X to Y is a vector space.

The vector space of compact linear operators between Banach spaces X, Y is commonly
denoted by K(X, Y ).

Example 6.17. Let X be a normed space. The zero operator on X is clearly compact. By
Proposition 6.8, the identity on X is compact if and only if X is isomorphic to Rn.

Exercise 6.18. Let I ⊂ R be a bounded interval. Show that the embedding – i.e., the identity
considered as an operator from H1(I) into C(I) (in the sense of Exercise 5.15) – is compact.

Remark 6.19. Observe that compactness of the embedding of H1(I) into C(I) only means
that H1(I) is a precompact subset of C(I), not a compact subset. In fact, H1(I) contains the
polynomials on I and hence by the theorem of Stone–Weierstraß it is dense (hence not closed)
in C(I).

Exercise 6.20. Consider the Fredholm operator K with kernel k introduced in Exercise 2.8.

(1) Show that if k ∈ L2((0, 1)× (0, 1)), then K is a compact operator on L2(0, 1).
(2) Show that if k ∈ C([0, 1]× [0, 1]), then K is a compact operator from C([0, 1]).

Definition 6.21. Let X be normed spaces. An eigenvalue of a bounded linear operator T is a
number λ ∈ K such that λ Id−T is not injective, i.e., such that there exists u ∈ X, u 6= 0, such
that Tu = λu. In this case u is called eigenvector associated with λ and the vector space
Ker(λ Id−T ) eigenspace associated with λ. The set of all eigenvalues of T is called point
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spectrum of T and is denoted by Pσ(T ). The set of all λ ∈ K such that λ Id−T is not bijective
is called spectrum of T and denoted by σ(T ). If λ 6∈ σ(T ), then R(λ, T ) := (λ Id−T )−1 is
called resolvent operator of T at λ.

The notions in Definition 6.21 were first defined (if not introduced) by David Hilbert in 1904
in his study of integral equations. They had such an impact on the newborn functional analysis
that they were adopted in the english literature without even changing the prefix eigen-. Also
the notion of spectrum has been introduced by Hilbert, in 1912.

In our introduction of spectral theory we follow [16, Kap. 2]. Throughout the following we
assume that K = C.

Example 6.22. The zero operator on a normed space X has 0 as its only eigenvalue, since
λ Id is clearly injective (and even invertible) for all λ 6= 0, since so is the identity operator.
Accordingly, X is the only eigenspace.

Similarly, 1 is the only eigenvalue of the identity operator with associated eigenspace X.
More generally, the spectrum of each multiple of the identity µ Id consists of µ ∈ C only.

Exercise 6.23. Deduce from Proposition 6.14 that the resolvent operator of a bounded linear
operator on a Banach space can never be compact unless the Banach space is isomorphic to Kn.

Exercise 6.24. Let X be a Banach space and T be a bounded linear operator on X.

• Show that λ 6∈ σ(T ) if and only if 1 6∈ σ(T
λ

) and in this case R(1, T
λ

) = λR(λ, T ).
• Let S be a further bounded linear operator on X and λ 6∈ σ(T ). Show that λ 6∈ σ(T +S)

if and only if 1 6∈ R(λ, T )S. (Hint: Write λ Id−(T + S) = (λ− T )(Id−R(λ, T )S).)
• Let X be a Hilbert space. Show that the spectrum of the adjoint T ∗ is given by {λ ∈ C :
λ ∈ σ(T )}

Lemma 6.25. Let X be a Banach space and T be a bounded linear operator on X. If ‖T‖ < 1,
then 1 6∈ σ(T ) and

(6.2) R(1, T ) =
∞∑
n=0

T n with ‖R(1, T )‖ ≤ 1

1− ‖T‖
.

The series in (6.2) is called the Neumann series, as it has been introduced in 1877 by Carl
Gottfried Neumann. More generally, it can be proved that if the Neumann series converges,
then Id−T is invertible and its inverse is actually given by the series.

