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Chapter 1

Unbounded Operators

In this chapter we introduce unbounded operators and put together some proper-
ties which will be frequently used.

Moreover, we discuss the spectral theorem for self-adjoint operators which
will give us very interesting examples of elliptic operators in the sequel.

1.1 Closed operators

Let E be a complex Banach space.

Definition 1.1.1. An operator on E is a linear mapping A : D(A) → E, where
D(A) is a subspace of E which we call the domain of A. The operator A is called
bounded if

‖A‖ := sup
‖x‖≤1,x∈D(A)

‖Ax‖ <∞.

If ‖A‖ = ∞, then A is called unbounded.

The notion of an operator is too general to allow one to do some analysis.
The least thing one needs is to be allowed to exchange limits and the operation.
That is made precise in the following definition.

Definition 1.1.2. An operator A is closed if for any sequence (xn)n∈N in D(A) such
that lim

n→∞
xn = x and limn→∞Axn = y exist in E one has x ∈ D(A) and Ax = y.

Thus an operator A on E is closed if and only if its graph

G(A) := {(x,Ax) : x ∈ D(A)}

is a closed subspace of E × E.
If D(A) is a closed subspace of E, then the closed graph theorem asserts that

A is bounded if and only if A is closed. We will be mainly interested in closed
operators with dense domain.

In order to give a first typical example we need the following.
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Exercise 1.1.3 (graph norm). Let A be an operator on E. Then

‖x‖A = ‖x‖+ ‖Ax‖

defines a norm on D(A) which we call the graph norm. The operator A is closed
if and only if (D(A), ‖ · ‖A) is a Banach space.

Example 1.1.4. Let E = C[0, 1] with supremum norm

‖f‖∞ = sup
x∈[0,1]

|f(x)|.

Denote by C1[0, 1] the once-continuosly differentiable functions on [0, 1].

a) Define the operator A on E by D(A) = C1[0, 1], Af = f ′. Then the graph
norm on D(A) is given by ‖f‖A = ‖f‖∞ + ‖f ′‖∞ for which C1[0, 1] is
complete. Thus A is closed.

b) Define the operator A0 on E by D(A0) = C∞[0, 1] (the infinitely differen-
tiable functions on [0, 1]), A0f = f ′. Then A0 is not closed.

An operator may be not closed for two different reasons. The first reason is
that the domain had been chosen too small, but the operator has a closed extension.
Example 1.1.4 b) is of this type, the operator of part a) being a closed extension.
The second possible reason is that things go basically wrong. Such operators are
called unclosable; they do not have any closed extension. The problem is that an
operator A is asked to be a function; i.e. to each x ∈ D(A) only one value Ax
is associated. Proposition 1.1.7 now makes clear why an operator may not have
a closed extension (see Example 1.1.9 for a concrete case). Here are the precise
definitions and statements.

Definition 1.1.5 (extension of operators). Let A,B be two operators on E.

a) We say that B is an extension of A and write A ⊂ B if

D(A) ⊂ D(B) and
Ax = Bx for all x ∈ D(A).

b) Two operators A and B are said to be equal if A ⊂ B and B ⊂ A, i.e. if
D(A) = D(B) and Ax = Bx for all x ∈ D(A).

An operator A may have a closed extension or it may not . If it has one there
is always a smallest one.

Proposition 1.1.6 (closable operators). An operator A on E is called closable if
there exists a closed operator B such that A ⊂ B. In that case, there exists a
smallest closed extension Ā of A which is called the closure of A , (i.e Ā is closed,
A ⊂ Ā and Ā ⊂ B for all closed extensions of A).
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The following criterion for closability is very useful. We leave its verification
as well as the proof of Proposition 1.1.6 as exercise.

Proposition 1.1.7 (criterion for closability). Let A be an operator on E.

a) The operator A is closable if and only if for xn ∈ D(A), y ∈ E such that
limn→∞ xn = 0, limn→∞Axn = y one has y = 0.

b) An operator A is closable if and only if there exists a closed operator B on
E such that G(A) = G(B). In that case B = Ā.

Here are two examples which illustrate well the situation.

Example 1.1.8. The operator A0 in Example 1.1.4 b) is closable and Ā0 = A,
where A is the operator introduced in Example 1.1.4 a).

Exercise 1.1.9 (a non closable operator). Let E = C[0, 1], D(A) = C1[0, 1], Af =
f ′(0) · 1 (where 1 denotes the constant 1 function ). Then A is not closable.

Exercise 1.1.10. Prove Proposition 1.1.6 and 1.1.7.

Exercise 1.1.11. Let A be an operator on X.
a) Show that A is continuous if and only if A is bounded.
b) Assume that A is bounded. Show that A is closable and D(Ā) = D(A). Conclude
that Ā is the continuous extension of A to D(A).

1.2 The spectrum

Let E be a complex Banach space. Let A be an operator on E. Frequently, even
if A is unbounded, it might have a bounded inverse. In that case, we may use
properties and theorems on bounded operators to study A.

For this, it does not matter if A is replaced by λI −A where λ ∈ C and I is
the identity operator on E. The set

ρ(A) = {λ ∈ C : λI −A : D(A) → E is bijective and (λI −A)−1 ∈ L(E)}

is called the resolvent set of A. Here L(E) is the space of all bounded operators
from E into E. If λI − A : D(A) → E is bijective, then (λI − A)−1 : E → D(A)
is linear. But in the definition we ask in addition that (λI − A)−1 is a bounded
operator from E into E. This is automatic if A is closed (see Exercise 1.2.1).

For λ ∈ ρ(A), the operator

R(λ,A) = (λI −A)−1 ∈ L(E)

is called the resolvent of A in λ.
Frequently we write (λ−A) as short hand for (λI−A). The set σ(A) = C\ρ(A)

is called the spectrum of A.
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Exercise 1.2.1 (closed operators and resolvent). a) Let λ ∈ C. Then A is closed
if and only if (λ−A) is closed.

b) If ρ(A) 6= ∅, then A is closed.

c) Assume that A is closed and (λ−A) : D(A) → E is bijective. Then λ ∈ ρ(A)
(Use the closed graph theorem).

If B ∈ L(E), then ρ(B) 6= ∅. In fact, assume that ‖B‖ < 1. Then

(I −B)−1 =
∞∑

k=0

Bk ( Neumann series ). (1.1)

Replacing B by 1
λB one sees that λ ∈ ρ(B) whenever |λ| > ‖B‖.

Unbounded closed operators may have empty resolvent set. Also, it may
happen that an unbounded operators has empty spectrum (which is not true for
operators in L(E)), see Exercise 1.2.7.

Proposition 1.2.2 (analyticity of the resolvent). Let A be an operator and λ0 ∈
ρ(A). If λ ∈ C such that |λ− λ0| < ‖R(λ0, A)‖−1, then λ ∈ ρ(A) and

R(λ,A) =
∞∑

n=0

(λ0 − λ)nR(λ0, A)n+1

which converges in L(E).

Proof. One has (λ−A) = (λ− λ0) + (λ0 −A) = (I − (λ0 − λ)R(λ0, A))(λ0 −A).
Since ‖(λ0 − λ)R(λ0, A)‖ < 1, the operator ((I − (λ0 − λ)R(λ0, A)) is invertible
and its inverse is given by

∞∑
n=0

(λ0 − λ)nR(λ0, A)n.

Hence λ ∈ ρ(A) and

R(λ,A) = R(λ0, A)(I − (λ0 − λ)R(λ0, A))−1.

Proposition 1.2.2 shows in particular that

dist(λ, σ(A)) ≥ ‖R(λ,A)‖−1 (1.2)

for all λ ∈ ρ(A). Here dist(λ,M) = inf{|λ − µ| : µ ∈ M} is the distance of λ ∈ C
to a subset M of C. This has the following useful consequence.

Corollary 1.2.3. Let λn ∈ ρ(A), λ = limn→∞ λn. If

sup
n∈N

‖R(λn, A)‖ <∞,

then λ ∈ ρ(A).
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Remark 1.2.4. The property expressed in Corollary 1.2.3 is quite remarkable since
it is not true for holomorphic functions in general. In fact, if Ω ⊂ C is open ,
zo ∈ Ω and f : Ω {z0} → C is holomorphic and bounded on some neighborhood
B(zo, r) \ {zo} := {z ∈ C : 0 < |z − z0| < r}, then f has a holomorphic extension
to Ω. But it does not suffice, in general, that f is bounded on some sequence
(zn) ⊂ Ω \ {z0} converging to z0. For example, let Ω = C, z0 = 0, f(z) =
exp(1/z), zn = i/n.

By
σp(A) = {λ ∈ K : ∃x ∈ D(A), x 6= 0, (λ−A)x = 0}

we denote the point spectrum, or the set of all eigenvalues of A. If λ is an eigen-
value, each x ∈ D(A) \ {0} such that (λ− A)x = 0 is called an eigenvector of A.
There is a natural relation between the spectrum of A and its resolvents.

Proposition 1.2.5 (spectral mapping theorem for resolvents). Let λ0 ∈ ρ(A).
Then

a) σ(R(λ0, A)) \ {0} = {(λ0 − λ)−1 : λ ∈ σ(A)},

b) σp(R(λ0, A)) \ {0} = {(λ0 − λ)−1 : λ ∈ σp(A)}.

Proof. a) 1. If µ ∈ ρ(A), µ 6= λ0, then(
1

λ0 − µ
−R(λ0, A)

)−1

= (λ0 − µ)(λ0 −A)R(µ,A).

2.” ⊂ ” Let ν ∈ σ(R(λ0, A)), ν 6= 0. Assume that ν 6∈ {(λ0−λ)−1 : λ ∈ σ(A)}.
Then λ0 − 1/ν ∈ ρ(A). This implies ν ∈ ρ(R(λ0, A)) by 1.

3. ” ⊃ ” Let µ = (λ0 − λ)−1 where λ 6= λ0. Suppose that µ ∈ ρ(R(λ0, A)).
Then one easily sees that λ ∈ ρ(A) and R(λ,A) = µR(λ0, A)(µ−R(λ0, A))−1.

b) is left to the reader.

It follows in particular, that σ(A) = ∅ if and only if there exists µ ∈ ρ(A)
such that σ(R(µ,A)) = {0}, and in that case σ(R(µ,A)) = {0} for all µ ∈ ρ(A).
We denote by

r(B) = sup{|λ| : λ ∈ σ(B)}
the spectral radius of an operator B ∈ L(E). Then Proposition 1.2.5 gives an
improvement of (1.2).

r(R(λ,A)) = dist(λ, σ(A))−1 for all λ ∈ ρ(A) (1.3)

We conclude this section by the following easy identity.

Proposition 1.2.6 (resolvent identity).

(R(λ,A)−R(µ,A))/(µ− λ) = R(λ,A)R(µ,A)

for all λ, µ ∈ ρ(A), λ 6= µ.
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Proof. One has,

R(λ,A)−R(µ,A) = R(λ,A)[I − (λ−A)R(µ,A)]
= R(λ,A)[(µ−A)− (λ−A)]R(µ,A)
= (µ− λ)R(λ,A)R(µ,A)

The resolvent identity shows in particular, that resolvents commute.

Exercise 1.2.7 (empty spectrum). Let E = C[0, 1], D(A1) = {f ∈ C1[0, 1], f(1) =
0}, A1f = f ′. Then σ(A1) = ∅.

Indication: (R(λ,A1)f)(x) =
∫ 1

x
eλ(x−y)f(y) dy (λ ∈ C).

1.3 Operators with compact resolvent

Let E be a Banach space over C. By K(E) we denote the space of all compact
operators on E. The following facts are well-known. K(E) is a closed subspace of
L(E). It is even an ideal, i.e. K ∈ K(E) implies SK, KS ∈ K(E) for all S ∈ L(E).

Compact operators have very particular spectral properties. Let K ∈ K(E).
Then the spectrum consists only of eigenvalues with 0 as possible exception, i.e.

σ(K) \ {0} = σp(K) \ {0} . (1.4)

Moreover, σ(K) is countable with 0 as only possible accumulation point, i.e., either
σ(K) is finite or there exists a sequence (λn)n∈N ⊂ C such that limn→∞ λn = 0
and

σ(K) = {λn : n ∈ N} ∪ {0}.

Finally, for each λ ∈ σp(K) \ {0}, the eigenspace ker(λ−K) is finite dimensional.
The purpose of this section is to find out what all these properties mean for

an unbounded operator if its resolvent is compact.

Definition 1.3.1. An operator A on E has compact resolvent if ρ(A) 6= ∅ and
R(λ,A) is compact for all λ ∈ ρ(A).

From the resolvent identity and the ideal property, it follows that A has
compact resolvent whenever R(λ,A) ∈ K(E) for some λ ∈ ρ(A).

If dimE = ∞ then operators with compact resolvent are necessarily un-
bounded (otherwise, for λ ∈ ρ(A) we have R(λ,A) ∈ K(E) and (λ − A) ∈ L(E).
Thus I = (λ−A)R(λ,A) is compact by the ideal property).

The following criterion is most useful

Exercise 1.3.2 (criterion for compact resolvent). Let A be an operator on E with
non-empty resolvent set. Then A has compact resolvent if and only if the canonical
injection (D(A), ‖ · ‖A) → E is compact.
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The following spectral properties follow easily from those of compact opera-
tors with help of the spectral mapping theorem for resolvents (Propositon 1.2.5).

Proposition 1.3.3 (spectral properties of operators with compact resolvent). Let
A be an operator with compact resolvent. Then the following holds.

a) σ(A) = σp(A);

b) either σ(A) is finite or there exists a sequence (λn)n∈N ⊂ C such that
limn→∞ |λn| = ∞ and σ(A) = {λn : n ∈ N};

c) dim ker(λ−A) <∞ for all λ ∈ C where ker(λ−A) := {x ∈ D(A) : Ax = λx}.

The most simple examples of unbounded operators are diagonal operators.
In the next section we will see that selfadjoint operators with compact resolvent
are equivalent to such simple operators. This will be exploited to solve the heat
equation. We let

l2 := {(xn)n∈N ⊂ K :
∞∑

n=1

|xn|2 <∞}

where as usual K = R or C. Then l2 is a separable Hilbert space over K with
respect to the scalar product

(x | y) =
∞∑

n=1

xnȳn

(where ȳn is the complex conjugate of yn).

Definition 1.3.4 (diagonal operator). Let α = (αn)n∈N be a sequence in C. The
operator Mα on l2 given by

D(Mα) = {x ∈ l2 : (αnxn)n∈N ∈ l2}
Mαx = (αnxn)n∈N

is called the diagonal operator associated with α and is denoted by Mα.

We define the sequence spaces

l∞ = {α = (αn)n∈N ⊂ C : sup
n∈N

|αn| <∞}

c0 = {α = (αn)n∈N ⊂ C : lim
n→∞

|αn| = 0}.

Note that l∞ is a Banach space for the norm

‖α‖∞ = sup
n∈N

|αn|

and c0 is a closed subspace.
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Exercise 1.3.5. Let α = (αn)n∈N ∈ l∞.

a) The operator Mα is bounded and ‖Mα‖ = ‖α‖∞.

b) If α ∈ c0, then Mα ∈ K(l2).

Hint for b): Mα can be approximated by finite rank operators in L(l2).
Here an operator R ∈ L(E) is said to have finite rank if dimRE <∞. Such

an operator is always compact.

Example 1.3.6 (diagonal operators with compact resolvent). Let α = (αn)n∈N ⊂ C
be a sequence such that limn→∞ |αn| = ∞. Then Mα has compact resolvent.

This is easy to see with help of Exercise 1.3.5.

Given an operator A, it is easy to define a new operator by similarity which
has the same properties as A.

Proposition 1.3.7 (Similarity). Let A be an operator on E and let V : E → F be
an isomorphism where F is a Banach space . Define the operator B on F by

D(B) = {y ∈ F : V −1y ∈ D(A)}
By = V AV −1y.

Then the following holds:

a) A is closed if and only if B is closed;

b) ρ(B) = ρ(A) and R(λ,B) = V R(λ,A)V −1 for all λ ∈ ρ(B);

c) B has compact resolvent if and only if A has compact resolvent.

Notation: V AV −1 := B. The easy proof is left as exercise.

Exercise 1.3.8 (further properties of diagonal operators). Let α = (αn)n∈N ⊂ C.

a) If Mα is bounded, then α ∈ l∞ and ‖Mα‖ = ‖α‖∞.

b) σ(Mα) = {αn : n ∈ N}.

c) σp(Mα) = {αn : n ∈ N}.

d) Mα is compact if and only if α ∈ c0.

e) Mα has compact resolvent if and only if limn→∞ |αn| = ∞.
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1.4 Selfadjoint operators with compact resolvent.

