

Elasticae in the Hyperbolic Plane

Marius Müller¹ Adrian Spener²

¹marius.mueller@uni-ulm.de ²adrian.spener@uni-ulm.de

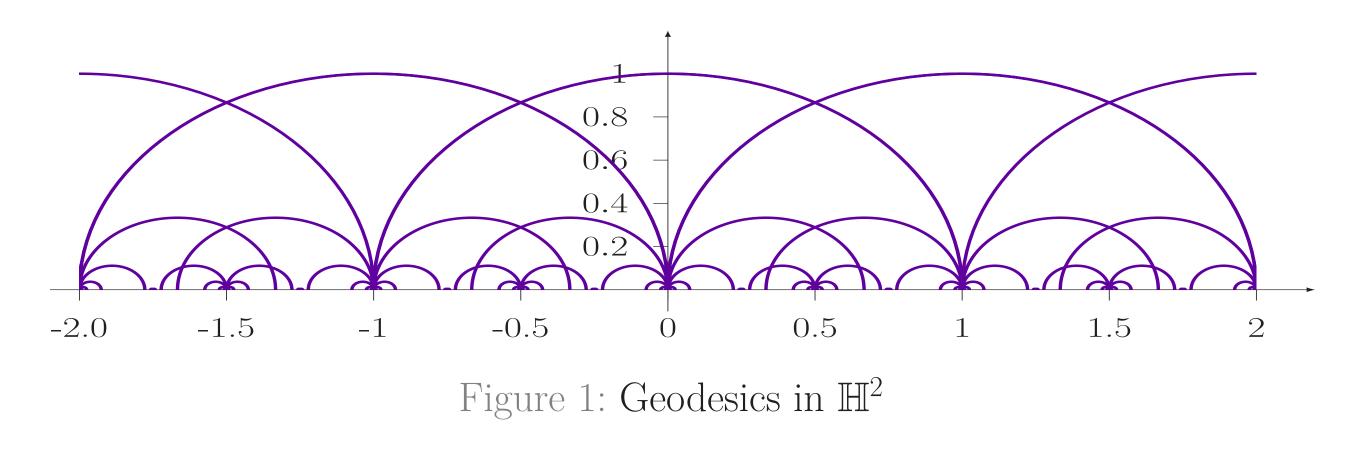
Hyperbolic Geometry

We endow the **hyperbolic half plane** $\mathbb{H}^2 := \mathbb{R} \times (0, \infty)$ with the Riemannian metric $g = \frac{1}{y^2} dx dy$. All Möbius transformations

Construction of Non-Convergent Evolutions

From our explicit parametrization of hyperbolic elasticae, we can deduce the following

of \mathbb{H}^2 are now isometries - even scaling! This makes geometric variational problems in \mathbb{H}^2 interesting – they have many invariances.



Euler's Elastica Problem

Let (M, g) be a smooth two-dimensional Riemannian manifold and $\gamma : (a, b) \to M$ be a smooth curve. The **elastic energy** of γ is given by

$$\mathcal{E}_M(\gamma) := \int_{\gamma} \kappa^2 \,\mathrm{d}\mathbf{s},$$

where ds denotes the arclength parameter and κ denotes the (signed) curvature of γ in M. The energy was introduced by Euler in 1744 for $M = \mathbb{R}^2$. He was already able to discuss its **critical points**, so-called **Euler elasticae**.

Theorem 1. There is no closed elastica in \mathbb{H}^2 with vanishing **Euclidean total curvature**.

The euclidean total curvature is a **flow invariant**.

Starting the flow with a closed curve of vanishing Euclidean total curvature (cf. Figure 2) must thus lead to a non-convergent evolution, since each **limit** of such an evolution **has to be an elastica** with the same Euclidean total curvature.

Convergence below an Energy Threshold

The following **Reilly-type inequality** relates hyperbolic length and elastic energy:

Theorem 2. For each $\epsilon > 0$ there exists a constant $c(\epsilon) > 0$ such that for each smoothly closed curve $\gamma : \mathbb{S}^1 \to \mathbb{H}^2$ such that $\mathcal{E}_{\mathbb{H}^2}(\gamma) < 16 - \epsilon$ one has $\mathcal{L}_{\mathbb{H}^2}(\gamma) \leq c(\epsilon) \mathcal{E}_{\mathbb{H}^2}(\gamma)$.

The proof works by examination of critical points of $\mathcal{E}_{\mathbb{H}^2}/\mathcal{L}_{\mathbb{H}^2}$, which we can also parametrize explicitly. If the **hyperbolic arclength** is **controlled along the flow**, results in [1] imply convergence.

There exists an astounding connection to the Willmore Energy of surfaces in case that $M = \mathbb{H}^2$ is the hyperbolic plane: Let $\mathcal{S}(\gamma) \subset \mathbb{R}^3$ be the surface that arises from revolution of a closed curve $\gamma : \mathbb{S}^1 \to \mathbb{H}^2$ around the *x*-axis. Then the Willmore energy of $\mathcal{S}(\gamma)$ differs only by a constant factor from $\mathcal{E}_{\mathbb{H}^2}(\gamma)$.