Proof. Due to submultiplicativity of the norm and by convergence of the geometric series
(in R), one sees that

(6.3)
∞∑
n=0

‖T n‖ ≤
∞∑
n=0

‖T‖n =
1

1− ‖T‖
.
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Since X is complete, by Exercise 4.8 this implies convergence of
∑m

n=0 T
n =: Sm towards∑∞

n=0 T
n =: S ∈ L(H) as m→∞. Hence,

Sm(Id−T ) = Sm − SmT = Sm − T
m∑
n=0

T n = Sm −
m+1∑
n=1

T n = Sm − (Sm+1 − Id) = Id−Tm+1

and accordingly

S(Id−T ) = lim
m→∞

Sm(Id−T ) = lim
m→∞

Sm − SmT = lim
m→∞

Sm − (Sm − Id) = Id− lim
m→∞

Tm+1 = Id,

since limm→∞ ‖Tm+1‖ ≤ limm→∞ ‖T‖m+1 = 0 because ‖T‖ < 1. One proves likewise that
(Id−T )S = Id. We conclude that R(1, T ) = S =

∑∞
n=0 T

n, and the estimate in (6.2) follows
from (6.3) and the triangle inequality. �

Lemma 6.26. Let X be a Banach space. Then the following assertions hold.

(1) The set GLX := {T ∈ L(X) : 0 6∈ σ(T )} of all invertible operators on X is open in the
normed space (L(X), ‖ · ‖).

(2) The (nonlinear) inversion operator T 7→ T−1 is continuous on the set GLX .
(3) The spectrum of T is contained in B‖T‖(0).
(4) The spectrum of a bounded operator is closed.

In the proof of this result we will need the notion of Fréchet differentiability, which lies at
the basis of the theory of differentiation in Banach spaces. We refer to [11, § 175] for some basic
definitions and results.

Proof. (1) Let T ∈ GLX and S ∈ L(X) such that ‖S − T‖ < ‖T−1‖−1. Then it follows
that

‖ Id−T−1S‖ = ‖T−1(T − S)‖ ≤ ‖T−1‖‖T − S‖ < 1.

Accordingly, by Lemma 6.25 T−1S, and therefore also S are invertible, i.e., S ∈ GLX .
(2) We are going to prove even more, namely that the inversion operator is Fréchet differen-

tiable at each T ∈ GLX , i.e., that for all T ∈ GLX there exists a bounded linear operator DT

on the Banach space L(X) such that

lim
R→0

‖(T +R)−1 − T−1 −DTR‖
‖R‖

= 0.

Let again T ∈ GLX . By (1), there is a neighbourhood of T in L(X) consisting of invertible
operators. In fact, take R ∈ L(X) such that

(6.4) ‖R‖ < 1

2
‖T−1‖−1,

i.e., ‖R‖‖T−1‖1
2
. Then as in (1) T −R = T (Id−T−1R) and therefore T −R ∈ GLX with

(T −R)−1 = R(1, T−1R)T−1 =
∞∑
n=0

(T−1R)nT−1 = T−1 +
∞∑
n=1

(T−1R)nT−1.
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In order to check Fréchet differentiability it clearly suffices to show that the linear operator
1
‖R‖(T +R)−1−T−1 is bounded by a constant not depending on R. This follows after observing

that

‖(T −R)−1 − T−1‖ ≤ ‖
∞∑
n=1

(T−1R)nT−1‖

≤
∞∑
n=1

‖T−1‖n+1‖R‖n‖

≤ ‖T−1‖2‖R‖
∞∑
n=1

‖T−1‖n−1‖R‖n−1

≤ ‖T−1‖2‖R‖
∞∑
n=0

‖T−1‖n‖R‖n

≤ ‖T−1‖2‖R‖
1− ‖T−1‖‖R‖

≤ 1

2
‖T−1‖2‖R‖

by (6.4) and due to convergence of the (scalar) geometric series.
(3) Take λ ∈ C with |λ| > ‖T‖, hence in particular λ 6= 0. Then ‖ Id−(Id−λ−1T )‖ < 1,

hence by Lemma 6.25 Id−λ−1T ∈ GLX . Multiplying this by λ yields λ Id−T ∈ GLX which by
definition means that λ 6∈ σ(T ).

(4) Let λ 6∈ σ(T ), so that λ Id−T ∈ GLX . Since GLX is open in L(X), there exists a
neighourhood of λ Id−T contained in GLX , i.e., there exists µ ∈ C with |λ − µ| small enough
that µ Id−T ∈ GLX , and hence that µ 6∈ σ(T ). Accordingly, σ(T ) is closed. �

Lemma 6.27. Let X be a Banach space. Let S, T be bounded linear operators on X, λ, µ ∈ C.
Then the following assertions hold.

(1) R(λ, T ) − R(µ, T ) = (µ − λ)R(λ, T )R(µ, T ) for all λ, µ 6∈ σ(T ), and in particular all the
resolvent operators of T commute.

