SPECTRAL PROPERTIES OF THE DIRICHLET-TO-NEUMANN
OPERATOR ON LIPSCHITZ DOMAINS

WOLFGANG ARENDT AND RAFE MAZZEO

ABSTRACT. The Dirichlet-to-Neumann operator D) is defined on L?(T") where
I" is the boundary of a Lipschitz domain 2 and A a real number which is not
an eigenvalue of the Dirichlet Laplacian on L2 (©2). We show that D) is a
selfadjoint lower bounded operator with compact resolvent. There is a close

connection between its eigenvalues and those of the Laplacian A, on L2(Q)

with Robin boundary conditions % = pu), where p € R. This connection

is used to generalize L. Friedlander’s result )\iv_‘_l < )\kD7k = 1,2 (where )\kD
is the k — th Dirichlet and )\kN the k — th Neumann eigenvalue) to Lipschitz
domains. We show that this Euclidean result is false, though, if an arbitrary
compact Riemannian manifold M is considered instead of R% and  is suitable

domain in M.

0. INTRODUCTION

Let © C R? be a bounded domain. There is a wealth of interesting results
comparing the eigenvalues AP < AP < AP < ... of the Dirichlet Laplacian and
those of the Neumann Laplacian denoted by A < AV < AY < ...  each time
repeated according to multiplicity. A first result of this type is due to Polya [Pol52]
who showed that

A <P
Shortly after, in 1955, Payne [Pay55] showed that
(0.1) Myad <A (k=1,2,--)

whenever (2 is a convex, planar domain with C?-boundary. Levine and Weinberger
[LW86] proved inequality (0.1) for arbitrary bounded convex domains in R¢ without
any regularity assumption. They also showed that (0.1) remains true if convexity is
replaced by more general conditions on the mean curvature of the boundary (which
is assumed to be C?=%). However, without any geometric condition, in dimension
2, it may happen that \YY > AP for Q C R?, (see [Avi86]). it was only in 1991 that
L. Friedlander [Fri91] proved the inequality

(0.2) M <A (k=12
for arbitray domains in R? of class C' without any restriction on the geometry.
However, his assumption on the C!-regularity of the boundary is crucial for his ar-

guments (which are actually given for C*°-domains, referring to a general approxi-

mation result of C'-domains by C°°-domains with convergence of the corresponding
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eigenvalues in [CH] ). In view of the preceding diverse results involving
geometric and regularity assumptions one may wonder whether the C'-assumption
is optimal in Friedlander’s, eventhough some hypothesis on (2 is needed to garantee

that the Neumann Laplacian has compact resolvent.

In the present paper we show that (0.2) does hold for Lipschitz domains by very
elementary arguments. As Friedlander we use the Dirichlet-to-Neumann operator
Dy on L?(T') where T is the boundry of Q and A € {\? : k € N} a real parameter.
A major point is to define the operator D) on Lipschitz domains using merely the
travel operator Tr : H*(Q2) — L?(T") and a weak definition of the normal derivative.
Instead of investigating the spectrum of Dy directly we consider the Laplacian A,
on L?(Q2) with Robin boundary conditions % = puy,. The crucial relation between

the spectral of these operators is
(0.3) Aeo(AL) & pea(Dy).

We show that (0.2) is equivalent to the first eigenvalue of D) being non-positive,
which is always true for Lipschitz domains in R?. However, (0.2) fails, in general, if
Q is a lipschitz domain in a compact manifold M. This had been already proved in
[Maz91] if M is the sphere. Here we show that in any compact manifold M there are
domains for which (0.2) fails. It suffices to consider as  the manifod with a small
hole. In the paper we also show that the semigroup generated by —D) is positive
whenever A < AP. This allows us to prove some assertions of Kreni-Rutman type

on the principal eigenvalue.

Acknowledgement. The first named author is most grateful to the Department of
Mathematics of Stanford University for the hospitality and inspiring atmosphere during
the work on this paper.

1. PRELIMINARIES ON FORMS

Let H be a Hilbert space and V' a Hilbert space which is densely and continuously

embedded in H. Let a : V x V — R be symmetric, continuous and elliptic, i.e.
a(u) +wllulf > alul} (weV)

for some w € R, > 0 where a(u) = a(u,u). This is equivalent to saying that
the form a with domain V is lower bounded and closed in H. Denote by A the
operator on H associated with a. That is, for 2,y € H one has € D(A), Ax =y
if and only if z € V and a(x,v) = (y|v)g for all v € V. Then A is selfadjoint. The
form a is accretive (i.e. a(u) > 0 for all u € V) if and only if (Au | u) > 0 for all
u € D(A), i.e. if and only if A is monotone. A has compact resolvent if and only
if the injection V' — H is compact. We assume throughout that H is separable and
infinite dimensional. If A has compact resolvent, then H has an orthogonal basis
{en : m € N} such that
Ae, = Apen, (n€N)
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where A\ < Ao < --- and lim A, = co. We call this the sequence of eigenvalues
n—oo
of A counting multiplicity. One has

(1.1) An = sup{ Igin a(u) : W CV,dimV/W =n—1} .

