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1. A Historical Introduction

The Prime Number Theorem looks back on a remarkable history. It should take
more than 100 years from the first assumption of the theorem to its complete proof
by analytic means. Before we give a detailed description of the historical events,
let us first state what it is all about: The Prime Number Theorem says, that the
asymptotic behaviour of the number of primes, which are smaller than some value
x, is roughly x/ log(x) for x→∞. This was assumed by 15-year old Carl Friedrich
Gauß1 in 1793 and by Adrien-Marie Legendre2 in 1798, but was not proven until
1896, when Jacques Salomon Hadamard3 and Charles-Jean de la Vallée Poussin4

independently of each other found a way to approach this problem. The proof was
later simplified by many famous mathematicians. Amongst others Wiener, Landau
and D.J. Newmann could make some important improvements.

Figure 1. Jacques Hadmard
Figure 2. Charles-Jean
de la Vallée Poussin

In 1798 Adrien-Marie Legendre published the Prime Number Theorem as an as-
sumption in his work “Théorie des nombres”, while Gauss mentioned his thoughts
in 1849 in a letter to J.F. Encke. From this letter it becomes evident, that his occu-
pation with the topic dated back as far as 1793. Both mathematicians scrutinized
prime number tables in order to arrive at their assumptions.
A few years later, Bernhard Riemann5 could find a connection between the distribu-
tion of prime numbers and the properties of the so-called Riemann Zeta Function,
which was first studied by Euler6. He published his results in his famous work of
1859 “Über die Anzahl der Primzahlen unter einer gegebenen Größe”. On only
nine pages, Rieman stated a “programme” of ideas, which were to be proven. In
his paper he also proposed the study of the Zeta Function by means of complex
analysis.
Another important discovery on the way to the proof of the Prime Number Theo-
rem was made by Hans von Mangoldt7, a German mathematician: He managed to
prove the main result of Riemann’s paper, namely that the Prime Number Theorem
is equivalent to the fact, that the Rieman Zeta Function has no zeros with a real
part of 1. One year later, Hadamard and de la Vallée Poussion used methods of
Complex Analysis to show this property of the Zeta Function designing a proof,
which was quite long and complicated.

1Carl Friedrich Gauß (1777-1855)
2Adrien-Marie Legendre (1752-1833)
3Jacques Salomon Hadamard (1865-1963)
4Charles-Jean Gustave Nicolas Baron de La Vallée Poussin (1866-1962)
5Bernhard Riemann (1826–1866)
6Leonhard Euler (1707–1783)
7Hans von Mangoldt (1854–1925)
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Figure 3. Bernhard
Riemann

Figure 4. Don Zagier

For a long time, mathematicians also tried to find elementary proofs (i.e. proofs,
which do not use Complex Analysis). In the time between 1851 and 1854, Pafnuti
Tschebyscheff8 worked on a proof of the Prime Number Theorem and could make im-
portant findings, which we will partially discuss here. Tschebyscheff also found lower
and upper bounds for the ratio of the prime counting function π(x) and x/ log(x)
for sufficiently large values of x. However, it should still take some time, until the
Prime Number Theorem could finally be proven by elementary means: Roughly 100
years later, in 1949, the mathematicians Atle Selberg9 und Paul Erdős10 managed
to solve this problem. Although the word elementary makes one suggest differ-
ently, their proof is quite complicated. This discovery helped elementary methods
of Number Theory regain a good reputation in comparison to analytic methods, as
the German mathematician Carl Ludwig Siegel stated: ”This shows, that one can-
not say anything about the real difficulties of a problem, before one has solved it.”11

The ideas and steps of the proof given here were stated by Don Bernard Zagier12

in his work ”Newman’s Short Proof of the Prime Number Theorem” of 1997. Don
Zagier follows the work of Donald J. Newman and Jacob Korevaar with a few sim-
plifications.
For the full understanding a basic knowledge of Complex Analysis is assumed.

We now introduce some basic definitions.

Definition 1.1. We define P as the set of all prime numbers and π(x) as the
number of primes smaller or equal to x, i.e.

π(x) = |{p ∈ P : p ≤ x}| .

Definition 1.2. Let us define the integral logarithm

li(x) =

∫ x

2

1

log(t)
dt.

Definition 1.3. We say two functions f, g : R→ R are asymptotically equal, if

lim
x→∞

f(x)

g(x)
= 1

and write

f ∼ g (x→∞).

8Pafnuti Lwowitsch Tschebyscheff (1821-1894)
9Atle Selberg (1917–2007)
10Paul Erdős (1913–1996)
11see [B08], p. 322.
12Don Bernard Zagier (1951-)
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Definition 1.4. We write for two functions f, g : R→ R

f = O(g) (x→∞),

if

∃C ∈ R ∃x0 > 0 ∀x > x0 : |f(x)| ≤ C|g(x)|.
We write for a real number a <∞

f = O(g) (x→ a),

if

∃C ∈ R ∃ε > 0 ∀|x− a| < ε : |f(x)| ≤ C|g(x)|.

With these notations in mind, we state the Prime Number Theorem in the following
way:

Theorem 1.5 (Prime Number Theorem). The prime counting function π(x) is
asysmptotically equal to the ratio x/ log x, i.e.

π(x) ∼ x

log x
(x→∞).
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2. The Riemann Zeta Function and the Tschebyscheff Functions

In this section we introduce the Riemann Zeta Function and the Tschebyscheff
Functions. Besides, we take a first look at their properties. The Zeta Function was
first examined by Euler in the 18th century, before Riemann made some important
discoveries on its properties.

Definition 2.1. 13 We define the following functions, which are useful for the proof
of the Prime Number Theorem. The p under the sigma sign means, that we sum
over all p ∈ P.

Riemann Zeta Function: ζ(s) =
∞∑
n=1

1
ns (Re (s) > 1)

Tschebyscheff Functions: φ(s) =
∑
p

log p
ps (Re (s) > 1)

ϑ(x) =
∑
p≤x

log p (x ∈ R)

Let us now take a closer look at the first two functions.

Lemma 2.2. 14 For Re (s) > 1, ζ(s) and φ(s) are normally convergent and therefore
define holomorphic functions in that domain.

Proof. For δ > 0, n ∈ N and Re (s) ≥ 1 + δ, we obtain

|n−s| = |e−s logn| = n−Re (s) ≤ n−(1+δ).

The series
∑∞
n=1

1
n1+δ is convergent, so the Zeta Function converges normally and

is hence holomorphic on {s ∈ C : Re (s) > 1}. For φ(s) we use a similar argument.

By the slow increase of the logarithm we can find C ∈ R such that ln(x) ≤ Cx δ2 for
x ≥ 1. We conclude for Re (s) ≥ 1 + δ∣∣∣∣ log p

ps

∣∣∣∣ =
log p

pRe (s)
≤ Cp

δ
2

p1+δ
=

C

p1+ δ
2

and hence we obtain the normal convergence and holomorphy of φ(s) on {s ∈ C :
Re (s) > 1}. �

Lemma 2.3. 15 If s ∈ C, Re (s) > 1, then

ζ(s) =
∏
p

1

1− p−s

and this is known as the Euler Product.

Proof. We say a product of numbers a1, a2, · · · 6= 0 is convergent, if limn→∞
∏n
i=1 ai 6=

0. Hence we first check 1
1−p−s 6= 0:

For Re (s) > 1 and p ∈ P it holds |p−s| = p−Re (s) < 1. Hence we state Re (1− p−s) =
1− Re (p−s) > 0 and |1− p−s| ≥ 1− |p−s| > 0. This indicates, that

1

1− p−s
=

1− p−s
|1− p−s|2

∈ C\(−∞, 0].

13see [Za97], p. 705.
14see [SS03], p.169 and [We06], p. 182.
15see [We06], pp.108-109.
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We show the equality

ζ(s)
∏
p

(
1− 1

ps

)
= 1,

which is equivalent to Lemma 2.3. Let ε > 0 and choose N ∈ N such that

∞∑
n=N+1

1

nRe (s)
< ε.

Since

ζ(s) = 1 +
1

2s
+

1

3s
+ . . . ,

we conclude (
1− 1

2s

)
ζ(s) = 1 +

1

3s
+

1

5s
+

1

7s
+

1

9s
+ . . . ,(

1− 1

3s

)(
1− 1

2s

)
ζ(s) = 1 +

1

5s
+

1

6s
+

1

11s
+

1

13s
+ . . .

etc. For the first m prime numbers we obtain(
1− 1

psm

)(
1− 1

psm−1

)
· · ·
(

1− 1

2s

)
ζ(s) = 1 +

1

psm+1

+ · · · ,

so it holds∣∣∣∣∣∣
m∏
j=1

(
1− 1

psj

)
ζ(s)− 1

∣∣∣∣∣∣ ≤
∣∣∣∣ 1

psm+1

∣∣∣∣+ · · · ≤
∞∑

n=pm+1

1

nRe (s)
≤

∞∑
n=m+1

1

nRe (s)
< ε

for m ≥ N . This concludes the proof. �

The following lemma was proven by Tschebyscheff, who used similar elementary

arguments to find lower and upper bounds for the quotient π(x)
x when x→∞.

Lemma 2.4. 16 If x ≥ 2, then

ϑ(x) ≤ 4x,

which implies

ϑ(x) = O(x) (x→∞).

Proof. First we recognize that
(

2n
n

)
= (2n)!

(n!)2 contains all prime numbers in the in-

terval of integers [n + 1, 2n] as factors and is an integer. By use of the Binomial
Theorem we have for n ∈ N

22n = (1 + 1)2n =

2n∑
k=0

(
2n

k

)
≥
(

2n

n

)
≥

∏
n<p≤2n

p = e

( ∑
n<p≤2n

log p

)
= eϑ(2n)−ϑ(n).

This is equivalent to

ϑ(2n)− ϑ(n) ≤ 2n log 2.

16see [We06], pp.110-111 and [Za97], p. 706.
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Let x ≥ 2 and choose k ∈ N such that 2k ≤ x < 2k+1. We obtain

ϑ(x) ≤ ϑ(2k+1) =

k∑
l=1

(ϑ(2l+1)− ϑ(2l)) + ϑ(2)

≤
k∑
l=1

2l+1 log 2 + ϑ(2)

≤ 2k+2 log 2 + ϑ(2)

≤ 4x log 2 + log 2

≤ 5x log 2 ≤ 4x,

which concludes the proof. �
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3. Equivalences of the Prime Number Theorem

Let us now take a closer look at the function π(x). It is evident by its definition,
that π(x) = 0 for x < 2 and that π(x) is a step function with steps of height 1 at
all prime numbers. Considering some values17 of the functions π(x), x/ log x and
li(x),

x 10 102 103 104 105 106 107 108 109

π(x) 4 25 168 1.229 9.592 78.498 664.579 5.761.455 50.847.534
x

log x 4 22 145 1.086 8.686 72.382 620.421 5.428.681 48.254.942

li(x) 6 30 178 1.246 9.630 78.628 664.918 5.762.209 50.849.235

one could suspect a similar asymptotic behaviour.
Gauß assumed, that the density of prime numbers of scale x is approximately the
same as 1

log(x) , which means that for the integral logarithm li(x) it holds

π(x) ∼ li(x).

As a first approach to the proof of the Prime Number Theorem, we therefore note
some equivalences.

Theorem 3.1 (Tschebyscheff). 18 The following are equivalent:

(i) π(x) ∼ li(x).
(ii) π(x) ∼ x

log(x) .

(iii) ϑ(x) ∼ x.

Proof. For the equivalence of (i) and (ii), we prove that

li(x) =

∫ x

2

1

log(t)
dt =

[
t

log(t)

]x
t=2

+

∫ x

2

1

log2(t)
dt =

x

log(x)
+O

(
x

log2(x)

)
(3.1)

holds for every real number x ≥ 4.
By the equation

lim
x→∞

li(x)
x

log(x)

= lim
x→∞

(
x

log(x)
x

log(x)

+
f(x)
x

log(x)

)
= 1, where f(x) = O

(
x

log2(x)

)
,

it then clearly follows, that

li(x) ∼ x

log(x)
(x→∞).