Here we consider unbounded operators on a Hilbert space. The main result is the
spectral theorem which shows that every selfadjoint operator with compact resol-
vent can be represented as a diagonal operator.

Throughout this section H is a separable complex Hilbert space.

Definition 1.4.1. An operator A on H is called dissipative if

Re(Ax|x) ≤ 0 for all x ∈ D(A) .

The following proposition shows a remarkable spectral property of dissipative
operators. We denote by

C+ := {λ ∈ C : Reλ > 0}

the right half-plane.

Proposition 1.4.2. Let A be a dissipative operator on H. Assume that there exists
λ ∈ C+ such that (λ − A) is surjective. Then µ ∈ ρ(A) and ‖R(µ,A)‖ ≤ 1/Reµ
for all µ ∈ C+.

Proof. Let µ ∈ C+. Let x ∈ D(A) , µx−Ax = y. Then

Reµ‖x‖2 = Re(µx|x) = Re(y +Ax|x)
= Re(x|y) + Re(Ax|x)
≤ Re(x|y) ≤ ‖x‖ ‖y‖

by dissipativity and the Cauchy Schwartz inequality. Thus (Reµ)‖x‖ ≤ ‖y‖. It
follows that

‖R(µ,A)‖ ≤ 1
Reµ

(1.5)

whenever µ ∈ ρ(A) ∩ C+ =: M . Since ρ(A) is open, also M is open. Now (1.5)
and Corollary 1.2.3 imply that M is closed in C+. Since the right half-plane is
connected and M 6= ∅, it follows that M = C+.

Definition 1.4.3. An operator A on H is called m-dissipative if A is dissipative
and (I −A) is surjective.

From Proposition 1.4.2 we know that the spectrum of an m-dissipative oper-
ator A is contained in the left half-plane, and ‖R(λ,A)‖ ≤ 1/Reλ (Reλ > 0).

Now we consider symmetric operators.

Definition 1.4.4. An operator A on H is called symmetric if

(Ax|y) = (x|Ay) for all x, y ∈ D(A) .
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If A is symmetric, then (Ax|x) = (x|Ax) = (Ax|x). Hence (Ax|x) ∈ R for all
x ∈ D(A). Also the converse is true. Recall the polarization identity.

(x|y) = 1
4{(x+ y, x+ y)− (x− y|x− y)+
i(x+ iy|x+ iy)− i(x− iy|x− iy)} (1.6)

(x, y ∈ H), which is an immediate consequence of the properties of the scalar
product. Considering y = Ax one sees the following.

Proposition 1.4.5. Let A be an operator on a complex Hilbert space H. The fol-
lowing assertion are equivalent.

(i) A is symmetric;

(ii) (Ax|x) ∈ R for all x ∈ D(A);

(iii) ±iA is dissipative.

Note that (iii) is just a reformulation of (ii). But now Proposition 1.4.2 shows
us the following.

Proposition 1.4.6. Let A be a symmetric operator. Assume that (λ−A) is surjective
for some λ ∈ C such that Imλ > 0. Then λ ∈ ρ(A) for all λ with Imλ > 0.
Similarly, if (λ − A) is surjective for some λ ∈ C such that Imλ < 0, then {λ ∈
C : Imλ < 0} ⊂ ρ(A).

Thus for a symmetric operator A, there are four possibilities:

a) σ(A) = {λ ∈ C : Imλ ≥ 0}

b) σ(A) = {λ ∈ C : Imλ ≤ 0}

c) σ(A) = C

d) σ(A) ⊂ R.

The cases (a) - (c) are not of interest for our purposes and we refer to the
literature for further investigation (e.g. [RS80]). We are rather interested in the
last case (d) which leads to the following definition.

Definition 1.4.7. An operator A is called selfadjoint if A is symmetric and if (i−A)
and (−i−A) are surjective.

By our discussion, a selfadjoint operator has real spectrum. Whereas every
bounded symmetric operator is selfadjoint, for unbounded operators, this is not
true, and the range condition (that (±i−A) be surjective) is a severe restriction.
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We are particularly interested in the case where A is symmetric and dissipa-
tive. Then A is selfadjoint if and only if (C \ (−∞, 0]) ∩ ρ(A) 6= ∅. In particular,
an operator A is dissipative and selfadjoint if and only if

(Ax|y) = (y|Ax) (x, y ∈ D(A)); (1.7)
(Ax|x) ≤ 0 (x ∈ D(A); (1.8)

for all y ∈ H there exists x ∈ D(A) such that x−Ax = y . (1.9)

These three conditions will be convenient for many examples. Condition (1.9) is
called the range condition. The class of dissipative selfadjoint operators is particu-
larly important for applications. Diagonal operators are the most simple examples
of selfadjoint operators.

Example 1.4.8 (Selfadjoint diagonal operators). Let λ = (λn)n∈N be a real se-
quence. Then the diagonal operator Mλ on `2 given by

D(Mλ) = {x ∈ `2 : (λnxn)n∈N ∈ `2}
Mλx = (λnxn)n∈N

is selfadjoint. The operator Mλ is dissipative if and only if λn ≤ 0 for n ∈ N.
Moreover, Mλ has compact resolvent if and only if limn→∞ |λn| = −∞.

This is easy to check. The last assertion had been considered in Exercise
1.3.8.

We recall the spectral theorem for compact symmetric operators.

Proposition 1.4.9. Let B be a compact, symmetric operator. Then H has an or-
thonormal basis which consists of eigenvectors of B.

This result is contained in all standard texts on Functional Analysis (see e.g.
[RS80, p. 203]).

For our purpose the following version for unbounded operators is important.

Theorem 1.4.10 (Spectral Theorem). Let A be a selfadjoint operator with compact
resolvent. Then there exist an orthonormal basis {en : n ∈ N} of H,λn ∈ R such
that en ∈ D(A) and Aen = λnen. Moreover, limn→∞ |λn| = ∞ if dimH = ∞.
Finally, A is given by

D(A) = {x ∈ H : (λn |x(en))n∈N ∈ `2}

Ax =
∞∑

n=1

λn(x|en)en .
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Proof. Since A has compact resolvent, by Proposition 1.3.3 there exists µ ∈ (0,∞)∩
ρ(A). Then R(µ,A) is a compact and symmetric operator (as is easy to see).
By Proposition 1.4.9 there exists an orthonormal basis {en : n ∈ N} of H and
αn ∈ R such that R(µ,A)en = αnen. Since R(µ,A) is injective one has αn 6= 0
(n ∈ N). Hence en ∈ D(A) and en = αn(µ − A)en. It follows that Aen = λnen

where λn = (µ − 1
αn

). Since limn→∞ |αn| = 0, one has limn→∞ |λn| = ∞. Let

x ∈ D(A). Then (λn(x|en))n∈N = ((x|Aen))n∈N ∈ `2 and Ax =
∞∑

n=1
(Ax|en)en =

∞∑
n=1

λn(x|en)en. Conversely, assume that x ∈ H such that (λn(x|en))n∈N ∈ `2.

Let xm =
m∑

n=1
(x|en)en , ym =

m∑
n=1

λn(x|en)en. Then limm→∞ xm = x and ym

converges as m→∞. Observe that xm ∈ D(A) and Axm = ym. Since A is closed,
it follows that x ∈ D(A).

There is another way to present the Spectral Theorem. Denote by U : H → `2

the unitary operator given by Ux = ((x|en))n∈N. Then it follows directly from
Theorem 1.4.10 that

UAU−1 = Mλ (1.10)

(see Proposition 1.3.7 for the notation). We have obtained the following result.

Corollary 1.4.11 (Diagonalization). Let A be an operator on H. Suppose that
dimH = ∞. The following assertions are equivalent.

(i) A is selfadjoint and has compact resolvent;

(ii) there exists a unitary operator U : H → `2 and a sequence (λn)n∈N ⊂ R such
that limn→∞ |λn| = ∞ and

UAU−1 = Mλ .

We express (ii) by saying that A and Mλ are unitarily equivalent. Note that A is
dissipative if and only if λn ≤ 0 for all n ∈ N.

The Spectral Theorem establishes a surprising metamorphoses. Frequently
the operator A will be given as a differential operator. But identifying H with
`2 via the unitary operator U , the operator A is transformed into the diagonal
operator Mλ. This will be most convenient to prove properties of A.

Exercise 1.4.12. Let A be an m-dissipative operator. Show that D(A) is dense,
Hint: By Hilbert space theory it suffices to show that D(A)⊥ := {y ∈ H : (x|y) = 0
for all x ∈ D(A)} = 0.

Exercise 1.4.13. Let A be a closed, dissipative operator. Assume that there exists
λ ∈ C such that Reλ > 0 and (λ−A) has dense range. Show that A is m-dissipative.
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The range R(A) of an operator A is by definition the space

R(A) := {Ax : x ∈ D(A)} . (1.11)

Exercise 1.4.14. Let A be an operator on H. Show that A is dissipative if and only
if

‖x− tAx‖ ≥ ‖x‖ (1.12)

for all x ∈ D(A), t > 0.

Exercise 1.4.15. Let A be a densely defined dissipative operator on a Hilbert space
H. Show that A is closable.
Hint: This is not quite obvious. But there is a trick. Let xn ∈ D(A), xn →
0 , Axn → y (n→∞). One has to show that y = 0. Consider first z ∈ D(A) and
apply (1.12) to xn + tz (where t > 0).

1.5 The Spectral Theorem for general selfadjoint oper-
ators.

In this section we give a representation of selfadjoint operators which do not neces-
sarily have a compact resolvent. Another simple example of a selfadjoint operator
is obtained if we consider multiplication by a function in L2 instead of a sequence
in `2. We make this more precise.

Proposition 1.5.1 (Multiplication operators). Let (Y,Σ, µ) be a σ-finite measure
space and let m : Y → R be a measurable function. Define the operator Am on
L2(Y,Σ, µ) by

D(Am) = {f ∈ L2(Y,Σ, µ) : mf ∈ L2(Y,Σ, µ)}
Amf = mf .

Then Am is selfadjoint. This is not difficult to see.

Of course multiplication operators contain diagonal operators as special case:
It sufficies to take Y = N and µ the counting measure. But they are more general.
In fact, each diagonal operator has eigenvalues whereas a multiplication operator
does not, in general (see Exercise 1.5.3). And indeed, multiplication operators are
the most general selfadjoint operators as the following theorem shows.

Theorem 1.5.2 (Spectral Theorem: general form). Let A be a selfadjoint opera-
tor on a separable complex Hilbert space. Then there exist a finite measure space
(Y,Σ, µ), a measurable function m : Y → R and a unitary operator U : H →
L2(Y,Σ, µ) such that

UAU−1 = Am . (1.13)
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We refer to Exercise 1.3.7 concerning the notion used in (1.13). For the proof
of Theorem 2.3.4 we refer to [RS80, Theorem VIII.4, p. 260]. But in a series of
exercises we will demonstrate the power of the Spectral Theorem.

Exercise 1.5.3 (No eigenvalues). Let Y = R with Lebesgue measure, m(y) =
y (y ∈ R), H = L2(R). Then σp(Am) = ∅. Deduce from this that Am is not
unitarily equivalent to a diagonal operator.

Exercise 1.5.4 (Spectrum and essential image). Let Am be a multiplication operator
on L2(Y,Σ, µ) (cf. Proposition 1.5.1.). Show that

σ(Am) = ess image (m)

where the essential image of m is defined by

ess image (m) := {λ ∈ C : ∀ ε > 0 µ({x : |m(x)− λ| ≤ ε}) > 0} .

Deduce the following assertion from Exercise 1.5.4 and the Spectral Theorem.

Exercise 1.5.5 (Bounded selfadjoint operators). Let A be a selfadjoint operator
on a separable Hilbert space. Then A is bounded if and only if σ(A) is bounded.
Moreover, A is a projection if and only if σ(A) ⊂ {0, 1}.

In general, it is a most delicate matter to obtain information out of the
spectrum of an operator. But selfadjoint operators are of special nature.



Chapter 2

Semigroups

In this chapter we give a short introduction to semigroups. We start with a pre-
liminary technical section.

2.1 The vector valued Riemann integral

Let X be a Banach space, −∞ < a < b <∞. By C([a, b], X) we denote the space
of all continuous functions on [a, b] with values in E. Let u ∈ C([a, b], X). Let
π be a partition a = t0 < t1 < . . . < tn = b of [a, b] with intermediate points
si ∈ [ti−1, ti]. By |π| = max

i=1,...n
(ti − ti−1) we denote the norm of π and by

S(π, u) =
n∑

i=1

u(si)(ti − ti−1)

the Riemann sum of u with respect to π. One shows as in the scalar case that∫ b

a

u(s)ds := lim
|π|→0

S(π, u) (2.1)

exists. If Y is another Banach space and B ∈ L(X,Y ), then BS(π, u) = S(π,Bu)
where Bu = B ◦ u ∈ C([a, b], Y ). It follows that

B

∫ b

a

u(s)ds =
∫ b

a

Bu(s)ds . (2.2)

In particular,

〈x′,
∫ b

a

u(s)ds〉 =
∫ b

a

〈x′, u(s)〉ds . (2.3)

Now the Hahn-Banach theorem allows us to carry over the usual properties of
scalar Riemann integral to the vector-valued case. For example, the mapping u 7→

17
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∫ b

a
u(t)dt from C([a, b], X) into X is linear. We also note that

‖
∫ b

a

u(s)ds‖ ≤
∫ b

a

‖u(s)‖ds (2.4)

as is easy to see.

Let A be a closed operator on X. Let u ∈ C([a, b], D(A)), where D(A) is
considered as a Banach space with the graph norm; i.e. u ∈ C([a, b], X) such that
u(t) ∈ D(A) for all t ∈ [a, b] and Au ∈ C([a, b].X). Since A ∈ L(D(A), E), (2.2)
implies that

A

∫ b

a

u(s)ds =
∫ b

a

Au(s)ds . (2.5)

Exercise 2.1.1. Let f : [a, b] → X be continuous (we write f ∈ C([a, b];X)).
Let F (t) =

∫ t

a
f(s)ds. Show that F is continuously differentiable (we write F ∈

C1([a, b];X)) and F ′(t) = f(t) (t ∈ [a, b]).

Exercise 2.1.2. Let u ∈ C1([a, b];X). Show that
∫ t

a
u′(s)ds = u(t)− u(a).

2.2 Semigroups

In this section we introduce semigroups and their generators. Let X be a Banach
space.

Definition 2.2.1. A C0-semigroup is a mapping T : R+ → L(X) such that

a) T (·)x : R+ → X continuous for all x ∈ X;

b) T (t+ s) = T (t)T (s) (s, t ∈ R+);

c) T (0) = I.

It follows immediately from the definition that

T (t)T (s) = T (s)T (t) for all t, s ≥ 0 . (2.6)

Let T : R+ → L(X) be a C0-semigroup. We now define the generator of T .

Definition 2.2.2. The generator A of T is the operator A on X given by

D(A) = {x : lim
h↓0

1
h

(T (h)x− x) exists in X}

Ax = lim
h↓0

1
h

(T (h)x− x) .



2.2. SEMIGROUPS 19

We now investigate relations between the semigroup T and its generator A.
One has

T (t)x ∈ D(A) and AT (t)x = T (t)Ax (2.7)

for all x ∈ D(A), t ≥ 0. In fact, 1
h (T (h)T (t)x − T (t)x) = T (t)[ 1

h (T (h)x − x)] →
T (t)Ax (h ↓ 0). This shows in particular, that the right derivate of T (t)x is T (t)Ax
if x ∈ D(A). More is true.

Proposition 2.2.3. Let x ∈ D(A). Then u(t) = T (t)x is the unique solution of the
initial value problem u ∈ C1(R+, X) , u(t) ∈ D(A) (t ≥ 0) ;

u̇(t) = Au(t) (t ≥ 0)
u(0) = x ;

(2.8)

Proof. Let t > 0. It follows from the uniform boundedness principle that T is
bounded on [0, t]. Then

1
−h

(T (t− h)x− T (t)x) = T (t− h)[
T (h)x− x

h
] = T (t− h)[

T (h)x− x

h
−Ax]

+ T (t− h)Ax→ T (t)Ax (h ↓ 0) .

