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Abstract. The Dirichlet-to-Neumann operator Dλ is defined on L2(Γ) where

Γ is the boundary of a Lipschitz domain Ω and λ a real number which is not

an eigenvalue of the Dirichlet Laplacian on L2(Ω). We show that Dλ is a

selfadjoint lower bounded operator with compact resolvent. There is a close

connection between its eigenvalues and those of the Laplacian ∆µ on L2(Ω)

with Robin boundary conditions ∂u
∂ν = µu|Γ where µ ∈ R. This connection

is used to generalize L. Friedlander’s result λN
k+1 ≤ λD

k , k = 1, 2 (where λD
k

is the k − th Dirichlet and λN
k the k − th Neumann eigenvalue) to Lipschitz

domains. We show that this Euclidean result is false, though, if an arbitrary

compact Riemannian manifold M is considered instead of Rd and Ω is suitable

domain in M .

0. Introduction

Let Ω ⊂ Rd be a bounded domain. There is a wealth of interesting results
comparing the eigenvalues λD

1 < λD
2 ≤ λD

3 ≤ · · · of the Dirichlet Laplacian and
those of the Neumann Laplacian denoted by λN

1 < λN
2 ≤ λN

3 ≤ · · · , each time
repeated according to multiplicity. A first result of this type is due to Polya [Pol52]
who showed that

λN
2 < λD

1 .

Shortly after, in 1955, Payne [Pay55] showed that

(0.1) λN
k+d ≤ λD

k (k = 1, 2, · · · )

whenever Ω is a convex, planar domain with C2-boundary. Levine and Weinberger
[LW86] proved inequality (0.1) for arbitrary bounded convex domains in Rd without
any regularity assumption. They also showed that (0.1) remains true if convexity is
replaced by more general conditions on the mean curvature of the boundary (which
is assumed to be C2=d). However, without any geometric condition, in dimension
2, it may happen that λN

3 > λD
1 for Ω ⊂ R2, (see [Avi86]). it was only in 1991 that

L. Friedlander [Fri91] proved the inequality

(0.2) λN
k+1 ≤ λD

k (k = 1, 2, · · ·

for arbitray domains in Rd of class C1 without any restriction on the geometry.
However, his assumption on the C1-regularity of the boundary is crucial for his ar-
guments (which are actually given for C∞-domains, referring to a general approxi-
mation result of C1-domains by C∞-domains with convergence of the corresponding
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eigenvalues in [CH] ). In view of the preceding diverse results involving
geometric and regularity assumptions one may wonder whether the C1-assumption
is optimal in Friedlander’s, eventhough some hypothesis on Ω is needed to garantee
that the Neumann Laplacian has compact resolvent.

In the present paper we show that (0.2) does hold for Lipschitz domains by very
elementary arguments. As Friedlander we use the Dirichlet-to-Neumann operator
D1 on L2(Γ) where Γ is the boundry of Ω and λ #∈ {λD

k : k ∈ N} a real parameter.
A major point is to define the operator Dλ on Lipschitz domains using merely the
travel operator Tr : H1(Ω) → L2(Γ) and a weak definition of the normal derivative.
Instead of investigating the spectrum of Dλ directly we consider the Laplacian ∆µ

on L2(Ω) with Robin boundary conditions ∂u
∂ν = µu|Γ . The crucial relation between

the spectral of these operators is

(0.3) λ ∈ σ(∆µ) ⇔ µ ∈ σ(Dλ) .

We show that (0.2) is equivalent to the first eigenvalue of Dλ being non-positive,
which is always true for Lipschitz domains in Rd. However, (0.2) fails, in general, if
Ω is a lipschitz domain in a compact manifold M . This had been already proved in
[Maz91] if M is the sphere. Here we show that in any compact manifold M there are
domains for which (0.2) fails. It suffices to consider as Ω the manifod with a small
hole. In the paper we also show that the semigroup generated by −Dλ is positive
whenever λ < λD

1 . This allows us to prove some assertions of Kreni-Rutman type
on the principal eigenvalue.

Acknowledgement. The first named author is most grateful to the Department of

Mathematics of Stanford University for the hospitality and inspiring atmosphere during

the work on this paper.

1. Preliminaries on forms

Let H be a Hilbert space and V a Hilbert space which is densely and continuously
embedded in H. Let a : V × V → R be symmetric, continuous and elliptic, i.e.

a(u) + ω‖u‖2H ≥ α‖u‖2V (u ∈ V )

for some ω ∈ R, α > 0 where a(u) = a(u, u). This is equivalent to saying that
the form a with domain V is lower bounded and closed in H. Denote by A the
operator on H associated with a. That is, for x, y ∈ H one has x ∈ D(A), Ax = y

if and only if x ∈ V and a(x, v) = (y|v)H for all v ∈ V . Then A is selfadjoint. The
form a is accretive (i.e. a(u) ≥ 0 for all u ∈ V ) if and only if (Au | u) ≥ 0 for all
u ∈ D(A), i.e. if and only if A is monotone. A has compact resolvent if and only
if the injection V ↪→ H is compact. We assume throughout that H is separable and
infinite dimensional. If A has compact resolvent, then H has an orthogonal basis
{en : n ∈ N} such that

Aen = λnen (n ∈ N)
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where λ1 ≤ λ2 ≤ · · · and lim
n→∞

λn = ∞. We call this the sequence of eigenvalues
of A counting multiplicity. One has

(1.1) λn = sup{ min
u∈W1

a(u) : W ⊂ V,dimV/W = n− 1} .

Here W ⊂ V is a subspace and W1 := {u ∈ W : ‖u‖H = 1}.

2. The Laplacian on open sets

In this section we consider the Laplacian on L2(Ω) with Robin boundary con-
ditions, where Ω is an open bounded set in Rd with Lipschitz boundary (in §6 we
will consider more generally a relatively compact, open subset of a Riemannian
manifold). We define the Robin Laplacians as selfadjoint operators depending on a
parameter. They all have compact resolvent and we study continuity properties of
the k−th eigenvalue.

Let Ω be a bounded open subset of Rd which is connected and has Lipschitz
boundary Γ := ∂Ω. Such a subset will be called a Lipschitz domain in the sequel.
We consider L2(Ω) with respect to the Lebesgue measure. Denote by H1(Ω) the
first Sobolev space which is a Hilbert space for the norm

‖u‖2H1 =
∫

Ω

|u|2 +
∫

Ω

|∇u|2 dx .