The first equality in (3.1) is immediately obtained by integration by parts:∫ x

2

1

log(t)
dt =

[
t

log(t)

]x
t=2

−
∫ x

2

− t

t log2(t)
dt =

[
t

log(t)

]x
t=2

+

∫ x

2

1

log2(t)
dt.

Thus we show, that ∫ x

2

1

log2(t)
dt = O

(
x

log2(x)

)
.

For this purpose, we split up the integration path into the intervalls [2,
√
x] and

[
√
x, x] for x ≥ 4. We estimate∫ x

2

1

log2(t)
dt =

∫ √x
2

1

(log t)2
dt+

∫ x

√
x

1

(log t)2
dt ≤

√
x

(log 2)2
+

x

(log
√
x)2

= O(
√
x) +

x

( 1
2 log(x))2

= O(
√
x) +

22x

(log x)2
= O

(
x

(log x)2

)
,

17see http://de.wikipedia.org/wiki/Primzahlsatz.
18see [Fo11], pp.5.1-5,3; [Za97], p.707; [We06], p.110.
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since log(x) is increasing and we can find C > 0 such that

log(x) ≤ Cx 1
4 ⇔ log2 x ≤ C2x

1
2 ⇔ x−

1
2 ≤ C2 log−2 x for x > 1.

For the equivalence of (ii) and (iii), we establish an easy inequality

ϑ(x) =
∑
p≤x

log p ≤
∑
p≤x

log x = π(x) log x.

On the other hand, for ε ∈ (0, 1) and x ≥ 1 we have

ϑ(x) =
∑
p≤x

log p ≥
∑

x1−ε<p≤x

log p ≥
∑

x1−ε<p≤x

log
(
x1−ε)

= (1− ε)
∑

x1−ε<p≤x

log x = (1− ε) log x
(
π(x)− π(x1−ε)

)
.

The logarithm is strictly increasing and log(x) = 1 for x = e. According to Lemma
2.4 it holds ϑ(x1−ε) ≤ Cx1−ε for x1−ε ≥ 2 and some C ∈ R. Hence we obtain for
x1−ε ≥ 5

π(x1−ε) =
∑

p≤x1−ε

1 ≤
∑

p≤x1−ε

log p = ϑ(x1−ε) ≤ Cx1−ε.

Combining these equations we obtain

ϑ(x)

x
≤ π(x) log x

x
≤ ϑ(x)

x(1− ε)
+

log x π(x1−ε)

x
≤ ϑ(x)

x(1− ε)
+
C log x

xε

≤ π(x) log(x)

x(1− ε)
+
C log x

xε
.

(3.2)

We know, that

C log x

xε
→ 0 for x→∞ and all ε > 0.

If (ii) holds, we get by subtraction of C log x
xε in (3.2) and taking the limits x → ∞

and then ε→ 0

lim
ε→0

lim
x→∞

ϑ(x)

x(1− ε)
= 1,

so (iii) is true.
If (iii) holds, we have

lim
ε→0

lim
x→∞

π(x) log x

x
= 1,

so (ii) is true. Hence we proved the equivalence.
�
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4. Partial Sums and some elementary results

In this section we discuss some elementary achievements, which were made in an
effort to prove the Prime Number Theorem. We have a closer look at a lemma on
partial sums, which we also use in section 5. Besides, its application enables us to
state results on the asymptotic behaviour of two series.

Lemma 4.1 (Partial Sums). 19 Let (an)n∈N be a sequence of complex numbers,
(tn)n∈N a strictly increasing sequence of real numbers, which is not bounded and
A(t) the sum over the an, for which the indices n fulfill the condition tn ≤ t. If
g : [t1,∞)→ C is continuously differentiable, then the equality∑

n∈N
tn≤x

ang(tn) = A(x)g(x)−
∫ x

t1

A(t)g′(t)dt

is true for all real x ≥ t1.

Proof. Choose N ∈ N such that tN ≤ x < tN+1. It applies A(t) = A(tn) for
tn ≤ t < tn+1 and A(tn)−A(tn−1) = an for n ≥ 2 as well as A(t1) = a1. We get∫ x

t1

A(t)g′(t)dt =

(
N−1∑
n=1

∫ tn+1

tn

+

∫ x

tN

)
A(t)g′(t)dt

=

N−1∑
n=1

[
A(tn)g(t)

]tn+1

t=tn
+
[
A(tN )g(t)

]x
t=tN

=

N−1∑
n=1

A(tn)(g(tn+1)− g(tn)) +A(tN )(g(x)− g(tN ))

=

N∑
n=2

A(tn−1)g(tn)−
N∑
n=1

A(tn)g(tn) +A(tN )g(x)

= −
N∑
n=2

(A(tn)−A(tn−1))g(tn)−A(t1)g(t1) +A(x)g(x)

= −
N∑
n=1

ang(tn) +A(x)g(x).

�

The following theorem was found by Legendre. It will later also be used in section
7 to prove Betrand’s Postulate.

Theorem 4.2. 20 If

rp(n) =
∑
k≥1

⌊
n

pk

⌋
and bxc = max{k ∈ Z : k ≤ x},

then

n! =
∏
p≤n

prp(n) for all n ∈ N.

Proof. We see immediately, that rp(n) is finite for every n ∈ N, since
⌊
n/pk

⌋
= 0

for pk > n. Considering the integers in the range {1, 2, ..., n} divisble by p ∈ P,
we recognize, that these are the multiples of p, which are smaller than n, so there
are bn/pc. This gives us bn/pc p-factors. By the same idea we obtain, that

⌊
n/p2

⌋
19see [B08], p. 297.
20see [B08], pp.295-296 and [AZ04], p.9
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numbers are divisble by p2 and get an extra
⌊
n/p2

⌋
p-factors. We continue in the

same manner for all powers of p. Adding these numbers gives exactly the number
of powers of p, which are contained in n!. Since every integer has a prime number
factorization, this completes the proof. �

As an application of the lemma on partial sums, we prove two aysmptotic results
achieved by Mertens21 in 1874.

Theorem 4.3. 22 We have∑
p≤x

log p

p
= log x+O(1) (x→∞).

Proof. Let x ∈ N. By
∫

log x dx = x(log x− 1) we obtain∑
n≤x

log x ≤
∫ x

1

log y dy + log x = x(log x− 1) + 1 + log x,

thus ∑
n≤x

log x = x log x+O(x) (x→∞).(4.1)

By Theorem 4.2 it follows∑
n≤x

log n = log x! = log

∏
p≤x

prp(x)

 =
∑
p≤x

∑
k≥1

⌊
x

pk

⌋
log p

=
∑
p≤x

⌊
x

p

⌋
log p+

∑
p≤x

∑
k≥2

⌊
x

pk

⌋
log p.

(4.2)

Since ∑
p≤x

⌊
x

p

⌋
log p =

∑
p≤x

(
x

p
−
(
x

p
−
⌊
x

p

⌋))
log p ≤ x

∑
p≤x

log p

p
+ ϑ(x),

we obtain ∑
p≤x

⌊
x

p

⌋
log p = x

∑
p≤x

log p

p
+O(x),

because
(
x
p −

⌊
x
p

⌋)
∈ [0, 1) and ϑ(x) = O(x).

Furthermore,

0 ≤
∑
p≤x

∑
k≥2

⌊
x

pk

⌋
log p ≤ x

∑
p

∑
k≥2

log p

pk
= x

∑
p

log p

(
1

1− 1
p

− 1

p
− 1

)

= x
∑
p

log p

(
p2 − (p− 1)− p(p− 1)

p(p− 1)

)
= x

∑
p

log p

p(p− 1)
= O(x)

for x→∞, because the last series converges. This can be seen as follows:
Since there exists C ∈ R such that log x ≤ Cxδ for x > 1 and δ ∈ (0, 1), we state

log n

n(n+ 1)
≤ log n

n2
≤ Cnδ

n2
for n ≥ 2

and the series
∞∑
n=2

C

n2−δ

21Franz Mertens (1840–1927)
22see [B08], p.299 and [Fo11], p.2.4.
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converges. Hence the series
∞∑
n=2

log n

n(n+ 1)

converges by comparison test.
Plugging the last equations into (4.2) we get∑

n≤x

log n = x
∑
p≤x

log p

p
+O(x),

which gives by division by x > 0

1

x

∑
n≤x

log n =
∑
p≤x

log p

p
+O(1).

Using (4.1) we have

log x+ f(x) =
1

x

∑
n≤x

log n =
∑
p≤x

log p

p
+ g(x), where f(x), g(x) = O(1),

which proves Theorem 4.3. �

Theorem 4.4. 23 There is a real constant B ∈ R such that∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
(x→∞).

Proof. By Theorem 4.3 we have∑
p≤x

log p

p
= log x+ r(x), where r(x) = O(1).

We use Lemma 4.1 on partial sums, where we set

tn = pn, an =
log pn
pn

, g(t) =
1

log t
.

The function g(t) is continuously differentiable for t ∈ [2,∞) and (pn)n∈N is the
sequence of prime numbers in increasing order.
It follows for x ≥ 2∑

p≤x

1

p
=
∑
p≤x

log p

p

1

log p
=

log x+ r(x)

log x
+

∫ x

2

log t+ r(t)

t log2 t
dt

=
log x+ r(x)

log x
+

∫ x

2

1

t log t
dt+

∫ x

2

r(t)

t log2 t
dt

= 1 +O
(

1

log x

)
+ log log x− log log 2 +

∫ x

2

r(t)

t log2 t
dt,

(4.3)

since (
1

log t

)′
=

−1

t log2 t
and (log log t)′ =

1

t log t
.

Clearly the function 1
t log2(t)

is integrable over [2,∞), because

lim
T→∞

∫ T

2

1

t log2 t
dt = lim

T→∞

(
− 1

log T
+

1

log 2

)
=

1

log 2
.

Since r(t) stays bounded, we state∫ x

2

r(t)

t log2 t
dt =

∫ ∞
2

r(t)

t log2 t
dt−

∫ ∞
x

r(t)

t log2 t
dt.

23see [B08] p.300 and [Fo11], p.2.5.
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We obtain∫ ∞
2

r(t)

t log2 t
dt−

∫ ∞
x

r(t)

t log2 t
dt =

∫ ∞
2

r(t)

t log2 t
dt+O

(∫ ∞
x

1

t log2 t
dt

)
=

∫ ∞
2

r(t)

t log2 t
dt+O

(
1

log x

)
.

Plugging this in (4.3) we get∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
(x→∞),

where

B = 1− log log 2 +

∫ ∞
2

r(t)

t log2 t
dt.

�

Combining the last two theorems, we are able to prove a theorem by Tschebyscheff
concerning the limit of a familiar function.

Theorem 4.5 (Tschebyscheff). 24 If

π(x) log(x)

x

converges for x→∞, then it converges to 1.

Proof. Let

C := lim
x→∞

π(x) log(x)

x
,

which is equivalent to

π(x) =
x

log x
(C + ε(x)),

where ε(x)→ 0, if x→∞. We use Lemma 4.1 setting

tn = pn, an = 1, g(t) =
1

t

and hence obtain for x ≥ 2∑
p≤x

1

p
=
∑
p≤x

1
1

p
=
π(x)

x
+

∫ x

2

π(t)

t2
dt =

C + ε(x)

log x
+

∫ x

2

C + ε(t)

t log t
dt

=
C + ε(x)

log x
+ (C + δ′(x))(log log x− log log 2)

=

(
C + δ′(x) +

C + ε(x)

log x · log log x
− log log 2

log log x
(C + δ′(x))

)
log log x

= (C + δ(x)) log log x,

(4.4)

where we define

δ(x) = δ′(x) +
C + ε(x)

log x log log x
− log log 2

log log x
(C + δ′(x)).