This shows that u is also leftdifferentiable and indeed a solution of the prob-
lem (2.8). Conversely, let v be another solution. Let t > 0, w(s) = T (t − s)v(s).
Then

d

ds
w(s) = −A(T (t− s)v(s)) + T (t− s)v̇(s)

= −T (t− s)Av(s) + T (t− s)Av(s) = 0 .

It follows that w is constant. Hence T (t)x = w(0) = w(t) = v(t).

Proposition 2.2.3 shows why generators of C0-semigroups are interesting. The
initial value problem (2.2.7) has a unique solution for initial values x in the domain
of the generator. Moreover, the orbit T (·)x is the solution. There is another way
to describe the generator A.

Proposition 2.2.4. Let x, y ∈ X. Then x ∈ D(A) and Ax = y if and only if∫ t

0

T (s)yds = T (t)x− x (t ≥ 0) . (2.9)

Proof. Assume (2.9). Then lim
t↓0

T (t)x−x
t = lim

t↓0
1
t

∫ t

0
T (s)yds = y. Conversely, let

x ∈ D(A), then T (·)x is the solution of (2.8). By the fundamental theorem of
calculus, T (t)x− x =

∫ t

0
d
dtT (s)xds =

∫ t

0
T (s)Axds.

Corollary 2.2.5. The operator A is closed.



20 2. SEMIGROUPS

Proof. Let xn ∈ D(A), xn → x, yn := Axn → y (n→∞). Then by (2.9),∫ t

0

T (s)ynds = T (t)xn − xn .

Letting n→∞ shows that (2.9) holds.
Let x ∈ D(A). SinceA is closed it follows from (2.9) and (2.5) that

∫ t

0
T (s)xds ∈

D(A) and

A

∫ t

0

T (s)xds =
∫ t

0

AT (s)xds =
∫ t

0

T (s)Axds

= T (t)x− x

for all t ≥ 0. This identity remains valid for all x ∈ X.

Proposition 2.2.6. Let x ∈ X, t ≥ 0. Then
∫ t

0
T (s)xds ∈ D(A) and

A

∫ t

0

T (s)xds = T (t)x− x . (2.10)

Proof. In fact,

1
h
{T (h)

∫ t

0

T (s)xds−
∫ t

0

T (s)xds}

=
1
h

(
∫ t

0

T (s+ h)xds−
∫ t

0

T (s)xds)

=
1
h

(
∫ t+h

h

T (s)xds−
∫ t

0

T (s)xds)

=
1
h

(
∫ t+h

t

T (s)xds−
∫ h

0

T (s)xds) → T (t)x− x

as h ↓ 0.

Corollary 2.2.7. The domain of A is dense in X.

Proof. Let x ∈ X. Then 1
t

∫ t

0
T (s)xds ∈ D(A) and lim

t↓0
1
t

∫ t

0
T (s)xds = x.

Since A is closed, the space D(A) is a Banach space with the graph norm.
The properties shown above imply that

T (·)x ∈ C(R+, D(A)) ∩ C1(R+, X)

for all x ∈ D(A). If x ∈ X, then there exist xn ∈ D(A) such that xn → x (n→∞).
Then T (t)xn converges to T (t)x as n→∞. Since T (·)xn is a solution of the initial
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value problem (2.8) with initial value xn we may consider u(t) = T (t)x as a mild
solution of the abstract Cauchy problem

(ACP )
{
u̇(t) = Au(t) (t ≥ 0)
u(0) = x0 .

Exercise 2.2.8. Let A and B be operators such that A ⊂ B (see Definition 1.1.5).
If ρ(A) ∩ ρ(B) 6= ∅, then A = B.

Exercise 2.2.9. Let S and T be C0-semigroups with generators A and B, respec-
tively. Assume that A ⊂ B. Show that A = B.

Exercise 2.2.10. Let T : R+ → L(X) be a mapping such that

a) lim
t↓0

T (t)x = x for all x ∈ X;

b) T (t+ s) = T (t)T (s) (t, s ≥ 0).

Show that T is a C0-semigroup.

Exercise 2.2.11 (Rescaling). Let A be the generator of a C0-semigroup T .

a) Let ω ∈ C, S(t) = e−ωtT (t). Show that S is a C0-semigroup and A− ωI its
generator.

b) Let α > 0, S(t) = T (αt). Show that S is a C0-semigroup and αA its gener-
ator.

2.3 Differentiable semigroups

In this section we consider semigroups which are regular, in the sense that orbits
are of class C∞ on (0,∞). Particular cases are selfadjoint semigroups.

Let E be a Banach space. If A is a closed operator, we define the operator
Am inductively: A1 := A; and

D(Ak+1) = {x ∈ D(A) : Ax ∈ D(Ak)}
Ak+1x = Ak(Ax) .

Then it is easy to see that D(Ak) is a Banach space for the norm

‖x‖D(Ak) := ‖x‖+ ‖Ax‖+ . . .+ ‖Akx‖ . (2.11)

The following properties are easy to show by induction and will be used
frequently.

Exercise 2.3.1. Let A be a closed operator. Then

a) D(Ak+1) ⊂ D(Ak) (k ∈ N);
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b) A`D(Ak) ⊂ D(Ak−`) (k > ` ≥ 1);

c) for x ∈ D(Ak+`), Akx ∈ D(A`) and A`+kx = A`(Akx) (`, k ∈ N).

Definition 2.3.2. A C0-semigroup T on a Banach space E is called differentiable
if

T (t)x ∈ D(A) for all t > 0, x ∈ E

where A is the generator of T .

The orbits of differentiable semigroups are regular in time, i.e. T (·)x ∈
C∞((0,∞);E). But we will also see that T (t)x ∈ D(Ak) for all k ∈ N, t > 0,
x ∈ E. Frequently D(Ak) is a better space than E. For example, if A is a differen-
tiable operator on L2(Ω) (Ω ⊂ Rn open), then D(Ak) may consist of differentiable
functions if k is sufficiently large. So the following proposition says that differen-
tiable semigroups are regular in time and improve regularity in space.

Proposition 2.3.3. Let T be a differentiable C0-semigroup. Then

T (·)x ∈ C∞((0,∞);D(Ak))

for all x ∈ X and all k ∈ N. Here D(Ak) is considered as a Banach space with the
graph norm (2.11).

Proof. 1. We show inductively that T (t)x ∈ D(Ak) for all t > 0, x ∈ X. This is true
for k = 1. Assume that it holds for k ∈ N. Then AkT (t)x = AkT (t/2)T (t/2)x =
T (t/2)AkT (t/2)x ∈ D(A) by hypothesis. Thus T (t)x ∈ D(Ak+1).
2. Let k ∈ N0. We show that T (·)x ∈ Cm((0,∞), D(Ak)) for all m ∈ N0 and all
x ∈ X.
a) Let m = 0. We have to show that A`T (·)x ∈ C((0,∞);E) for 0 ≤ ` ≤ k. But
for t > 0, A`T (t+ h)x−A`T (t)x = T (t/2 + h)A`T (t/2)x− T (t/2)A`T (t/2)x→ 0
(h→ 0) in X.
b) Assume that the assertion is true for m ∈ N0. Let t0 > 0. Then

d

dt
T (t)x =

d

dt
T (t− t0)T (t0)x

= T (t− t0)AT (t0)x ,

and T (· − t0)AT (t0)x ∈ Cm((t0,∞), D(Ak)) by the inductive hypothesis. Hence
T (·)x ∈ Cm+1((0,∞);D(Ak)).

It is interesting to reformulate the preceding result in terms of well-posedness
of the Cauchy problem. Whereas for general semigroups we merely have mild
solutions if the initial value is not in the domain, differentiable semigroups always
give us classical solutions.
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Theorem 2.3.4. Let A be the generator of a differentiable C0-semigroup. Let x ∈ E.
Then the problem 

u ∈ C1((0,∞);X) ∩ C([0,∞);X)
u(t) ∈ D(A) for all t > 0
u′(t) = Au(t) (t > 0)
u(0) = x

 (2.12)

has a unique solution u. Moreover, u ∈ C∞((0,∞), D(Ak)) for all k ∈ N0.

Proof. In view of Proposition 2.3.3 only uniqueness remains to be shown. Sub-
stracting two solutions we obtain a solution u of (2.12) with x = 0. We have to
show that u(t) = 0 for all t > 0. For 0 ≤ ε ≤ t let vε(t) =

∫ t

ε
u(s)ds. Then by (2.5),

for 0 < ε < t, vε(t) ∈ D(A) and Avε(t) =
∫ t

ε
Au(s)ds =

∫ t

ε
u̇(s)ds = u(t) − u(ε).

Since A is closed, it follows that v0(t) ∈ D(A) and Av0(t) = u(t) = v̇0(t). Now
it follows from Proposition 2.2.3 that v0 ≡ 0. Consequently, u(t) = v̇0(t) = 0
(t > 0).

Exercise 2.3.5. Let A be a closed operator and let k ∈ N.

a) Show that D(Ak) is a Banach space for the norm (2.11).

b) Let λ ∈ ρ(A). Show that

‖x‖k := ‖(λ−A)kx‖

defines a norm which is equivalent to (2.11).

The following is an improvement of Proposition 2.3.2

Exercise 2.3.6. Let T be a differentiable C0-semigroup.
a) Show that T ∈ C((0,∞);L(X)).
b) Show that T ∈ C∞((0,∞) : L(X,D(Ak)) for all k ∈ N.

Exercise 2.3.7. Let A be the generator of a differentiable C0-semigroup.
a) Show that A has compact resolvent if and only if T (t) is compact for all t > 0.
b) In that case T (t) is even compact as operator from X into D(Ak) for all k ∈ N,
t > 0 where D(Ak) carries the norm (2.11)).

Hint: Rescaling one can assume that A is invertible. Consider the operator
S(t) =

∫ t

0
T (s)ds. Observe that S(t) = A−1(T (t)− I) and use Exercise 2.3.5 a).

2.4 Selfadjoint semigroups

Selfadjoint operators can be transformed into diagonal operators or multiplication
operators by the spectral theorem. After this transformation one can write down
explicitly the corresponding semigroup. We obtain the most simple C0-semigroups
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with unbounded generator. Still we will see in the next two chapters that many
concrete examples are of this form. We first consider the case where A has com-
pact resolvent. In fact, in that case, the spectral theorem is particularly easy to
prove and the operator is transformed into a diagonal operator. In addition, our
prototype example is of this type, namely the Laplacian with Dirichlet boundary
conditions on a bounded open set. So the functional analytic tools needed for this
important example are particularly simple.

Let H be a complex, separable Hilbert space and let A be a selfadjoint,
dissipative operator on H. Assume first that A has compact resolvent. Then, up
to unitary equivalence, we can assume that

H = `2 , Ax = −(λnxn)n∈N

where λn ∈ R+, lim
n→∞

λn = ∞ and

D(A) = {x ∈ `2 : (λnxn)n∈N ∈ `2} .

Define T (t) ∈ L(`2) by
T (t)x = (e−λntxn)n∈N . (2.13)

Then T (t) is a compact, selfadjoint operator and ‖T (t)‖ ≤ 1. It is easy to see that
T = (T (t))t≥0 is a differentiable C0-semigroup and A its generator.

In the general case, if the resolvent is not necessarily compact, then after a
unitary transformation we can assume that

H = L2(X,Σ, µ)
Af = −mf

D(A) = {f ∈ H : m · f ∈ H}

where (X,Σ, µ) is a finite measure space and m : X → R+ a measurable function.
Now it is easy to see that

T (t)f = e−tmf (2.14)

defines a differentiable C0-semigroup of selfadjoint operators. Moreover, ‖T (t)‖ ≤
1. We have proved the following result.

Theorem 2.4.1. Let A be a selfadjoint, dissipative operator. Then A generates a dif-
ferentiable C0-semigroup T of contractive, selfadjoint operators. If A has compact
resolvent, then T (t) is compact for all t > 0.

Applying Theorem 2.4.1 it is frequently useful to have the concrete repre-
sentation (2.13), (2.14) in mind which is valid after a unitary transformation in
virtue of the spectral theorem. It shows for example the following, simple result
on asymptotics.
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Exercise 2.4.2. Let A be a selfadjoint, dissipative operator with compact resolvent.
Assume that kerA = {0}. Then there exists ε > 0 such that

‖T (t)‖ ≤ e−εt (t ≥ 0) . (2.15)

Exercise 2.4.3. Give a detailed proof of Theorem 2.4.1 in the case where A has
compact resolvent.

Exercise 2.4.4. Give a detailed proof of Theorem 2.4.1 in the general case.

Exercise 2.4.5. Let T be a C0-semigroup of selfadjoint operators. Show that the
generator of A is selfadjoint and

(Ax|x) ≤ ω‖x‖2 for all x ∈ D(A) (2.16)

and some ω ∈ R. Deduce that

‖T (t)‖ ≤ eωt (t ≥ 0) . (2.17)

Hint: Show that A is selfadjoint. Use the spectral theorem in order to prove
(2.16) and (2.17).

Exercise 2.4.6 (Euler’s formula). Let A be a dissipative, selfadjoint operator and
T the C0-semigroup generated by A. Show that

lim
n→∞

(I − t

n
A)−nx = T (t)x (2.18)

for all x ∈ H, t > 0.

Formula (2.18) is frequently useful to deduce properties of T from the re-
solvent. It is Euler’s formula in the scalar case and we still use this name here.
Euler’s formula is true for all C0-semigroups and can be used to prove the gener-
ation theorem of Hille-Yosida (see Chapter 5).
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Chapter 3

The Laplacian in Dimension 1

In this chapter we consider the Laplacian on an interval with diverse boundary
conditions. Only few analytical tools are needed and Sobolev spaces are easy in 1
dimension. Still the concepts and ideas are typical and they will be applied again
in Chapter 4 where higher dimensions will be considered.

Let us make more precise what we intend to do. For this we consider a
prototype example, the heat equation on an interval

(HE)

 ut = uxx (t > 0, x ∈ (0, 1))
u(t, 1) = u(t, 0) = 0 (t > 0)
u(0, x) = u0(x) x ∈ [0, 1] .

Given is a continuous function u0 : [0, 1] → R such that u0(0) = u0(1) = 0. This
is the initial value. Physically it may be interpreted as a heat distribution on a
wire. The given initial temperature at the point x ∈ [0, 1] is u0(x). We look for a
function u : R+× [0, 1] → R, differentiable on (0,∞)× (0, 1) and satisfying (HE).
The first line of (HE) is the law of propagation. Here ut = ∂u

∂t and uxx = ∂2u
∂2x

are the partial derivatives. The second line is the boundary condition; Dirichlet
boundary condition in this case. It says that the wire is kept at temperature 0 at
the end points. The solution u(t, x) is interpreted as the temperature at the time
t > 0 at the point x ∈ [0, 1]. How can we solve sucht an initial-value/boundary-
value problem?

The basic idea is to transform the partial differential equation (HE) into
an ordinary differential equation in the following way. Let H = L2(0, 1) with
Lebesgue measure. Assume that u : R+ → H is continuous and differentiable on
(0,∞). Consider the operator A on H given by

D(A) := {f ∈ C2[0, 1] : f(0) = f(1) = 0} ,
Af = f ′′ .

27
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Assume that u(t) ∈ D(A) for all t > 0 and

(CP )
{
u̇(t) = Au(t) (t > 0)
u(0) = u0 .

This is a Cauchy problem as considered before. Then, letting u(t, x) = u(t)(x)
(t > 0, x ∈ [0, 1]) we obtain a solution of (HE). Thus, we transformed (HE) into
the ordinary differential equation (CP ). The boundary condition is incorporated
into the definition of the opertor A (or more precisely its domain). The prize we
pay for this approach is that instead of the scalar-valued functions considered in
(HE) we now have to treat functions with values in an infinite dimensional vector
space. It is natural that this space is a function space over [0, 1]. In order to apply
the spectral theorem and our results from Chapter 1 and 2, a Hilbert space is
needed. But now the difficulty is that the operator A as we defined it above is
not closed. The domain, consisting of twice differentiable functions in the classical
sense, is too small. This leads us to the concept of weak derivatives and Sobolev
spaces. Indeed, Sobolev spaces will be the right domain for differential operators
on L2-spaces. Things are quite easy on intervals and we consider this case system-
atically in this chapter.

Exercise: Show that the operator A on L2(0, 1) defined above is not closed.