1

Here W C V is a subspace and Wy := {u € W : ||Ju|lg = 1}.

2. THE LAPLACIAN ON OPEN SETS

In this section we consider the Laplacian on L?(§) with Robin boundary con-
ditions, where €2 is an open bounded set in R¢ with Lipschitz boundary (in §6 we
will consider more generally a relatively compact, open subset of a Riemannian
manifold). We define the Robin Laplacians as selfadjoint operators depending on a
parameter. They all have compact resolvent and we study continuity properties of

the k—th eigenvalue.

Let © be a bounded open subset of R¢ which is connected and has Lipschitz
boundary I" := 9. Such a subset will be called a Lipschitz domain in the sequel.
We consider L?(£2) with respect to the Lebesgue measure. Denote by H'(Q) the

first Sobolev space which is a Hilbert space for the norm

||uHip :/|u\2+/|Vu|2d:r.

Q Q

We denote by H}(Q) the closure of D(Q) in H' (), where D(12) is the space of all

test functions. There is a unique bounded operator
Tr: HY(Q) — L*(I")

such that Tr(u) = uj,. whenever u € H'(Q) N C(). This operator is called the
trace operator. We keep the symbol ). := T'r(u) for u € H*(2) even if u ¢ C(1).
Here L?(T") is defined with respect to the surface measure on I'. For y € R we want
to consider Robin boundary conditions g—;‘ = puy.. In order to do so, we define

the weak normal derivative in the following way.

Definition 2.1. a) Let u € H'(Q). We say that Au € L?() if there exists
f € L) such that

(2.1) !VUVU—S!]"U

for all v € D(Q) (equivalently for all v € H}(2)). In that case we let Au := f.
b) Let u € H'(Q2) such that Au € L*(Q). We say that % € L*(T') if there exists
b € L?(T') such that

(2.2) Q/ Vuvu - Q/ Aup = F/ b

for all v € H*(Q). In that case we let 9% := b.
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Here and later on we let [bv = fbu‘r, i.e. we omit the trace signs under
r r
the integral over I'. Since by the Stone-Weierstral Theorem the space {v|. : v €

C>(R%)} is dense in L2(T), the function b € L2(T") is unique. The definition is such

that Green’s formula

(2.3) /Vqu—/Auv :/%v
Q Q r

holds for all v € H'(Q) whenever u € H*(Q),Au € L*(Q) and 2% e L2(T). In
ov

the case of smooth domain and smooth functions % is the outer normal derivative

where v denotes the outer normal. If u € C?(Q), then Au € L?(2) and

d
Au = — ZDJQ’LL .
j=1

We use the sign of the Laplacian which makes it a form-positive operator.

For u € R we define the Robin Laplacian A, on L?*(Q) by

D(A,) = {ue HY(Q):Aue L*(Q), % = .}
Aju = Au.

Proposition 2.2. The operator A, is associated with the symmetric, continuous

and elliptic form

bu(u,v) = /Vqu - u/uvdo
Q T
b, HY(Q) x H'(Q) — R.

Consequently, A, is selfadjoint, bounded below and has compact resolvent.

In order to prove ellipticity we need the following lemma. Recall also that the
injection H'(Q) — L2() as well as the trace operator H'(2) — L?(T) are com-
pact (cf. [Nec67, Chap. 2 § 6, Theorem 6.2]). Thus if u,, — u in H'(Q) (weak
convergence) then u, — w in L*(Q) and u,, — ), in L*(T).

We need the following standard estimate which will also be useful later.

Lemma 2.3. Let X1, X5, X3 be Banach spaces, X reflexive. Let T € L(X7,X3)
be compact and S € L(X1,Xs) injective. Let € > 0. Then there exists ¢ > 0 such
that for all x € X7,

ITz(l%, < ellelk, +cl Sz, -

Proof. If not, there exist z,, € X; such that [z, x, = 1, || Tz %, > e+nlSz.l%, .
Since X; is reflexive, we may assume that z,, — x in X;. Since T is compact, it
follows that T'x,, — Tz in X3. Hence ||[Tz||%, > . On the other hand [Sx,[|%, <

%||T$n||%(3 — 0 as n — oo. Since Sz, — Sz, it follows that Sx = 0. Since S is

injective, it follows that x = 0. Hence Tx = 0, a contraction. O
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Proof of Proposition 2.2. The form b, is clearly continuous. In order to prove
ellipticity, let X; = HY(Q), X3 = L?(T), T € L(Xy, X3) the trace operator, X, =
L3(Q) and S € L(H'(2), L*(Q)) the injection. By Lemma 2.3 there exists ¢ > 0
such that for all u € H(Q),
pfu? < gl + cfu?
r Q

= L[IVu* + (c+1/2)[u?
Q Q
Let w =c+ 1. Then

u? dx

Q/ Q r Q
1
2(/Vu|2 + /u2> .

