Analysis I 6. Übungsblatt

Abgabe: Freitag, 01. Juni 2012, 9:00 Uhr in der Vorlesung

1. Aufgabe (4+4+4=12 Punkte)

Man beweise folgende Aussagen:

(a) Eine Folge $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^d$, $d\in\mathbb{N}\setminus\{0\}$, konvergiert genau dann bezüglich der Norm $\|.\|_1$ gegen $x=(x^1,...,x^d)\in\mathbb{R}^d$, wenn für alle $k\in\{1,...,d\}$ die Koordinatenfolge $(x_n^k)_{n\in\mathbb{N}}$ gegen x^k konvergiert. Hierbei ist die 1-Norm $\|.\|_1$ gegeben durch $\|(x^1,...,x^d)\|_1:=\sum_{i=1}^d|x^i|$ für alle $x=(x^1,...,x^d)\in\mathbb{R}^d$.

Bemerkung: Tatsächlich kann man zeigen, dass im \mathbb{R}^d die Konvergenz bezüglich einer Norm stets die Konvergenz bezüglich einer jeden anderen Norm impliziert, so dass im \mathbb{R}^d alle Normen "gleichberechtigt" sind.

- (b) Zwei Folgen $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ im \mathbb{R}^d , $d\in\mathbb{N}\setminus\{0\}$, konvergieren genau dann, wenn $(x_n+y_n)_{n\in\mathbb{N}}$ und $(x_n-y_n)_{n\in\mathbb{N}}$ konvergieren, wobei die Norm $\|.\|_1$ zugrunde gelegt wird.
- (c) Es sei $q \in (0,1)$ und $(x_n)_{n \in \mathbb{N}}$ eine reelle Folge mit $x_n > 0$ und $x_{n+1} \le qx_n$ für alle $n \in \mathbb{N}$. Dann konvergiert $(x_n)_{n \in \mathbb{N}}$ gegen 0.

Hinweis: Man kann Aufgabe 2(c) verwenden.

2. Aufgabe (4+3+2=9 Punkte)

Man beweise die folgenden Aussagen:

- (a) Für jede reelle Zahl $x \ge -1$ und alle $n \in \mathbb{N}$ gilt $(1+x)^n \ge 1 + nx$.
- (b) Sei $b \in \mathbb{R}$ mit b > 1. Dann existiert für alle $k \in \mathbb{R}$ ein $n \in \mathbb{N}$, so dass $b^n > k$ gilt.

Hinweis: Man verwende Teil (a).

(c) Sei $b \in \mathbb{R}$ mit 0 < b < 1. Dann existiert für alle $\epsilon > 0$ ein $n \in \mathbb{N}$ mit $b^n < \epsilon$.

3. Aufgabe (5 Punkte)

Es sei (X, ||.||) ein normierter Raum. Man zeige, dass die inverse Dreiecksungleichung gilt: Für alle $x, y \in X$ gilt:

$$|||x|| - ||y||| \le ||x - y||$$
.

4. Aufgabe (5+5=10 Punkte)

Es seien E eine nichtleere Menge, (X, ||.||) ein normierter Raum über dem Körper der reellen Zahlen und B(E, X) die Menge aller beschränkten Funktionen $f: E \to X$, für die also $||f||_{\infty} := \sup_{x \in E} ||f(x)|| < \infty$ gilt. Auf B(E, X) werden Addition und die skalare Multiplikation wie folgt definiert:

$$(f+g)(x) := f(x) + g(x)$$
$$(\lambda f)(x) := \lambda f(x)$$

für alle $f, g \in B(E, X), \lambda \in \mathbb{R}, x \in E$. Man zeige, dass $\left(B(E, X), \|.\|_{\infty}\right)$ ein normierter Raum ist, d.h. dass B(E, X) ein Vektorraum über dem Körper \mathbb{R} ist und $\|.\|_{\infty}$ eine Norm auf B(E, X) definiert.