(2) R(λ, T )−R(λ, S) = R(λ, T )(T − S)R(λ, S) for all λ 6∈ σ(T ) ∪ σ(S).
(3) R(·, T ) : C \ σ(T )→ C is holomorphic and its derivative is given by

d

dλ
R(λ, T ) = −R(λ, T )2, λ 6∈ σ(T ).

Proof. (1) Since (µ Id−T ) − (λ Id−T ) = µ Id−λ Id, composing both sides with R(λ, T )
from the left and R(µ, T ) from the right.

(2) Similarly, since (λ Id−S) − (λ Id−T ) = T − S, the assertion follows composing both
sides with R(λ, S) from the left and R(λ, T ) from the right.
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(3) Take λ, µ 6∈ σ(T ) and deduce from (1) that

R(λ, T )−R(µ, T )

λ− µ
= −R(λ, T )R(µ, T ).

Due to continuity of the inversion operator (cf. Lemma 6.26.(3)) It follows that

lim
µ→λ

R(λ, T )−R(µ, T )

λ− µ
= −R(λ, T )2,

hence R(·, T ) is complex differentiable in λ and its derivative is −R(λ, T )2. �

Theorem 6.28. Let H be a (complex!) Hilbert space. Then each bounded linear operator T on
H has nonempty spectrum and lim|λ|→∞ ‖R(λ, T )‖ = 0.

Proof. The proof goes in two steps.

(1) We prove an analogon of Liouville’s theorem: Each H-valued function f that is bounded
and holomorphic on all C is already constant.

(2) We deduce the claimed assertion.

(1) Consider functionals (u|f(·))H : C→ C, u ∈ H. By Exercise 3.25 also these functionals are
holomorphic, and they are clearly bounded and holomorphic on all C by the Cauchy–Schwarz
inequality. Hence by the well-known Liouville’s theorem (scalar-valued case!) we deduce that
(u|f(·))H : C → C is constant for all u ∈ H, say (u|f(z))H ≡ cu for all z ∈ C. It remains
to prove that in fact f(z1) = f(z2) for all z1, z2 ∈ C. Take z1, z2 ∈ C and observe that
(u|f(z1)− f(z2))H = 0 for all u ∈ H, hence by Exercise 3.14.(6) f(z1) = f(z2).

(2) Let finally λ ∈ C with |λ| > ‖T‖, so that by Lemma 6.25 the bounded linear operator
1
λ
T is invertible with inverse given by the Neumann series and ‖R(1, 1

λ
T )‖ ≤ 1

1−‖Tλ‖
. Thus, by

Exercise 6.24.(1) we deduce that

‖R(λ, T )‖ =
∥∥∥1

λ
R
(

1,
T

λ

)∥∥∥ ≤ 1

|λ|(1−
∥∥T
λ

∥∥)
=

1

|λ| − ‖T‖
,

whence

(6.5) lim
|λ|→∞

‖R(λ, T )‖ = 0.

Because of its holomorphy, the resolvent mapping λ 7→ R(λ, T ) is bounded on each bounded
subset of C \ σ(T ). Assume now σ(T ) to be empty. Then by Lemma 6.27 R(·, T ) is bounded
and holomorphic on all C, and by (1) it is constant. Because of (6.5), such a constant value is
necessarily 0, i.e., R(λ, T ) ≡ 0 for all λ ∈ C. Since however the zero operator is not invertible,
this is a contradiction and the proof is completed. �

Remark 6.29. We have needed H to be a Hilbert (rather than merely a Banach) space only to
apply the holomorphy of the resolvent operator, which we have characterized by the Hahn–Banach
theorem in Hilbert spaces, cf. Exercise 3.25. However, as already remarked the Hahn–Banach
theorem actually holds in Banach spaces, too, and in fact Theorem 6.28 is also valid for bounded
linear operators on general Banach spaces.
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As we have seen, the proof of the previous fundamental result is deeply rooted in the appli-
cation of ideas and methods from complex analysis. This explains why we always assume that
K = C whenever discussing spectral theory.

While the spectrum of a bounded linear operator is always nonempty, its point spectrum
may indeed be empty.

Exercise 6.30. Define the Volterra operator V by

V f :=

∫ ·
0

f(s)ds, f ∈ C([0, 1]).

Show that V is a compact linear operator on C([0, 1]) with no eigenvalues. Such an operator was
introduced by Vito Volterra – at the beginning of 20th century he was studying integral equations
similar to those that led to the introduction of Fredholm operators.