3.1 Sobolev spaces on an interval

Let −∞ < a < b <∞. We consider the Hilbert space L2(a, b) defined with respect
to Lebesgue measure. By C[a, b], C1[a, b] we denote the spaces of all continuous
functions on [a, b] and of all continuously differentiable functions on [a, b], respec-
tively. By C1

c (a, b) we denote the space of all functions f ∈ C1[a, b] with compact
support in (a, b); i.e. such that f(x) = 0 for all x ∈ [a, a+ ε] ∪ [b− ε, b] and some
ε > 0. We recall from integration theory that

C1
c (a, b) is dense in L2(a, b) . (3.1)

If f ∈ C1[a, b], then integration by parts gives

−
∫ b

a

fϕ′dx =
∫ b

a

f ′ϕdx (ϕ ∈ C1
c (a, b)) . (3.2)

This leads us to the following definition. Let f ∈ L2(a, b). A function f ′ ∈ L2(a, b)
is called a weak derivative of f if (3.2) is satisfied. Since C1

c (a, b) is dense in L2(a, b)
there exists at most one weak derivative of f . Now we define the first Sobolev space
by

H1(a, b) = {f ∈ L2(a, b) : f has a weak derivative f ′ ∈ L2(a, b)} .
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Exercise 3.1.1. Let f(x) = |x|. Show that f ∈ H1(−1, 1) and f ′(x) = sgnx, where

sgnx =

 1 if x ≥ 0
0 if x = 0
−1 if x < 0 .

Proposition 3.1.2. The space H1(a, b) is a separable Hilbert space for the scalar
product

(f |g)H1 := (f |g)L2 + (f ′|g′)L2

where (f |g)L2 =
∫ b

a
fḡdx denotes the scalar product in L2(a, b).

Proof. The space H = L2(a, b) ⊕ L2(a, b) is a separable Hilbert space for the
norm ‖(f, g)‖2H =

∫ b

a
|f |2dx +

∫ b

a
|g|2dx. The mapping j : H1(a, b) → H given by

j(f) = (f, f ′) is linear and isometric. It suffices to show that the image H of j is
closed. Let (f, g) ∈ H such that f = lim

n→∞
fn und g = lim

n→∞
f ′n in L2(a, b) where

fn ∈ H1(a, b). Let ϕ ∈ C1
c (a, b). Then

−
∫ b

a

fϕ′dx = lim
n→∞

−
∫ b

a

fnϕ
′dx

= lim
n→∞

∫ b

a

f ′nϕdx

=
∫ b

a

gϕdx

by the Dominated Convergence Theorem. Hence g is the weak derivative of f ; i.e.
f ∈ H1(a, b) and j(f) = (f, g).

Lemma 3.1.3. Let f ∈ H1(a, b) such that f ′ = 0. Then f is constant.

Proof. Let ψ ∈ Cc(a, b) such that
∫ b

a
ψdx = 1. Let w ∈ Cc(a, b). Then there exists

ϕ ∈ C1
c (a, b) such that

ϕ′ = w − (
∫ b

a

wdx)ψ .

In fact, one has v := w − (
∫ b

a
wdx)ψ ∈ Cc(a, b) and

∫ b

a
vdx = 0. Define ϕ(x) =∫ x

a
v(y)dy.
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It follows from the assumption that

0 =
∫ b

a

fϕ′

=
∫ b

a

fwdx−
∫ b

a

wdx

∫ b

a

fψdx

=
∫ b

a

(f(x)−
∫ b

a

fψdy) w(x)dx .

Since this holds for all w ∈ Cc(a, b) it follows from (3.1) that∫ b

a

(f(x)−
∫ b

a

fψdy)w(x) dx = 0 for all w ∈ L2(a, b) .

Hence f(x)−
∫ b

a
fψdy = 0 x−a.e.

Theorem 3.1.4. a) Let g ∈ L2(a, b), c ∈ C. Let f(x) = c +
∫ x

a
g(y)dy (x ∈ (a, b)).

Then f ∈ H1(a, b) and f ′ = g.
b) Conversely, let f ∈ H1(a, b). Then there exists c ∈ C such that

f(x) = c+
∫ x

a

f ′(y)dy a.e.

Proof. a) Let ϕ ∈ C1
c (a, b). Then by Fubini’s theorem

−
∫ b

a

f(x)ϕ′(x)dx = −
∫ b

a

∫ x

a

g(y)dyϕ′(x)dx− c

∫ b

a

ϕ′(x)dx

= −
∫ b

a

∫ b

y

ϕ′(x)dxg(y)dy

=
∫ b

a

ϕ(y)g(y)dy .

Thus g is the weak derivative of f .
b) Let f ∈ H1(a, b), w(x) = f(x) −

∫ x

a
f ′(y)dy. Then by a), w ∈ H1(a, b) and

w′ = 0. Hence w is constant by Lemma 3.1.3.

Corollary 3.1.5. One has
H1(a, b) ⊂ C[a, b] .

Proof. Let f ∈ H1(a, b). Then by Theorem 3.1.4, f(x) = c +
∫ x

a
f ′(y)dy for some

constant and almost all x ∈ (a, b). It follows from the dominated convergence the-
orem that the right hand side is continuous.

By definition, two functions in L2(a, b) are identified if they coincide almost
everywhere. Moreover, if two continuous functions coincide almost everywhere,
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then they coincide everywhere. So Corollary 3.1.5 says more precisely, that for
each f there exists exactly one continuous function g which coincides with f almost
everywhere. By Theorem 3.1.4 we may choose the representive such that

f(x) = c+
∫ x

a

f ′(y)dy (x ∈ [a, b])

which we will always do. Thus c = f(0). Recall that the space C[a, b] is a Banach
space for the uniform norm

‖f‖∞ = sup
x∈[a,b]

|f(x)| .

It follows immediately from the closed graph theorem that the injection of H1(a, b)
into C[a, b] is continuous (where each space carries its proper norm). More is true:

Theorem 3.1.6. The injection of

H1(a, b) into C[a, b] and
of H1(a, b) into L2(a, b)

are compact.

Proof. a) Let B = {f ∈ H1(a, b) : ‖f‖H1 ≤ 1} be the unit ball of H1(a, b). We
have to show that B is relatively compact in C[a, b]. For f ∈ B we have

|f(x)− f(y) | = |
∫ y

x

f ′(y)dy|

≤ ‖f ′‖L2(a,b)|x− y|1/2

≤ |x− y|1/2

by Hölder’s inequality. This shows that B is equicontinuous. Since the injection is
continuous, B is bounded in C[a, b]. Now it follows from the Arzela-Ascoli theorem
that B is relatively compact in C[a, b].
b) Since the injection of C[a, b] into L2(a, b) is continuous, and the composition
of a bounded operator and a compact operator is compact, the second assertion
follows from the first.

Next we establish the usual rule for derivatives of products also in the weak
sense.

Proposition 3.1.7. Let f, g ∈ H1(a, b). Then

a) fg ∈ H1(a, b) and (fg)′ = f ′ · g + f · g′;

b)
∫ b

a
fg′dx = f(b)g(b)− f(a)g(a)−

∫ b

a
f ′gdx.
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Proof. 1. By Fubini’s theorem we have∫ b

a

f · g′dx =
∫ b

a

(f(a) +
∫ x

a

f ′(y)dy)g′(x)dx

= f(a)(g(b)− g(a)) +
∫ b

a

b∫
y

g′(x)dxf ′(y)dy

= f(a)(g(b)− g(a)) +
∫ b

a

(g(b)− g(y))f ′(y)dy

= f(a)(g(b)− g(a)) + g(b)(f(b)− f(a))

−
∫ b

a

g(y)f ′(y)dy

= f · g|ba −
∫ b

a

g(y)f ′(y)dy .

This proves b).
2. Replacing b by x in 1. we obtain∫ x

a

f(y)g′(y)dy = f(x)g(x)− f(a)g(a)

−
∫ x

a

f ′(y)g(y)dy .

Hence f(x) · g(x) = f(a)g(a) +
∫ x

a

{f(y)g′(y) + f ′(y)g(y)}dy .

Now Theorem 3.1.4 implies assertion a).

We define the higher order Sobolev spaces inductively as follows

Hk+1(a, b) = {f ∈ H1(a, b) : f ′ ∈ Hk(a, b)}
f (k+1) = f ′(k) (f ∈ Hk+1(a, b)) .

(k = 1, 2, . . .). Then Hk(a, b) is a Hilbert space for the norm

‖f‖2Hk = ‖f‖2L2 +
k∑

m=1

‖f (m)‖2L2 .

Exercise 3.1.8. Give a proof of the above statement.

Exercise 3.1.9. Let X,Y be two Banach spaces such that X ⊂ Y ⊂ L2(0, 1) and
such that fn → f (n → ∞) in X or in Y implies that fnk

(x) → f(x) a.e. for
some subsequence (fnk

)k∈N of (fn)n∈N. Show that the injection of X into Y is
continuous. Use the Closed Graph Theorem.
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Exercise 3.1.10. Consider the Banach space Ck[a, b] of all k-times continuously
differentiable functions with the norm

‖f‖ck = max
m=1,...k

‖f (m)‖∞ .

a) Show that Hk+1(a, b) ⊂ Ck[a, b] k = 1, 2 . . .).

b) Show that the injection in a) is continuous (use Exercise 3.1.9).

c) Show that the injection in a) is compact.

Exercise 3.1.11. Show that H1(a, b) is a Banach algebra (i.e. fn → f , gn → g in
H1(a, b) implies fn · gn → f · g in H1(a, b)).

Exercise 3.1.12. Let a < c < b. Let f1 ∈ H1(a, c), f2 ∈ H1(c, b) such that f1(c) =
f2(c). Define f : (a, b) → C by

f(x) =
{
f1(x) if x ∈ (a, c] ,
f2(x) if x ∈ (c, b) .

Show that f ∈ H1(a, b).

Exercise 3.1.13. a) Let f ∈ Hk(a, b) where k ∈ N. Assume that

k∑
m=0

amf
(m) = 0

where am ∈ C, m = 1, . . . , k; ak 6= 0. Show that f ∈ Ck[a, b].
b) Let f ∈ H2(a, b) such that f ′′ = 0. Show that f(x) = αx + β (x ∈ (a, b)) for
some α, β ∈ C.
c) Let f ∈ H2(a, b) such that f ′′ = −λf where λ > 0. Show that f(x) = α cos(

√
λ ·

x) + β sin(
√
λ · x).

3.2 The Laplacian with Dirichlet and Neumann bound-
ary conditions

Now we define the Laplacian on L2(a, b) where −∞ < a < b < ∞. At first we
consider Dirichlet boundary conditions. Recall that H1(a, b) ⊂ C[a, b]. We define

H1
0 (a, b) = {f ∈ H1(a, b) : f(a) = f(b) = 0} .

Since the embedding ofH1(a, b) into C[a, b] is continuous, it follows thatH1
0 (a, b) is

a Hilbert space for the scalar product defined in Proposition 3.1.2. In the following
example the range conditions is a simple consequence of the Riesz-Fréchet lemma
(saying that each continuous linear form ϕ on a Hilbert space H is of the form
ϕ(x) = (x|y) for a unique y ∈ H).
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Theorem 3.2.1 (The Dirichlet Laplacian). Define the operator A on L2(a, b) by
D(A) = H1

0 (a, b) ∩H2(a, b)
Af = f ′′ .

Then A is a dissipative selfadjoint operator with compact resolvent.

Proof. a) Let f, g ∈ D(A). Then

(Af |g)L2 =
∫ b

a

f ′′ḡdx = f ′ḡ|ba −
∫ b

a

f ′ḡ′

= −
∫ b

a

f ′ḡ′

= (f |Ag)L2

since g(b) = g(a) = f(a) = f(b) = 0. Thus A is symmetric and (Af |f) =
−

∫ b

a
|f ′|2 ≤ 0. So A is dissipative.

b) We prove the range condition. Let g ∈ L2(a, b). Then Φ(ϕ) =
∫ b

a
ϕḡdx defines

a continuous linear form on H1
0 (a, b). By the Riesz-Fréchet lemma there exists a

unique f ∈ H1
0 (a, b) such that∫ b

a

ϕf̄dx+
∫ b

a

ϕ′f̄ ′dx = (ϕ|f)H1 =
∫ b

a

ϕḡdx (3.3)

for all ϕ ∈ H1
0 (0, 1). Replacing ϕ by ϕ̄ and taking the complex conjugate of (3.3)

we deduce that

−
∫ b

a

ϕ′f ′ =
∫ b

a

ϕ(f − g)dx

for all ϕ ∈ C1
c (a, b). This means that (f − g) is the weak derivative of f ′. Hence

f ∈ H2(a, b) and f ′′ = f − g. Thus f ∈ D(A) and f −Af = g.
c) It follows from Exercise 3.1.9 that the injection of D(A) into H1(a, b) is contin-
uous. By Theorem 3.1.6 the injection of H1(a, b) into L2(a, b) is compact. Conse-
quently, the injection ofD(A) into L2(a, b) is compact, as composition of a compact
and a bounded operator. This means that A has compact resolvent by Exercise
1.3.2.

We call the operator A defined in Theorem 2.1 the Dirichlet Laplacian on
L2(a, b), or more precisely, the Laplacian with Dirichlet boundary conditions, and
denote A by ∆D

(a,b) or ∆D if the interval is fixed. By Theorem 2.4.1, ∆D generates
a contraction semigroup TD on L2(a, b). Moreover, each TD(t) is compact and
selfadjoint (t > 0). Later we will study the Cauchy problem governed by ∆D in
more detail (see Section 3.4).

Next we consider Neumann boundary conditions. Recall that H2(a, b) ⊂
C1[a, b]. So the following definition makes sense.
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Theorem 3.2.2 (the Neumann Laplacian). Define the operator ∆N on L2(a, b) by

D(∆N ) = {f ∈ H2(a, b) : f ′(a) = f ′(b) = 0} ,
∆Nf = f ′′ .

Then ∆N is selfadjoint, dissipative and has compact resolvent. We call ∆N the
Neumann Laplacian.

Proof. a) Let f, g ∈ D(∆N ). Then by Proposition 3.1.7

(Af |g) =
∫ b

a

f ′′ḡdx

= f ′(b)g(b)− f ′(a)g(a)−
∫ b

a

f ′ḡ′dx

= −
∫ b

a

f ′ḡ′dx = (
∫ b

a

g′f̄ ′dx)−

= (Ag|f) = (f |Ag) .

Thus A is symmetric and (Af |f) = −
∫ b

a
|f ′|2dx ≤ 0. Hence A is dissipative.

b) We show that I−A is surjective. Let g ∈ L2(a, b). Then G(ϕ) =
∫ b

a
ϕgdx defines

a continuous linear form on H1(a, b). By the lemma of Riesz-Fréchet there exists
f ∈ H1(a, b) such that∫ b

a

ϕfdx+
∫ b

a

ϕ′f ′dx = (ϕ|f̄)H1 = G(ϕ) =
∫ b

a

ϕgdx (3.4)

for all ϕ ∈ H1(a, b). In particular,

−
∫ b

a

ϕ′f ′dx =
∫ b

a

ϕ(f − g)dx (ϕ ∈ C1
c (a, b)) .

It follows that f ′ ∈ H1(a, b) and f ′′ = f − g. Hence f ∈ H2(a, b) and f − f ′′ = g.
It remains to show that f ′(a) = f ′(b) = 0. Let ϕ ∈ H1(a, b) such that ϕ(a) = 1
and ϕ(b) = 0. Since g = f − f ′′, it follows from (3.4) that∫ b

a

ϕfdx+
∫ b

a

ϕ′f ′dx =
∫ b

a

ϕ(f − f ′′)dx

=
∫ b

a

ϕfdx+
∫ b

a

ϕ′f ′dx− ϕ(x)f ′(x)|ba

=
∫ b

a

ϕ · fdx+
∫ b

a

ϕ′f ′dx+ f ′(a) .

Hence f ′(a) = 0. Choosing ϕ ∈ H1(a, b) such that ϕ(a) = 0 and ϕ(b) = 1 we
obtain that f ′(b) = 0. We have shown that f ∈ D(∆N ) and f −∆Nf = g. Thus
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∆N is selfadjoint and dissipative. Compactness of the resolvent is obtained by the
same reasons given for the Dirichlet Laplacian.

As a consequence, the Neumann Laplacian generates a contraction semigroup
TN of selfadjoint compact operators on L2(a, b).

In the following exercises we determine the asymptotic behaviour of the semi-
groups TD and TN .