The second equality of (4.4) can be justified by the following argumentation:
We define

δ′(x) =

∫ x
2

ε(t)
t log tdt∫ x

2
1

t log tdt
.

24see [B08], p.301.
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For ε̃ > 0 there exists an M > 0 such that

|ε(t)| ≤ ε̃ for all t > M.

Since ε(x) is convergent, it is bounded by a constant C ∈ R. We state

|δ′(x)| ≤
∫M

2
C

t log tdt+ ε̃
∫ x
M

1
t log tdt∫M

2
1

t log tdt+
∫ x
M

1
t log tdt

=
C(log logM − log log 2) + ε̃(log log x− log logM)

log logM − log log 2 + log log x− log logM
→ ε̃ for x→∞.

Since ε̃ is arbitrary, we derive by definition of δ(x)

δ′(x)→ 0 ⇒ δ(x)→ 0 for x→∞.
By Theorem 4.4 we know∑

p≤x

1

p
= log log x+O(1) (x→∞).

If we combine these two equations and compare the coefficient of log log x, then
C = 1 follows. �
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5. An Auxiliary Tauberian Theorem

The following theorem was first proven by Ingham25 in 1935. D.J Newmann26

could simplify it essentially in 1980. It is an important step on the way to the
Prime Number Theorem.
In contrast to the Tauberian Theorems by Wiener27 and his student Ikehara28 from
1930, this theorem only uses finite integration paths and does not depend on Fourier
Analysis, which makes it particularly handy. The expression “Tauberian Theorem”
goes back to Alfred Tauber and his work “Ein Satz aus der Theorie der unendlichen
Reihen” from 1897.

Theorem 5.1. 29 Let f : [0,∞) → R be a bounded function, which is integrable
over every finite subinterval. If the Laplace transform of f

g : {z ∈ C : Re (z) > 0} → C

z 7→
∫ ∞

0

f(t)e−ztdt

extends holomorphically to an open superset G of {z ∈ C : Re (z) ≥ 0}, then

limT→∞
∫ T

0
f(t)dt exists and equals g(0).

Proof. There is an M ∈ R such that |f(t)| ≤ M for t ≥ 0. It is clear, that g
is well-defined, since f is bounded. For T > 0 let us set gT : C → C, where

gT (z) =
∫ T

0
f(t)e−ztdt. Clearly gT is integrable. We show, that it is holomorphic

on C. Therefore, we suspect the derivative to be
∫ T

0
−tf(t)e−ztdt. Thus we show

lim
h→0

∣∣∣∣∣gT (z + h)− gT (z)

h
+

∫ T

0

tf(t)e−ztdt

∣∣∣∣∣ = 0.

We start by stating the inequality

∣∣∣∣∣gT (z + h)− gT (z)

h
+

∫ T

0

tf(t)e−ztdt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

1

h

(
f(t)e−(z+h)t − f(t)e−zt + htf(t)e−zt

)
dt

∣∣∣∣∣
≤
∫ T

0

|f(t)e−zt|
∣∣∣∣e−ht − 1 + ht

h

∣∣∣∣ dt.

(5.1)

Using F (x) := e−xht for t ∈ [0, T ] we get F ′(x) = −hte−xht and

e−ht − 1 + ht = F (1)− F (0)− F ′(0) =

∫ 1

0

F ′(x)− F ′(0)dx =

∫ 1

0

∫ x

0

F ′′(y)dydx,

which leads to∣∣∣∣e−ht − 1 + ht

h

∣∣∣∣ ≤ ∫ 1

0

∫ x

0

|ht2e−yht|dydx ≤ |h|T 2e|h|T
∫ 1

0

xdx = |h|e|h|T T
2

2

25Albert Ingham (1900–1967)
26Donald J. Newman (1930–2007)
27Norbert Wiener (1894–1964)
28Shikao Ikehara (1904 – 1984)
29see [Ko82], pp. 109,113-115; [We06], pp.114-117; [Za97], pp.707-708; [Be11],pp.2-3.
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by Re (h) ≤ |h|. Together with (5.1) we obtain∣∣∣∣∣gT (z + h)− gT (z)

h
+

∫ T

0

tf(t)e−ztdt

∣∣∣∣∣ ≤
∫ T

0

|f(t)e−zt||h|e|h|T T
2

2
dt

≤ T 2

2
e|h|T |h|

∫ T

0

|f(t)e−zt|dt

≤ T 2

2
e|h|T |h|M

∫ T

0

|e−zt|dt→ 0

for |h| → 0, because the integrand is countinuous and thus bounded over a compact
intervall. Hence we get the holomorphy of gT .
Next we show, that

lim
T→∞

(g(0)− gT (0)) = 0

by Cauchy’s integral formula. Hence we need to find a suitable integration path
around 0. As Korevaar states, the simplest choice would be a circle, but we do not
know anything about the holomorphy of the Laplace transform g, if we go too far
into the left half plane.30

Thus for R > 0 fixed, we take a semicircle in the right half plane and a segment of the
vertical line Re (z) = δ instead. In order to find such a path, which is contained in
the open superset G (where g is still holomorphic), we use a compactness argument:
For every point z on the line segment L := {z ∈ C : Re (z) = 0,−2R ≤ Im (z) ≤
2R}, there exists an open disk of positive radius such that this disk is still contained
in G. Since L is compact, we apply the Heine-Borel Theorem to find finitely many
such disks, which still cover L. Since we only have finitely many disks to consider,
it is evident, that we find a δ = δ(R) > 0 small enough such that

D := {z ∈ C : |z| < 2R,Re (z) > −2δ} and

C := ∂{z ∈ C : |z| ≤ R,Re (z) ≥ −δ}
are contained in G.

Figure 5. Construction

30see [Ko82], p.113.
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Besides, C defines a simple, piecewise smooth curve such that C∪int(C) is contained
in D. We assume that C is positively oriented. The function g(z) is holomorphic
in D. Hence we apply Cauchy’s Integral Formula

g(0)− gT (0) =
1

2πi

∫
C

g(z)− gT (z)

z
dz.(5.2)

Now we make use of some tricks to obtain nice estimates for the integral:
Let us first observe, that the function (g(z) − gT (z))ezT is holomorphic on D and
for z = 0, it has the same value as g(z)− gT (z). Furthermore, the function

(g(z)− gT (z))ezT z

R2

is holomorphic on D and thus the value of the integral over C is zero. Thus we
rewrite (5.2) as follows:

g(0)− gT (0) =
1

2πi

∫
C

(g(z)− gT (z)) ezT
(

1 + z2

R2

)
z

dz.

We now split up C to the semicircle C+ = C ∩ {z ∈ C : Re (z) > 0} and C− =
C ∩ {z ∈ C : Re (z) < 0} as can be seen in Figure 5. For z ∈ C+ it holds

|g(z)− gT (z)| =
∣∣∣∣∫ ∞
T

f(t)e−ztdt

∣∣∣∣ ≤M ∫ ∞
T

|e−zt|dt =
Me−Re (z)T

Re (z)

and this inequality justifies the multiplication of the integrand in (5.2) with ezT ,
which eliminates the factor e−Re (z)T . To compensate Re (z) in the denominator,

we multiply by
(

1 + z2

R2

)
, which is called Carleman’s formula31.

For |z| = R we obtain

∣∣∣∣ezT (1 +
z2

R2

)
1

z

∣∣∣∣ = eRe (z)T

∣∣∣∣1z +
z

R2

∣∣∣∣ = eRe (z)T

∣∣∣∣ z|z|2 +
z

R2

∣∣∣∣ = eRe (z)T 2|Re (z)|
R2

.

(5.3)

Thus for the whole integrand we conclude∣∣∣∣∣∣
(g(z)− gT (z)) ezT

(
1 + z2

R2

)
z

∣∣∣∣∣∣ ≤ MeRe (z)T

Re (z)

2|Re (z)|e−Re (z)T

R2
=

2M

R2

on C+ and the integral can be estimated by∣∣∣∣∣∣ 1

2πi

∫
C+

(g(z)− gT (z)) ezT
(

1 + z2

R2

)
z

dz

∣∣∣∣∣∣ ≤ 1

2π

∫
C+

2M

R2
|dz| ≤ 2πRM

2πR2
=
M

R
.

Now we estimate

1

2πi

∫
C−

g(z)ezT
(

1 + z2

R2

)
z

dz − 1

2πi

∫
C−

gT (z)ezT
(

1 + z2

R2

)
z

dz.

We start with the second integral. As we showed gT is entire, so the Fundamental
Theorem of Calculus states, that we only need to worry about the starting and
ending point of the integration path around 0. Hence instead of C− it is possible

31see [Ko82], p.113.
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to integrate over the semicircle C
′

− = {z ∈ C : |z| = R,Re (z) < 0}. We obtain for
Re (z) < 0

|gT (z)| =

∣∣∣∣∣
∫ T

0

f(t)e−ztdt

∣∣∣∣∣ ≤M
∫ T

0

|e−zt|dt ≤M
∫ T

−∞
|e−zt|dt

≤M
∫ T

−∞
e−Re (z)tdt =

Me−Re (z)T

|Re (z)|
.

Using (5.3) we get∣∣∣∣∣∣ 1

2πi

∫
C−

gT (z)ezT
(

1 + z2

R2

)
z

dz

∣∣∣∣∣∣ ≤ πR

2π

Me−Re (z)T

|Re (z)|
2eRe (z)T |Re (z)|

R2
=
M

R
.

Since g is holomorphic on C−, there exists a B = B(R, δ) such that∣∣∣∣g(z)

(
1 +

z2

R2

)
1

z

∣∣∣∣ ≤ B
for z ∈ C−.
The only term of

1

2πi

∫
C−

g(z)ezT
(

1 + z2

R2

)
z

dz

depending on T is ezT , which is holomorphic in z. This implies for z ∈ C−

g(z)ezT
(

1 + z2

R2

)
z

→ 0 for T →∞

and ∣∣∣∣∣∣
g(z)ezT

(
1 + z2

R2

)
z

∣∣∣∣∣∣ ≤ B.
Therefore, we use Lebesgue’s Dominated Convergence Theorem to interchange the
limit and integral

lim
T→∞

1

2πi

∫
C−

g(z)ezT
(

1 + z2

R2

)
z

dz =
1

2πi

∫
C−

lim
T→∞

g(z)ezT
(

1 + z2

R2

)
z

dz = 0.

Let ε > 0 and choose R such that M/R ≤ ε/3. In addtion choose T0(R) such that

1

2πi

∫
C−

g(z)ezT
(

1 + z2

R2

)
z

dz ≤ ε

3
for all T ≥ T0.

This leads to

|g(0)− gT (0)| ≤ ε for all T ≥ T0

and thus proves Theorem 5.1. �
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6. The Proof of the Prime Number Theorem

Now we have done sufficient preparation to start to comprehend the steps of the
proof of the Prime Number Theorem given in [Za97]. We begin with the analytic
continuation of the Riemann Zeta Function.

Lemma 6.1. 32 The function

ζ(s)− 1

s− 1

extends holomorphically to {s ∈ C : Re (s) > 0}.

Proof. For Re (s) > 1 we have

ζ(s)− 1

s− 1
=

∞∑
n=1

1

ns
+

[
1

xs−1(1− s)

]∞
x=1

=
∞∑
n=1

1

ns
−
∫ ∞

1

1

xs
dx

=

∞∑
n=1

∫ n+1

n

(
1

ns
− 1

xs

)
dx.