However, this is never the case if the operator is compact and self-adjoint on a Hilbert space.

Proposition 6.31. Let H be a Hilbert space and T be a compact self-adjoint linear operator on
H. Then at least one element of {−‖T‖, ‖T‖} is an eigenvalue of T .

Proof. Assume without loss of generality that T 6= 0, the claim being otherwise obvious.
Since by Corollary 5.25 ‖T‖ = sup‖x‖=1 |(Tx|x)H |, there exists a sequence (xn)n∈N in X such that
‖xn‖H = 1 for all n ∈ N and limn→∞ |(Txn|xn)H | = ‖T‖. Upon considering a subsequence, we
may assume that all real numbers (Txn|xn)H have the same sign, i.e., limn→∞(Txn|xn)H = λ 6= 0
with either λ = ‖T‖ or λ = −‖T‖. Accordingly,

0 ≤ ‖(T − λ Id)xn‖2
H

= ‖Txn‖2
H − 2λ(Txn|xn)H + λ2

≤ ‖T‖2 − 2λ(Txn|xn)H + λ2

= 2‖T‖2 − 2λ(Txn|xn)H .

Since
lim
n→∞

λ(Txn|xn)H = λ lim
n→∞

(Txn|xn)H = λ2 = ‖T‖2,

it follows that limn→∞(T −λ Id)xn = 0. By compactness of T we may assume (upon considering
a subsequence) that (Txn)n∈N converges towards some x ∈ H. Clearly,

lim
n→∞

xn = lim
n→∞

(λ Id−T )xn + Txn
λ

= lim
n→∞

(λ Id−T )xn
λ

+ lim
n→∞

Txn
λ

=
x

λ
.

Observe now that

x = lim
n→∞

Txn = T lim
n→∞

xn =
Tx

λ
,

i.e., Tx = λx. It remains to prove that x 6= 0, and this can be done passing to the norm and
observing that ‖x‖H = |λ|‖xn‖ = ‖T‖ 6= 0, n ∈ N. �

Proposition 6.32. Let H be a separable Hilbert space and T be a compact linear operator on
H. If λ 6= 0 is an eigenvalue of T , then the associated eigenspace is finite dimensional.
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Proof. Consider a basis {en : n ≥ 1} of the null space of λ Id−T , λ 6= 0. This is surely
possible by the Gram–Schmidt orthonormalisation process, because such a null space is a closed
subspace of H and hence itself a separable Hilbert space. Assume the eigenspace associated
with λ to be infinite dimensional, i.e., assume the above basis to have the cardinality of N, i.e.,
it is {en : n ∈ N}. Since this sequence is bounded, {Ten : n ∈ N} is a precompact set and it
admits a convergent subsequence {Tenk : k ∈ N}.

However, this contradicts the fact that for indices k 6= h Parseval’s identity implies

‖Tenk − Tenh‖2 = ‖λenk − λenh‖2 = 2|λ|2 > 0,

i.e., {Tenk : k ∈ N} is not a Cauchy sequence. �

Exercise 6.33. Let Ω ⊂ Rn and q ∈ L∞(Ω). Consider the multiplication operator introduced in
Exercise 2.25. Show that the spectrum of Mq agrees with the essential range of q.

The following Spectral theorem is one of the fundamental results obtained by David
Hilbert. It was published in 1906, in a generalization of his previous investigations dating back
to 1904.

Theorem 6.34. Let H be a Hilbert space and T be a linear compact self-adjoint operator on H.
Then the following assertions hold.

(1) The point spectrum of T is (at most) a countable set {λn : n ≥ 1} in C whose only possible
accumulation point is 0.

(2) Denoting by Pn the orthogonal projection onto the (closed) eigenspace associated with λn,
there holds T =

∑
n≥1 λnPn.

(3) Finally, H has an basis {un : n ≥ 1} consisting of eigenvectors of T and such that

Tx =
∑
n≥1

λn(x|un)Hun for all x ∈ H.,

provided that H is separable.

The Spectral theorem can be extended to the case of a bounded linear operator, although
both the formulation and the proof become much more involved, see e.g. [20, Satz 3.3.3].

Proof. (1) If T = 0 the assertion is trivial. Let therefore T1 := T 6= 0 and observe
that by Proposition 6.31 we can pick an eigenvalue λ1 of T whose absolute value agrees with
‖T1‖. Clearly, T1 leaves invariant both the eigenspace associated with λ1 and its orthogonal
complement, i.e., TKer(λ1 Id−T ) ⊂ Ker(λ1 Id−T ) and TKer(λ1 Id−T )⊥ ⊂ Ker(λ1 Id−T )⊥. If
Ker(λ1 Id−T )⊥ = {0}, i.e., if Ker(λ1 Id−T ) = H, then the eigenvalue λ1 is the only element of
σ(T ) and the assertion holds.