Q Q

Let B be the operator associated with b,. Let v € H'(Q),f € L*(Q). Then
u € D(B) and Bu = f if and only if

(2.4) /Vqu—uF/uvda: Q/fv

Q

)+ w

Il
—
<
=
|
=
—

:l\')

_l’_

€
—

:1\3

for all v € HY(Q). Taking v € H(Q) we see that (2.4) implies that Au = f.
Hence inserting f = Aw into (2.4) we deduce that @ = pu. Thus v € D(A,) and
A,u = Bu for all u € D(B). Conversely, if u € D(A ), then

(2.5) /VuVU—/Auv = /,uuv

for all v € H'(Q) by the definition of % = pu. Thus (2.4) holds for f = Auw.
Hence u € D(B) and Bu = Au. Since the injection H*(Q) < L?(Q2) is compact, it

follows that A, has compact resolvent. O

If p = 0, then we find the Neumann boundary condition g—;‘ = 0. We also use

the symbol AN = Ay in this case and call AV the Neumann Laplacian. The
Dirichlet Laplacian A” on L?(12) is definied by

D(AP) = {ue€ HJ(Q):Auec L*(Q)}
APu = Au.
The operator AP is associated with the form

b_oo H}(Q) x H}(Q) =R

b_o / VuVu .

Thus AP is selfadjoint and has compact resolvent. For ;1 € R we denote the k — th
eigenvalue of A, by Ai(p). We let

A = A(0)
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which is the k — th eigenvalue of AN. By AP = )\;(—o00) we denote the k — th
eigenvalue of AP = A__.

Theorem 2.4. The functions A : [—00,00) — R are continuous and nonincreas-

ing. In particular, klim Ae(p) = AP,
Note also that by definition
M) < Apgp1(p) forall —oco<p<oo.

Since A1(0) = AV =0, it follows that A\g(u) > 0 if —0o > p > 0 for all k € N. We
will obtain further information on these functions in Section 4.
For the proof of Theorem 2.3 we need the continuity of the resolvents. This can

be proved with the help of the following lemma (see [Dan03, Appendix B]).

Lemma 2.5. Let T,,,T € L(X,Y), where X,Y are Banach spaces and X is reflez-
ive. The following assertions are equivalent:
(i) lim |7, = T| =0 and T is compact;
(ii) zp, — x in X implies Tpx, — Tz inY.
Proposition 2.6. Let —oo < pg < 0o. Then for A € R large enough
lim (A +A,) 7 = (A +4,,)"
H—Ho

in L(L*()).

Proof. Let fn, — fin L*(Q),u, = A+ A, ) "' f, where p, — po € [—00,00). We
have to show that u,, — u := (A4 A,,)"f in L*(Q) for some subsequence. By

definition we have

(2.6) )\/unv—i-/Vuan—un/unv = /fnv (ve HY(Q)) .
Q Q

Q T

In particular,

(2.7 )\/ui+/|Vun|27un/ui :/fnun.
Q Q r Q

Taking A > 0, sufficiently large, by ellipticity in Proposition 2.3, the left hand

side is larger or equal than alju,||%,: for all n and some o > 0. Since [ fru, <
Q
Il full 2 ltnl 22, it follows (un)nen is bounded in H'(€2). Taking a subsequence if

necessary, we may assume that u,, — u in H*(Q). Consequently, u,, — u in L?(£2)
and up =~ — u). in L?(T"). Now we consider the two cases g # —oo and gy = o0
separately.

a) Let po # —oo. Then it follows from (2.6), letting n — oo, that

)\/uv+/Vqu—uo/uv:/fv
Q Q r Q
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for all v € H'(2). Thus u = (A + A,,) " f. Now (2.7) implies that

lim [ |[Vu,|* = /fu—)\/u2+uo/u2

0 Q Q r
= /\Vu|2 .
Q

We have shown that u, — u in H*(Q) and ||u,||z1 — ||ulz:. This implies that
up — u in H'(Q).

b) Let pup = —oo. Thus lim (—un) = 0o0. Then (2.7) implies that lim [u2 =0

n—oo T

Hence u), =0, i.e. u € H(Q). Letting v € Hj(2) in (2.6) and n — oo shows that

)\/MH—/Vqu—/fv

for all v € HE(Q). Hence u = (A + AP)~1f. Since u,, — u in L?(Q) it follows from
Lemma 2.6 that (A + A, )~1 — (A + AP)~1in £(L%()). O

Remark 2.7. If uy # —oc we have shown that (A+ A, )~! — (A+ A,)~! even in
L(L*(Q),HY(Q)) as n — oc.

Now Theorem 2.5 follows from the following result, cf. [Kat66]

Proposition 2.8. Let B,,, B selfadjoint operators with compact resolvent on a sep-
arable Hilbert space H such that

(Bna | 2) > w(z | z)
for allz € D(B,,) and alln € N where w € R. Assume that (A\+B,)"! — (A+B)~!
in L(H) asn — oo for all X >w . Denote by A} the k —th eigenvalue of B,, and by

A the k — th eigenvalue of B repeating eigenvalues according to their multiplicity.
Then lim AL = A.

n—oo
3. THE DIRICHLET-TO-NEUMANN OPERATOR
In this section we define the Dirichlet-to-Neumann operator on a Lipschitz do-

main 2. Let A € R\ o(AP). Denote the boundary of Q by I'. The Dirichlet-to-
Neumann Operator D, is defined on L?(T") by

D(D,) := {pe L?):Juec H(Q) such that
u), = ¢, Au = Au and % exists in L2(I")} ,
D)\QO = % .

fau

Here we use the definition o given in the preceding section.