We denote by H1
0 (Ω) the closure of D(Ω) in H1(Ω), where D(Ω) is the space of all

test functions. There is a unique bounded operator

Tr : H1(Ω) → L2(Γ)

such that Tr(u) = u|Γ whenever u ∈ H1(Ω) ∩ C(Ω̄). This operator is called the
trace operator. We keep the symbol u|Γ := Tr(u) for u ∈ H1(Ω) even if u #∈ C(Ω̄).
Here L2(Γ) is defined with respect to the surface measure on Γ. For µ ∈ R we want
to consider Robin boundary conditions ∂u

∂ν = µu|Γ . In order to do so, we define
the weak normal derivative in the following way.

Definition 2.1. a) Let u ∈ H1(Ω). We say that ∆u ∈ L2(Ω) if there exists
f ∈ L2(Ω) such that

(2.1)
∫

Ω

∇u∇v =
∫

Ω

fv

for all v ∈ D(Ω) (equivalently for all v ∈ H1
0 (Ω)). In that case we let ∆u := f .

b) Let u ∈ H1(Ω) such that ∆u ∈ L2(Ω). We say that ∂u
∂ν ∈ L2(Γ) if there exists

b ∈ L2(Γ) such that

(2.2)
∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

bv

for all v ∈ H1(Ω). In that case we let ∂u
∂ν := b.
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Here and later on we let
∫

Γ

bv =
∫

Γ

bu|Γ , i.e. we omit the trace signs under

the integral over Γ. Since by the Stone-Weierstraß Theorem the space {v|Γ : v ∈
C∞(Rd)} is dense in L2(Γ), the function b ∈ L2(Γ) is unique. The definition is such
that Green’s formula

(2.3)
∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

∂u

∂ν
v

holds for all v ∈ H1(Ω) whenever u ∈ H1(Ω),∆u ∈ L2(Ω) and ∂u
∂ν ∈ L2(Γ). In

the case of smooth domain and smooth functions ∂u
∂ν is the outer normal derivative

where ν denotes the outer normal. If u ∈ C2(Ω̄), then ∆u ∈ L2(Ω) and

∆u = −
d∑

j=1

D2
j u .

We use the sign of the Laplacian which makes it a form-positive operator.

For µ ∈ R we define the Robin Laplacian ∆µ on L2(Ω) by

D(∆µ) := {u ∈ H1(Ω) : ∆u ∈ L2(Ω),
∂u

∂ν
= µu|Γ}

∆µu := ∆u .

Proposition 2.2. The operator ∆µ is associated with the symmetric, continuous
and elliptic form

bµ(u, v) =
∫

Ω

∇u∇v − µ

∫

Γ

uvdσ

bµ : H1(Ω)×H1(Ω) → R .

Consequently, ∆µ is selfadjoint, bounded below and has compact resolvent.

In order to prove ellipticity we need the following lemma. Recall also that the
injection H1(Ω) ↪→ L2(Ω) as well as the trace operator H1(Ω) → L2(Γ) are com-
pact (cf. [Nec67, Chap. 2 § 6, Theorem 6.2]). Thus if un ⇀ u in H1(Ω) (weak
convergence) then un → u in L2(Ω) and un|Γ

→ u|Γ in L2(Γ).
We need the following standard estimate which will also be useful later.

Lemma 2.3. Let X1, X2, X3 be Banach spaces, X1 reflexive. Let T ∈ L(X1, X3)
be compact and S ∈ L(X1, X2) injective. Let ε > 0. Then there exists c > 0 such
that for all x ∈ X1,

‖Tx‖2X3
≤ ε‖x‖2X1

+ c‖Sx‖2X2
.

Proof. If not, there exist xn ∈ X1 such that ‖xn‖X1 = 1, ‖Txn‖2X3
≥ ε+n‖Sxn‖2X2

.
Since X1 is reflexive, we may assume that xn ⇀ x in X1. Since T is compact, it
follows that Txn → Tx in X3. Hence ‖Tx‖2X3

≥ ε. On the other hand ‖Sxn‖2X2
≤

1
n‖Txn‖2X3

→ 0 as n → ∞. Since Sxn ⇀ Sx, it follows that Sx = 0. Since S is
injective, it follows that x = 0. Hence Tx = 0, a contraction. !
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Proof of Proposition 2.2. The form bµ is clearly continuous. In order to prove
ellipticity, let X1 = H1(Ω), X3 = L2(Γ), T ∈ L(X1, X3) the trace operator, X2 =
L2(Ω) and S ∈ L(H1(Ω), L2(Ω)) the injection. By Lemma 2.3 there exists c > 0
such that for all u ∈ H1(Ω),

µ
∫

Γ

u2 ≤ 1
2‖u‖

2
H1 + c

∫

Ω

u2

= 1
2

∫

Ω

|∇u|2 + (c + 1/2)
∫

Ω

u2 .

Let ω = c + 1. Then

bµ(u) + ω

∫

Ω

u2 dx =
∫

Ω

|∇u|2 − µ

∫

Γ

u2 + ω

∫

Ω

u2

≥ 1
2

(∫

Ω

|∇u|2 +
∫

Ω

u2

)
.

Let B be the operator associated with bµ. Let u ∈ H1(Ω), f ∈ L2(Ω). Then
u ∈ D(B) and Bu = f if and only if

(2.4)
∫

Ω

∇u∇v − µ

∫

Γ

uvdσ =
∫

Ω

fv

for all v ∈ H1(Ω). Taking v ∈ H1
0 (Ω) we see that (2.4) implies that ∆u = f .

Hence inserting f = ∆u into (2.4) we deduce that ∂u
∂ν = µu. Thus u ∈ D(∆µ) and

∆µu = Bu for all u ∈ D(B). Conversely, if u ∈ D(∆µ), then

(2.5)
∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

µuv

for all v ∈ H1(Ω) by the definition of ∂u
∂ν = µu. Thus (2.4) holds for f = ∆u.

Hence u ∈ D(B) and Bu = ∆u. Since the injection H1(Ω) ↪→ L2(Ω) is compact, it
follows that ∆µ has compact resolvent. !