Exercise 3.2.3. a) Let a = 0 < b. Determine the spectrum of the Dirichlet Laplacian
∆D on L2(0, b).
b) Denote by TD the semigroup generated by ∆D. Show that

‖TD(t)‖ ≤ e−π2/b2t (t ≥ 0) . (3.5)

Hint: Use (2.13).

Exercise 3.2.4 (Convergence to an equilibrium). Let A be a selfadjoint dissipative
operator on a separable Hilbert space H. Assume that A has compact resolvent.
Denote by T the semigroup generated by A. We adopt the notions of the Spectral
Theorem 1.4.10. Assume that λ1 = 0 > λ2. Let Px = (x|e1)e1 (i.e. P is the
orthogonal projection onto C · e1). Show that

‖T (t)− P‖ ≤ eλ2t (t ≥ 0) .

In particular, lim
t→∞

T (t) = P in L(H).

Exercise 3.2.5. Let TN be the semigroup generated by the Neumann Laplacian on
L2(a, b). Consider the operator P on L2(a, b) given by

Pf =
1

b− a

∫ b

a

f(x)dx · 1(a,b) .

Show that there exists ε > 0 such that

‖TN (t)− P‖ ≤ e−εt (t ≥ 0) . (3.6)

In fact, one may choose −ε = λ2, the second eigenvalue of ∆N . Compute λ2

(choosing a = 0 < b).

Hint: Use Exercise 2.4.

We will study these examples further and give interpretations of the physical
models they describe. But first we want to generalize our method in order to treat
further boundary conditions.
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3.3 Classical solutions

In this section we want to find classical solutions of the heat equation

ut(t, x) = uxx(t, x) (t ∈ (0, τ ], x ∈ [a, b]) . (3.7)

Here −∞ < a < b < ∞ and τ > 0 are given. By a classical solution of (3.7)
we mean a continuous function u defined on [0, τ ] × [a, b] such that ut(t, x) :=
∂u
∂t (t, x), ux(t, x) := ∂u

∂x (t, x) and uxx(t, x) := ∂2u
∂x2 (t, x) exist and are continuous on

(0, τ)× (a, b). First we prove the parabolic maximum principle, which will give us
uniqueness. For that we consider the rectangle Qτ = [0, τ ]× [a, b] and its parabolic
boundary Γτ = {0} × [a, b] ∪ (0, τ ]× {a} ∪ (0, τ ]× {b}.

Theorem 3.3.1. Let u be a classical solution of (3.7). Then

max
Qτ

u(t, x) = max
Γτ

u(t, x) . (3.8)

Proof. a) Let ε > 0, v(t, x) = u(t, x)− εt. Then

vt(t, x) = ut(t, x)− ε = uxx(t, x)− ε = vxx(t, x)− ε < vxx(t, x) . (3.9)

Let 0 < % < τ . We show that sup
Q%

v = sup
Γ%

v. If not, there exist t0 ∈ (0, %] and x0 ∈

(a, b) such that v(t0, x0) = max
Q%

v(t, x). Hence vt(t0, x0) ≥ 0 and vxx(t0, x0) ≤ 0.

This contradicts (3.8).
Since % < τ was arbitrary, it follows that sup

Qτ

v = sup
Γτ

v.

b) We have shown that for all ε > 0

max
Qτ

{u(t, x)− εt} = max
Γτ

{u(t, x)− εt} .

This implies (3.8).

If we suppose Dirichlet boundary conditions, the parabolic maximum prin-
ciple implies uniqueness of the initial value problem. The results on semigroups
and selfadjoint operators of the previous sections give us existence. Recall that
R+ = [0,∞).

Theorem 3.3.2. Let f ∈ C[a, b] such that f(a) = f(b) = 0. Then there exists a
unique function

u ∈ C(R+ × [a, b]) ∩ C∞((0,∞)× [a, b])

such that

ut(t, x) = uxx(t, x) (t > 0, x ∈ [a, b]) ; (3.10)
u(t, a) = u(t, b) = 0 (t > 0) ; (3.11)
u(0, x) = f(x) (x ∈ [a, b]) . (3.12)
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Proof. Uniqueness follows directly from Theorem 3.3.1. In fact, if u1, u2 are two
solutions, then for τ > 0, u = u1 − u2 satisfies (3.7) and vanishes on Γτ . Hence
u(t, x) ≤ 0 by Theorem 3.3.1. For the same reason u2 − u1 ≤ 0. Hence u = 0.
Existence. Let A be the Dirichlet Laplacian and T the semigroup generated by A.
Let f ∈ C[a, b]. Since T is differentiable, v = T (·)f ∈ C∞((0,∞); D(Ak)) for all
k ∈ N. It follows from the definition of A that D(Ak) ⊂ H2k(a, b). By Exercise
3.1.10, H2k(a, b) ⊂ C2k−1[a, b] with continuous injection. Hence v ∈ C∞((0,∞);
Cm[a, b]) for all m ∈ N. Now let u(t, x) = v(t)(x) (t > 0, x ∈ [a, b]). It fol-
lows that u ∈ C∞((0,∞) × [a, b]) and u satisfies (3.10) and (3.11). In order
to prove that u is continuous at t = 0 we first assume that f ∈ D(A). Then
AT (t)f = T (t)Af . Hence T (·)f ∈ C(R+, D(A)). Since D(A) ⊂ C[a, b] with con-
tinuous injection it follows that T (·)f ∈ C(R+, C[a, b]). Hence u ∈ C(R+ × [a, b])
satisfies (3.12). If f ∈ C[a, b] we choose fn ∈ D(A) such that f = lim

n→∞
fn in C[a, b].

Let un(t, x) = (T (t)fn)(x). Let τ > 0. It follows from the maximum principle that
‖T (t)fn−T (t)fm‖∞ ≤ ‖fn− fm‖∞ for 0 < t ≤ τ . Hence un is a Cauchy sequence
in C([0, τ ] × [a, b]). Let u be its limit. Then u(t, x) = (T (t)f)(x) for all t > 0,
x ∈ [a, b]. Since lim

t↓0
T (t)f = f in L2(a, b) it follows that u(0, x) = f(x) a.e. Hence

u(0, x) = f(x) for all x ∈ [a, b], since both functions are continuous.

Next we discuss physical models which are described by equations (3.10),
(3.11) and (3.12). The most initiative is heat conduction. In that case we imagine
a thin homogeneous metal rod with end points a and b. Given a point x ∈ [a, b]
on the rod and a time t ≥ 0, the value u(t, x) is the temperature at the point x at
time t. The initial temperature u(0, x) = f(x) is given for each x ∈ [a, b]. Dirichlet
boundary conditions (3.11) express that the endpoints a and b of the rod are kept
at temperature 0.

Equation (3.10) may be derived as follows. The temperature in a small part
of the rod is proportional to the amount of heat divided by the volume. Imagine
the rod divided into small sections of lenght ε > 0 and let x be the midpoint
of one section. We only consider this and the two adjacent sections and assume
that the temperature is approximately constant in each section. Now the heat
flow in the section centered at x is proportional to the temperature difference
u(x + ε, t) − u(x, t) to the right neighbour section and inversely proportional to
the distance ε. Considering also the left neighbour section we obtain the following
approximate expression of change of heat with respect to time:

εut(t, x) = cε−1[u(x+ ε, t)− u(x) + u(x− ε, t)− u(x)] . (3.13)

Note that the heat in the section is the volume multiplied by the temperature; i.e.,
proportional to ε · u(t, x). Hence

ut(t, x) = cε−2[u(t, x+ ε) + u(t, x− ε)− 2u(t, x)] . (3.14)
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Letting ε ↓ 0, by the rule of de l’Hôspital, we obtain

ut(t, x) = uxx(t, x) . (3.15)

Here the constant c > 0 is the heat conductivity of the metal. For simplicity, we
will assume c = 1, in general.

As another example one may consider diffusion of dye in a tube of water. In
that case u(t, x) is the density of the dye at the point x at time t. This is why
equation (3.7) is also called the diffusion equation. Experienced colleagues say that
the diffusion equation also models the population density during the late stages of
a large party in a narrow room.

One may also consider Neumann boundary conditions

ux(t, a) = ux(t, b) = 0 (t > 0) (3.16)

instead of Dirichlet boundary conditions. In the case where we describe heat con-
duction, they signify that the rod is insulated. If we consider party population,
Neumann boundary conditions signify that the two doors at the end of the corridor
are closed; whereas Dirichlet boundary conditions signify that the doors allow exit
but no entrance.

Exercise 3.3.3. a) Let v ∈ C([0, τ ]; C[a, b]), u(t, x) = v(t)(x). Show that u ∈
C([0, τ ]× [a, b]).
b) Let u ∈ C([0, τ ]× [a, b]). For t ∈ [0, τ ] let v(t) = u(t, ·). Show that v ∈ C([0, τ ];
C[a, b]).

Exercise 3.3.4. Denote by T the semigroup generated by the Dirichlet Laplacian
on L2(a, b). Show that T is positive (i.e., if f ∈ L2(a, b), f ≥ 0, then T (t)f ≥ 0).

Hint: Consider first f ∈ C[a, b]. Use Theorem 3.3.2 and Theorem 3.3.1.

Exercise 3.3.5 (arbitrary selfadjoint realisations of the Laplacian). Let A be a
selfadjoint dissipative operator on L2(a, b) such that D(A) ⊂ H2(a, b) and Af = f ′′

for all f ∈ D(A). Denote by T the C0-semigroup on L2(a, b) generated by A. Let
f ∈ L2(a, b) and u(t, x) = (T (t)f)(x) (t > 0, x ∈ [a, b]). Show that u is the unique
solution of the initial-boundary value problem

u ∈ C∞((0,∞)× [a, b])
ut(t, x) = uxx(t, x) (t > 0, x ∈ [a, b])
u(t) ∈ D(A) (t > 0)
lim
t↓o

u(t, ·) = f in L2(a, b)

(3.17)

Hint: Use the proof of Theorem 3.3.2 and Theorem 2.3.4.
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Exercise 3.3.6 (Neumann boundary conditions). Let f ∈ L2(a, b). Show that there
exists a unique function u ∈ C∞((0,∞)× [a, b]) satisfying (3.10), (3.16) such that

lim
t↓0

u(t, ·) = f in L2(a, b) .

Use Exercise 3.3.5.

Exercise 3.3.7 (The Dirichlet Laplacian on C0(a, b)). Let C0(a, b) := {f ∈ C[a, b] :
f(a) = f(b) = 0}. Let T be the semigroup generated by the Dirichlet Laplacian on
L2(a, b). Show that T (t)L2(a, b) ⊂ C0(a, b) (t > 0) and that T0(t) := T (t)|C0(a,b)

defines a differentiable C0-semigroup on C0(a, b). Determine the generator of T0.

3.4 Variational Methods: The symmetric case

It looks like hazard that the range condition for the Dirichlet and Neumann Lapla-
cian can be proved with help of the Riesz-Fréchet lemma. At least, it shows that
the scalar product in the first Sobolev space and the Laplacian fit well together.
However, it turns out that this simple method can be applied in much more gen-
eral situations.
For this reason we interrupt our investigation of the Laplacian in dimension 1 to
introduce a more general framework. It will then be tested by considering more
general boundary conditions for the Laplacian on an interval.

Let V be a complex vector space. A sesquilinear form on V is a mapping
a : V × V → C satisfying

a(x1 + x2, y) = a(x1, y) + a(x2, y) ;
a(x, y1 + y2) = a(x, y1) + a(x, y2) ;

a(λx, y) = λa(x, y)
a(x, λy) = λ̄a(x, y)

for all x, y, x1, x2, y1, y2 ∈ V, λ ∈ C. In other words, a(·, y) : V → C is linear and
a(y, ·) : V → C is antilinear for all y ∈ V . Frequently, we simply use the word form
instead of sesquilinear form. A form a is called symmetric if

a(x, y) = a(y, x) (x, y ∈ V ) . (3.18)

In that case, a(x, x) ∈ R for all x ∈ V . A positive form is a symmetric sesquilinear
form a satisfying

a(x, x) ≥ 0 (x ∈ V ) . (3.19)

Frequently, the domain V of the form a is a Hilbert space in its own right with
scalar products ( | )V and norm ‖ ‖V . Then it is easy to see that a sesquilinear
form a : V × V → C is continuous if and only if

|a(x, y)| ≤M‖x‖V ‖y‖V for all x, y ∈ V (3.20)
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and some M ≥ 0. Moreover, the sesquilinear form a is called coercive if for some
α > 0

Re a(x, x) ≥ α‖x‖2V (x ∈ V ) . (3.21)

Thus, given a Hilbert space V , a symmetric, continuous, coercive form a is the
same as an equivalent scalar product on V ; i.e., a scalar product defining an equiv-
alent norm.

So far we considered a continuous sesquilinear form a on a Hilbert space V .
A concrete example we have in mind is

V = H1(a, b) , a(f, g) =
∫ b

a

f ′ḡ′dx .

However this form is not coercive (since a(1, 1) = 0). Here H1(a, b) is continuously
injected into the Hilbert space L2(a, b) and the form a1(f, g) =

∫ b

a
f ′ḡ′dx+

∫ b

a
fḡdx

is coercive. We introduce the notion of “ellipticity” to describe this situation:
Assume that V and H are Hilbert spaces with scalar products ( | )V , ( | )H , and
norms ‖ ‖V and ‖ ‖H . We write V ↪→ H if V is continuously embedded into H;
i.e. V ⊂ H and

‖x‖H ≤ c‖x‖V (x ∈ V )

for some constant c ≥ 0. We write V ↪→
d

H if in addition V is dense in H. Now

assume that V ↪→ H. Let a : V × V → C be a continuous sesquilinear form. We
say that a is H-elliptic or elliptic with respect to H if for some w ∈ R and some
α > 0,

Re a(x, x) + w(x |x)H ≥ α‖x‖2V (3.22)

for all x ∈ V . Note that

aw(x, y) := a(x, y) + w(x | y)H (3.23)

defines a new continuous form on V . Thus, the form a is H-elliptic if and only if
aw is coercive for some w ∈ R. If a is a symmetric form, then aw is also symmetric.
Thus a is H-elliptic if and only if aw defines an equivalent scalar product on V for
some w ∈ R. We note the following simple fact.

Exercise 3.4.1. Let V ↪→ H and let a : V × V → C be a positive H-elliptic form.
Then aw is an equivalent scalar product on V for all w > 0.

Theorem 3.4.2. Let H, V be a Hilbert space such that V ↪→
d

H. Let a : V ×V → C

be a positive, continuous form which is H-elliptic. Define the operator A on H by

D(A) = {x ∈ V : ∃ y ∈ H such that a(x, ϕ) = (y|ϕ)H ∀ ϕ ∈ V }
Ax = −y .

Then A is selfadjoint and dissipative. Thus A generates a C0-semigroup T on H.
We call A the operator and T the semigroup associated with a.
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Note that the operator A is well-defined. In fact, if x ∈ V and y1, y2 ∈ H
such that a(x, ϕ) = (y1 |ϕ)H = (y2 |ϕ)H for all ϕ ∈ V , then (y1 − y2 |ϕ)H = 0 for
all ϕ ∈ V . Since V is dense in H, this implies that y1 − y2 = 0.

Proof of Theorem 3.4.1. Let x1, x2 ∈ D(A). Then (Ax1 |x2)H = −a(x1, x2) =
−a(x2, x1) = (Ax2 |x1)H = (x1 |Ax2)H . ThusA is symmetric. Moreover, (Ax1 |x1) =
−a(x1, x1) ≤ 0. Hence A is dissipative. It remains to show the range condition.
Recall that

a1(x, y) = a(x, y) + (x|y)H

defines an equivalent scalar product on V (see Exercise 3.4.1). Let y ∈ H. Then
F (ϕ) = (ϕ | y)H defines a continuous linear form on V (since V ↪→ H). By the
Riesz-Fréchet lemma there exists a unique x ∈ V such that a1(ϕ, x) = (ϕ | y)H for
all ϕ ∈ V . Hence a(x, ϕ) = a1(x, ϕ)− (x |ϕ)H = (y − x |ϕ)H for all ϕ ∈ V . Thus
x ∈ D(A) and Ax = x− y. We have shown that I −A is surjective.

Exercise 3.4.3. Let H = L2(a, b). Let V = H1
0 (a, b) or V = H1(a, b) and let

a(f, g) =
∫ b

a
f ′ḡ′dx. Then V ↪→

d
H and a is a continuous, positive, H-elliptic form.