Every integral ∫ n+1

n

1

ns
− 1

xs
dx

for n ≥ 1 is holomorphic in s, because the function

F : {s ∈ C : Re (s) > 0} × [n, n+ 1]→ C

(s, x) 7→ 1

ns
− 1

xs

is continuous and for fixed x ∈ [n, n+ 1], the function s→ 1
ns −

1
xs is holomorphic

on {s ∈ C : Re (s) > 0}. In order to show the holomorphy of the last series above,
it thus suffices to show, that the series converges normally for Re (s) > 0. For this
purpose let us take δ > 0 and Re (s) ≥ δ. We calculate:∣∣∣∣∫ n+1

n

(
1

ns
− 1

xs

)
dx

∣∣∣∣ =

∣∣∣∣s∫ n+1

n

[
− 1

sus

]x
u=n

dx

∣∣∣∣ =

∣∣∣∣s∫ n+1

n

∫ x

n

du

us+1
dx

∣∣∣∣
≤ max
n≤v≤n+1

∣∣∣ s

vs+1

∣∣∣ = max
n≤v≤n+1

|s|
vRe (s)+1

=
|s|
nδ+1

This shows, that ζ(s) − 1
s−1 is uniformly convergent for Re (s) ≥ δ ∀δ > 0. By

properties of normal convence it follows, that it is holomorphic for Re (s) > 0.
Hence ζ(s) extends meromorphically to the set {s ∈ C : Re (s) > 0} with a simple
pole at s = 1. Since {s ∈ C : Re (s) > 0} is a domain, this extension is unique.
In this text we also denote the analytic extension of a function by the function
itself. �

Lemma 6.2. 33 For the Principal Branch of the logarithm the following Taylor
expansion holds:

log(1 + z) = −
∞∑
n=1

(−1)n
zn

n
for |z| < 1.(6.1)

32see [Za97], pp.705-706 and [We06], p.108.
33see [SS03], p.100.
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Proof. We immediately see, that the series on the right converges normally in D1(0)
and hence is holomorphic in D1(0). Differentiating by summands yields(

−
∞∑
n=1

(−1)n
zn

n

)′
= −

∞∑
n=1

(−1)nzn−1 =

∞∑
n=0

(−1)nzn =
1

1 + z
= (log(1 + z))

′

and for z = 0 we get 0 on both sides of (6.1). The Identity Theorem of complex
analysis completes the proof of Lemma 6.2. �

Before we examine the distribution of zeros of ζ(s), we first state the following
lemma.

Lemma 6.3. 34 The series ∑
p

log

(
1

1− p−s

)
converges normally for Re (s) > 1.

Proof. As we have seen in Lemma 2.3, 1
1−p−s ∈ C\(−∞, 0]. Hence log

(
1

1−p−s

)
is

well defined for all p ∈ P and Re (s) > 1.
For z ∈ C and |z| ≥ 2

|z − 1| ≥ |z| − 1 ≥ |z| − 1

2
|z| = 1

2
|z|(6.2)

holds and for Re (s) > 1 it follows

|ps| = pRe (s) ≥ 2.(6.3)

By (6.2) for z = ps, which is applicable because of (6.3), we obtain∣∣∣∣ 1

1− p−s
− 1

∣∣∣∣ =

∣∣∣∣1− (1− p−s)
1− p−s

∣∣∣∣ =

∣∣∣∣ 1

ps(1− p−s)

∣∣∣∣ =
1

|ps − 1|
≤ 2

|ps|
≤ 1

2
,(6.4)

where the last inequality is valid for p ≥ 5.
The function

z 7→ log(z)

z − 1
,

where we use the Principal Branch of the logarithm, has a removable singularity in
z = 1, since log(1) = 0. Thus it extends holomorphically to B1(1). In particular
the extension is continuous, so we arive at the conclusion, that

C := sup

{∣∣∣∣ log(z)

z − 1

∣∣∣∣ : z ∈ B 1
2
(1)\{1}

}
is finite and

| log(z)| ≤ C|z − 1| for all z ∈ B 1
2
(1).(6.5)

We use (6.5) for 1
1−p−s ∈ B 1

2
(1), which is applicable because of (6.4), and we finally

have for all p ≥ 5 and Re (s) ≥ 1 + δ∣∣∣∣log

(
1

1− p−s

)∣∣∣∣ ≤ C ∣∣∣∣ 1

1− p−s
− 1

∣∣∣∣ = C
1

|ps − 1|
≤ 2C

p1+δ
,

where the last inequality is valid because of (6.4).
We know, that

∑
p

1
p1+δ

converges, so we proved the normal convergence of

∑
p

log

(
1

1− p−s

)
.

�

34see [Be11], p.4.
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The following result was first proven by de la Vallée Poussin in an article of 25
pages. The proof was later improved by Mertens and by von Mangoldt.

Lemma 6.4. 35 If Re (s) ≥ 1, then ζ(s) 6= 0.

Proof. Since 1
1−p−s ∈ C\(−∞, 0] as we remarked before, it is evident by the con-

vergent Euler Product ζ(s) =
∏
p

1
1−p−s from Lemma 2.3, that ζ(s) 6= 0 for

Re (s) > 1.36

We show ζ(s) 6= 0 for Re (s) = 1. For this purpose we use the inequality

3 + 4 cos(t) + cos(2t) ≥ 0 for all t ∈ R,
which can be proven as follows:
We calculate with the Addition Theorem for the Cosine Function

cos(2t) = cos2(t)− sin2(t) = cos2(t)− (1− cos2(t)) = 2 cos2(t)− 1

and obtain

3 + 4 cos(t) + cos(2t) = 3 + 4 cos(t) + 2 cos2(t)− 1

= 2(1 + 2 cos(t) + cos2(t)) = 2(1 + cos(t))2 ≥ 0.
(6.6)

Suppose s > 1. We apply the logarithm to the Euler Product ζ(s) =
∏
p

1
1−p−s and

use the Taylor expansion for the logarithm seen in Lemma 6.2. Since p−s < 1 and
the logarithm is continuous on R+, we obtain

log(ζ(s)) =
∑
p

log
1

1− p−s
=
∑
p

− log(1− p−s) =
∑
p

∞∑
k=1

(p−s)k

k

=
∑
p

∞∑
k=1

1

k

1

pks
=

∞∑
n=1

an
ns
,

(6.7)

where

an =

{
1
k if n = pk with p ∈ P and k ≥ 1,
0 otherwise.

To show equation (6.7) for the complex case, we state the following: Let s = a+ it
be a complex number with Re (s) = a > 1. The Riemann Zeta Function ζ(s)
is non-vanishing for Re (s) > 1 as we stated above, so we can find a holomorphic
“branch” of the complex logarithm, such that log(ζ(s)) is well defined. It is evident,
that this branch conincides with the real logarithm for s > 1. Besides, the series∑
p

∑∞
k=1

(p−s)k

k converges normally in the domain {s ∈ C : Re (s) > 1}. Hence by

a corollary of the Uniqueness Theorem, (6.7) is also valid for Re (s) > 1.
Since log |z| = Re (log(z)) for all z ∈ C∗ and an ≥ 0 for all n ∈ N, it follows

log |ζ(s)| =
∞∑
n=1

anRe (n−s) =

∞∑
n=1

anRe (e−s logn) =

=

∞∑
n=1

anRe
(
e−a logn(cos(−t log n) + i sin(−t log n))

)
=

∞∑
n=1

ane
−a logn cos(t log n) =

∞∑
n=1

an
na

cos(t log n).

Now we use a trick of Hans von Mangoldt: We conclude

log(|ζ(a)|3|ζ(a+ it)|4|ζ(a+ 2it)|) =

∞∑
n=1

an
na

(3 + 4 cos(t log n) + cos(2t log n) ≥ 0,

35see [Fo11], pp.6.1-6.2; [SS03], pp.185-187; [Be11], p.4.
36see [We06], p.109.
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because of (6.6). Since ex is monotone, this is equivalent to

|ζ(a)|3|ζ(a+ it)|4|ζ(a+ 2it)| ≥ 1 for all a > 1 and t ∈ R.(6.8)

We assume there exists a t 6= 0 such that ζ(1 + it) = 0. It is clear from Lemma 6.1,
that ζ(s) has a pole of order 1 in s = 1. Thus the function

s 7→ ζ(s)3ζ(s+ it)4

has a zero in s = 1. To justify this claim, we argue as follows: By properties of
poles and zeros, we can WLOG find a neighbourhood U(1) of 1 and holomorphic,
non-vanishing functions f, g : U(1)→ C such that

ζ(s) =
f(s)

s− 1
for all s ∈ U(1) and

ζ(s+ it) = g(s)(s− 1)n for all s ∈ U∗(1), where n ≥ 1.

This implies

ζ(s)3ζ(s+ it)4 = f(s)g(s)(s− 1)4n−3,

where the right side of the equation is holomorphic on U(1). Hence we obtain

lim
a→1
|ζ(a)3ζ(a+ it)4ζ(a+ 2it)| = 0,

which contradicts (6.8) and completes the proof of the lemma. �

Now we are able to state a meromorphic extension of φ(s) in the following corollary.

Corollary 6.5. 37 The function φ(s) extends meromorphically to the set {s ∈
C : Re (s) > 1/2} with poles at the zeros of ζ(s) and in s = 1. In particular, if
Re (s) ≥ 1, then φ(s)− 1

s−1 is holomorphic.

Proof. We use the results from the proof of Lemma 6.4, where we had

log(ζ(s)) =
∑
p

log

(
1

1− p−s

)
for s > 1. Since the series on the right converges normally for Re (s) > 1 as we saw
in Lemma 6.3, this equality is also valid for Re (s) > 1 by the Uniqueness Theorem.
Furthermore, we can differentiate it by summands. Using the definition of φ(s), we
obtain

−ζ
′(s)

ζ(s)
= −

∑
p

d

ds
log

(
1

1− p−s

)
=
∑
p

d

ds

(
log(1− p−s)

)
=
∑
p

log(p)p−s

1− p−s
=
∑
p

log(p)

ps − 1
=
∑
p

log(p)(ps − 1 + 1)

(ps − 1)ps

=
∑
p

log(p)

ps
+
∑
p

log(p)

(ps − 1)ps
= φ(s) +

∑
p

log(p)

(ps − 1)ps
.

(6.9)

The last series is normally convergent for Re (s) > 1
2 . This can be seen as follows:

Let Re (s) ≥ 1
2 + δ for some δ > 0. For n ∈ N we obtain

|ns| = nRe (s) ≥ n 1
2 +δ.

Since x 7→ xRe (s) is monotone, we can find P0 = P0(δ) such that

1

2
|ps| = pRe (s)

2
≥ 1 for all p ≥ P0.

37see [Za97], p.706 and [Be11], p.5.
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Hence for p ≥ P0 it holds

|ps − 1| ≥ |ps| − 1 ≥ |ps| − 1

2
|ps| = 1

2
|ps| ≥ 1

2
p

1
2 +δ.

There is a constant C ∈ R such that log x ≤ Cxδ for x > 1, so we get∣∣∣∣ log p

ps(ps − 1)

∣∣∣∣ ≤ Cpδ

1
2p

1
2 +δp

1
2 +δ

= 2C
1

p1+δ
.

Thus the series
∑
p

log(p)
(ps−1)ps is normally convergent and holomorphic for Re (s) >

1/2.
By (6.9) and Lemma 6.1 we obtain, that φ(s) extends meromorphically to Re (s) >
1/2 and only has poles at the zeros of ζ(s) and at s = 1. We take a closer look at
the point s = 1. It follows

φ(s)− 1

s− 1
= −

∑
p

log(p)

(ps − 1)ps
−
(
ζ ′(s)

ζ(s)
+

1

1− s

)
.

Since ζ(s) has a pole of order 1 in s = 1 and is apart from that holomorphic for
Re (s) > 0, we can find a punctured neighbourhood U∗(1) and a holomorphic, non-

vanishing function h : U(1) → C such that ζ(s) = h(s)
s−1 for all s ∈ U∗(1). We

get

ζ ′(s)

ζ(s)
=
−(s− 1)−2h(s) + h′(s)(s− 1)−1

(s− 1)−1h(s)
= − 1

s− 1
+
h′(s)

h(s)
.

The last summand on the right is holomorphic on U(1), so we obtain the holomor-
phic extension of φ(s)− 1

s−1 in s = 1.