If however Ker(λ1 Id−T )⊥ 6= {0}, we consider the restriction T2 of T to Ker(λ1 Id−T )⊥ as
a compact linear operator on the closed subspace (with respect to the induced inner product)
and hence Hilbert space in its own right Ker(λ1 Id−T )⊥. Moreover, T2 is self-adjoint (why?),
and again we consider the two cases T2 = 0 (and then the assertion follows) or T2 6= 0, in which
case we pick an eigenvalue λ2 of T2 whose absolute value agrees with ‖T2‖. We observe that

Ker(λ2 Id−T2) = Ker(λ2 Id−T1) = Ker(λ2 Id−T ),
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since {0} 6= Ker(λ2 Id−T2) ⊂ Ker(λ2 Id−T1) with λ1 6= λ2. It follows that λ1 6= λ2, because
otherwise we would have additionally that Ker(λ2 Id−T2) ⊂ Ker(λ1 Id−T1), which contradicts
the fact that Ker(λ2 Id−T2) and Ker(λ2 Id−T1) are orthogonal. Observe that |λ2| ≤ |λ1|, since
by construction ‖T2‖ ≤ ‖T1‖.

Again, consider the direct sum Ker(λ2 Id−T2)⊕Ker(λ1 Id−T1), its orthogonal subspace

(Ker(λ2 Id−T2)⊕Ker(λ1 Id−T1))⊥

and the restriction T3 of T2 to it, which as above is compact and such that ‖T3‖ ≤ ‖T2‖, linear
and self-adjoint operator, so that we can consider an eigenvalue λ3 of T3 (and in fact of T ) with
|λ3| = ‖T3‖ and the associated eigenspace Ker(λ3 Id−T ), and so on...

In this way we can inductively define a sequence {λn : n ≥ 1} of eigenvalues with decreasing
absolute value – this defining process possibly stops whenever

n⊕
k=1

Ker(λk Id−T ) = H or Tn = 0

for some n.1 If however this process does not stop at any finite step n, then we can consider
a sequence (xn)n∈N such that xn ∈ Ker(λn Id−T ) and ‖xn‖ = 1. By compactness of T , the
sequence (Txn)n∈N admits a convergent subsequence (Txnk)k∈N. Observe however that since
each xn is an eigenvector associated with the eigenvalue λn (i.e., limk→∞ Txnk = limk→∞ λnkxnk),
we have

‖Txnk − Txnh‖2 = ‖λnkxnk − λnhxnh‖2 = ‖λnkxnk‖2 + ‖λnhxnh‖2 = |λnk |2 + |λnh |2

by Exercise 3.14.(1) since the eigenspaces Ker(λnk Id−T ) are by construction pairwise orthogo-
nal, and therefore limh,k→∞ |λnk |2 + |λnh |2 = 0. In other words, the unique possible accumulation
point of (λn)n∈N is 0.

(2) In order to prove the claimed representation of T , take a finite n, pick x ∈ Ker(λk Id−T )
for some k ≤ n and observe that(

T −
n∑
k=1

λnPn

)
x = Tx− λkx = 0,

where the equalities follow from the facts that the eigenspaces are pairwise orthogonal and that x
is an eigenvector of T , respectively. This means that each of the (pairwise orthogonal) subspaces

Ker(λk Id−T ) is contained in the null space of the operator
(
T−

∑
n≥1 λnPn

)
, k ≤ n, and hence

so is their direct sum. On the other hand, if we pick

x ∈

(
n⊕
k=1

Ker(λk Id−T )

)⊥
1 Observe in particular that by Exercise 3.17 we deduce

PnPm = PmPn =

{
Pn if n = m,
0 otherwise.
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we obtain by construction (
T −

n∑
k=1

λnPn

)
x = Tx,

and accordingly

lim
n→∞

∥∥∥T − n∑
k=1

λnPn

∥∥∥ = lim
n→∞

|λn+1|.

The claim follows because by (1) the unique possible accumulation point of the decreasing
sequence (

‖T −
n∑
k=1

λnPn‖

)
n∈N

is 0.
(3) Finally, consider bases {uj : j ∈ J0} of Ker(T ) and {uj : j ∈ Jn} of Ker(λn Id−T ), n ≥ 1.