Theorem 3.1. The operator D) is selfadjoint, bounded below and has compact

resolvent.

The theorem will be proved by showing that D, is associated with a symmetric

form on L?(T"). We need the following lemma.
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Lemma 3.2. For A € R\ o(AP) one has

HY(Q) = Hy(Q) @ H'(\)
where H*(A) = {u € HY(Q) : Au = \u}.

Proof. a) Consider the operator A : Hj(2) — HJ ()’ given by (Au,v) = [ VuVo.
Q

Thus AP is the part of A in L?(Q2) where we consider L?(Q) < H}(Q)’ by letting
(fyv) := [ fodz for f € L*(Q),v € H}(Q). It follows from [ABHNO1, Proposition
¢

)
3.10.3] that o(A) = o(AP). Thus A — A is invertible.
b) Let u € H'(Q2). Consider F € H}(2) given by F(v) = [ VuVv — A [uv. Then
) )
by a) there exists ug € Hg(Q) such that A(up) = F. Thus uy :=u —ug € H*(N).
Hence u = up+u; € Hi(Q)+H()\). We have shown that H' () = H}(Q)+H(N).
Since A € o(AP) one has H}(Q) N HY()\) = {0}. O

Let V := {u). : u € H' ()} be the trace space which is a subspace of L*(I').
If A € R\ o(AP), then the trace operator restricted to H'(\), i.e. the map-
ping u € H'(A) — w). € V is linear and bijective by Lemma 3.2. Defining
lluj.llv == |lul|g1(x), the space V' becomes a Hilbert space. It follows from the
closed graph theorem that a different choice of A € R\ o(AP) leads to an equiv-
alent norm on V. Since the trace is a compact operator from H'(Q) into L?(T),
it follows that the embedding of V into L?(T") is compact. The Stone-Weierstrass
Theorem implies that V is dense in L?(T).

Let A € R\ 0(AP). We define the bilinear mapping ay : V x V — R by

ax(p, ) ::Q/Vqu—)\Q/uv

where u,v € H'()) such that ¢ = ul,,¥ = v.. Then ay is clearly continuous and

symmetric. Now Theorem 3.1 is a consequence of the following.

Proposition 3.3. The form ay is elliptic and Dy is the operator on L?(T") associ-

ated with ay.

Proof. 1. In order to show ellipticity we apply Lemma 2.4 to the compact embed-
ding T : HY(\) — L*(Q),u — u, and the trace operator S : H(\) — L3(T'),u —
which is injective on H'(A). Given 1 > § > 0 we find ¢ > 0 such that

[ <ol e [

Q r

for all w € H*(X). Since [Jul|3: = [ [Vul> + [u?, it follows that
) )

) c
2 2 2
Q Q r

u‘r
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Thus, given € > 0 there exists ¢; > 0 such that

(3.1) /u2 §5/|Vu|2+cl/u2
Q Q r

for all w € H'()). Let € > 0 such that e(|A| +1/2) = 1/2 and let w = ¢ (|\| +1/2).
Then by (3.1),

ax(u) +w [u? =

r

[IVul? =X [v? +w [u? >

Q Q r

[IVul?+ 3 [u? = (A +1/2) [u®+Q [u® >

Q Q Q r

[IVul?+ 3 [u? — (Al +1/2) [|Vul? = (A + 1/2)er [v? +w [u? =

Q Q Q r r

L|ull3, forall we HYN).

2. Let B be the operator on L?(I") which is associated with ay. We want to
show that B = Dy. Let u € H'()),b € L*(T'). Then u|,. € D(B) and Bu. = b if
and only if

(3.2) Q/Vqu—)\/uv = /bv

Q r
for all v € H(N).

a) Assume that u,. € D(B) and Buj. = b. Notice that for u € H' () one has

/Vqu—)\/uv:O:/vb
Q Q T

for all v € H}(Q). Since H}(Q) ® HY(N\) = HY(Q), it follows that (3.2) holds for all
v € HY(Q). Now introducing Au = Awu into (3.2) one sees that % = b in the sense
of our definition. Hence u € D(D,) and Dyu = Bu.

b) Conversely, let ¢ € D(Dy) and Dy¢ = b. Then there exists u € H'(\) such
that u). = ¢ and % =b. Hence

/VUVU — )\/uv:

Q Q
/Vqu — /Auv:/@v:/bv
ov
Q Q r r
for all v € HY(Q). It follows that ¢ € D(B) and By = b. O

We retain from the proof of Proposition 3.2.

Lemma 3.4. Let u € H'(Q),b € L*(T). Then u, € D(Dy) and Dyu), = b if and

only if
/Vqu—)\/uv:/bv
Q Q T

for allv € HY(Q).
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We conclude this section showing that the first eigenvalue aq(A) of Dy is < 0
whenever A > 0. This is done with the help of the same function used by Friedlander
[Fri91, Lemma 1.3].