Regarding the zeros of ζ(s) we can use Lemma 5.3, which states, that ζ(s) 6= 0 for
Re (s) ≥ 1, which proves Corollary 6.5. �

We now use the Auxiliary Tauberian Theorem, which we proved in section 5, in
order to show the convergence of the following integral.

Lemma 6.6. 38 The integral ∫ ∞
1

ϑ(x)− x
x2

dx

is convergent.

Proof. By Lemma 4.1 on partial sums∑
n∈N
tn≤x

ang(tn) = A(x)g(x)−
∫ x

t1

A(t)g′(t)dt

holds, where we set an = log(pn), tn = pn and g(t) = t−s for Re (s) > 1, which is
continuously differentiable for t ≥ 2. Then tn ∈ R are strictly increasing. Plugging
this in the formula above, we get∑

p≤x

log(p)p−s =
∑
p≤x

log(p)x−s −
∫ x

p1

∑
p≤t

log(p)(t−s)′dt.

Recall, that

ϑ(x) =
∑
p≤x

log p for all x ∈ R

and thus

φ(s) = lim
x→∞

∑
p≤x

log p

ps
= lim
x→∞

(
ϑ(x)

xs
−
∫ x

2

ϑ(t)(t−s)′dt

)
= s

∫ ∞
1

ϑ(t)

ts+1
dt.

38see [Za97], p.706; [Ko82], p.110; [Be11], p.7.
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By Lemma 2.4 we know, that ϑ(x) = O(x) for x → ∞, so ϑ(x)
xs → 0 for x → ∞, if

Re (s) > 1.
We substitute t = ex and get

φ(s) = s

∫ ∞
1

ϑ(t)

ts+1
dt = s

∫ ∞
0

ϑ(ex)

ex(s+1)
exdx = s

∫ ∞
0

e−sxϑ(ex)dx.

Let

f(x) := ϑ(ex)e−x − 1 and

g(s) :=
φ(s+ 1)

s+ 1
− 1

s
.

Since

g(s) =
φ(s+ 1)

s+ 1
− 1

s
=

1

s+ 1

(
φ(s+ 1)− s+ 1

s

)
=

1

s+ 1

(
φ(s+ 1)− 1

s
− 1

)
,

we know from Corollary 6.5, that g(s) is holomorphic for Re (s) ≥ 0.
We conclude

g(s) =
φ(s+ 1)

s+ 1
− 1

s
=
s+ 1

s+ 1

∫ ∞
0

e−(s+1)xϑ(ex)dx− 1

s

=

∫ ∞
0

e−sxϑ(ex)e−xdx− 1

s
=

∫ ∞
0

e−sxϑ(ex)e−xdx−
[
−e
−sx

s

]∞
x=0

=

∫ ∞
0

e−sx(ϑ(ex)e−x − 1)dx =

∫ ∞
0

e−sxf(x)dx

for Re (s) > 0. Since ϑ(x) = O(x) (x → ∞), we know, that f(x) = ϑ(x)e−x − 1
is bounded. Since ϑ(x) is non-decreasing and e−x is non-vanishing and decreasing,
we obtain, that f(x) is measurable as a product and sum of measurable functions.
Thus we can apply Theorem 5.1 and we derive by substitution of ex = t, that

lim
T→∞

∫ T

0

(ϑ(ex)e−x − 1)dx = lim
T→∞

∫ T

1

(
ϑ(t)

t
− 1

)
dt

t
= lim
T→∞

∫ T

1

ϑ(t)− t
t2

dt

exists. �

As we saw in section 3, the Prime Number Theorem is equivalent to ϑ(x) ∼ x,
which we will show in the final step of the proof.

Theorem 6.7. 39 The function ϑ(x) is asymptotically equal to x, i.e.

ϑ(x) ∼ x (x→∞).

Proof. We assume towards a contradiction, that limx→∞
ϑ(x)
x = 1 is not true. There

are two cases to consider:

(1) Suppose lim supx→∞
ϑ(x)
x > 1. Then there exists some real λ > 1 such

that there are arbitrarily large x with ϑ(x) ≥ λx. We know, that ϑ(t) is
non-decreasing, so we have∫ λx

x

ϑ(t)− t
t2

dt ≥
∫ λx

x

ϑ(x)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt

=

∫ λ

1

λx− ux
(ux)2

xdu =

∫ λ

1

λ− u
u2

du

=

[
−λ
u
− log(u)

]λ
u=1

= −1 + λ− log(λ) > 0,

where we substituted u = t
x .

39see [Za97], p.707.
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(2) Similarly, suppose lim infx→∞
ϑ(x)
x < 1. Then there exists some λ < 1 such

that there are arbitrarily large x with ϑ(x) ≤ λx. We conclude∫ x

λx

ϑ(t)− t
t2

dt ≤
∫ x

λx

λx− t
t2

dt =

∫ 1

λ

λ− u
u2

du

=

[
−λ
u
− log(u)

]1

u=λ

= −λ+ 1 + log(λ) < 0.

In both cases, the result of our computation is independent of x. This implies, that
the integral diverges, which is a contradiction to Lemma 6.6. �

This concludes the proof of the Prime Number Theorem.
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7. Immediate consequences of the Prime Number Theorem and
Betrand’s Postulate

In this section we state an asymptotic relation for the nth prime number and Be-
trand’s Postulate. In order to prove this asymptotic relation for the nth prime, we
state a preliminary lemma.

Lemma 7.1. 40 If λ > 0, then

lim
n→∞

π(λn log n)

n
= λ.

Proof. Since log(λn log n) = log n+log λ+log logn, we conclude, that log(λn log n) ∼
log n:

lim
n→∞

log(λn log n)

log n
= lim
n→∞

(
1 +

log λ+ log log n

log n

)
= 1.

Using the Prime Number Theorem for x = λn log n, we obtain

1 = lim
n→∞

π(λn log n)

λn

log(λn log n)

log n
= lim
n→∞

π(λn log n)

λn
.

Multiplication by λ yields the result. �

Theorem 7.2. 41 If (pn)n∈N is the sequence of all prime numbers in increasing
order, then

pn ∼ n log n.

Proof. Theorem 7.2 is equivalent to

lim
n→∞

pn
n log n

= 1.(7.1)

We use an argument similar to the one in the proof of Theorem 6.7. Assume towards
a contradiction, that (7.1) is not true. Then there are two possibilities:

(1) Suppose we have

lim sup
n→∞

pn
n log n

> 1.

Hence there is a constant ε > 0 such that

pn ≥ (1 + ε)n log n

for arbitrarily large n.
For those n it is then true, that

π ((1 + ε)n log n) ≤ n,
which gives

lim inf
n→∞

π ((1 + ε)n log n)

n
≤ 1.

By Lemma 7.1 we obtain, that limn→∞
π((1+ε)n logn)

n = (1 + ε), which is a
contradiction.

(2) Suppose we have

lim inf
n→∞

pn
n log n

< 1.

Hence there is a constant ε > 0 such that

pn ≤ (1− ε)n log n

40see [Fo11], pp.6.7-6.8.
41see [Fo11], pp.6.6-6.7.
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for arbitrarily large n.
For those n it is then true, that

π ((1− ε)n log n) ≥ n,

which gives us

lim sup
n→∞

π ((1− ε)n log n)

n
≥ 1.

This is again a contradiction to Lemma 7.1.

�

To motivate Bertrand’s Postulate, we prove Theorem 7.3 as a direct corollary of the
Prime Number Theorem.

Theorem 7.3. 42 If ε > 0, then there is a constant x0(ε) such that for all x ≥ x0,
there is at least one prime number in the interval [x, x(1 + ε)].

Proof. Applying the Prime Number Theorem we have

lim
x→∞

π(x(1 + ε))

π(x)
= lim
x→∞

x(1 + ε)

x

log x

log((1 + ε)x)
= lim
x→∞

(1 + ε) log x

log(1 + ε) + log x
= 1 + ε.

Hence, for every 0 < δ < ε we can find x0 such that

π(x) < π(x)(1 + (ε− δ)) < π(x(1 + ε)) for all x ≥ x0

and since π(x) is an integer, this proves the claim. �

As a special case for ε = 1, we will now discuss Betrand’s Postulate. Betrand himself
could verify this Posulate up to n = 3000000. Five years later, it was proven by
Tschebyscheff. Here we will restate a proof by Paul Erdös from 1932.

Theorem 7.4 (Betrand). 43 If n ≥ 1, there exists a prime number p such that

n < p ≤ 2n.

Proof. First we show, that Betrand’s Postulate is true for n < 4000. This is done
by “Landau’s Trick”. It is sufficient to see, that

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 4001

are prime numbers and every one of them is smaller than twice its predecessor.
Hence every interval {y : n < y ≤ 2n} with n ≤ 4000 contains one of these prime
numbers.
Now we show ∏

p≤x

p ≤ 4x−1 for all x ≥ 2(7.2)

by induction over the number of primes in the product above. For the largest prime
q ≤ x we conclude ∏

p≤x

p =
∏
p≤q

p and 4q−1 ≤ 4x−1.

This implies, that it is sufficient to prove (7.2) for the case, that x is a prime number.

• Initial step of the induction: For q = 2 we get 2 ≤ 4, which seems to be
true. All other primes are uneven, so we have a look at a prime number
q = 2m+ 1, m ∈ N.

• Induction hypothesis: (7.2) is true for all integers 2, . . . , 2m.

42see [Fo11], p.6.8.
43see [AZ04], pp.6-13.
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• Induction step: Let q = 2m+ 1. Now we state some basic properties:∏
p≤m+1

p ≤ 4m

is true by the induction hypothesis. Besides, in a similar argument as the
one in the proof of Lemma 2.4, we obtain∏

m+1<p≤2m+1

p ≤
(

2m+ 1

m

)
by the equality (

2m+ 1

m

)
=

(2m+ 1)!

m!(m+ 1)!
:

It is evident, that all prime numbers on the left side of the inequality above
divide (2m+ 1)!, but not m!(m+ 1)!, hence the inequality holds.

Since
(

2m+1
m

)
and

(
2m+1
m+1

)
appear in the sum

∑2m+1
k=0

(
2m+1
k

)
= 22m+1 and

are equal, we obtain

2

(
2m+ 1

m

)
≤ 22m+1.

This gives (
2m+ 1

m

)
≤ 22m.

Combining the equations above it follows∏
p≤2m+1

p =
∏

p≤m+1

p
∏

m+1<p≤2m+1

p ≤ 4m
(

2m+ 1

m

)
≤ 4m22m = 42m.

Next, we use Legendre’s Theorem 4.2 to state, that
(

2n
n

)
= (2n)!

(n!)2 contains the prime

p exactly ∑
k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
times. Every summand is at most 1, which can be seen by the inequality⌊

2n

pk

⌋
− 2

⌊
n

pk

⌋
<

2n

pk
− 2

(
n

pk
− 1

)
= 2

and in addition any such summand is an integer. As we have already seen in
Theorem 4.2, the summands are zero for pk > 2n. Hence

(
2n
n

)
contains the factor p∑

k≥1

(⌊
2n

pk

⌋
− 2

⌊
n

pk

⌋)
≤ max{r : pr ≤ 2n}

times. We deduce the following properties :

(1) The largest power of p, which divides
(

2n
n

)
, is not larger than 2n.

(2) In particular, prime numbers p larger than
√

2n are contained at most once
in
(

2n
n

)
.

