

Universität Ulm

Abgabe:

11.12.13, 16:00 Uhr im H3 Prof. Dr. F. Schulz F. Stoffers Wintersemester 13/14

40 Punkte

Übungen zur Maßtheorie

Serie 4

- **1.** Für $n \in \mathbb{N}$ sei $f_n = n\chi_{\left[\frac{1}{n}, \frac{2}{n}\right]}$. Man beweise:
 - (a) $(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise auf \mathbb{R} .
 - (b) $(f_n)_{n\in\mathbb{N}}$ konvergiert dem Maße nach. [3] Siehe Aufgabe 3 für die Details zur Definition von "Konvergenz dem Maße nach" bei Definitionsbereichen mit Maß gleich ∞ .
 - (c) $(f_n)_{n\in\mathbb{N}}$ konvergiert für kein $p\in[1,\infty]$ im p-ten Mittel. Dabei sei das p-te Mittel von f definiert als

$$\left(\int |f|^p \ dx\right)^{\frac{1}{p}}, \ p \in [1, \infty)$$

bzw.

$$\inf\{c>0\mid |f|\leq c \text{ f.\"{u}.}\},\ p=\infty\ .$$

[4]

[2]

[3]

[2]

[6]

[3]

2. Sei $f: \mathbb{R}^n \to \mathbb{R}$. Die durch

$$\omega(f, x_0) := \lim_{\varepsilon \searrow 0} \left(\sup_{|x - x_0| < \varepsilon} f(x) - \inf_{|x - x_0| < \varepsilon} f(x) \right)$$

definierte Zahl $\omega(f, x_0) \in [0, +\infty]$ heißt die lokale Oszillation von f in x_0 . Man zeige:

- 1. f ist stetig in $x_0 \Leftrightarrow \omega(f, x_0) = 0$.
- 2. Die Menge $\{x \mid \omega(f,x) \geq \delta\}$ ist für jedes $\delta > 0$ abgeschlossen.
- 3. Die Menge S(f) aller Unstetigkeitspunkte von f ist eine F_{σ} -Menge.
- 4. $\lambda(S(f)) = 0 \Rightarrow f \text{ ist messbar.}$ [4]
- **3.** Sei $D \subset \mathbb{R}^n$ messbar und seien f, g messbare, f.ü. endliche Funktionen bzw. $(f_k)_{k \in \mathbb{N}}$ und $(g_k)_{k \in \mathbb{N}}$ Folgen messbarer Funktionen auf D. Es gelte

$$\lambda - \lim_{k \to \infty} f_k = f, \quad \lambda - \lim_{k \to \infty} g_k = g.$$

Dabei ist λ - $\lim_{k\to\infty} f_k = f_k$ genau wie in Definition 2.4.5 erklärt, wobei $\lambda(D) < +\infty$ fallen gelassen wird. Man beweise:

1. Es existiere ein M > 0 mit $|f_k| \le M$ f.ü., $|g_k| \le M$ f.ü. für alle $k \in \mathbb{N}$. Dann gilt

$$\lambda - \lim_{k \to \infty} f_k \cdot g_k = f \cdot g.$$

Hinweis: Man benutze die Darstellung

$$f_k q_k = (f_k - f)(q_k - g) + (f_k - f)g + f(q_k - g) + fg$$
.

Bitte wenden!

2. Es sei $\lambda(D) < +\infty$. Dann gilt

$$\lambda$$
- $\lim_{k\to\infty} f_k \cdot g_k = f \cdot g$.

[4]

[9]

4. Man zeige, dass die Bedingung $\lambda(D) < +\infty$ im Satz von Egoroff notwendig ist.