Lemma 3.5. Let 0 < A € R\ o(AP). Then the first eigenvalue ay(\) of Dy is
> 0.

Proof. We extend a) to a symmetric sesquilinear form from V¢ x Vg — C, where
Ve = {u :u € H(A\C)}, HY()\,C) = {u € H'(Q,C) : Au = Au}. Let w € R?
such that |w|? = \. Let u(z) = ™. Then Dju(z) = iw;e™™, Au(z) = —Au(z).
Thus v € H'(X,C). Let ¢ = u).. Then

@ = [1vuP-a [
Q Q
= MF/1fA/1:0.
Q Q

Thus a1 () < inflax(v) : ¢ € Ve, [|[¥|| g2y = 1} < 0. O

We will see in Section 6 that Lemma 3.5 is no longer valid if  is a Lipschitz

domain in a compact Riemannian manifold M.

4. COMPARING EIGENVALUES

In this section we establish relations between the eigenvalue of the Robin Lapla-
cian A, and the Dirichlet-to-Neumann operator Dy. Let Q C R? be a Lipschitz

domain as before.

Theorem 4.1. Let A € R\ o(AP). Then for u € R,

a) peo(Dy) e Xea(A,), and
b) dimker(y — Dy) = dimker(A — A,,).

Proof. We show that the mapping S : u + . is an isomorphism from ker(A, — )
onto ker(D(A\) — p). In fact, let u € ker(A, — X). Then b,(u,v) = A [wuv for all
Q

v e HY(Q), ie.

(4.1) /Vqu—)\/uv:u/uv
Q Q r

for all v € H(Q). By Lemma 3.5 this implies that

u,. € D(D(N)) and D(A)uy. = puy,. If w. = 0, then u € Hi(Q) N D(D(N)) C

HY(Q) n HY(A\) = {0}. We have shown that S defines a 1 — l-mapping from

ker(A, — X) into ker(D(A) — p). In order to show surjectivity, let ¢ € ker(D(A) — ).

Then by Lemma 3.5 there exists u € H*()\) such that ¢ = u|, and (4.1) holds for

all v € H'(Q). Thus by, (u,v) = [ Auw for all v € H*(Q). It follows that u € D(A,)
Q

and A u = Au. O

Next we prove Friedlander’s result [?] for Lipschitz domains in RY. Recall that

AY is the k — th eigenvalue of AN repeated according to multiplicity.
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Theorem 4.2. One has \;',; <\ (k=1,2,3---).

Proof. For ;1 € R,m € N denote by A, (1) the m — th eigenvalue of A,. Recall
that A\, (@) is decreasing in u, A, (0) = /\%,#Emoo Am(p) = AP, Now assume
that there exists k € N such that A\ < Al;. Choose A < A < AY,;. Then
Am () < Ap(p) < )\kD for all m < k,p € Rand for m > k+ 1,u < 0, A (p) >
Me1(p) > Aes1(0) = AY, ;. Hence A # A (p) for all p < 0,m € N, ie. A€ a(Ay)
whenever p < 0. By Theorem 4.1 this implies that o(Dy) N (—o00,0] = @. This
contradicts Lemma 3.4. O

We continue to study the functions Ay : R — R, where Ai(p) is the k — th

eigenvalue of A,.

Corollary 4.3. Let k € N,ujpe € R such that Ag(p1) = Ae(pe). If Me(p1) €
o(AP), then py # pa.

Proof. Assume that 1 < p2. Then Agp(pn) = X := Ag(p1) for all p € [p1, pe] since
Ak is nonincreasing. It follows from Theorem 4.1 that [u1, pe] C o(Dy). This is

impossible since the spectrum of D) is discrete. O

Corollary 4.4. lim Ap(u) = —o0 for all k € N.
p—00

Proof. Let k € N. Assume that there exists A < inﬂf{ Ar(1). We may choose A < 0.
ne

Then A € o(AP). For m > k, one has A < A\.(1) < A\ () for all o € R. Tt follows

from Theorem 4.1 that o(Dy) = {g € R: I m < k, A = A\ (n)}. Corollary 4.3

implies that (D)) has at most k — 1 eigenvalues, which is impossible, since D) has

compact resolvent and dim L?(T") = oo. 0

We let \Y := —00,Ng = NU {0}. for A € R\ 6(AP) we denote by aj(\) the

k — th eigenvalue of D) repeating eigenvalues according to multiplicity.

Proposition 4.5. Let n € No, A} < A<\ P . Then for eacg k > n+ 1 there
exists a unique pp € R such that A\g(pg) = X. Moreover, ag(N\) = pintk-

Proof. Let k > n+ 1. Then ;}Lngo Me(p) = AP > X and MEIPOO Ak(p) = —oo. Hence
there exists px € R such that Ag(ur) = A. Uniqueness follows from Corollary 4.3.
It follows from Theorem 4.1 that g € o(D)y). We show that pr < 1. In fact,
assume that g1 < pig. Then Apq1(prg1) = X = Me(pr) < Ae(prg1) < Mea (B,
a contradiction. if u € o(Ay) then by Theorem 4.1, there exists k& € N such that
k() = A. Hence p = py. Moreover, k > n + 1 (since for k > n, \r.(u) < AP < A
for all 4 € R). We have shown that

o(Dy)={pr:k>n+1} and pp <pgyr forall k>n+1.