If µ = 0, then we find the Neumann boundary condition ∂u
∂ν = 0. We also use

the symbol ∆N = ∆0 in this case and call ∆N the Neumann Laplacian. The
Dirichlet Laplacian ∆D on L2(Ω) is definied by

D(∆D) = {u ∈ H1
0 (Ω) : ∆u ∈ L2(Ω)}

∆Du = ∆u .

The operator ∆D is associated with the form

b−∞ : H1
0 (Ω)×H1

0 (Ω) → R

b−∞(u, v) =
∫

Ω

∇u∇v .

Thus ∆D is selfadjoint and has compact resolvent. For µ ∈ R we denote the k− th

eigenvalue of ∆µ by λk(µ). We let

λN
k = λk(0) ,
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which is the k − th eigenvalue of ∆N . By λD
k = λk(−∞) we denote the k − th

eigenvalue of ∆D = ∆−∞.

Theorem 2.4. The functions λk : [−∞,∞) → R are continuous and nonincreas-
ing. In particular, lim

k→−∞
λk(µ) = λD

k .

Note also that by definition

λk(µ) ≤ λk+1(µ) for all −∞ ≤ µ < ∞ .

Since λ1(0) = λN
1 = 0, it follows that λk(µ) ≥ 0 if −∞ ≥ µ ≥ 0 for all k ∈ N. We

will obtain further information on these functions in Section 4.
For the proof of Theorem 2.3 we need the continuity of the resolvents. This can

be proved with the help of the following lemma (see [Dan03, Appendix B]).

Lemma 2.5. Let Tn, T ∈ L(X, Y ), where X, Y are Banach spaces and X is reflex-
ive. The following assertions are equivalent:

(i) lim
n→∞

‖Tn − T‖ = 0 and T is compact;
(ii) xn ⇀ x in X implies Tnxn → Tx in Y .

Proposition 2.6. Let −∞ ≤ µ0 < ∞. Then for λ ∈ R large enough

lim
µ→µ0

(λ + ∆µ)−1 = (λ + ∆µ0)
−1

in L(L2(Ω)).

Proof. Let fn ⇀ f in L2(Ω), un = (λ + ∆µn)−1fn where µn → µ0 ∈ [−∞,∞). We
have to show that unk → u := (λ + ∆µ0)−1f in L2(Ω) for some subsequence. By
definition we have

(2.6) λ

∫

Ω

unv +
∫

Ω

∇un∇v − µn

∫

Γ

unv =
∫

Ω

fnv (v ∈ H1(Ω)) .

In particular,

(2.7) λ

∫

Ω

u2
n +

∫

Ω

|∇un|2 − µn

∫

Γ

u2
n =

∫

Ω

fnun .

Taking λ > 0, sufficiently large, by ellipticity in Proposition 2.3, the left hand
side is larger or equal than α‖un‖2H1 for all n and some α > 0. Since

∫

Ω

fnun ≤

‖fn‖L2‖un‖L2 , it follows (un)n∈N is bounded in H1(Ω). Taking a subsequence if
necessary, we may assume that un ⇀ u in H1(Ω). Consequently, un → u in L2(Ω)
and un|Γ

→ u|Γ in L2(Γ). Now we consider the two cases µ0 #= −∞ and µ0 = ∞
separately.
a) Let µ0 #= −∞. Then it follows from (2.6), letting n →∞, that

λ

∫

Ω

uv +
∫

Ω

∇u∇v − µ0

∫

Γ

uv =
∫

Ω

fv
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for all v ∈ H1(Ω). Thus u = (λ + ∆µ0)−1f . Now (2.7) implies that

lim
n→∞

∫

Ω

|∇un|2 =
∫

Ω

fu− λ

∫

Ω

u2 + µ0

∫

Γ

u2

=
∫

Ω

|∇u|2 .

We have shown that un ⇀ u in H1(Ω) and ‖un‖H1 → ‖u‖H1 . This implies that
un → u in H1(Ω).

b) Let µ0 = −∞. Thus lim
n→∞

(−µn) = ∞. Then (2.7) implies that lim
n→∞

∫

Γ

u2
n = 0.

Hence u|Γ = 0, i.e. u ∈ H1
0 (Ω). Letting v ∈ H1

0 (Ω) in (2.6) and n →∞ shows that

λ

∫

Ω

uv +
∫

Ω

∇u∇v =
∫

Ω

fv

for all v ∈ H1
0 (Ω). Hence u = (λ + ∆D)−1f . Since un → u in L2(Ω) it follows from

Lemma 2.6 that (λ + ∆µn)−1 → (λ + ∆D)−1 in L(L2(Ω)). !

Remark 2.7. If µ0 #= −∞ we have shown that (λ + ∆µn)−1 → (λ + ∆µ)−1 even in
L(L2(Ω),H1(Ω)) as n →∞.

Now Theorem 2.5 follows from the following result, cf. [Kat66] .

Proposition 2.8. Let Bn, B selfadjoint operators with compact resolvent on a sep-
arable Hilbert space H such that

(Bnx | x) ≥ ω(x | x)

for all x ∈ D(Bn) and all n ∈ N where ω ∈ R. Assume that (λ+Bn)−1 → (λ+B)−1

in L(H) as n →∞ for all λ >ω . Denote by λn
k the k− th eigenvalue of Bn and by

λk the k − th eigenvalue of B repeating eigenvalues according to their multiplicity.
Then lim

n→∞
λn

k = λk.

3. The Dirichlet-to-Neumann Operator

In this section we define the Dirichlet-to-Neumann operator on a Lipschitz do-
main Ω. Let λ ∈ R \ σ(∆D). Denote the boundary of Ω by Γ. The Dirichlet-to-
Neumann Operator Dλ is defined on L2(Γ) by

D(Dλ) := {ϕ ∈ L2(Γ) : ∃u ∈ H1(Ω) such that
u|Γ = ϕ, ∆u = λu and ∂u

∂ν exists in L2(Γ)} ,

Dλϕ = ∂u
∂ν .

Here we use the definition of ∂u
∂ν given in the preceding section.

Theorem 3.1. The operator Dλ is selfadjoint, bounded below and has compact
resolvent.

The theorem will be proved by showing that Dλ is associated with a symmetric
form on L2(Γ). We need the following lemma.
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Lemma 3.2. For λ ∈ R \ σ(∆D) one has

H1(Ω) = H1
0 (Ω)⊕H1(λ)

where H1(λ) = {u ∈ H1(Ω) : ∆u = λu}.