The operator associated with a is the Dirichlet Laplacian in the case V = H1
0 (a, b)

and the Neumann Laplacian if V = H1(a, b).

Using the spectral theorem we now show that every dissipative operator is
associated with a positive form. It will be convenient to introduce the following
terminology. The analogy to the notion of closed operators will be made clear later.

Definition 3.4.4. Let H be a Hilbert space. A closed positive form on H is a couple
(V, a) where V is a Hilbert space such that V ↪→

d
H and a : V × V → C is a

continuous, positive sesquilinear form which is H-elliptic.

Theorem 3.4.5. Let H be a separable Hilbert space and A a dissipative selfadjoint
operator on H. Then there exists a unique positive closed form (V, a) on H such
that A is associated with V, a.

Proof. We first show uniqueness. Let (V, a) be a closed positive form such that A
is associated with a. Then a1(x, y) = a(x, y)+ (x | y)H defines an equivalent scalar
product on V . We show that D(A) is dense in V . Let y ∈ V such that a1(x, y) = 0
for all x ∈ D(A). We have to show that y = 0. By the definition of A we have
(−Ax | y)H +(x | y)H = 0 for all x ∈ D(A). Since I−A is surjective, it follows that
y = 0.
Since a1(x, x)1/2 = (‖Ax‖2H + ‖x‖2H)1/2 and a(x, y) = −(Ax | y)H for all x, y ∈
D(A), uniqueness of (V, a) follows from the density D(A) in V . In order to show
existence we use the spectral theorem. It allows us to assume that H = L2(Y,Σ, µ),
Af = m · f , D(A) = {f ∈ H : m · f ∈ H} where (Y,Σ, µ) is a finite measure space
and m : Y → [0,∞) is measurable. Let

V = {f ∈ L2(Y,Σ, µ) :
∫
Y

m|f |2dµ <∞}
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with scalar product

(f | g)V =
∫
Y

fḡ(1 + m)dµ .

Then V is a Hilbert space such V ↪→
d

H. Moreover,

a(f, g) =
∫
Y

fḡmdµ

defines a closed positive form (V, a) on H. It is easy to see that A is associated
with (V, a).

Remark 3.4.6. In the situation of Theorem 3.4.5 we use the following terminology:
Let A be a selfadjoint dissipative operator. Then we call (V, a) the form associated
with A.

Of special interest is the case where A has compact resolvent. We assume
throughout that H is a separable Hilbert space.

Theorem 3.4.7. Let (V, a) be a closed, positive form on H. The operator A as-
sociated with a has compact resolvent if and only if the embedding V ↪→ H is
compact.

Proof. 1. Considering D(A) with the graph norm the embedding D(A) ↪→ V is
continuous. This is clear since a1(x, x)1/2 is an equivalent norm on V , but also
follows from Exercise 3.1.9. If the injection V ↪→ H is compact, then D(A) ↪→ H
is compact as composition of a compact and a continuous mapping.
2. The converse follows from the spectral theorem. The details are worked out in
Exercise 3.4.10.

As a concrete example we now consider the Laplacian with Robin’s boundary
conditions, which are also called boundary conditions of the third kind.

Theorem 3.4.8 (the Laplacian with Robin’s boundary conditions). Let α, β ≥ 0.
We define the operator A on L2(0, 1) by

D(A) = {f ∈ H2(0, 1) : f ′(1) = −βf(1) , f ′(0) = αf(0)}
Af = f ′′ .

Then A is a selfadjoint dissipative operator with compact resolvent.

Proof. 1. In order to find the form associated with A note that for f, g ∈ D(A),

a(f, g) = −(Af | g) =
∫ 1

0

f ′′ḡdx

= −f ′(1)ḡ(1) + f ′(0)ḡ(0) +
∫ 1

0

f ′ḡ′dx

= βf(1)ḡ(1) + αf(0)ḡ(0) +
∫ 1

0

f ′ḡ′dx .
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This leads us to defining the form (V, a) by V = H1(0, 1), a(f, g) = βf(1)ḡ(1) +
αf(0)ḡ(0) +

∫ 1

0
f ′ḡ′dx. Since H1(0, 1) ↪→ C[0, 1] it follows that a : V × V → C is

continuous. It is clear that a is symmetric and positive. Since a(f, f) + (f | f)L2 ≥
‖f‖2H1 , the form is elliptic with respect to L2(0, 1).
2. Let B be the operator associated with a. We show that A = B. Let f ∈ D(A),
Af = g. Then for ϕ ∈ V = H1(0, 1), −(g |ϕ)L2 = −

∫ 1

0
f ′′ϕ̄dx = −f ′(1)ϕ̄(1) +

f ′(0)ϕ̄(0)+
∫ 1

0
f ′ϕ̄′dx = a(f, ϕ). Thus f ∈ D(B) and Bf = g. We have shown that

A ⊂ B.
Conversely, let f ∈ D(B), Bf = g. Then

−
∫ 1

0

gϕ̄dx = βf(1)ϕ̄(1) + αf(0)ϕ̄(0) +
∫ 1

0

f ′ϕ̄′dx (3.24)

for all ϕ ∈ H1(0, 1). In particular, −
∫ 1

0
gϕdx =

∫ 1

0
f ′ϕ′dx for all ϕ ∈ C1

c (0, 1).
This implies that f ′ ∈ H1(0, 1) and f ′′ = g. Now introducing this into (3.24) gives∫ 1

0

f ′ϕ̄′dx− f ′(1)ϕ̄(1) + f ′(0)ϕ̄(0) = −
∫ 1

0

f ′′ϕ̄dx

= −
∫ 1

0

gϕ̄dx = βf(1)ϕ̄(1) + αf(0)ϕ̄(0) +
∫ 1

0

f ′ϕ̄′dx .

Hence −f ′(1)ϕ̄(1) + f ′(0)ϕ̄(0) = βf(1)ϕ̄(1) +αf(0)ϕ̄(0) for all ϕ ∈ H1(0, 1). This
implies that f ′(1) = −βf(1) and f ′(0) = αf(0). Thus f ∈ D(A) and Af = Bf .

Note that Robin’s boundary conditions contain Neumann’s boundary condi-
tions (choosing α = β = 0) but not Dirichlet boundary conditions.

Exercise 3.4.9 (mixed boundary conditions). Let α ≥ 0. Define the operator A on
L2(0, 1) by

D(A) = {f ∈ H2(0, 1) : f(1) = 0 , f ′(0) = αf(0)}
Af = f ′′ .

Show that A is selfadjoint and dissipative.

Exercise 3.4.10. Let A be a selfadjoint, dissipative operator with compact resolvent.
By the spectral theorem we can assume that H = `2, Ax = (−λnxn)n∈N, D(A) =
{x ∈ `2 : (λnxn)n∈N ∈ `2} where λn ≥ 0, lim

n→∞
λn = ∞.

a) Show that A is associated with the positive form (V, a) given by

V = {x ∈ `2 :
∞∑

n=1

λn|xn|2 <∞}

(x | y)V =
∑
n∈N

(λn + 1)xnyn ;

a(x, y) =
∑

λnxnyn .
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b) Show that the embedding V ↪→ H is compact.

Exercise 3.4.11 (periodic boundary conditions). Define the operator A on L2(0, 1)
by

D(A) = {f ∈ H2(0, 1) : f(0) = f(1) , f ′(0) = f ′(1)}
Af = f ′′ .

Show that A is selfadjoint, dissipative and has compact resolvent.

Exercise 3.4.12 (antiperiodic boundary condtions). Define A on L2(0, 1) by

D(A) = {f ∈ H2(0, 1) : f(0) = −f(1) , f ′(0) = −f ′(1)}
Af = f ′′ .

Show that A is selfadjoint, dissipative and has compact resolvent.



46 3. THE LAPLACIAN IN DIMENSION 1



Chapter 4

The Laplacian on open sets in
Rn

In this chapter we study the Laplacian on L2(Ω) where Ω ⊂ Rn is an open set. Mo-
tivated by the 1-dimensional examples we consider Dirichlet and Neumann boun-
dary conditions. They define selfadjoint realisations of the Laplacian on L2(Ω).
The semigroups generated by these operators give the solution of the heat equa-
tion with these two different boundary conditions. We use Sobolev imbedding to
prove that the solutions are regular in the interiour of Ω. For the Dirichlet Lapla-
cian we also obtain semigroups on Lp(Ω) (1 ≤ p ≤ ∞). We study monotonicity
properties of the corresponding semigroup with respect to the domain. As a con-
sequence, we establish the existence of a Green’s function, which one frequently
calls the heat kernel defined by the Dirichlet Laplacian. All these properties are
quite easy to obtain directly for Dirichlet boundary conditions. However, in the
case of Neumann boundary conditions more elaborate techniques are necessary.
Those will be presented in the subsequent chapters.

4.1 The Dirichlet and Neumann Laplacian on open sets
in Rn

We start introducing the first Sobolev space on an open set of Rn. Not much more
than the definition is needed to show that the Laplacian with Dirichlet or Neu-
mann boundary conditions generates a C0-semigroup.

First we introduce some notation. Let Ω ⊂ Rn be an open set. The space

47
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Lp(Ω), 1 ≤ p ≤ ∞, is understood with respect to Lebesgue measure. We define

L1
loc(Ω) = {f : Ω → C measurable :

∫
K

|f(x) | dx <∞ for all compact K ⊂ Ω} .

C(Ω) := {f : Ω → C continuous} ,
C(Ω̄) := {f : Ω̄ → C continuous} ,
Ck(Ω) := {f : Ω → C : k-times continuously differentiable} ,

where k ∈ N. For f ∈ C1(Ω) we let Djf = ∂f
∂xj

(j = 1, . . . , n). By Cc(Ω) we
denote the space of all continuous functions f : Ω → C such that the support
suppf = {x ∈ Ω : f(x) 6= 0}− is a compact subset of Ω. We let

Ck
c (Ω) := Ck(Ω) ∩ Cc(Ω) ,

C∞(Ω) :=
⋂
k∈N

Ck(Ω) ; and by

D(Ω) := C∞(Ω) ∩ Cc(Ω)

we denote the space of all test functions. Let f ∈ C1(Ω), ϕ ∈ C1
c (Ω). Then

−
∫
Ω

fDjϕdx =
∫
Ω

Djfϕdx . (4.1)

We use this relation (4.1) to define weak derivatives.

Definition 4.1.1. Let f ∈ L1
loc(Ω). Let j ∈ {1, . . . , n}. A function g ∈ L1

loc(Ω) is
called the weak j-th partial derivative of f (in Ω) if

−
∫
Ω

fDjϕdx =
∫
Ω

gϕdx

for all ϕ ∈ D(Ω). Then we set Djf := g.

Note that the weak j-th partial derivative is unique. Here we identify func-
tions in L1

loc(Ω) which coincide almost everywhere. We let

W (Ω) = {f ∈ L1
loc(Ω) : the weak derivative Djf ∈ L1

loc(Ω) exists for all j = 1, . . . , n} .

Note that Lp(Ω) ⊂ L1
loc(Ω) for all 1 ≤ p ≤ ∞. Now we define the first Sobolev

space H1(Ω) by

H1(Ω) := {f ∈ L2(Ω) ∩W (Ω) : Djf ∈ L2(Ω) j = 1, . . . , n} .

Proposition 4.1.2. The space H1(Ω) is a separable Hilbert space for the scalar
pro-duct

(f | g)H1(Ω) =
∫
Ω

fḡdx+
n∑

j=1

∫
DjfDj ḡdx .
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Proof. Consider the separable Hilbert space H = L2(Ω)n+1 with norm

‖(u0, u1, . . . , un)‖2H =
n∑

j=0

∫
|uj |2dx .

Then Φ : H1(Ω) → H, f 7→ (f,D1f, . . . , Dnf) is isometric and linear. Thus
it suffices to show that the image of Φ is closed. Let fk ∈ H1(Ω) such that
lim

k→∞
Φ(fk) = (f, g1, . . . , gn) in H. Then lim

k→∞
fk = f and lim

k→∞
Djfk = gj in L2(Ω)

(j = 1, . . . , n). Let ϕ ∈ C1
c (Ω). Then by the dominated convergence theorem

−
∫
Ω

Djϕfdx = lim
k→∞

(−
∫
Ω

Djϕfkdx)

= lim
k→∞

∫
Ω

ϕDjfkdx

=
∫
Ω

ϕgjdx .

Thus gj is the weak j-th partial derivative of f and Φ(f) = (f, g1, . . . , gn).

Next we talk about Dirichlet boundary conditions. If n ≥ 2, then H1(Ω) is
no longer a subspace C(Ω) (see Exercise 4.1.15). Thus the elements of H1(Ω) are
merely equivalence classes; we identify functions which coincide almost everywhere.
So we cannot define H1

0 (Ω) as we did when Ω is a bounded interval. In fact, in
general ∂Ω will be of measure 0, so it does not make sense to talk about the
restriction to ∂Ω for functions in H1(Ω). This leads us to the following definition:

H1
0 (Ω) = D(Ω)

H1(Ω)
;

i.e., H1
0 (Ω) is the closure of D(Ω) in H1(Ω).

Later we will investigate further properties of H1
0 (Ω) and show that this def-

inition coincides with the one given in Chapter 3 if Ω is an interval.

Now we want to introduce the Dirichlet Laplacian. For f ∈ C2(Ω) we define
the Laplacian ∆f by

∆f =
n∑

j=1

D2
jf .

Similarly as for the first order derivatives we define the weak Laplacian as follows.
Let f ∈ L1

loc(Ω), g ∈ L1
loc(Ω). We say that ∆f = g weakly, if∫

Ω

∆ϕfdx =
∫
Ω

ϕgdx (4.2)
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for all ϕ ∈ D(Ω). In that case we write

∆f = g weakly (on Ω) .

Remark 4.1.3. a) Again g is unique up to a set of measure 0.
b) In the language of distributions, (4.2) just means that the distribution ∆f equals
g.

For f ∈ W (Ω) we denote by gradf(x) = ∇f(x) = (D1f(x), . . . , Dnf(x)) the

gradient of f . For x, y ∈ Rn we dentoe by x·y =
n∑

j=1

xjyj the scalar product in Rn.

Similarly, for f, g ∈W (Ω) we let ∇f · ∇g =
n∑

j=1

Djf ·Djg.

Theorem 4.1.4 (the Dirichlet Laplacian). Define the operator A on L2(Ω) by
D(A) = {f ∈ H1

0 (Ω) : there exists g ∈ L2(Ω) such that ∆f = g weakly}.

Af = ∆f .

Then A is a selfadjoint, dissipative operator. We denote A by ∆D
Ω and call A the

Laplacian with Dirichlet boundary conditions or simply the Dirichlet Laplacian.

Proof. Let V = H1
0 (Ω). Then V ↪→

d
L2(Ω). Define a : V × V → C by

a(f, g) =
∫
Ω

∇f · ∇ḡdx .

Then |a(f, g)| ≤ (
∫
Ω

(|∇f |2 dx)1/2(
∫
|∇g|2dx)1/2

≤ ‖f‖H1
0
· ‖g‖H1

0
.

Moreover, a(f, f) + ‖f‖2L2 = ‖f‖2
H1

0
. Thus a is a closed positive form on L2(Ω).

Denote by B the operator associated with a. Let f ∈ D(B), Bf = g. Then

(g |ϕ)L2 = −a(f, ϕ) = −
n∑

j=1

∫
Ω

DjfDjϕ̄dx

=
∫
Ω

f∆ϕ̄dx

for all ϕ ∈ D(Ω). Thus ∆f = g weakly. Conversely, let f ∈ H1
0 (Ω) such that there

exists g ∈ L2(Ω) such that ∆f = g weakly. Then for all ϕ ∈ D(Ω)

−a(f, ϕ) = −
n∑

j=1

∫
Ω

DjfDjϕ̄dx

=
∫
Ω

f∆ϕ̄dx

=
∫
Ω

gϕ̄dx .
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Since D(Ω) is dense in H1
0 (Ω), this identity remains true for all ϕ ∈ H1

0 (Ω). Thus
f ∈ D(∆D

Ω ) and ∆D
Ω f = g. We have shown that B = ∆D

Ω .

Thus the operator ∆D
Ω generates a contractive C0-semigroup of selfadjoint

operators on L2(Ω). We sometime use the symbolic notation

et∆Ω := T (t) (t ≥ 0) .