It remains to show that the multiplicity is correctly expressed by the series pi1, o, - - - .
Let £ € N,p € Ny such that p := up = ppy1 = -+ = pyp < Prtp+1 and as-
sume that pr—1 < pg if & # 1. Then A\g(p) = A = Agp1(ppr1) = Apr1(p) =
= Mep(), but Agpr1 () < Anspir(rgps1) = A and, if k> 1, A1 () >
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Ak—1(p—1) = X. Thus by the definition of A (p),dimker(A + A,) = p + 1. Hence
by Theorem 4.1, also dim(pu — Ay) = p+ 1, i.e. tje multiplicity of the eigenvalue
W= is p+ 1 as it was claimed. (|

The following beautiful identity was proved by Friedlander (for smooth domains)
as a tool for Theorem 4.2.

Corollary 4.6. For A > 0 let NP ()\) be the number of k such that AP < \ and
NN (X) the number of those k satisfying \Y < A. If X\ & o(AP), then NN(\) —
NP(X) is the number of all negative eigenvalues of Dy.

Proof. Let AP < X < AP ;. Thus NP(\) = n. Assume that A\),; < .- <
AV, < A< AN 4 so that NY(X) = p+n and NV(X) — NP(X) = p. We keep
the notation of Proposition 4.5. Thus A,4¢(tinre) = A for all £ € N. since for
=1, ,p, Ase(0) = /\'r]eré < A and A,y is nonincreasing, it follows that j,p < 0
for ¢ = 1,---,p. On the other hand pn4pt1 > 0. In fact, otherwise pnqpt1 < 0
and consequently, A = Apjpi1(fnpt1) > Ang14p(0) = Ay, contradicting our

assumption. Thus there are exactly p negative eigenvalues of D). O

Next we want to describe the spectrum of Ay. We denote by ay(\) the k —
th eigenvalue of A, repeating the eigenvalue according to its multiplicity (A ¢
o(—AP)). Let us denote by dy < do < d3 - -- the eigenvalues of —AP not counting
multiplicity and denote by mj the multiplicity of d. we let dy = —oo. then the

picture is the following.

Corollary 4.7. The function oy, have the following properties.

a) Each function oy is continuous on R\ o(AP);
b

C

each oy, is strictly increasing on (dy,dp+1) for each n € Ny;

)\lim di(\) = —o0;

oL

n

@

}1&1 ar(A) < oo fork > my;

—

)
)
) }1%1 ar(A) =00 fork=1,--- ,m,, but
)
)}iﬁiak()\)>fooforn:1,2,~~,

) a1(A) >0 i A>0,

Oél()\):O,

ar1(N) <0 if A < 0.

g

Proof. It A € (AR, AP, ), where n € Ny, then ag(A) = pnyr where p,4x € R is the

unique number such that

Atk (k) =X (k=1,2---).

Thus oy, is the inverse function of A, 1% and the properties a) - ) follows from the

preceedings results. O

Friedlander [Fri91] showed some of these properties directly for the operator Dy

in the case where 2 has C'*° boundary.
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Hier endet Seite 4.15, fehlt evtl. ein Zusatz? Der Text auf 4.16
geht folgendermassen weiter:

So that ay,(¢) = [ |Vuz|? — A2 [u3 and ay, (p) = [ |Vua|? — A1 [u?
Q Q

Inserting u = uy + up and using that [ VusVug = s [ usug since us € H'(A\2) we

obtain

ax (p) = /IVuQ|2+2/VuQvuo+/|vu0\2

— )\1/’&%—2)\1/'&211,0—)\1/’&(2)

= a/\z(@)‘f'()\z _>\1)/U3+(/\2 —)\1)/2u2u0

+/‘VU0|2—)\1/ug

> ax,(p) + (A2 — A1) /(ug + 2uzup)
(di — Al)/ug
> ada(p) + (A2 — A1) /(Uz +up)® > ax,(p) .

5. PosiTiviTY

Here we study the semigroup generated by —Ay on L?(T") for positivity proper-
ties. A Cy-semigroup T' = (T'(t)):>0 on a space L? is called positive if 0 < f € L?
implies that T'(t) f > 0 for all £ > 0.

Theorem 5.1. If A\ < AP, then the semigroup generated by —Dy on L*(T) is

positive.