Proof. a) Consider the operator A : H1
0 (Ω) → H1

0 (Ω)′ given by 〈Au, v〉 =
∫

Ω

∇u∇v.

Thus ∆D is the part of A in L2(Ω) where we consider L2(Ω) ↪→ H1
0 (Ω)′ by letting

〈f, v〉 :=
∫

Ω

fv dx for f ∈ L2(Ω), v ∈ H1
0 (Ω). It follows from [ABHN01, Proposition

3.10.3] that σ(A) = σ(∆D). Thus λ−A is invertible.
b) Let u ∈ H1(Ω). Consider F ∈ H1

0 (Ω)′ given by F (v) =
∫

Ω

∇u∇v − λ
∫

Ω

uv. Then

by a) there exists u0 ∈ H1
0 (Ω) such that A(u0) = F . Thus u1 := u − u0 ∈ H1(λ).

Hence u = u0+u1 ∈ H1
0 (Ω)+H1(λ). We have shown that H1(Ω) = H1

0 (Ω)+H1(λ).
Since λ #∈ σ(∆D) one has H1

0 (Ω) ∩H1(λ) = {0}. !

Let V := {u|Γ : u ∈ H1(Ω)} be the trace space which is a subspace of L2(Γ).
If λ ∈ R \ σ(∆D), then the trace operator restricted to H1(λ), i.e. the map-
ping u ∈ H1(λ) 2→ u|Γ ∈ V is linear and bijective by Lemma 3.2. Defining
‖u|Γ‖V := ‖u‖H1(λ), the space V becomes a Hilbert space. It follows from the
closed graph theorem that a different choice of λ ∈ R \ σ(∆D) leads to an equiv-
alent norm on V . Since the trace is a compact operator from H1(Ω) into L2(Γ),
it follows that the embedding of V into L2(Γ) is compact. The Stone-Weierstrass
Theorem implies that V is dense in L2(Γ).

Let λ ∈ R \ σ(∆D). We define the bilinear mapping aλ : V × V → R by

aλ(ϕ, ψ) :=
∫

Ω

∇u∇v − λ

∫

Ω

uv

where u, v ∈ H1(λ) such that ϕ = u|γ , ψ = v|Γ . Then aλ is clearly continuous and
symmetric. Now Theorem 3.1 is a consequence of the following.

Proposition 3.3. The form aλ is elliptic and Dλ is the operator on L2(Γ) associ-
ated with aλ.

Proof. 1. In order to show ellipticity we apply Lemma 2.4 to the compact embed-
ding T : H1(λ) → L2(Ω), u 2→ u, and the trace operator S : H1(λ) → L2(Γ), u 2→
u|Γ which is injective on H1(λ). Given 1 > δ > 0 we find c > 0 such that

∫

Ω

u2 ≤ δ‖u‖2H1 + c

∫

Γ

u2

for all u ∈ H1(λ). Since ‖u‖2H1 =
∫

Ω

|∇u|2 +
∫

Ω

u2, it follows that

∫

Ω

u2 ≤ δ

1− δ

∫

Ω

|∇u|2 +
c

1− δ

∫

Γ

u2 .
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Thus, given ε > 0 there exists c1 ≥ 0 such that

(3.1)
∫

Ω

u2 ≤ ε

∫

Ω

|∇u|2 + c1

∫

Γ

u2

for all u ∈ H1(λ). Let ε > 0 such that ε(|λ|+ 1/2) = 1/2 and let ω = c1(|λ|+ 1/2).
Then by (3.1),

aλ(u|Γ) + ω
∫

Γ

u2 =
∫

Ω

|∇u|2 − λ
∫

Ω

u2 + ω
∫

Γ

u2 ≥
∫

Ω

|∇u|2 + 1
2

∫

Ω

u2 − (|λ| + 1/2)
∫

Ω

u2 + Ω
∫

Γ

u2 ≥
∫

Ω

|∇u|2 + 1
2

∫

Ω

u2 − ε(|λ| + 1/2)
∫

Ω

|∇u|2 − (|λ| + 1/2)c1

∫

Γ

u2 + ω
∫

Γ

u2 =

1
2‖u‖

2
H1 for all u ∈ H1(λ) .

2. Let B be the operator on L2(Γ) which is associated with aλ. We want to
show that B = Dλ. Let u ∈ H1(λ), b ∈ L2(Γ). Then u|Γ ∈ D(B) and Bu|Γ = b if
and only if

(3.2)
∫

Ω

∇u∇v − λ

∫

Ω

uv =
∫

Γ

bv

for all v ∈ H1(λ).

a) Assume that u|Γ ∈ D(B) and Bu|Γ = b. Notice that for u ∈ H1(λ) one has
∫

Ω

∇u∇v − λ

∫

Ω

uv = 0 =
∫

Γ

vb

for all v ∈ H1
0 (Ω). Since H1

0 (Ω)⊕H1(λ) = H1(Ω), it follows that (3.2) holds for all
v ∈ H1(Ω). Now introducing λu = ∆u into (3.2) one sees that ∂u

∂ν = b in the sense
of our definition. Hence u ∈ D(Dλ) and Dλu = Bu.

b) Conversely, let ϕ ∈ D(Dλ) and Dλϕ = b. Then there exists u ∈ H1(λ) such
that u|Γ = ϕ and ∂u

∂ν = b. Hence
∫

Ω

∇u∇v − λ

∫

Ω

uv =

∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

∂u

∂v
v =

∫

Γ

bv

for all v ∈ H1(Ω). It follows that ϕ ∈ D(B) and Bϕ = b. !

We retain from the proof of Proposition 3.2.

Lemma 3.4. Let u ∈ H1(Ω), b ∈ L2(Γ). Then u|Γ ∈ D(Dλ) and Dλu|Γ = b if and
only if ∫

Ω

∇u∇v − λ

∫

Ω

uv =
∫

Γ

bv

for all v ∈ H1(Ω).
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We conclude this section showing that the first eigenvalue α1(λ) of Dλ is ≤ 0
whenever λ ≥ 0. This is done with the help of the same function used by Friedlander
[Fri91, Lemma 1.3].