(3) For 3n ≥ 3p > 2n and n, p ≥ 3, (1) states, that p and 2p are the only

multiples of p, which can appear in the numerator of (2n)!
(n!)2 . But we also

have two p-factors in the denominator. Hence, prime numbers in the region
2
3n < p ≤ n do not appear in

(
2n
n

)
at all.
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We estimate
(

2n
n

)
for n ≥ 2: By(

n

k

)
=
n− k + 1

k

(
n

k − 1

)
we know, that

(
n
bn/2c

)
is the largest integer in the sequence of n integers(

n

0

)
+

(
n

n

)
,

(
n

1

)
, . . . ,

(
n

n− 1

)
,

whose sum is 2n and whose mean is 2n

n . So it applies(
n

bn/2c

)
≥ 2n

n
for n ≥ 2,(7.3)

where equality only holds for n = 2. By (7.3) we obtain(
2n

n

)
≥ 4n

2n
for n ≥ 1,

which gives

4n

2n
≤
(

2n

n

)
≤

∏
p≤
√

2n

2n ·
∏

√
2n<p≤ 2

3n

p ·
∏

n<p≤2n

p for n ≥ 3,

where we used (1),(2),(3) for the three products on the right. Since there are at

most
√

2n prime numbers for p ≤
√

2n, it follows, that

4n ≤ (2n)1+
√

2n ·
∏

√
2n<p≤ 2

3n

p ·
∏

n<p≤2n

p for n ≥ 3.(7.4)

Assume towards a contradiction, that there is no prime number with n < p ≤ 2n,
which means, that the second product in (7.4) is 1. Plugging (7.2) into (7.4) we get

4n ≤ (2n)1+
√

2n4
2
3n,

which is equivalent to

4
1
3n ≤ (2n)1+

√
2n.(7.5)

If we use the inequality a+ 1 < 2a, which is true for all a ≥ 2, we get

2n = (
6
√

2n)6 < (b 6
√

2nc+ 1)6 < 26b 6√2nc ≤ 26 6√2n(7.6)

and hence for n ≥ 50 (such that 18 < 2
√

2n), we get using (7.5) and (7.6)

22n = 4
1
3n3 ≤ (2n)3(1+

√
2n) < 2

6√2n(18+18
√

2n) < 2
6√2n20

√
2n = 220(2n)2/3 .

This is equivalent to

2n < 20(2n)2/3 ⇔ (2n)1/3 < 20⇔ 2n < 8000⇔ n < 4000.

However, we saw by the Landau-Trick, that Theorem 7.4 is true for n < 4000, so
we obtain the desired contradiction. �
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8. Outlook on current developments

As an outlook on current developments in Number Theory regarding prime numbers
we give a short overview of a theorem about prime numbers in short intervals and
Green-Tao’s Theorem. Besides, we mention the Goldbach Conjecture and a new
development on the way to the proof of the Twin Prime Conjecture.

8.1. Maier’s Theorem: Primes in short intervals. The Prime Number Theo-
rem states

lim
x→∞

π(x)

x/ log x
= 1.

If we want to know the number of primes “near x” (i.e. in intervals of the type
[x, x + Φ(x)], where Φ : R → R), we could pose the question: For which functions
Φ(x) does the asymptotic equality

π(x+ Φ(x))− π(x) ∼ Φ(x)

log x
(x→∞)(8.1)

hold? In other words: How large do we have to choose Φ(x) in order to guarantee,
that the interval [x, x + Φ(x)] contains roughly Φ(x)/ log x prime numbers? As an
example we can easily check (8.1) for Φ(x) = x using the Prime Number Theorem:

π(2x)− π(x)

x/ log x
=

π(2x)

2x/ log(2x)︸ ︷︷ ︸
→1

2x

log 2 + log x

log x

x︸ ︷︷ ︸
→2

− π(x)

x/ log x︸ ︷︷ ︸
→1

→ 1 for x→∞.

In order to motivate (8.1) we assume Φ(x) ≤ x and regard the following expression,
where we use the equivalences of the Prime Number Theorem seen in Theorem 3.1:

π(x+ Φ(x))− π(x) ∼
∫ x+Φ(x)

x

1

log t
dt ≤

∫ x+Φ(x)

x

1

log x
dt =

Φ(x)

log x
.

On the other hand we state

π(x+ Φ(x))− π(x) ∼
∫ x+Φ(x)

x

1

log t
dt ≥

∫ x+Φ(x)

x

1

log(x+ Φ(x))︸ ︷︷ ︸
≤log(2x)

dt ≥ Φ(x)

log 2 + log x
.

Hence it can be of interest to etablish (8.1) for certain Φ(x) ≤ x.
Heath-Brown showed (8.1) for Φ(x) = x7/12−ε(x) and ε(x) → 0 for x → ∞. In
1984, Helmut Maier, currently at Ulm University, proved, that it is not sufficient
to choose Φ(x) = (log x)λ0 for λ0 > 1. His theorem indicates, that intervals of the
type [x, x+ log(x)λ0 ] for x abritarily large, can contain a number of primes, which
is “constantly too high”. To be more specific, we state his theorem:

Theorem 8.1 (Maier). 44 If Φ(x) = (log x)λ0 and λ0 > 1, then

lim sup
x→∞

π(x+ Φ(x))− π(x)

Φ(x)/ log x
> 1 and lim inf

x→∞

π(x+ Φ(x))− π(x)

Φ(x)/ log x
< 1.

For the range 1 < λ0 < eγ we even have

lim sup
x→∞

π(x+ Φ(x))− π(x)

Φ(x)/ log x
≥ eγ

λ0
,

where γ =
∫∞

1

(⌊
1
x

⌋
− 1

x

)
dx denotes Euler’s constant.

44see [Ma85], p.1.
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8.2. Green-Tao’s Theorem: Primes contain arbitrarily long arithmetic
progessions. A relatively new discovery was made by Ben Green and Terence Tao
in 2008. To understand their findings, we introduce so-called arithmetic progres-
sions.

Definition 8.2. 45 An arithmetic progression of length k ∈ N is a set Q ⊂ Z such
that there is a ∈ Z, q ∈ N and

Q = {a, a+ q, a+ 2q, . . . , a+ (k − 1)q}.

Example 8.3. 45 We start with some examples for arithmetic progressions of prime
numbers:

(1) 5, 11, 17, 23, 29
(2) {199 + 210n : 0 ≤ n ≤ 9} = {199, 409, . . . , 2089}
(3) A record by M. Frind 2003: {376859931192959 + 18549279769020k : k =

0, 1, . . . , 21}

A deep result by Green-Tao is the following theorem:

Theorem 8.4 (Green-Tao). 46 The prime numbers P contain infinitely many
arithmetic progressions of length k for all k ∈ N.

Green-Tao could even prove a stronger result:

Theorem 8.5 (Szemeredi’s Theorem in the primes). 46 If A ⊂ P is of positive
relative upper density, that is

lim sup
N→∞

|A ∩ [1, N ]|
π(N)

> 0,

then A contains infinitely many arithmetic progressions of length k for all k ∈ N.

The proof of the last two theorems is not constructive and uses results of many so-
phisticated areas of mathematics, amongst others Number Theory, Ergodic Theory,
Combinatorics and Harmonic Analysis.

8.3. Helfgott: Minor and Major Arcs for Goldbach’s Problem. In 2013,
there were made two major discoveries in the field of prime numbers, which we
mention here. The first concerns the so-called Goldbach Conjecture, which is one
of the oldest unsolved problems of Number Theory. It states the following:

Conjecture 8.6 (Strong Goldbach Conjecture). Every even integer greater than 2
can be expressed as the sum of two primes.

This conjecture has its origin in a correspondence between the German mathemati-
cian Christian Goldbach47 and Leonhard Euler in 1742. In this context, Goldbach
also proposed a weaker conjecture:

Conjecture 8.7 (Weak Goldbach Conjecture). Every odd integer greater than 5
can be written as the sum of three primes.

While the strong Goldbach Conjecture remains unsolved until today, there have
been successful efforts to prove the weak conjecture: In 1923, Hardy48 and Little-
wood49 proved it for sufficiently large numbers assuming the so-called “Generalized
Riemann Hypothesis”. This result was improved to be valid without any lower
bounds in 199750. A different approach was made by the Soviet mathematician

45see [H11], p.2.
46see [GT08], p.2.
47Christian Goldbach (1690–1764)
48Godfrey Harold Hardy (1877–1947)
49John Edensor Littlewood (1885–1977)
50see [B81].
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Vinogradov51. He proved the ternary conjecture unconditionally in 1937 for all
numbers greater than a constant C. This value C was then lowered a couple of
times to C = e3100, which was still far too large to make a mechanical verification
of the conjecture up to C possible. In fact, Goldbach’s ternary conjecture has only
been checked by computer for all n < 1029. Finally on May 13th 2013 the math-
ematician Harald Helfgott52 claimed to have found a proof of the weak Goldbach
Conjecture for all numbers n ≥ 1029, which thus closes the gap between theoretical
and mechanical verification of the conjecture. In this context he published a pa-
per on exponential-sum estimates and a paper on the proof itsself53, where famous
methods of Analytic Number Theory like the Circle Method and the Large Sieve
play a major role.

8.4. Zhang: Bounded gaps between primes. Another famous unsolved prob-
lem in the theory of prime numbers is the Twin Prime Conjecture:

Conjecture 8.8 (Twin Prime Conjecture). There are infinitely many primes p
such that p+ 2 is also prime.

As in Maier’s Theorem, we are interested in the gaps between prime numbers here.
In May 2013, Yitang Zhang proved a weaker form of this problem: He showed, that
there are infinitely many primes, which differ by at most 70 million. We state the
main theorem of his paper54:

Theorem 8.9. It is true, that

lim inf
n→∞

(pn+1 − pn) < 7 · 107.

While the number 70 million is not chosen optimally as the author himself states,
a Polymath project suggested by Terence Tao already reduced the bound to 6712
(unconfirmed) effective July 1st 201355. The result of Yitang Zhang is remarkable
because it does not rely on unproven conjectures. It extends already known ideas
by Goldston, Pintz and Yildirim, who published two papers on small gaps between
prime numbers in 2005 and 2007.

51Ivan Matveevich Vinogradov (1891–1983)
52Harald Andrés Helfgott (1977-)
53see [He197] and [He297].
54see [Y13].
55see

http://michaelnielsen.org/polymath1/index.php?title=Bounded_gaps_between_primes.
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9. The Functional Equation of the Zeta Function

In this section we derive the Functional Equation of the Riemann Zeta Function by
examining certain properties of the Theta Series and the Gamma Function. Using
the Functional Equation we are able to find the so-called “trivial” zeros of the Zeta
Function.

We start with a preceeding lemma, which is needed to prove the Functional Equa-
tion of the Theta Series and requires some knowledge of Fourier Series and Fourier
Transforms.

Lemma 9.1 (Poisson Summation Formula). 56

Let f : R→ C be a continuously differentiable function such that

f(x) = O(|x|−2) and f ′(x) = O(|x|−2) for |x| → ∞.

If f̂ : R→ C is the Fourier Transform of f , that is

f̂(t) =

∫ ∞
−∞

f(x)e−2πixtdx,

then
∞∑

n=−∞
f(n) =

∞∑
n=−∞

f̂(n).

Proof. Since f is continuously differentiable and has the above mentioned behaviour

for |x| → ∞, the Fourier Transform f̂(t) is well defined. Let

F : R→ C F (x) :=

∞∑
n=−∞

f(x+ n).(9.1)

Since f(x) = O(|x|−2), the function F (x) as well as its derivative converge uniformly
by comparison test with the convergent series C

∑∞
n=n0

n−2 for some n0 ∈ N and

C ∈ R. Hence we can exchange the limit and derivative. Since f(x) is continuously
differentiable, we conclude, that F (x) is also continuously differentiable. It holds
F (x) = F (x+ 1), so F (x) is periodic with period T = 1. Hence the Fourier Series

F (x) =

∞∑
n=−∞

cne
2πinx(9.2)

exists and since F is continuously differentiable, the Fourier Series converges uni-
formly to F by the Dirichlet Theorem57. By

cn =

∫ 1

0

F (x)e−2πinxdx

we obtain

cn =

∞∑
k=−∞

∫ 1

0

f(x+ k)e−2πinxdx =

∞∑
k=−∞

∫ k+1

k

f(x+ k)e−2πinxdx

=

∫ ∞
−∞

f(x)e−2πinxdx = f̂(n).