Proof. Let ¢ € V. Then ¢*,¢o~ € V. In fact, let u € H'(Q) such that u. = ¢.
Then ut,u~ € H*(2) and ul'; =T, ). = ¢~ . By the Beurling-Deny criterion (see
[Dav] or [Ouh05, Theorem 2.6]) the semigroup is positive if and only if ax (™1, ™) <
0 for all ¢ € V. Let ¢ € V,¢ = uj. where u € H*(X). Write u™ = ug +u; €
Hi@oHY(\) and v~ = @)0+uz € HY®H(N). Since u = (ug—iig)+(u1—uz) € H(N)

it follows that ug = ug. Now

ax(pt,07) = /Vu1Vu2 f)\/ulu2

Q

(u1 “+ ug | V(Ug +U0)—/VU1VUO - /VUOVUQ - /VUOVUO

Il
De—

— )\/(ul+u0)(u2+u0)+)\/u1u0+)\/uouQ+)\/u%

P S
= /Vu+Vu_—)\/u+u_—/|Vuo|2—|—)\/u%§0
Q 9)
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by Poincaré’s inequality. In the last identity we used that fact that
/VuiVuo = )\/uiuo, sincu; € H61(A), i=1,2.
U

Let (Y, %,v) be a measure space and 1 < p < oco. A holomorphic positive Cy-
semigroup T on LP(Y, X, v) is irreducivle if and only if for 0 < f, f # 0,T(¢) f(z) >
0 a.e. for all ¢ > 0 (see [Ouh05]). Denote by —A the generator of A and assume
that A is selfadjoint and has compact resolvent. Let A1 be the first eigenvalue of A.
If T is irreducible, then A; is simple and there exists u € D(A), u(x) > 0 a.e. such
that Au = A\u, i.e. there exists a strictly positive eigenvector corresponding to
A1. Moreover )\; is the only eigenvalue with a positive eigenvector. It follows form
[Ouh05, Theorem 2.9] that the semigroup generated by —A,, is irreducible. Hence
A1(p) is a simple eigenvalue with a strictly positive eigenfunction for each u € R.

From this we conclude the following for the Dirichlet-to-Neumann operator.

Theorem 5.2. Let —0o < A < A\P. Denote by u the first eigenvalue of Dy. Then
there exists a positive eigenfunction of Dy corresponding to p. Conversely, if u is an
eigenvalue with a positive eigenfunction ¢ € D(D)y). Then u is the first eigenvalue
of Dx. Moreover, let w € H'(X) such that u;, = . Then u(z) >0 a.e. in Q.

Proof. Since the semigroup generated by — D), is positive, the first assertion follows
from the Krein-Rutman-Theorem (cf. [Nag86]). In order to prove the second let
0 < ¢ € D(D,) such that ¢ # 0, D¢ = pg. Let u € H'(X) such that u), = ¢.
Then by Lemma 3.4,

(5.1) /VUVU—/\/UU:/NUU
Q Q r

for all v € H'(Q2). Since ¢ > 0 one has u~ € H}(Q). Taking v = u~ in (5.1) we

obtain
—/|Vu_\2+)\/u_2:0.

Q

By Poincaré’s inequality,

)\/u_2 = /|Vu_\2 > AP /(u_)2 .
Q Q Q

Since A <\ P it follows that u~ = 0. Thus u > 0. Hence u is a positive eigenvector
of A, corresponding to the eigenvalue A. Hence u > and A is t he first eigenvalue

of A,,. Hence p is the first eigenvalue of Dy by Theorem 4.1. O

Even though we do not know whether the semigroup generated by — D) is irre-

ducible, Theorem 5.2 establishes the usual consequences of irreducibility.



SPECTRAL PROPERTIES OF THE DIRICHLET-TO-NEUMANN OPERATOR ON LIPSCHITZ 15

6. MANIFOLDS

The purpose of this section is to consider the previous analaysis in a more general
setting where R? is replaced by a Riemannian manifold. All properties established
so far will be valid in this more general context. However, Lemma 3.5 may no
longer be valid and in fact we will see that this lemma is equivalent to the validity
of Friedlander’s Theorem (Theorem 4.2). Let M be a Riemannian manifold which
we assume to be connected and orientable. Let 2 C M be a Lipschitz domain in
M, i.e. we assume t hat Q is relatively compact, open, connected and has Lipschitz
boundary T := 9. The first Sobolev space H'() is defined as the completion of

HY(Q)N C®(Q) = {u € () : |[ull ey < o0}

P A
Q Q

(cf. [Heb96], [Heb99]). Here Vu : Q@ — T is defined as the vector filed Vu(z) :=

jz tdu(z), where j, : T,Q — T is the canonical map identifying functionals with

for the norm

vectors via the Riemannian metric. The space H'(Q2) is compactly injected into

L?(w). On T we consider the surface measure. As in the euclidean case, the trace

uwe C(QNHY(Q) — L*(I),u — uy,. has a compact linear extension to H*(Q2) with

values in L*(I) (which we denote still by u — u.). we even omit the trace sign uj,,

when writing [uv for u,v € H(Q). by Hj(Q) we denote the closure of the test
r

functions. Note that for u € H'(2) one has u € Hj(Q) if and only if u,. = 0. For
u,v € H(), there exists a unique function Vu - Vo € L}(Q) such that for each

local coordinate ¢ : V — R,
8
Vu - Vv— Zg v))1/2.
i,j=1 Ops

If u € H'(), we say that Au € L*(Q) if there exists f € L?(Q2) such that

/Vqu—/fv

for all v € D(Q2) := C°(N2). In that case we put Au := f. Next we define the outer
normal. If u € H'(Q) and Au € L?((2), then we say that 2% € L?(T') if there exists