Lemma 3.5. Let 0 ≤ λ ∈ R \ σ(∆D). Then the first eigenvalue α1(λ) of Dλ is
≥ 0.

Proof. We extend aλ to a symmetric sesquilinear form from VC × VC → C, where
VC = {u|Γ : u ∈ H1(λ, C)}, H1(λ, C) = {u ∈ H1(Ω, C) : ∆u = λu}. Let ω ∈ Rd

such that |ω|2 = λ. Let u(x) = eixω. Then Dju(x) = iωjeixω,∆u(x) = −λu(x).
Thus u ∈ H1(λ, C). Let ϕ = u|Γ . Then

aλ(ϕ) =
∫

Ω

|∇u|2 − λ

∫

Ω

u2

= |ω|2
∫

Ω

1− λ

∫

Ω

1 = 0 .

Thus α1(λ) ≤ inf{aλ(ψ) : ψ ∈ VC, ‖ψ‖L2(Γ) = 1} ≤ 0. !

We will see in Section 6 that Lemma 3.5 is no longer valid if Ω is a Lipschitz
domain in a compact Riemannian manifold M .

4. Comparing eigenvalues

In this section we establish relations between the eigenvalue of the Robin Lapla-
cian ∆µ and the Dirichlet-to-Neumann operator Dλ. Let Ω ⊂ Rd be a Lipschitz
domain as before.

Theorem 4.1. Let λ ∈ R \ σ(∆D). Then for µ ∈ R,

a) µ ∈ σ(Dλ) ⇔ λ ∈ σ(∆µ), and
b) dim ker(µ−Dλ) = dim ker(λ−∆µ).

Proof. We show that the mapping S : u 2→ u|Γ is an isomorphism from ker(∆µ−λ)
onto ker(D(λ) − µ). In fact, let u ∈ ker(∆µ − λ). Then bµ(u, v) = λ

∫

Ω

uv for all

v ∈ H1(Ω), i.e.

(4.1)
∫

Ω

∇u∇v − λ

∫

Ω

uv = µ

∫

Γ

uv

for all v ∈ H1(Ω). By Lemma 3.5 this implies that
u|Γ ∈ D(D(λ)) and D(λ)u|Γ = µu|Γ . If u|Γ = 0, then u ∈ H1

0 (Ω) ∩ D(D(λ)) ⊂
H1

0 (Ω) ∩ H1(λ) = {0}. We have shown that S defines a 1 − 1-mapping from
ker(∆µ−λ) into ker(D(λ)−µ). In order to show surjectivity, let ϕ ∈ ker(D(λ)−µ).
Then by Lemma 3.5 there exists u ∈ H1(λ) such that ϕ = u|Γ and (4.1) holds for
all v ∈ H1(Ω). Thus bµ(u, v) =

∫

Ω

λuv for all v ∈ H1(Ω). It follows that u ∈ D(∆µ)

and ∆µu = λu. !

Next we prove Friedlander’s result [?] for Lipschitz domains in Rd. Recall that
λN

k is the k − th eigenvalue of ∆N repeated according to multiplicity.
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Theorem 4.2. One has λN
k+1 ≤ λD

k (k = 1, 2, 3 · · · ).

Proof. For µ ∈ R,m ∈ N denote by λm(µ) the m − th eigenvalue of ∆µ. Recall
that λm(µ) is decreasing in µ, λm(0) = λN

m, lim
µ→−∞

λm(µ) = λD
m. Now assume

that there exists k ∈ N such that λD
k < λN

k+1. Choose λD
k < λ < λN

k+1. Then
λm(µ) ≤ λk(µ) ≤ λD

k for all m ≤ k, µ ∈ R and for m ≥ k + 1, µ ≤ 0, λm(µ) ≥
λk+1(µ) ≥ λk+1(0) = λN

k+1. Hence λ #= λm(µ) for all µ ≤ 0,m ∈ N, i.e. λ #∈ σ(∆µ)
whenever µ ≤ 0. By Theorem 4.1 this implies that σ(Dλ) ∩ (−∞, 0] = ∅. This
contradicts Lemma 3.4. !

We continue to study the functions λk : R → R, where λk(µ) is the k − th

eigenvalue of ∆µ.

Corollary 4.3. Let k ∈ N, µ1µ2 ∈ R such that λk(µ1) = λk(µ2). If λk(µ1) #∈
σ(∆D), then µ1 #= µ2.

Proof. Assume that µ1 < µ2. Then λk(µ) = λ := λk(µ1) for all µ ∈ [µ1, µ2] since
λk is nonincreasing. It follows from Theorem 4.1 that [µ1, µ2] ⊂ σ(Dλ). This is
impossible since the spectrum of Dλ is discrete. !

Corollary 4.4. lim
µ→∞

λk(µ) = −∞ for all k ∈ N.

Proof. Let k ∈ N. Assume that there exists λ < inf
µ∈R

λk(µ). We may choose λ < 0.

Then λ #∈ σ(∆D). For m ≥ k, one has λ < λk(µ) ≤ λm(µ) for all µ ∈ R. It follows
from Theorem 4.1 that σ(Dλ) = {µ ∈ R : ∃ m < k, λ = λm(µ)}. Corollary 4.3
implies that σ(Dλ) has at most k−1 eigenvalues, which is impossible, since Dλ has
compact resolvent and dimL2(Γ) = ∞. !

We let λD
0 := −∞, N0 = N ∪ {0}. for λ ∈ R \ σ(∆D) we denote by αk(λ) the

k − th eigenvalue of Dλ repeating eigenvalues according to multiplicity.

Proposition 4.5. Let n ∈ N0, λD
n < λ<λ D

n+1. Then for eacg k ≥ n + 1 there
exists a unique µk ∈ R such that λk(µk) = λ. Moreover, αk(λ) = µn+k.

Proof. Let k ≥ n + 1. Then lim
µ→∞

λk(µ) = λD
k > λ and lim

µ→−∞
λk(µ) = −∞. Hence

there exists µk ∈ R such that λk(µk) = λ. Uniqueness follows from Corollary 4.3.
It follows from Theorem 4.1 that µk ∈ σ(Dλ). We show that µk ≤ µk+1. In fact,
assume that µk+1 < µk. Then λk+1(µk+1) = λ = λk(µk) < λk(µk+1) ≤ λk+1(µk+1,
a contradiction. if µ ∈ σ(Aλ) then by Theorem 4.1, there exists k ∈ N such that
λk(µ) = λ. Hence µ = µk. Moreover, k ≥ n + 1 (since for k ≥ n, λk(µ) ≤ λD

n < λ

for all µ ∈ R). We have shown that

σ(Dλ) = {µk : k ≥ n + 1} and µk ≤ µk+1 for all k ≥ n + 1 .