This semigroup governs the heat equation with Dirichlet boundary conditions.
Indeed, if f ∈ L2(Ω), then u(t) = et∆D

Ω f is the unique solution of
u ∈ C∞((0,∞);L2(Ω)) ∩ C([0,∞);L2(Ω))
u(t) ∈ H1

0 (Ω) (t > 0)
u̇(t) = ∆u(t) weakly
u(0) = f .

This follows from Theorem 2.3.4. In fact, we will see later that u is a classical
solution.

Next we consider Neumann boundary conditions. It is remarkable that they
can be defined for arbitrary open sets.

Theorem 4.1.5 (the Neumann Laplacian). Let Ω ⊂ Rn be open. Define the operator
A on L2(Ω) by

D(A) = {f ∈ H1(Ω) : there exists g ∈ L2(Ω) such that

−
∫
Ω

∇f∇ϕdx =
∫
Ω

gϕdx for all ϕ ∈ H1(Ω)}

Af = g .

Then A is selfadjoint and dissipative. We call A the Laplacian with Neumann
boundary conditions or simply the Neumann Laplacian. We denote the operator
by ∆N

Ω .

Proof. The operator A is associated with the positive closed form (V, a) where
V = H1(Ω) and a(f, g) =

∫
Ω

∇f∇ḡ.

Remark that
∆N

Ω f = ∆f weakly

for all f ∈ D(∆N
Ω ). This follows clearly from the definition.

We saw in Theorem 3.2.2 and Exercise 3.4.3 that in the case where n = 1
and Ω = (a, b) then

D(∆N
Ω ) = {f ∈ H1(a, b) : f ′(a) = f ′(b) = 0} .
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This justifies the name of “Neumann Laplacian”. In higher dimension the boundary
conditions are satisfied in a weak form. We make this more precise in the following
remark.

Remark 4.1.6 (comparison of classical and weak Neumann boundary conditions).
Assume that Ω ⊂ Rn is open, bounded with boundary of class C1. Recall Green’s
formula ∫

Ω

∆fgdx =
∫

∂Ω

∂f

∂ν
g dσ −

∫
Ω

∇f∇gdx (4.3)

(f ∈ C2(Ω̄), g ∈ C1(Ω̄)), where σ denotes the surface measure on ∂Ω. By ν(x)
we denote the exteriour normal in each x ∈ ∂Ω; and for f ∈ C1(Ω̄), ∂f

∂ν (x) =
∇f(x) · ν(x) is the normal derivative of f in x ∈ ∂Ω. Now define the operator B
on L2(Ω) by

D(B) = {f ∈ C2(Ω̄) :
∂f

∂ν |∂Ω

= 0} ,

Bf = ∆f .

Then (a) B ⊂ ∆N
Ω and

(b) C2(Ω̄) ∩D(∆N
Ω ) ⊂ D(B) .

Proof. a) Let f ∈ D(B). Then by (4.3), −(∆f |ϕ) =
∫
Ω

∇f∇ϕdx for all ϕ ∈ C1(Ω̄).

Since Ω is of class C1, the space C1(Ω̄) is dense in H1(Ω) (see [Bre87, Corollaire
IX.8, p. 162] ). Hence, going to the limit yields

−(∆f |ϕ) =
∫
Ω

∇f∇ϕdx = a(f, ϕ)

for all ϕ ∈ H1(Ω). Hence f ∈ D(∆N
Ω ) and ∆N

Ω f = ∆f .
b) Let f ∈ C2(Ω̄) ∩D(∆N

Ω ). Then∫
Ω

∆fϕ = −
∫
Ω

∇f∇ϕdσ

for all ϕ ∈ C1(Ω̄). Comparison with (3) shows that
∫

∂Ω

∂f
∂νϕdσ = 0 for all ϕ ∈ C1(Ω̄).

This implies ∂f
∂ν = 0 on ∂Ω.

The operator ∆N
Ω generates a C0-semigroup T on L2(Ω). We frequently use

the notation
et∆N

Ω := T (t) (t > 0) .

This semigroup governs the heat equation with Neumann boundary conditions.
Later we will see that also in this case solutions are of class C∞ in space and time.
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A natural question occurs: If Ω = Rn, then there is no boundary. So one expects
that the Dirichlet and Neumann Laplacian coincide in this case. We will give a
proof of this and related results introducing the technique of regularisation which
will also be useful later.

First we recall Young’s inequalities for convolution.

Proposition 4.1.7. Let f ∈ L1(Rn), g ∈ Lp(Rn) where 1 ≤ p ≤ ∞. Then

f ∗ g(x) =
∫

Rn

f(x− y)g(y)dy

exists for almost all x ∈ Rn as Lebesgue integral and defines a function f ∗ g ∈
Lp(Rn). Moreover,

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p .

We deduce from this that also H1(Rn) is invariant by convolution.

Proposition 4.1.8. Let h ∈ L1(Rn), f ∈ H1(Rn), then h ∗ f ∈ H1(Rn) and

Dj(h ∗ f) = h ∗Djf (j = 1, . . . , n) .

Proof. By Proposition 4.3.1 we have h ∗ f , h ∗ Djf ∈ L2(Rn). We show that
Dj(h ∗ f) = h ∗Djf weakly. Let ϕ ∈ D(Rn). Then by Fubini’s theorem

−
∫

Rn

Djϕ(h ∗ f)dx =

−
∫

Rn

(Djϕ)(x)
∫

Rn

f(x− y)h(y)dydx =

−
∫

Rn

∫
Rn

(Djϕ)(x)f(x− y)dxh(y)dy =

−
∫

Rn

∫
Rn

∂

∂xj
ϕ(x+ y)f(x)dxh(y)dy =∫

Rn

∫
Rn

ϕ(x+ y)Djf(x)dxh(y)dy =∫
Rn

∫
Rn

ϕ(x)Djf(x− y)dxh(y)dy =∫
Rn

(h ∗Djf)(x)ϕ(x)dx .

This proves the claim.
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Now let f ∈ L1
loc(Rn). Then for ρ ∈ D(Rn),

ρ ∗ f(x) =
∫

Rn

f(y)ρ(x− y)dy

=
∫

suppρ

f(x− y)ρ(y)dy

defines a function ρ ∗ f ∈ C∞(Rn) and

Dj(ρ ∗ f) = Djρ ∗ f (j = 1, . . . , n)

by the usual rules allowing the commutation of integral and differentiation.

Definition 4.1.9. Let 0 ≤ ρ ∈ D(Rn) such that suppρ ⊂ B(0, 1) = {x ∈ Rn :
|x| < 1} and

∫
Rn

ρ(x)dx = 1. Let ρk(x) = knρ(k · x) (x ∈ Rn). Then ρk ∈ D(Rn)∫
Rn

ρkdx = 1 and suppρk ⊂ B(0, 1/k). We call (ρk)k∈N a regularizing sequence or

mollifier.

The following property is well-known.

Proposition 4.1.10. Let f ∈ Lp(Rn). Then ρk ∗ f ∈ Lp(Rn) and lim
k→∞

ρk ∗ f = f in

Lp(Rn) (1 ≤ p <∞).

Lemma 4.1.11. Let f ∈ H1(Ω) such that f(x) = 0 for x ∈ Ω \K where K ⊂ Ω is
compact. Then f ∈ H1

0 (Ω).

Proof. Let fk = ρk ∗ f . Then fk ∈ D(Ω) if k > dist(K, ∂Ω)−1. Moreover, fk → f
(k →∞) in H1(Ω) by Proposition 4.1.10.

Proposition 4.1.12. One has H1
0 (Rn) = H1(Rn). Consequently, ∆D

Rn = ∆N
Rn .

Proof. Let f ∈ H1(Rn). Let ξ ∈ D(Rn) such that suppξ ⊂ B(0, 2), 0 ≤ ξ(x) ≤ 1
(x ∈ Rn) and ξ(x) = 1 for x ∈ B(0, 1). Let ξk(x) = ξ(x/k). Then fk = ξkf ∈
H1(Rn) and Djfk = (Djξk)f + ξkDjf (see Exercise 4.1.15 a)). Since Djξk(x) =
1
kDjξ(x/k) it follows from the dominated convergence theorem that fk → f in
H1(Rn). Since fk ∈ H1

0 (Rn) by Lemma 4.1.11, it follows that f ∈ H1
0 (Rn).

The next two exercises concern the Dirichlet or Neumann Laplacian. The
others give more information on Sobolev spaces and weak derivatives.

Exercise 4.1.13. Give a direct proof of Theorem 4.1.4 without using forms as for
Theorem 3.2.2.
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Exercise 4.1.14. Let Ω1,Ω2 be two disjoint open subsets of Rn,Ω = Ω1 ∪Ω2. Then
L2(Ω) = L2(Ω1) ⊕ L2(Ω2). Denote by T, T1, T2 the semigroups on L2(Ω), L2(Ω1)
and L2(Ω2) generated by the Dirichlet or Neumann Laplacian. Show that

T (t)(f1, f2) = (T1(t)f1 , T2(t)f2)

for all (f1, f2) ∈ L2(Ω1)⊕ L2(Ω2).

Exercise 4.1.15. a) Let f ∈ W (Ω) and ξ ∈ C1(Ω). Show that fξ ∈ W (Ω) and
Dj(ξf) = (Djξ) · f + ξDjf .
b) Let f ∈ H1(Ω), ψ ∈ H1

0 (Ω). Show that

−
∫
Ω

Djψ · fdx =
∫
Ω

ψDjfdx , j = 1, . . . , n .

c) Let f ∈ H1(Ω), ξ ∈ W 1,∞ (i.e., ξ ∈ W (Ω) ∩ L∞(Ω) such that Djξ ∈ L∞(Ω),
j = 1, . . . n). Show that ξf ∈ H1(Ω) and

Dj(ξf) = (Djξ) · f + ξDjf (j = 1 . . . n) .

In the next exercise we show that in dimension n ≥ 2 for each open set Ω
in Rn and each a ∈ Ω there exists a function f ∈ H1(Ω) ∩ D(Ω \ {a}) such that
lim
x→a

f(x) = ∞. We recall integration of radial functions.

Remark 4.1.16 (radial functions). Let Ω = {x ∈ Rn : r1 < |x| < r2} be a ring
where 0 ≤ r1 < r2 ≤ ∞. Let f : Ω → R+ be a radial function i.e.

f(x) = g(|x|)

for some measurable function g : (r1, r2) → R+. Then

∫
Ω

fdx = σn−1

r2∫
r1

g(r)rn−1dr

where σn−1 is the surface of the sphere {x ∈ Rn : |x| = 1}.

Exercise 4.1.17 (singularities of functions in H1(Ω)). a) Let n ≥ 3, Ω = B(0, 1) :=
{x ∈ Rn : |x| < 1}. Show that there exists α > 0 such that fα ∈ H1(Ω) where

fα(x) = |x|−α .

b) Let n = 2, f(x) = (log 1
|x| )

α where 0 < α < 1
2 . Show that f ∈ H1(Ω) where

Ω = B(0, 1/2) = {x ∈ R2 : |x| < 1/2}.

Exercise 4.1.18. Show that D(Rn) is dense in H2(Rn).
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4.2 The Gaussian Semigroup

In this section we consider the Laplacian on L2(Rn). We have seen that the spec-
tral theorem allows us to transform each selfadjoint operator into a multiplication
operator by unitary equivalence. In general, the unitary transform is abstract and
cannot be described explicitely. This is different for the Laplacian on Rn; here it
is the Fourier transform which is doing the work. Another thing is remarkable.
Whereas the semigroup generated by the Dirichlet or Neumann Laplacian on an
open set cannot be given by an explicit formula, the semigroup generated by the
Laplacian on Rn is given by the Gauss kernel in very explicit form.

We start recalling some facts about the Fourier transform. If x, y ∈ Rn we

denote by x · y =
n∑

j=1

xj · yj the scalar product and let x2 = x · x. For f ∈ L1(Rn)

Ff(x) =
1

(2π)n/2

∫
Rn

e−ixyf(y)dy

is the Fourier transform of f . One has Ff ∈ C0(Rn) := {g : Rn → C continuous,
lim

|x|→∞
g(x) = 0}. Moreover ‖Ff‖2 = ‖f‖2 for all f ∈ L1(Rn)∩L2(Rn) and thus F

extends to a unitary mapping from L2(Rn) onto L2(Rn), the Plancherel transform,
which we still denote by F . For f ∈ L1(Rn) ∩ L2(Rn), F−1 = F∗ is given by

(F−1f)(x) = (2π)−n/2

∫
Rn

eixyf(y)dy .

We now determine the image of the Sobolev space H1(Rn) under F . For this,
consider first f ∈ C1

c (Rn). Then integration by parts yields

FDjf(x) = (2π)−n/2

∫
Rn

e−ixyDjf(y)dy

= (2π)−n/2

∫
Rn

(ixj)e−ixyf(y)dy

= ixj(Ff)(x) (x ∈ Rn) .

Proposition 4.2.1. The Plancherel transform induces an isomorphism from H1(Rn)
onto

L2(Rn; (1 + x2)dx) := {f ∈ L2(Rn) :
∫
|f(x)|2(1 + x2)dx <∞}

and (FDjf)(x) = ixjFf(x) a.e. for all f ∈ H1(Rn).
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Proof. For f ∈ C1
c (Rn) one has

‖f‖2H1(Rn) = ‖f‖2L2(Rn) +
n∑

j=1

‖Djf‖2L2(Rn)

= ‖Ff‖2L2(Rn) +
n∑

j=1

‖FDjf‖2L2(Rn)

=
∫

Rn

|Ff(x)|2dx+
n∑

j=1

∫
Rn

x2
j |Ff(x)|2dx

=
∫

Rn

(1 + x2)|Ff(x)|2dx .

Since C1
c (Rn) is dense in H1(Rn), it follows that F is an isometric isomorphism of

H1(Rn) onto a closed subspace of L2(Rn; (1 + x2)dx). Conversely, let g ∈ L2(Rn;
(1 + x2)dx). Let f = F−1g ∈ L2(Rn). Let j ∈ {1, . . . , n}. Since x 7→ ixjg(x) ∈
L2(Rn), there exists fj ∈ L2(Rn) such that Ffj(x) = ixjg(x) (x ∈ Rn). Let ϕ ∈
C1

c (Rn). Then −
∫

Rn

fDjϕdx = −
∫

Rn

(Ff)(x)F(Djϕ)dx =
∫

Rn

ixjFf(x)Fϕ(x)dx =∫
Rn

Ffj(x)Fϕ(x)dx =
∫

Rn

fjϕdx. It follows that fj = Djf weakly. This shows that

g ∈ FH1(Rn).

We define Hk(Rn) inductively by

Hk+1(Rn) := {f ∈ H1(Rn) : Djf ∈ Hk(Rn) for j = 1, . . . , n} .

Then we deduce from Proposition 4.2.1 by an inductive argument.

Corollary 4.2.2. The Plancherel transformation induces an isomorphism from Hk(Rn)
onto L2(Rn, (1 + (x2)k)dx) for all k ∈ N.

Now we define the Laplacian A on L2(Rn) by

D(A) = H2(Rn) ; Af = ∆f .

Consider the operator B = FAF−1 on L2(Rn) similar to A via Plancherel trans-
form; i.e.,

D(B) = {g ∈ L2(Rn) : F−1f ∈ D(A) = H2(Rn)}
Bg = FAF−1g .

Then B is the multiplication operator defined by −x2. More precisely,

Proposition 4.2.3. One has

D(B) = L2(Rn; (1 + (x2)2)dx)
Bg(x) = −x2g(x) .
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Proof. Let g ∈ L2(Rn). Then g ∈ D(B) if and only if F−1g ∈ D(A) = H2(Rn);
i.e., g ∈ L2(Rn; (1 + (x2)2)dx) by Corollary 4.2.2. Let f ∈ D(A). Then BFf =

FAf = F∆f = ΣFD2
jf . Hence (BFf)(x) =

n∑
j=1

(ixj)2Ff(x) = −x2(Ff)(x).

It follows that A is selfadjoint and dissipative. Hence A generates a C0-
semigroup G on L2(Rn). Moreover,

F(G(t)f)(x) = e−tx2
(Ff)(x) (t > 0 , x ∈ Rn)

for all f ∈ L2(Rn).
In order to compute G(t) we need to compute the inverse Fourier transform

of e−tx2
.

Lemma 4.2.4. Let h(x) = e−x2/2. Then

Fh = h .

