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History and Applications

Named afterDaniel Bernoulli (1700-1782), the Bernoulli Problem
was initially the study of the stream line that a fluid makes around
an obstacle. A detailed qualitative description was first found by
H. W. Alt and L. Caffarelli, hence the more contemporary name
Alt-Caffarelli Problem:

min
u∈W 1,2(Ω)
u|∂Ω=1

∫
Ω
|∇u|2 dx + λ|{u > 0}|. (1)

Figure 1: If Ω corresponds to the river without the inside stone, the
stream lines are positive level sets of minimizers of (1).

Nowadays, there exist extensive applications in shape optimiza-
tion. One seeks to find shapes of fixed volume that are most ther-
mally insulating. This yields minimization problems like

min
K⊂⊂Ω

(Cap(K,Ω)− λ|K|) , (2)

where Cap(·,Ω) denotes the capacity of a heat conductor in Ω.
Minimizers of (2) correspond to nodal sets of minimizers of (1).

The Problem and its Free Boundary

Let Ω ⊂ R2 be a domain with smooth boundary, g ∈ C∞(Ω) a
positive function and λ > 0. We seek to minimize

E(u) :=
∫

Ω
(∆u)2 dx + λ|{u > 0}| (3)

among all u ∈ W 2,2(Ω) such that u|∂Ω = g.

The first summand measures the bending of u. Minimizers thus have
to find a balance between not bending too much but at the same
time being nonpositive in a large region. Nonpositivity near the
boundary requires a lot of bending!

Minimizers exist but are in general non-unique. Moreover minimiz-
ers are smooth except on their nodal sets {u = 0}, where regularity
breaks down. Because of this property, we also call {u = 0} the
free boundary of the problem. One is interested in the structure
of the free boundary and the global regularity of minimizers.

Figure 2: Minimizers divide Ω into three regions. The free boundary
{u = 0} may a priori look very fuzzy.

Main Result

Theorem: [M. 2020] Let u ∈ W 2,2(Ω) be a minimizer. Then
u ∈ C2(Ω) and ∇u does not vanish on {u = 0}. The nodal set
{u = 0} is a union of finitely many disjoint and simply closed
C2-curves. Moreover u is a solution to
2
∫

Ω
∆u∆φ dx = λ

∫
{u=0}

φ

|∇u|
dH1 ∀φ ∈ W 2,2(Ω) ∩W 1,2

0 (Ω).

Discussion of the Theorem

◦ The nonvanishing gradient of minimizers u on {u = 0} makes
{u = 0} a manifold at least as regular as u. It is also needed to write
down the equation for the minimizer.
◦ The equation for the minimizer is not an Euler-Lagrange equa-
tion, since the measure term is not necessarily differentiable.
◦ Further Sobolev regularity can be obtained using theory on Poisson
equations with measure-valued right hand side.
◦ The explicit equation for u also implies Navier boundary con-
ditions, i.e. ∆u = 0 on ∂Ω.
◦ Two-dimensionality is only needed at one point in the proof to
obtain homogeneity of blow-up profiles when zooming in at
singular points.

Radial Solutions are Explicit

If Ω = B1(0) and g is constant, Talenti’s inequality shows the
existence of a radial minimizer u. As minimizers are also subhar-
monic, u must be radially increasing. The free boundary {u = 0} is
therefore a single circle, whose radius is then the only free parameter.
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Figure 3: Explicit radial minimizers and their radial profile curves.
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