

Universität Ulm

Abgabe:

27.11.13, 16:00 Uhr im H3 Prof. Dr. F. Schulz F. Stoffers Wintersemester 13/14

40 Punkte

Übungen zur Maßtheorie

Serie 3

[5]

- 1. Man beweise:
 - 1. Seien $D \subset \mathbb{R}^n$ messbar, $f: D \to \mathbb{R}$ und A eine dichte Teilmenge von \mathbb{R} . Dann ist f messbar genau dann, wenn $f^{-1}(-\infty, a) \in \mathcal{L}$ für alle $a \in A$.
 - 2. Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar. Dann ist f' messbar. [5]
- 2. Man beweise Korollar 2.1.7 und Lemma 2.1.12 (Hierbei dürfen nur Resultate der Vorlesung benutzt werden, die den jeweiligen Lemmata vorangehen.), d.h. folgende Aussagen:
 - 1. Seien $f, g: D \to \overline{\mathbb{R}}$ messbar. Dann sind die Funktionen $f \cdot g$ und $f \pm g$ messbar. Dabei setzen wir $f(x) \pm g(x) := c$ mit einem festen $c \in \overline{\mathbb{R}}$, wenn es von der Form $\infty \infty$ oder $-\infty + \infty$ ist.
 - 2. Seien $f, g: D \to \overline{\mathbb{R}}$ messbar und endlich f.ü. Dann ist $f \pm g$ messbar, egal wie es definiert wird, falls es die Form $\infty \infty$ oder $-\infty + \infty$ hat. [3]
- 3. Man zeige:
 - 1. Ist $N \subset [a, b] \subset \mathbb{R}$ eine Nullmenge, dann ist auch $\exp^{-1}(N)$ eine Nullmenge. [5]
 - 2. Aus Teil 1. folgere man: Ist $f: \mathbb{R} \to \mathbb{R}$ messbar, so auch $f \circ \exp$. [5]
- **4.** Es sei $K \subset \mathbb{R}^n$ kompakt und $f: K \to \mathbb{R}$ eine stetige Funktion mit $\min_{x \in K} f(x) = 1$ und $\max_{x \in K} f(x) = 2$. Man beweise, dass eine stetige Funktion $F: \mathbb{R}^n \to \mathbb{R}$ mit $F_{|K} = f$ existiert. [10]

Hinweis. Man betrachte z.B. die Funktion $F: \mathbb{R}^n \to \mathbb{R}$, gegeben durch

$$F(x) := \begin{cases} f(x) & \text{für } x \in K \\ \inf_{\underline{y \in K}} \left(f(y)|x-y| \right) \\ \frac{d(x,K)}{} & \text{für } x \in \mathbb{R}^n \setminus K \ . \end{cases}$$

Hierbei ist $d(x, K) := \inf_{y \in K} |x - y|$ definiert.