It remains to show that the multiplicity is correctly expressed by the series µ1, µ2, · · · .
Let k ∈ N, p ∈ N0 such that µ := µk = µk+1 = · · · = µk+p < µk+p+1 and as-
sume that µk−1 < µk if k #= 1. Then λk(µ) = λ = λk+1(µk+1) = λk+1(µ) =
· · · = λk+p(µ), but λk+p+1(µ) < λn+p+1(µk+p+1) = λ and, if k > 1, λk−1(µ) >
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λk−1(µk−1) = λ. Thus by the definition of λk(µ),dim ker(λ + ∆µ) = p + 1. Hence
by Theorem 4.1, also dim(µ − ∆λ) = p + 1, i.e. tje multiplicity of the eigenvalue
µ = µk is p + 1 as it was claimed. !

The following beautiful identity was proved by Friedlander (for smooth domains)
as a tool for Theorem 4.2.

Corollary 4.6. For λ > 0 let ND(λ) be the number of k such that λD
k < λ and

NN (λ) the number of those k satisfying λN
k < λ. If λ #∈ σ(∆D), then NN (λ) −

ND(λ) is the number of all negative eigenvalues of Dλ.

Proof. Let λD
n < λ < λD

n+1. Thus ND(λ) = n. Assume that λN
n+1 ≤ · · · ≤

λN
n+p < λ ≤ λN

n+p+1 so that NN (λ) = p + n and NN (λ) − ND(λ) = p. We keep
the notation of Proposition 4.5. Thus λn+%(µn+%) = λ for all - ∈ N. since for
- = 1, · · · , p, λn+%(0) = λN

n+% < λ and λn+% is nonincreasing, it follows that µn% < 0
for - = 1, · · · , p. On the other hand µn+p+1 ≥ 0. In fact, otherwise µn+p+1 < 0
and consequently, λ = λn+p+1(µn+p+1) > λn+1+p(0) = λN

n+p+1 contradicting our
assumption. Thus there are exactly p negative eigenvalues of Dλ. !

Next we want to describe the spectrum of Aλ. We denote by αk(λ) the k −
th eigenvalue of Aλ repeating the eigenvalue according to its multiplicity (λ #∈
σ(−∆D)). Let us denote by d1 < d2 < d3 · · · the eigenvalues of −∆D not counting
multiplicity and denote by mk the multiplicity of dk. we let d0 = −∞. then the
picture is the following.

Corollary 4.7. The function αk have the following properties.

a) Each function αk is continuous on R \ σ(∆D);
b) each αk is strictly increasing on (dn, dn+1) for each n ∈ N0;
c) lim

λ→−∞
dk(λ) = −∞;

d) lim
λ↑dn

αk(λ) = ∞ for k = 1, · · · ,mn, but

e) lim
λ↑dn

αk(λ) < ∞ for k > mn;

f) lim
λ↓dn

αk(λ) > −∞ for n = 1, 2, · · · ,

g) α1(λ) > 0 if λ > 0,
α1(λ) = 0,
α1(λ) < 0 if λ < 0.

Proof. If λ ∈ (λD
n , λD

n+1), where n ∈ N0, then αk(λ) = µn+k where µn+k ∈ R is the
unique number such that

λn+k(µn+k) = λ (k = 1, 2 · · · ) .

Thus αk is the inverse function of λn+k and the properties a) - e) follows from the
preceedings results. !

Friedlander [Fri91] showed some of these properties directly for the operator Dλ

in the case where Ω has C∞ boundary.
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Hier endet Seite 4.15, fehlt evtl. ein Zusatz? Der Text auf 4.16
geht folgendermassen weiter:

So that aλ2(ϕ) =
∫
|∇u2|2 − λ2

∫

Ω

u2
2 and aλ1(ϕ) =

∫
|∇u2|2 − λ1

∫

Ω

u2.

Inserting u = u2 + u0 and using that
∫
∇u2∇u0 = λ2

∫
u2u0 since u2 ∈ H1(λ2) we

obtain

aλ1(ϕ) =
∫

|∇u2|2 + 2
∫
∇u2∇u0 +

∫
|∇u0|2

− λ1

∫
u2

2 − 2λ1

∫
u2u0 − λ1

∫
u2

0

= aλ2(ϕ) + (λ2 − λ1)
∫

u2
2 + (λ2 − λ1)

∫
2u2u0

+
∫

|∇u0|2 − λ1

∫
u2

0

≥ aλ2(ϕ) + (λ2 − λ1)
∫

(u2
2 + 2u2u0)

(d1 − λ1)
∫

u2
0

≥ aλ2(ϕ) + (λ2 − λ1)
∫

(u2 + u0)2 ≥ aλ2(ϕ) .

5. Positivity

Here we study the semigroup generated by −Aλ on L2(Γ) for positivity proper-
ties. A C0-semigroup T = (T (t))t≥0 on a space Lp is called positive if 0 ≤ f ∈ Lp

implies that T (t)f ≥ 0 for all t ≥ 0.

Theorem 5.1. If λ < λD
1 , then the semigroup generated by −Dλ on L2(Γ) is

positive.