Combining the two expressions (9.1) and (9.2) for F (x) we obtain

F (x) =

∞∑
n=−∞

f(x+ n) =

∞∑
n=−∞

f̂(n)e2πinx,

which concludes the proof of Lemma 9.1 setting x = 0. �

56see [Fo11], p.7.1.
57see [Hi05], p.419.
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Theorem 9.2 (Functional Equation of the Theta Series). 58 If the Theta Series is
defined by

Θ(x) =
∑
n∈Z

e−πn
2x for x > 0,

then

Θ(x) =
1√
x

Θ

(
1

x

)
holds for all x > 0.

Proof. As one can compute by path integration in the complex plane, the Fourier
Transform of f for

f : R→ R f(x) = e−πx
2

is

f̂(t) =

∫ ∞
−∞

e−πx
2

e−2πixtdx = e−πt
2

= f(t) for all t ∈ R.(9.3)

Let

fλ : R→ R fλ(x) = e−πλx
2

for λ > 0.

The definition of the Fourier Transform gives

f̂λ(t) =

∫ ∞
−∞

e−πλx
2

e−2πixtdx.

Substituting

u =
√
λx ⇔ du

dx
=
√
λ and v =

t√
λ

we obtain

f̂λ(t) =

∫ ∞
−∞

e−πu
2

e−2πiv
√
λx du√

λ
=

∫ ∞
−∞

e−πu
2

e−2πiuv du√
λ
,

which is the same as (9.3), so

f̂λ(t) =
e−πv

2

√
λ

=
e−π

t2

λ

√
λ
.

The function fλ(t) fulfills the requirements of the Poisson Summation Formula 9.1,
because it decreases exponentially fast in t and is continuously differentiable. Thus
by Lemma 9.1 it follows ∑

n∈Z
fλ(n) =

∑
n∈Z

f̂λ(n),

which is equivalent to ∑
n∈Z

e−πn
2λ =

1√
λ

∑
n∈Z

e−π
n2

λ .

If we write x instead of λ, then this concludes the proof of Theorem 9.2. �

58see [Fo11], pp. 7.2-7.4 and [SS03], p.169.



36

Using arguments of uniform convergence, we can derive a useful corollary.

Corollary 9.3. 59 For the Theta Series Θ(x) =
∑
n∈Z e

−πn2x it holds

Θ(x) = O
(

1√
x

)
for x ↓ 0.

Proof. For ε > 0 and x ∈ [ε,∞) we conclude

e−πn
2x ≤ e−πn

2ε,

because e−πn
2x is non-increasing for n ∈ Z. The series

∑∞
n=−∞ e−πn

2ε converges.

Since e−x decreases faster than any polynomial in x, we conclude the following: The

series Θ(x) =
∑∞
n=−∞ e−πn

2x as well as its derivatives are uniformly convergent on
[ε,∞), where ε > 0, so Θ(x) ∈ C∞(0,∞).
By Theorem 9.2

Θ(x) =
1√
x

∑
n∈Z

e−π
n2

x

holds. Since Θ(x) is uniformly convergent, we obtain

lim
x→∞

(∑
n∈Z

e−πn
2x

)
=
∑
n∈Z

lim
x→∞

e−πn
2x = 1,

which proves Corollary 9.3. �

We now introduce the integral form of the Gamma Function, which was first given
by Euler60 in 1729. Since we make use of some of its properties, we first examine it
more closely.

Lemma 9.4. 61 The Gamma Function, which is defined by

Γ(s) =

∫ ∞
0

ts−1e−tdt for s ∈ C, Re (s) > 0,

can be extended meromorphically to the whole complex plane with simple poles at
s = 0,−1,−2 . . . .

Proof. It holds |ts−1e−t| = tRe (s)−1e−t. The function∫ ∞
0

tRe (s)−1e−tdt = Γ(Re (s))

is the real Gamma Function, which we examine now. We show the existence of the
improper Riemann integral. If we split the integral up at t = 1, we have∫ 1

0

tRe (s)−1e−tdt+

∫ ∞
1

tRe (s)−1e−tdt.

We show the convergence of both integrals seperately.
Since

|tRe (s)−1e−t| ≤ tRe (s)−1 for 0 ≤ t ≤ 1

and

lim
ε→0

∫ 1

ε

tRe (s)−1dt = lim
ε→0

[
tRe (s)

Re (s)

]1

t=ε

= lim
ε→0

1

Re (s)

(
1− εRe (s)

)
=

1

Re (s)
,

59see [Fo11], p.7.4
60Leonhard Euler (1707-1783)
61see [Fo08], p.6.1 and [SS03], pp. 160-162.
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the first integral converges for Re (s) > 0.
For α ∈ R there is a constant C ∈ R such that

tα ≤ Ce t2 for t ≥ 1.

We calculate the integral∫ ∞
1

tRe (s)−1e−tdt ≤
∫ ∞

1

C e
t
2 e−tdt

=

∫ ∞
1

C e−
t
2 dt = lim

T→∞
C
[
(−2)e−

t
2

]T
t=1

= 2Ce−
1
2 ,

so the second integral converges as well and we proved the existence of the improper
integrals.
By the triangle inequality

|Γ(s)| ≤
∫ ∞

0

tRe (s)−1e−tdt = Γ(Re (s))

the existence of the complex integral follows.
We show, that Γ(s) is holomorphic for Re (s) > 0. For this purpose we only need
to show that for 0 < ε < 1

Fε(s) =

∫ 1/ε

ε

ts−1e−tdt

converges uniformly to Γ(s) on

Sδ,M = {δ ≤ Re (s) ≤M}, where 0 < δ < M <∞.

Then the property follows by normal convergence in addition to the fact, that
ts−1e−t is continuous and holomorphic in z for fixed t ∈ [ε, 1/ε], so Fε is holomor-
phic. We obtain

|Γ(s)− Fε(s)| ≤
∫ ε

0

e−ttRe (s)−1dt+

∫ ∞
1/ε

e−ttRe (s)−1dt.

Since 0 < ε < 1, we can estimate |e−ttRe (s)−1| = tRe (s)−1 for t ∈ [0, ε], thus the
first integral is ∫ ε

0

e−ttRe (s)−1dt ≤
∫ ε

0

tδ−1dt =
εδ

δ
.

The second integral is bounded from above as follows∫ ∞
1/ε

e−ttRe (s)−1dt ≤
∫ ∞

1/ε

e−ttM−1dt ≤ C
∫ ∞

1/ε

e−t/2dt = −2Ce−
1
2ε ,

so both integrals converge uniformly to 0, if ε→ 0.
Partial integration yields

Γ(s+ 1) =

∫ ∞
0

tse−tdt = lim
T→∞

lim
δ→0

∫ T

δ

tse−tdt

= lim
T→∞

lim
δ→0

[
− tse−t

]T
t=δ

+

∫ T

δ

sts−1e−tdt

= 0− 0 + sΓ(s) for Re (s) > 0.

By this equation, we obtain

Γ(s) =
Γ(s+ 1)

s
=

Γ(s+ 2)

s (s+ 1)
= · · · = Γ(s+ n+ 1)

s (s+ 1) · · · (s+ n)
.

The right-hand side is meromorphic in the right half plane

H(−n− 1) = {s ∈ C : Re (s) > −n− 1}
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with simple poles at s = 0,−1, . . . ,−n. Thus we found the meromorphic continua-
tion of Γ(s). �

We use the Gamma Function in order to prove the following lemma.

Lemma 9.5. 62 If s ∈ C and Re (s) > 1, then

Γ
(s

2

)
ζ(s) = π

s
2

∫ ∞
0

t
s
2

( ∞∑
n=1

e−πn
2t

)
dt

t
.

Proof. We start by examining the integral on the right-hand side of the equality.
We define the function

ψ(t) =

∞∑
n=1

e−πn
2t

and observe, that

Θ(t) =

∞∑
n=−∞

e−πn
2t = 1 + 2ψ(t) ⇔ ψ(t) =

1

2
(Θ(t)− 1).

As we discussed in the proof of Corollary 9.3, the Theta Series Θ(t) is uniformly
convergent on [ε,∞) for ε > 0, so the same holds for ψ(t). Hence by the same
corollary we obtain

ψ(t) = O
(

1√
t

)
for t ↓ 0.

Since

lim
t→∞

ψ(t)

e−πt
= lim
t→∞

∞∑
n=1

e−π(n2−1)t = lim
t→∞

(
1 +

∞∑
n=2

e−π(n2−1)t

)

= lim
t→∞

(
1 +

∞∑
n=1

e−π(n2+2n)t

)
= 1 +

∞∑
n=1

lim
t→∞

e−π(n2+2n)t = 1,

we conclude, that ψ(t) converges exponentially fast to 0 for t→∞, where the last
series in the equation above converges uniformly, because it is dominated by ψ(t).
Hence for ε > 0 we obtain the properties

∃t0 ∈ (0, 1) ∃C ∈ R : ψ(t) ≤ C√
t

for all t0 > t > 0,

∃t1 > 1 : ψ(t)
e−πt ≤ 1 + ε for all t > t1 and

∃C1 ∈ R : t
Re (s)−2

2 ≤ C1e
πt
2 for all t > t1.

Splitting up the integral, we have∫ t0

0

∣∣∣∣t s2ψ(t)
dt

t

∣∣∣∣+

∫ t1

t0

∣∣∣∣t s2ψ(t)
dt

t

∣∣∣∣+

∫ ∞
t1

∣∣∣∣t s2ψ(t)
dt

t

∣∣∣∣
≤ C

∫ t0

0

t
Re (s)−3

2 dt+

∫ t1

t0

t
Re (s)

2 ψ(t)
dt

t
+

∫ ∞
t1

t
Re (s)−2

2 (1 + ε)e−πtdt

= lim
δ→0

C

[
2

Re (s)− 1
t
Re (s)−1

2

]t0
t=δ

+M(t1 − t0) + C1 lim
T→∞

(1 + ε)

∫ T

t1

e−
πt
2 dt

= C
2

Re (s)− 1
t
Re (s)−1

2
0 +M(t1 − t0) + C1(1 + ε)

2

π
e−

πt1
2 <∞

62see [Fo11], pp.7.4-7.5 and [SS03], p.170.
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for M ∈ R, because the function t 7→ t
Re (s)

2 −1ψ(t) is continuously differentiable on
[t0, t1]. This implies, that the integral converges.
By the definition of the Gamma Function

Γ
(s

2

)
=

∫ ∞
0

t
s
2−1e−tdt =

∫ ∞
0

t
s
2 e−t

dt

t
for Re (s) > 0

and by subsituting t = πn2t̃, where n ∈ N and

dt

dt̃
= πn2 =

t

t̃
⇔ dt̃

t̃
=
dt

t

holds, we obtain

Γ
(s

2

)
=

∫ ∞
0

(πn2t̃)
s
2 e−πn

2 t̃ dt̃

t̃
= nsπ

s
2

∫ ∞
0

t̃
s
2 e−πn

2 t̃ dt̃

t̃
.

This gives for Re (s) > 1

Γ
(s

2

)
ζ(s) =

∞∑
n=1

Γ
(s

2

) 1

ns
=

∞∑
n=1

π
s
2

∫ ∞
0

t̃
s
2 e−πn

2 t̃ dt̃

t̃
= π

s
2

∫ ∞
0

t̃
s
2

( ∞∑
n=1

e−πn
2 t̃

)
dt̃

t̃
,

where the exchange of the series and the integral is justified by Lebesgue’s Domi-
nated Convergence Theorem. The Convergence Theorem is applicable due to the
argument, that there is an integrable function

g(t) = Ct
Re (s)−3

2 1[0,t0)(t) + ψ(t)t
Re (s)−2

2 1[t0,t1](t) + t
Re (s)−2

2 (1 + ε)e−πt1(t1,∞)(t)

for Re (s) > 1 fixed with

|ψk(t)| :=

∣∣∣∣∣ t
s
2

t

k∑
n=1

e−πn
2t

∣∣∣∣∣ ≤ g(t) for all k ∈ N

by the same estimate as above and ψk(t)→ ψ(t) t
s
2

t for k →∞. �

Lemma 9.5 enables us to prove two important Functional Equations, which clear
the ground for a theorem about the zeros of the Riemann Zeta Function ζ(s) for
Re (s) < 0.