b € L*(T) such that
/Vquf/Auv:/bv

Q Q r
for all v € H'(Q2). Then we set g—z = b. Assume that 2 # M (this is automatic
if M is non-compact). Then we can define as in the Euclidean case the operators
Au(p € R),AN = Ag and AP = A_ . They are selfadjoint and have compact

resolvent. Denoting by Ag(n) the k — th eigenvalue of A, we obtain continuous,

increasing functions Ap : [—00,00) — R as in Theorem 2.4. If M is a compact
manifold, and Q = M, then H} (M) = H*(M) and I = (). Thus A" = AP which is
just the Laplace-Beltrami operator. Next, for A € R\ o0(AP) and Q # M, we define
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the Dirichlet-to-Neumann operator D) as in Section 3. It is a selfadjoint, lower
bounded operator on L?(I') which has compact resolvent. Theorem 4.1 stays true
in this general context. Now the point in the non-euclidean case is that Lemma 3.5
fails in general (as we will show below). In fact, it is equivalent to the validity of
Friedlander’s result Theorem 4.2. More precisely, the following holds. By aj () we
denote the k — th eigenvalue of Dy, A € R\ o(AP).

Theorem 6.1. Let Q be a Lipschitz domain in M,Q) # M. Let k € N such that
AP < AP,. The following assertions are equivalent:

(i) One has ar1(X) <0 for all X € (AL, ML );

(i) Ay < AP

Proof. (i) = (ii) as in Section 4.

(i1) = (i) Assume that A\ < AY, ;.

Let A} < A<X V. Since A (p) < AP for all € Rym < kA () > A, for all
m > k+1,u > 0, there exists no x> 0 and no m € N such that A,,,(1) = A. Hence
by Theorem 4.1, u > 0 for all p € o(Dy). O

Next we show that it may happen that the two equivalent conditions of Theo-
rem 6.1 may fail in the non-Euclidean case. In fact, taking an arbitrary compact
Riemannian manifold, we show that these assertions fail for @ = M \ K is K is a

compact subset of M which is small enough.

Theorem 6.2. Let M be a compact Riemannian manifold of dimension d > 2.

Let K41 C K, C M be compact sets such that (| K, = {a} where a € M. Let
neN
Q, = M\ K,. Then for \>0,(A+Af )™ = A+ Ay)"! and A+ A ) —

A+ ALY in L(L2(M)), where Ay denotes the Laplace-Beltrami operator on
L?(M) and A§  the Dirichlet- and A} the Neumann Laplacian on L*(Qy,). Con-
sequently, nlLII;O MP(Q,) = Ak(M),kllrgo AV(Q,) = M\e(M) for all k € N, where
Ne(M), AP (92,,), \Y (Q,) are the Laplace-Beltrami, Dirichlet- and Neumann Lapla-
cian, resp. on L*(M) and L*(Q,).

Proof. We identify L?(€2,,) with a closed subspace of L?(M) extending functions in
L?(2,) by 0 outside €, and we also consider (L?(€2,)) C £(L?*(M)) in a canonical
way. Since dimension d > 2, the space C°(M \ {a}) is dense in H'(M) (cf. [AB93,
Remark 2.6], cite[p. 171]Bre). Let A > 0.

a) We show that (A + AN )™' — (A + Apy)~t in L(L*(M)) as n — oo. Let
fo — fin L2(M),u, = (A + Agﬂ)’lfn. By Lemma 2.5 we have to show that
Up — u:= A+ Ap)71f in L2(M). By definition

(6.1) )\/unv—l—/Vuan: /fnv

for all v € H'(Q,). In particular,

A/u +/|V’U'n|2 /fnunS ||anL2(M ||un||L2
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It follows that [[uy| g1 (w,) is bounded. Let (u,, ) be a subsequence. By the diagonal
argument, there exist a w € L?(M)and a subsequence (tn,,) such that wy, €
H'(Qy,) and up,,, = w in H'(Qy,) as £ — oo for all m € N. Letting ¢ — oo it

follows from (6.1) that
/\/wv+/VwVv:/fv
M

M M
for all v € C°(M \ {a}) and hence for all v € H'(M) by density. Thus w = u
and up,, — u in L*(Q,,) for all m € N. Recall that (u,)nen is bounded in L*(M).

Since [M \ Q| — 0 as m — oo, it follows that u,,, — win L?(M) and a) is proved.

b) The proof that (Af )™ — (A + Ap) ™t in L(L?*(M)) as n — oo is similar
that a) but easier since Hg (w,,) C HY(M) (via the extension by 0). The remaining

assertions follow from Proposition 2.8. (]

Now we obtain in each compact Riemannian manifold a Lipschitz domain 2
such that the inequality )\é\/ 1 < )\kD fails. We keep the notations of the preceding

theorem.

Corollary 6.3. Let k € N such thath \i,(M) < Agy1(M). Then for n large enough
Ay (@) > A0 ().
Proof. Since lim A, | (Q) = A1 (M) and lim AP (Q,) = Ax(M) this is obvious.

n—oo
]

In fact, in special cases one can give precise information. If M = S3, then taking
of M a cap in the uppre half sphere we obtain a domain for which the inequality
)‘kN-i-l < )\kD is violated.
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