This can be done by separability of H. Consider their union
⋃
n≥0{uj : j ∈ Jn} and observe

that this defines a basis of H, since Ker(T ) is orthogonal to the range of T , i.e., to⊕
n≥1

Ker(λn Id−T ),

and H is direct sum of Ker(T ) and Ran(T ), because ‖Tx‖2 =
∑

n≥1 |λn|2‖Pnx‖2 for all x ∈ H
by Exercise 3.14.(1). �

Theorem 6.35. Let H be a Hilbert space and T be a linear compact operator on H. Then the
following assertions hold.

(1) Let λ ∈ C. If λ Id−T is injective, then λ Id−T is surjective.
(2) With the possible exception of 0, each element of σ(T ) is also an element of Pσ(T ) –

i.e., an eigenvalue.

Proof. (1) Assume λ Id−T to be injective but its range H1 := (λ Id−T )H to be different
from H. Observe that T maps H1 into itself. Since H1 is closed in H and hence a Hilbert space
(why?) and since the restriction of T to H1 is a compact operator on H1 (why?), we deduce
similarly that H2 := (λ Id−T )H1 ⊂ H1 is a Hilbert space. Moreover, H1 6= H2 because T is
injective. In this way, we can define recursively a sequence of Hilbert spaces (Hn)n∈N, with Hn

strictly included in Hm whenever n > m. By Lemma 6.7 there exists a sequence (xn)n∈N such
that xn ∈ Hn, ‖xn‖ = 1, and infy∈Hn+1 ‖y − xn‖H ≥ 1

2
for all n ∈ N. Observe that for all

n,m ∈ N one has

Txn − Txm = −(λxn − Txn) + (λxm − Txm) + (λxn − λxm),

and accordingly for all n > m

−(λxn − Txn) + (λxm − Txm) + λxn ∈ Hm+1.

Accordingly, ‖Txn − Txm‖H ≥ 1
2

for all n > m and hence (Txn)n∈N has no convergent subse-
quence, in spite of the fact that (xn)n∈N is bounded – a contradiction to compactness of T .
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(2) We can assume that H is not isomorphic to Kn for any n ∈ N, since otherwise the
assertion is trivial. Let therefore λ ∈ σ(T ) and assume λ not to be an eigenvalue, i.e., λ Id−T
to be injective. Then by (1) λ Id−T is surjective and therefore λ 6∈ σ(T ), a contradiction. �

Exercise 6.36. Let H be a Hilbert space and T be a bounded linear operator on H. Show that
T is compact if and only if T ∗ is compact. Combine this with Exercise 5.32.(4) and deduce that
the converse of Theorem 6.35.(1) also holds.

Exercise 6.37. Show that the Fredholm operator from Exercise 4.37 is compact. Deduce the
validity of the so-called Fredholm alternative: Given 0 6= λ ∈ C, either there exists 0 6= f ∈
L2(0, 1) such that

λf(x) =

∫ 1

0

k(x, y)f(y)dy for a.e. x ∈ (0, 1),

or for all g ∈ L2(0, 1) there exists a unique f ∈ L2(0, 1) such that

λf(x)−
∫ 1

0

k(x, y)f(y)dy = g(x) for a.e. x ∈ (0, 1).

Exercise 6.38. Let H be a separable Hilbert space with a basis {en : n ∈ N}. A linear compact
self-adjoint operator T on H is called positive definite if (Ten|en)H ≥ 0 for all n ∈ N. Show
that T is positive definite if and only if all eigenvalues of T are positive real numbers.

Remark 6.39. Hilbert’s original formulation of the Spectral theorem was very technical. It was
Paul Richard Halmos who showed in 1974 in [8] how the theorem can be reformulated in a much
simpler way, bringing to light its close relation to the result on diagonalisability of symmetric
matrices. In his formulation, the Spectral theorem says that for each linear compact self-adjoint
operator T on a Hilbert space H there is a measure space (X,Σ, µ) and an essentially bounded
measurable function q : X → R such that A is unitarily equivalent to the multiplication operator
Mq, i.e., U∗MqU = T for some unitary2 operator U from H to L2(X,µ).

2A linear operator on a Hilbert space is called unitary if it is invertible and its inverse coincides with its
adjoint.
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[1] Jürgen Appell, Martin Väth, Elemente der Funktionalanalysis, Vieweg, Wiesbaden, 2009.
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