Goal: Understanding the Gradient Flow

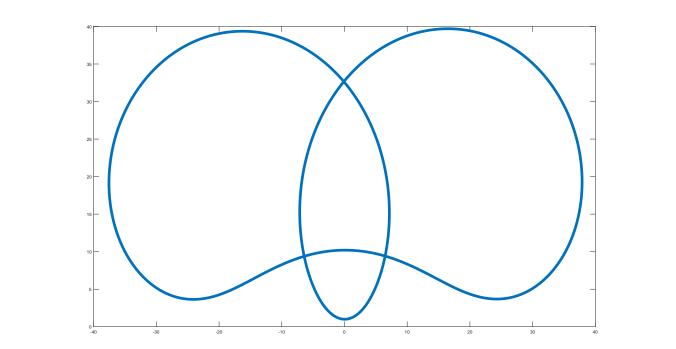
We study *smoothly closed elasticae* in \mathbb{H}^2 to discuss the convergence of the elastic flow, i.e. the L^2 -gradient flow of the elastic energy. Its long-time-existence follows from [1], but one can say more:

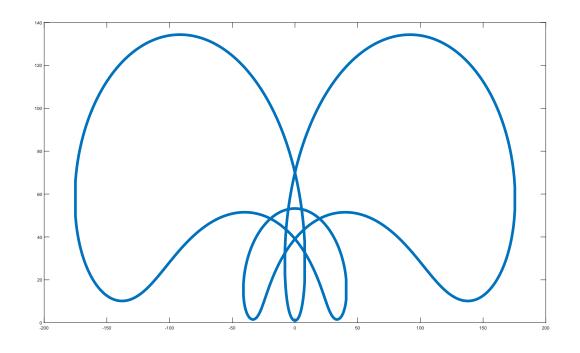
MAIN RESULT: We can provide a complete classification of the asymptotic behavior of the elastic flow: If we start the flow with a curve of energy below 16, the elastic flow converges. Moreover, one can find non-convergent evolutions with initial data of energy just slightly above 16.

Methods and Parametrizations

A first study of closed elasticae in \mathbb{H}^2 was conducted in [2], in particular the **Euler-Lagrange equation** $\kappa'' + \frac{1}{2}\kappa^3 - \kappa = 0$ was found. Given this one can easily retrieve the curvature κ , but it remains difficult to determine whether elasticae **close smoothly**.

With order reduction techniques from [2], we obtain explicit solutions, which allow us to look at hyperbolic elasticae with our "Euclidean eyes".





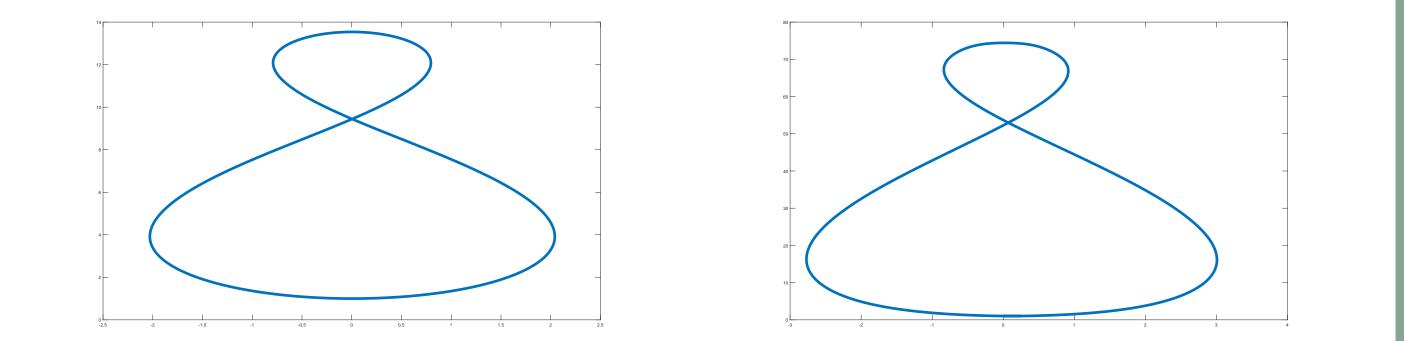


Figure 2: Initial data with non-convergent hyperbolic elastic flow

Figure 3: Plots of generic hyperbolic elasticae that are not circles.

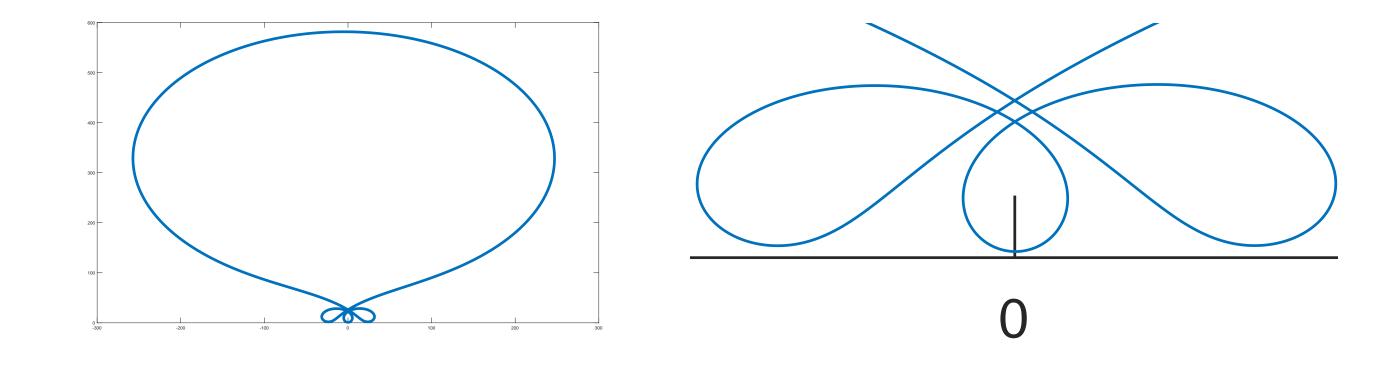


Figure 4: Computing the Euclidean total curvature can be involved and invokes the challenge of excluding shamrock-like looking elasticae.

References: [1]: Dall'Acqua, Spener (2017), *The elastic flow of curves in the hyperbolic plane.* [2]: Langer, Singer (1984), *The total squared curvature of closed curves.*