Theorem 9.6 (Functional Equations). 63 We state the following Functional Equa-
tions:

a) Let

ξ(s) := π−
s
2 Γ
(s

2

)
ζ(s).

This function extends meromorphically to C. It is holomorphic everywhere apart
from simple poles at s = 0 and s = 1. Furthermore, the Functional Equation

ξ(s) = ξ(1− s)
holds.

b) The Zeta Function extends meromorphically to C with a simple pole at s = 1.
Furthermore, the Functional Equation

ζ(1− s) = 21−sπ−sΓ(s) cos
(πs

2

)
ζ(s)

holds.

63see [Fo11], pp.7.5-7.7 and [SS03], pp.170-172.
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Proof. a) By Lemma 9.5 we conclude, that for Re (s) > 1 and ψ(t) =
∑∞
n=1 e

−πn2t

ξ(s) = π
−s
2 Γ
(s

2

)
ζ(s) =

∫ ∞
0

t
s
2ψ(t)

dt

t
=

∫ 1

0

t
s
2ψ(t)

dt

t
+

∫ ∞
1

t
s
2ψ(t)

dt

t
(9.4)

holds. Recall, that ψ(t) = 1
2 (Θ(t)− 1). By Theorem 9.2

ψ(t) =
1

2
(Θ(t)− 1) =

1

2

(
1√
t

Θ

(
1

t

)
− 1

)
=

1

2
√
t

(
Θ

(
1

t

)
− 1

)
− 1

2

(
1− 1√

t

)
=

1√
t
ψ

(
1

t

)
− 1

2

(
1− 1√

t

)
applies. We obtain∫ 1

0

t
s
2ψ(t)

dt

t
=

∫ 1

0

t
s
2

(
1√
t
ψ

(
1

t

)
− 1

2

(
1− 1√

t

))
dt

t

=

∫ 1

0

t
s−1
2 ψ

(
1

t

)
dt

t
+

1

2

∫ 1

0

(t
s−1
2 − t s2 )

dt

t
.

We conclude for the last integral

1

2

∫ 1

0

(t
s−1
2 − t s2 )

dt

t
=

[
1

s− 1
t
s−1
2 − 1

s
t
s
2

]1

t=0

=
1

s− 1
− 1

s

and the other summand∫ 1

0

t
s−1
2 ψ

(
1

t

)
dt

t
=

∫ ∞
1

t̃
1−s
2 ψ

(
t̃
) dt̃
t̃
,

where we substituted

t̃ =
1

t
⇔ dt̃

dt
= − 1

t2
= − t̃

t
⇔ dt

t
= −dt̃

t̃
.

Plugging the last equations in (9.4) and writing t instead of t̃ again, we obtain

ξ(s) =

∫ ∞
0

t
s
2ψ(t)

dt

t
=

∫ ∞
1

(
t
1−s
2 + t

s
2

)
ψ(t)

dt

t
+

1

s− 1
− 1

s
.(9.5)

We examine the last integral in (9.5): The function ψ(t) goes to 0 exponentially
fast, while the other factors of the integrand only grow polynomially fast for t→∞,
so the integral exists as seen in a similar computation in the proof of Lemma 9.5.
Since ψ(t) is uniformly convergent, it is continuous on [ε,∞) for ε > 0, so the
whole integrant is continuous. For a fixed t ∈ [1,∞) the integrand is holomorphic
in s, thus the integral converges to a holomorphic function g(s). Hence we found a
meromorphic extension of ξ(s) to C with first order poles at s = 0 and s = 1.
We also recognize, that

ξ(1− s) =

∫ ∞
1

(
t
s
2 + t

1−s
2

)
ψ(t)

dt

t
− 1

s
+

1

s− 1
= ξ(s)

applies.
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b) We first provide a second proof for the meromorphic extension of ζ(s). In Lemma
6.1 we showed the extension to {s ∈ C : Re (s) > 0}, which was sufficient for the
proof of the Prime Number Theorem. Here we extend ζ(s) to C in order to examine
the zeros of ζ(s) for Re (s) < 0. By a) we have

ζ(s) =
π
s
2

Γ
(
s
2

)ξ(s).(9.6)

As we saw in Lemma 9.4, the Gamma Function is meromorphic with simple poles
at s = 0,−1, . . . , thus the function

s→ 1

Γ
(
s
2

)
is holomorphic on C with zeros of order 1 at s = 0,−2,−4 . . . . The zero of order
1 at s = 0 removes the pole of order 1 in s = 0 of the function ξ(s). Hence ζ(s) is
holomorphic in C apart from a single pole in s = 1.
By (9.6) and the Functional Equation of ξ(s) we obtain

ξ(1− s) = π−
1−s
2 Γ

(
1− s

2

)
ζ(1− s) = π

−s
2 Γ

(s
2

)
ζ(s) = ξ(s)

and

ζ(1− s) = π
1
2−sΓ

(s
2

)
Γ

(
1− s

2

)−1

ζ(s).(9.7)

Two important properties of the Gamma Function are

1

Γ(z)Γ(1− z)
=

sinπz

π
(9.8)

Γ
(z

2

)
Γ

(
1 + z

2

)
= 21−z√π Γ(z),(9.9)

which were found by Euler and Legendre.
By (9.8) we obtain with z = (1 + s)/2, that

Γ

(
1 + s

2

)−1

Γ

(
1− s

2

)−1

=
sin
(
π 1+s

2

)
π

=
cos
(
πs
2

)
π

,

which leads to

Γ

(
1− s

2

)−1

=
cos
(
πs
2

)
π

Γ

(
1 + s

2

)
.

Hence (9.7) is equivalent to

ζ(1− s) = π
1
2−sΓ

(s
2

)
Γ

(
1− s

2

)−1

ζ(s) = π−
1
2−sΓ

(s
2

)
Γ

(
1 + s

2

)
cos
(πs

2

)
ζ(s).

By (9.9) it follows

ζ(1− s) = 21−sπ−s Γ(s) cos
(πs

2

)
ζ(s).

�
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Theorem 9.7. 64 If k ∈ N, then

ζ(−2k) = 0

and these are the only zeros of the function ζ(s) for Re (s) < 0.

Proof. We conclude

Re (1− s) = 1− Re (s) < 0 ⇔ Re (s) > 1.

Recall Lemma 6.4, which said ζ(s) 6= 0 for Re (s) ≥ 1. Besides, by (9.8) it follows,
that Γ(s) is non-vanishing in C.
By the Functional Equation of the Zeta Function

ζ(1− s) = 21−sπ−sΓ(s) cos
(πs

2

)
ζ(s)

from Theorem 9.6 we observe, that on the right side of the equality only the Cosine
Function has zeros for Re (s) > 1. Since

cos
(πs

2

)
= 0 ⇔ s = 2k + 1 where k ∈ Z,

we conclude for s = 2k + 1

ζ(1− (2k + 1)) = ζ(−2k) = 0 for all k ∈ N.
�

64see [Fo11], p.7.7 and [B08], p.317.
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10. The Riemann Hypothesis

The Riemann Zeta Function has so-called “trivial” zeros at −2,−4, ..., whose exis-
tence can be proven relatively easily as we saw in section 7. By Lemma 6.4 ζ(s) has
no zeros for Re (s) ≥ 1. It is still unknown, how the zeros of ζ(s) are distributed in
the strip {s ∈ C : 0 < Re (s) < 1}, which is called the “Critical Strip”. The Rie-
mann Hypothesis claims, that for any non-trivial zeros, Re (s) = 1/2 holds. Today
it is also assumed, that all of these zeros are simple. J.B. Conrey showed in 1989,
that at least 40% of the non-trivial zeros are on the line {z ∈ C : Re (z) = 1/2}.
The Riemann Hypothesis is considered one of the most important unresolved prob-
lems in mathematics and is one of the “Clay Mathematics Institute Millenium Prize
Problems”.
Even if we do not know yet, if this problem can be solved, we can state its implica-
tions on the Prime Number Theorem in the following theorem:

Theorem 10.1. 65 Let 1
2 ≤ a < 1. The following are equivalent:

i) The Riemann Zeta Function has no zeros with Re (s) > a.
ii) π(x) = li(x) +O(xa+ε) holds for all ε > 0 and x→∞.

iii) ϑ(x) = x+O(xa+ε) holds for all ε > 0 and x→∞.

The proof of this theorem (in particular the step (i) → (ii)) requires some deeper
knowledge of Dirichlet Series and the Perron Formula, so we do not give the proof
here.
Nevertheless, we state an interesting fact about the distribution of the zeros of
ζ(s) in the Critical Strip, which can be obtained far more easily. Examining the
Functional Equation from Theorem 9.6 a)

ξ(s) = π−
s
2 Γ
(s

2

)
ζ(s)

we realise, that ξ(s) and ζ(s) have the same zeros in the Critical Strip, because
π−

s
2 Γ
(
s
2

)
is nonzero and holomorphic in this area. We conclude

ξ(1− s) = ξ(s) and ξ(s) = ξ(s).

The second equality follows directly from the integral form (9.5) of ξ(s) (over the
real axis), since the function z 7→ z is R-linear and continuous.
If

s =
1

2
+ x+ it, where − 1

2
< x <

1

2
and

ξ(s) = ξ

(
1

2
+ x+ it

)
= 0,

then

ξ(1− s) = ξ

(
1

2
− x− it

)
= 0,

ξ(s) = ξ

(
1

2
+ x− it

)
= 0 and

ξ
(
1− s

)
= ξ

(
1

2
− x+ it

)
= 0.

The non-trivial zeros of ζ(s) are therefore symmetric to the real axis and the line
{s ∈ C : Re (s) = 1/2}.

65see [Fo11], p.10.1, p.7.9
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In 1893, Hadamard proved one of Riemann’s propositions, which says, that ζ(s)
has infinitely many zeros in the Critical Strip. There are many results about the
vertical distribution of the zeros in the Critical Strip. In particular von Mangoldt
proved Riemann’s proposition

N(T ) =
T

2π
log

T

2π
+O(log T ) for T →∞

in 1905, where N(T ) denotes the number of zeros of ζ(s) including order in 0 ≤
Im (s) ≤ T .
Regarding the horizontal distribution of the zeros, there is not much known. De la
Vallée Poussin proved the existence of a positive function η(|t|), which converges to
0 for |t| → ∞ such that ζ(a+ it) 6= 0 for a > 1− η(|t|) and |t| sufficiently large.

On the next page, one can find two images of the Riemann Zeta Function. In
the first image, the colour at a certain point in the complex plane is used to show
the value of ζ(s): If it is close to black, this means, that ζ(s) is near zero. The hue
encodes the argument of the value of ζ(s) in a point. Values, which have arguments
close to zero, are shown in red.
The second image shows the real (red) and imaginary (blue) parts of ζ(s) on the
line {s ∈ C : Re (s) = 1/2}. One can spot the first zeros at Im (s) = ±14.135,
±21.022 and ±25.011.
At the end of this paper we quote Riemann himself, who uttered some thoughts on
his Hypothesis:

”It would certainly be desirable to have a rigorous demonstration for this proposition;

nevertheless I have for the moment set this aside, after several quick but unsuccessful

attempts, because it seemed unneeded for the immediate goal of my study”. 66

66see [SS03], p.185.
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Figure 6. Riemann Zeta Function in the complex plane

Figure 7. Real and imaginary parts of the Riemann Zeta Func-
tion on the line Re (s) = 1/2
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