Proof. Let ϕ ∈ V . Then ϕ+, ϕ− ∈ V . In fact, let u ∈ H1(Ω) such that u|Γ = ϕ.
Then u+, u− ∈ H1(Ω) and u+

|Γ = ϕ+, u−|Γ = ϕ−. By the Beurling-Deny criterion (see
[Dav] or [Ouh05, Theorem 2.6]) the semigroup is positive if and only if aλ(ϕ+, ϕ−) ≤
0 for all ϕ ∈ V . Let ϕ ∈ V, ϕ = u|Γ where u ∈ H1(λ). Write u+ = u0 + u1 ∈
H1

0⊕H1(λ) and u− = ū)0+u2 ∈ H1
0⊕H1(λ). Since u = (u0−ū0)+(u1−u2) ∈ H1(λ)

it follows that u0 = ū0. Now

aλ(ϕ+, ϕ−) =
∫

Ω

∇u1∇u2 − λ

∫

Ω

u1u2

=
∫

Ω

(u1 + u0 | ∇(u2 + u0)−
∫
∇u1∇u0 −

∫
∇u0∇u2 −

∫
∇u0∇u0

− λ

∫

Ω

(u1 + u0)(u2 + u0)+λ

∫
u1u0 + λ

∫
u0u2 + λ

∫
u2

0

=
∫

Ω

∇u+∇u− − λ

∫

Ω

u+u− −
∫

|∇u0|2 + λ

∫
u2

0 ≤ 0
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by Poincaré’s inequality. In the last identity we used that fact that
∫
∇ui∇u0 = λ

∫
uiu0, sin cui ∈ H61(λ), i = 1, 2 .

!

Let (Y, Σ, ν) be a measure space and 1 ≤ p < ∞. A holomorphic positive C0-
semigroup T on Lp(Y, Σ, ν) is irreducivle if and only if for 0 ≤ f, f #= 0, T (t)f(x) >

0 a.e. for all t > 0 (see [Ouh05]). Denote by −A the generator of A and assume
that A is selfadjoint and has compact resolvent. Let λ1 be the first eigenvalue of A.
If T is irreducible, then λ1 is simple and there exists u ∈ D(A), u(x) > 0 a.e. such
that Au = λ1u, i.e. there exists a strictly positive eigenvector corresponding to
λ1. Moreover λ1 is the only eigenvalue with a positive eigenvector. It follows form
[Ouh05, Theorem 2.9] that the semigroup generated by −∆µ is irreducible. Hence
λ1(µ) is a simple eigenvalue with a strictly positive eigenfunction for each µ ∈ R.
From this we conclude the following for the Dirichlet-to-Neumann operator.

Theorem 5.2. Let −∞ < λ < λD
1 . Denote by µ the first eigenvalue of Dλ. Then

there exists a positive eigenfunction of Dλ corresponding to µ. Conversely, if µ is an
eigenvalue with a positive eigenfunction ϕ ∈ D(Dλ). Then µ is the first eigenvalue
of Dλ. Moreover, let u ∈ H1(λ) such that u|Γ = ϕ. Then u(x) > 0 a.e. in Ω.

Proof. Since the semigroup generated by −Dλ is positive, the first assertion follows
from the Krein-Rutman-Theorem (cf. [Nag86]). In order to prove the second let
0 ≤ ϕ ∈ D(Dλ) such that ϕ #= 0, Dλϕ = µϕ. Let u ∈ H1(λ) such that u|Γ = ϕ.
Then by Lemma 3.4,

(5.1)
∫

Ω

∇u∇v − λ

∫

Ω

uv =
∫

Γ

µuv

for all v ∈ H1(Ω). Since ϕ ≥ 0 one has u− ∈ H1
0 (Ω). Taking v = u− in (5.1) we

obtain

−
∫

|∇u−|2 + λ

∫

Ω

u−2 = 0 .

By Poincaré’s inequality,

λ

∫

Ω

u−2 =
∫

Ω

|∇u−|2 ≥ λD
1

∫

Ω

(u−)2 .

Since λ <λ D
1 , it follows that u− = 0. Thus u ≥ 0. Hence u is a positive eigenvector

of ∆µ corresponding to the eigenvalue λ. Hence u 5 and λ is t he first eigenvalue
of ∆µ. Hence µ is the first eigenvalue of Dλ by Theorem 4.1. !

Even though we do not know whether the semigroup generated by −Dλ is irre-
ducible, Theorem 5.2 establishes the usual consequences of irreducibility.
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6. Manifolds

The purpose of this section is to consider the previous analaysis in a more general
setting where Rd is replaced by a Riemannian manifold. All properties established
so far will be valid in this more general context. However, Lemma 3.5 may no
longer be valid and in fact we will see that this lemma is equivalent to the validity
of Friedlander’s Theorem (Theorem 4.2). Let M be a Riemannian manifold which
we assume to be connected and orientable. Let Ω ⊂ M be a Lipschitz domain in
M , i.e. we assume t hat Ω is relatively compact, open, connected and has Lipschitz
boundary Γ := ∂Ω. The first Sobolev space H1(Ω) is defined as the completion of

H1(Ω) ∩ C∞(Ω) := {u ∈ c∞(Ω) : ‖u‖H(Ω) < ∞}

for the norm
‖u‖2H1(Ω) :=

∫

Ω

|u|2 +
∫

Ω

|∇u|2

(cf. [Heb96], [Heb99]). Here ∇u : Ω → TΩ is defined as the vector filed ∇u(x) :=
j−1
x du(x), where jx : TxΩ → T ∗x Ω is the canonical map identifying functionals with

vectors via the Riemannian metric. The space H1(Ω) is compactly injected into
L2(ω). On Γ we consider the surface measure. As in the euclidean case, the trace
u ∈ C(Ω̄)∩H1(Ω) → L2(Γ), u 2→ u|Γ has a compact linear extension to H1(Ω) with
values in L2(Γ) (which we denote still by u 2→ u|Γ). we even omit the trace sign u|Γ
when writing

∫

Γ

uv for u, v ∈ H1(Ω). by H1
0 (Ω) we denote the closure of the test

functions. Note that for u ∈ H1(Ω) one has u ∈ H1
0 (Ω) if and only if u|Γ = 0. For

u, v ∈ H1(Ω), there exists a unique function ∇u · ∇v ∈ L1(Ω) such that for each
local coordinate ϕ : V → R,

∇u · ∇v =
( d∑

i,j=1

gij
( ∂

∂ϕi

u
)
(

∂

∂ϕj

v
))1/2

.

If u ∈ H1(Ω), we say that ∆u ∈ L2(Ω) if there exists f ∈ L2(Ω) such that
∫

Ω

∇u∇v =
∫

Ω

fv

for all v ∈ D(Ω) := C∞
c (Ω). In that case we put ∆u := f . Next we define the outer

normal. If u ∈ H1(Ω) and ∆u ∈ L2(Ω), then we say that ∂u
∂ν ∈ L2(Γ) if there exists

b ∈ L2(Γ) such that ∫

Ω

∇u∇v −
∫

Ω

∆uv =
∫

Γ

bv

for all v ∈ H1(Ω). Then we set ∂u
∂ν = b. Assume that Ω #= M (this is automatic

if M is non-compact). Then we can define as in the Euclidean case the operators
∆µ(µ ∈ R),∆N = ∆0 and ∆D = ∆−∞. They are selfadjoint and have compact
resolvent. Denoting by λk(µ) the k − th eigenvalue of ∆µ we obtain continuous,
increasing functions λk : [−∞,∞) → R as in Theorem 2.4. If M is a compact
manifold, and Ω = M , then H1

0 (M) = H1(M) and Γ = ∅. Thus ∆N = ∆D which is
just the Laplace-Beltrami operator. Next, for λ ∈ R\σ(∆D) and Ω #= M , we define
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the Dirichlet-to-Neumann operator Dλ as in Section 3. It is a selfadjoint, lower
bounded operator on L2(Γ) which has compact resolvent. Theorem 4.1 stays true
in this general context. Now the point in the non-euclidean case is that Lemma 3.5
fails in general (as we will show below). In fact, it is equivalent to the validity of
Friedlander’s result Theorem 4.2. More precisely, the following holds. By αk(λ) we
denote the k − th eigenvalue of Dλ, λ ∈ R \ σ(∆D).

Theorem 6.1. Let Ω be a Lipschitz domain in M,Ω #= M . Let k ∈ N such that
λD

k < λD
k+1. The following assertions are equivalent:

(i) One has α1(λ) ≤ 0 for all λ ∈ (λD
k , λD

k+1);
(ii) λN

k+1 ≤ λD
k .

Proof. (i) ⇒ (ii) as in Section 4.
(ii) ⇒ (i) Assume that λD

k < λN
k+1.

Let λD
k < λ<λ N

k+1. Since λm(µ) ≤ λD
k for all µ ∈ R,m ≤ k, λm(µ) > λN

k+1 for all
m ≥ k + 1, µ ≥ 0, there exists no µ ≥ 0 and no m ∈ N such that λm(µ) = λ. Hence
by Theorem 4.1, µ > 0 for all µ ∈ σ(Dλ). !

Next we show that it may happen that the two equivalent conditions of Theo-
rem 6.1 may fail in the non-Euclidean case. In fact, taking an arbitrary compact
Riemannian manifold, we show that these assertions fail for Ω = M \ K is K is a
compact subset of M which is small enough.

Theorem 6.2. Let M be a compact Riemannian manifold of dimension d ≥ 2.
Let Kn+1 ⊂ Kn ⊂ M be compact sets such that

⋂
n∈N

Kn = {a} where a ∈ M . Let

Ωn = M \ Kn. Then for λ > 0, (λ + ∆D
Ωn

)−1 → (λ + ∆M )−1 and (λ + ∆N
Ωn

)−1 →
(λ + ∆µ)−1 in L(L2(M)), where ∆M denotes the Laplace-Beltrami operator on
L2(M) and ∆D

Ωn
the Dirichlet- and ∆N

Ωn
the Neumann Laplacian on L2(Ωn). Con-

sequently, lim
n→∞

λD
k (Ωn) = λk(M), lim

k→∞
λN

k (Ωn) = λk(M) for all k ∈ N, where

λk(M), λD
k (Ωn), λN

k (Ωn) are the Laplace-Beltrami, Dirichlet- and Neumann Lapla-
cian, resp. on L2(M) and L2(Ωn).

Proof. We identify L2(Ωn) with a closed subspace of L2(M) extending functions in
L2(Ωn) by 0 outside Ωn and we also consider (L2(Ωn)) ⊂ L(L2(M)) in a canonical
way. Since dimension d ≥ 2, the space C∞

c (M \{a}) is dense in H1(M) (cf. [AB93,
Remark 2.6], cite[p. 171]Bre). Let λ > 0.
a) We show that (λ + ∆N

ωn
)−1 → (λ + ∆M )−1 in L(L2(M)) as n → ∞. Let

fn ⇀ f in L2(M), un = (λ + ∆N
Ωn

)−1fn. By Lemma 2.5 we have to show that
un → u := (λ + ∆M )−1f in L2(M). By definition

(6.1) λ

∫

Ωn

unv +
∫

Ωn

∇un∇v =
∫

Ωn

fnv

for all v ∈ H1(Ωn). In particular,

λ

∫

Ωn

u2
n +

∫

Ωn

|∇un|2 =
∫

Ωn

fnun ≤ ‖fn‖L2(M)‖un‖L2(M) .
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It follows that ‖un‖H1(ωn) is bounded. Let (unk) be a subsequence. By the diagonal
argument, there exist a ω ∈ L2(M)and a subsequence (unk"

) such that ω|Ωm
∈

H1(Ωm) and unk"
⇀ ω in H1(Ωm) as - → ∞ for all m ∈ N. Letting - → ∞ it

follows from (6.1) that

λ

∫

M

ωv +
∫

M

∇w∇v =
∫

M

fv

for all v ∈ C∞
c (M \ {a}) and hence for all v ∈ H1(M) by density. Thus w = u

and unk"
→ u in L2(Ωm) for all m ∈ N. Recall that (un)n∈N is bounded in L2(M).

Since |M \Ωm| → 0 as m →∞, it follows that unk"
→ u in L2(M) and a) is proved.

b) The proof that (∆D
Ωn

)−1 → (λ + ∆M )−1 in L(L2(M)) as n → ∞ is similar
that a) but easier since H1

0 (ωn) ⊂ H1(M) (via the extension by 0). The remaining
assertions follow from Proposition 2.8. !

Now we obtain in each compact Riemannian manifold a Lipschitz domain Ω
such that the inequality λN

k+1 ≤ λD
k fails. We keep the notations of the preceding

theorem.

Corollary 6.3. Let k ∈ N such thath λk(M) < λk+1(M). Then for n large enough
λN

k+1(Ωn) > λD
k (Ωn).

Proof. Since lim
n→∞

λN
k+1(Ωn) = λk+1(M) and lim

n→∞
λD

k (Ωn) = λk(M) this is obvious.
!

In fact, in special cases one can give precise information. If M = S3, then taking
of M a cap in the uppre half sphere we obtain a domain for which the inequality
λN

k+1 ≤ λD
k is violated.
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