Proof. a) Let n = 1, g(x) = (2π)−1/2
∫
R
e−ixye−y2/2dy. It is well-known that∫

R
e−z2

dz =
√
π. Substitung z = y/

√
2 we conclude that

g(0) = (2π)−1/2

∫
R

e−y2/2dy = (2π)−1/2

∫
R

e−z2√
2dz = 1 .

Differentiation under the integral gives

g′(x) = (2π)−1/2

∫
R

e−ixy(−iy)e−y2/2dy

= (2π)−1/2

∫
R

ie−ixy d

dy
e−y2/2dy

= −i(2π)−1/2

∫
R

d

dy
e−ixye−y2/2dy

= −xg(x) .

Hence g(x) = ce−x2/2. Since c = g(0) = 1, the claim is proved.
b) Since h(x) = e−x2

1/2 · . . . · e−x2
n/2, the result follows from a) for arbitrary dimen-

sion.

We recall that for f ∈ L1(Rn), g ∈ L2(Rn) one has

F(f ∗ g) = (2π)n/2(Ff)(Fg) .

Finally, if (Ff)(x) = 0 for all x ∈ Rn, then f = 0 in L1(Rn). Using these standard
facts, we now obtain the following
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Theorem 4.2.5. The Gaussian semigroup G on L2(Rn) is given by G(t)f = kt ∗ f
where kt(x) = (4πt)−n/2e−x2/4t; i.e.,

(G(t)f)(x) = (4πt)−n/2

∫
Rn

e−(x−y)2/4tf(y)dy x− a.e.

for all f ∈ L2(Rn).

Proof. We only have to show that Fkt(x) = (2π)−n/2e−tx2
. Using Lemma 4.2.4,

substituting z = y/
√

2t, we have

Fkt(x) = (2π)−n/2(4πt)−n/2

∫
Rn

e−ixye−y2/4tdy

= (2π)−n/2(4πt)−n/2

∫
Rn

e−iz
√

2txe−z2/2(2t)n/2dz

= (2π)−n/2Fh(
√

2tx)

= (2π)−n/2h(
√

2tx)

= (2π)−n/2e−tx2
.

Corollary 4.2.6. The operator A is associated with the positive closed form (V, a)
where V = H1(Rn) and a(f, g) =

∫
Rn

∇f∇gdx.

Proof. We know from the proof of Theorem 3.4.5 that the operator B is associated
with the form (W, b) where W = L2(Rn, (1 + x2)dx), b(k, h) =

∫
Rn

x2k(x)h(x)dx.

Since

F−1W = V and

(Ff,Fg) =
n∑

j=1

∫
ixjFf(x)ixjFg(x)dx

=
n∑

j=1

∫
F(Djf)F(Djg)dx

=
n∑

j=1

∫
DjfDjgdx

= a(f, g)

for all f, g ∈ V the claim follows (cf. Exercise 4.2.7).
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The operator A on L2(Rn) given by D(A) = H2(Rn), Af = ∆f is the
Dirichlet Laplacian on L2(Rn) (which coincides with the Neumann Laplacian by
Proposition 4.1.12).

Exercise 4.2.7. Let (Vj , aj) be a closed positive form on the Hilbert space Hj such
that Vj ↪→

d
Hj. Let Aj be the operator associated with aj on Hj and Tj the semi-

group generated by Aj. Let U : H1 → H2 be a unitary operator. The following are
equivalent:

(i) UV1 = V2 and a2(Ux,Uy) = a1(x, y) for all x, y ∈ V1;

(ii) UA1U
−1 = A2;

(iii) UR(λ,A1) = R(λ,A2)U (λ > 0);

(iv) UT1(t) = T2(t)U (t ≥ 0).

Hint: Use Euler’s formula (2.18) to prove that (iii) implies (iv).

Exercise 4.2.8. a) Let A be a selfadjoint dissipative operator on a separable Hilbert
space H. Show that −A2 is selfadjoint and dissipative.
b) Show that the operator B on L2(Rn) given by D(B) = H4(Rn), Bf = −∆2f is
dissipative and selfadjoint.
c) Show that B is unitarily equivalent to the multiplication operator on L2(Rn)

defined by m(x) = −(x2)2 = −(
n∑

j=1

x2
j )

2.

Exercise 4.2.9. Give a detailed proof of Corollary 4.2.2.

4.3 Order Properties of H1(Ω)

In this section we establish some order properties of weak derivatives. Let Ω ⊂ Rn

be an open set and let f : Ω → R be measurable. We define f+, f−, |f | : Ω → R
by f+(x) = max{f(x), 0}, f− = (−f)+, |f |(x) = max{f(x),−f(x)}. Observe that
f = f+ − f− and |f | = f+ + f−. Moreover, we define signf : Ω → R by

signf(x) =

 1 if f(x) > 0
0 if f(x) = 0
−1 if f(x) < 0 .

Thus |f | = (signf) · f . Moreover, we define {f > 0} := {x ∈ Ω : f(x) > 0} and
similarly {f < 0}. Thus signf = 1{f>0} − 1{f<0}.

Proposition 4.3.1. Let f ∈W 1(Ω). Then f+, f−, |f | ∈W 1(Ω) and

Djf
+ = 1{f>0}Djf (4.4)

Djf
− = 1{f<0}Djf (4.5)

Dj |f | = (signf) ·Djf (4.6)
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(j = 1, . . . , n).

We refer to p. 152 in D. Gilbarg, N.S. Trudinger: Elliptic Partial Differen-
tial Equations of Second Order, Springer, Berlin 1998 for the proof (which is not
difficult).

Note that the identities in Proposition 4.3.1 have to be understood in W 1(Ω);
i.e., almost everywhere on Ω. The first is equivalent to

−
∫
Ω

f+(x)Djϕ(x)dx =
∫

{f>0}

f(x)Djϕ(x)dx

for all ϕ ∈ D(Ω).

We note the following corollary:

Corollary 4.3.2. Let u ∈W 1(Ω), k ∈ R. Then

Djf(x) = 0 a.e. for x ∈ {y ∈ Ω : f(y) = k} .

Proof. Replacing f by f − k we can assume that k = 0. Since f = f+ − f− we
have Djf = Djf

+ −Djf
− = 1{f>0}Djf − 1{f<0}Djf .

Corollary 4.3.3. Let f ∈ H1(Ω). Then |f |, f+, f− ∈ H1(Ω). Moreover, if k > 0,
then (f ∧ k)(x) := min{f(x), k} defines a function f ∧ k ∈ H1(Ω) and

Dj(f ∧ k) = 1{f<k}Djf .

Proof. It follows from Proposition 4.3.1 thatDj |f | = signfDjf ,Djf
+ = 1{f>0}Djf

and Djf
− = 1{f<0}Djf ∈ L2(Ω) (j = 1, . . . n). This implies that |f |, f+, f− ∈

H1(Ω). Moreover, since f ∨ k = f + (k − f)+, one has

Dj(f ∨ k) = Djf + 1{k−f>0}Dj(k − f)
= Djf + 1{f<k}(−Djf)
= 1{f≥k}Djf

= 1{f>k}Djf

by Corollary 4.3.2. Hence Dj(f ∨ k) ∈ L2(Ω) (j = 1, . . . , n) and so f ∨ k ∈
H1(Ω).

It follows from Proposition 4.3.1 that

‖f‖H1(Ω) = ‖ |f | ‖H1(Ω) (4.7)

for all f ∈ H1(Ω).
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Remark 4.3.4. However, H1(Ω) is not a Banach lattice, since 0 ≤ f ≤ g does not
imply ‖f‖H1 ≤ ‖g‖H1 (see Exercise 4.3.8a)).

Proposition 4.3.5. The mappings f 7→ |f |, f 7→ f+ and f 7→ f− are continuous
from H1(Ω) into H1(Ω).

For the proof we use the following well-known result of measure theory which
shows that the Theorem of Dominated Convergence describes the most general case
of convergence if we are ready to pass to subsequences. It is obtained as Corollary
of the usual proof of the completeness of L2(Ω).

Lemma 4.3.6. Let fm → f in L2(Ω) (m → ∞). Then there exists a subsequence
(fmk

)k∈N and h ∈ L2(Ω) such that

(a) fmk
→ f(x) (k →∞) a.e.;

(b) |fmk
(x)| ≤ h(x) (x ∈ Ω).

Proof of Proposition 4.3.5 a) Let fm → f in H1(Ω) as m→∞. We want to show
that f+

m → f+ in H1(Ω). Let j ∈ {1, . . . n}. We have to prove that Djf
+
m → Djf

+

in L2(Ω). For that, it suffices to show that each subsequence of (fm)m∈N has a
subsequence (gk)k∈N such that Djg

+
k → Djf

+ (k →∞) in L2(Ω). Thus passing to
a subsequence by Lemma 4.3.6 we can assume that there exists a null set N ⊂ Ω
such that gk(x) → f(x), Djgk(x) → Djf(x) (k → ∞), and |Djg(x)| ≤ h(x) for
all x ∈ Ω \ N , k ∈ N where h ∈ L2(Ω). Let x ∈ Ω \ N such that f(x) > 0. Then
gk(x) > 0 for large k ∈ N. Hence by (4.4), Djg

+
k (x) = Djgk(x) → Djf(x) =

Djf
+(x) (k → ∞). Let x ∈ Ω \ N such that f(x) < 0. Then gk(x) < 0 for large

k ∈ N and Djg
+
k (x) = 0 = Djf

+(x). Since by Corollary 4.3.2 Djf(x) = 0 a.e. on
{y ∈ Ω : f(y) = 0} we conclude that Djgk(x) → Djf(x) (k → ∞) a.e. Now it
follows from the Dominated Convergence Theorem that Djgk → Djf (k →∞) in
L2(Ω).
b) We have shown that the mapping f 7→ f+ is continuous. Since f− = (−f)+

and |f | = f+ + f−, continuity of the mapping f 7→ f− and f 7→ |f | are immediate
consequences.

Corollary 4.3.7. Let f ∈ H1
0 (Ω). Then f+, f−, |f | ∈ H1

0 (Ω).

Proof. a) Let ϕ ∈ D(Ω). Then ϕ+ ∈ H1(Ω) by Proposition 4.3.1. Since ϕ+ has
compact support, it follows from Lemma 4.1.11 that ϕ+ ∈ H1

0 (Ω).
b) Let f ∈ H1

0 (Ω). Let fm ∈ D(Ω) such that fm → f in H1(Ω) as m → ∞.
Then f+

m ∈ H1
0 (Ω) by a) and lim

m→∞
f+

m → f+ in H1(Ω) by Proposition 4.3.5. Thus

f+ ∈ H1
0 (Ω). Hence also f− = (−f)+ and |f | = f+ + f− ∈ H1

0 (Ω).

Further order properties of H1(Ω) are established in the following exercises.
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Exercise 4.3.8. Let f, g ∈ H1(Ω) such that f ≤ g.
a) Show that the order interval

[f, g] = {h ∈ H1(Ω) : f ≤ h ≤ g} .

is closed in H1(Ω).
b) Show by an example that order intervals are not bounded in general.
c) Show that [f, g] ⊂ H1

0 (Ω) if f, g ∈ H1
0 (Ω).

d) Let f ∈ H1
0 (Ω), k > 0. Show that f ∧ k ∈ H1

0 (Ω).

It follows from Corollary 4.3.7 and Exercise 4.3.8 that H1
0 (Ω) is a closed ideal

of H1(Ω). Here a subspace J of H1(Ω) is called in ideal if

a) f ∈ J ⇒ |f | ∈ J and

b) 0 ≤ g ≤ f , f ∈ J , g ∈ H1(Ω) ⇒ g ∈ J .

Exercise 4.3.9. For f : Ω → R we denote by f̃ : Rn → R the extension of f by 0;
i.e.,

f̃(x) :=
{
f(x) if x ∈ Ω
0 if x ∈ Rn \ Ω

a) Let f ∈ H1
0 (Ω). Show that f̃ ∈ H1(Rn) and

Dj f̃ = D̃jf (j = 1, . . . n) .

b) Let
H̃1

0 (Ω) = {f : Ω → R : f̃ ∈ H1(Rn)} .

Show that H̃1
0 (Ω) is a closed ideal in H1(Ω) such that H1

0 (Ω) ⊂ H̃1
0 (Ω).

c) Let n = 1, Ω = (−1, 0) ∪ (0, 1). Show that H̃1
0 (Ω) can be identified with

H1
0 (−1, 1). Deduce that H̃1

0 (Ω) 6= H1
0 (Ω).

Exercise 4.3.10. Let

D(Ω)+ = {ϕ ∈ D(Ω) : ϕ ≥ 0} , H1
0 (Ω) = {f ∈ H1

0 (Ω) : f ≥ 0} .

Show that D(Ω)+
H1(Ω)

= H1
0 (Ω)+.

4.4 Positivity and Monotonicity

The aim of this section is to establish order properties of the semigroups generated
by the Dirichlet and Neumann Laplacian. First of all we show that these semi-
groups are positive.
In the case of Dirichlet boundary conditions, the semigroups are monotonic with
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respect to the domain. In particular, the semigroup is always dominated by the
Gaussian semigroup. This shows us that it is always given by a kernel, the so-called
heat kernel.

Let Ω ⊂ Rn be an open set and 1 ≤ p ≤ ∞. By Lp(Ω)+ = {f ∈ Lp(Ω) :
f ≥ 0} we denote the positive cone in Lp(Ω) (where f ≥ 0 means that f(x) ∈ R+

a.e.). A bounded operator B on Lp(Ω) is called positive (we write B ≥ 0) if
BLp(Ω)+ ⊂ Lp(Ω)+. Finally, a C0-semigroup T on Lp(Ω) is called positive if
T (t) ≥ 0 for all t ≥ 0.

Now we consider the C0-semigroups (et∆D
Ω )t≥0 and (et∆N

Ω )t≥0 on L2(Ω) gener-
ated by the Dirichlet Laplacian ∆D

Ω and the Neumann Laplacian ∆N
Ω , respectively.

Proposition 4.4.1. The semigroups (et∆D
Ω )t≥0 and (et∆N

Ω )t≥0 on L2(Ω) are positive.

Proof. Let A = ∆D
Ω or ∆N

Ω , T (t) = etA. Since by Euler’s formula (Exercise(2.4.6)),

etA = lim
n→∞

(I − t

n
A)−n

strongly, it suffices to show that R(λ,A) ≥ 0 for λ > 0. Let a(f, g) =
∫
Ω
∇f ·∇gdx

(f, g ∈ H1(Ω)). Let V = H1
0 (Ω) if A = ∆D

Ω and V = H1(Ω) in the case A = ∆N
Ω .

Let 0 ≥ f ∈ L2(Ω), u = R(λ,A)f ∈ V . It is clear that u is real-valued. We have
to show that u ≤ 0. One has

λ‖u+‖2L2 = (λu | u+)
= (λu−Au | u+) + (Au | u+)
= (f | u+)− a(u, u+) (since u+ ∈ V )
≤ −a(u, u+) (since f ≤ 0)

= −
n∑

j=1

∫
Ω
DjuDju

+dx

= −
n∑

j=1

∫
Ω
(Dju

+)2dx (by (4.4))

≤ 0 .

Hence u+ = 0; i.e., u ≤ 0.

Next we want to compare the semigroups on different open sets. For this, the
following convention is useful. If f is a scalar-valued function we identify f with its
extension by 0 to Rn. In this way L2(Ω) is a closed subspace of L2(Rn). Moreover,
f is positive in L2(Ω) if and only if it is positive as element of L2(Rn). Note also
that, we may write L2(Rn) as direct sum of L2(Ω) and L2(Ωc), the decomposition
of f ∈ L2(Rn) being given by

f = f · 1Ω + f · 1Ωc
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where Ωc = Rn \ Ω. It is an order direct sum; i.e. f ≥ 0 if and only if f · 1Ω ≥ 0
and f · 1Ωc ≥ 0.

If B is a bounded operator on Lp(Ω) we may extend B to Lp(Rn) by defining

Bf := B(1Ωf) (f ∈ Lp(Rn)) .

In that way L(Lp(Ω)) becomes a subspace of L(Lp(Rn)) such that B ≥ 0 in
L(Lp(Ω)) if and only if B ≥ 0 in L(Lp(Rn)).

If T is a semigroup on Lp(Ω), considering T (t) as operator on Lp(Rn) the
semigroup property

T (t+ s) = T (t)T (s) (t, s ≥ 0)

still holds. But T (0) is the projection onto L2(Ω) along L2(Ωc). Moreover, the
mapping t 7→ T (t) : R+ → L(Rn) is strongly continuous.

If B1, B2 are bounded operators on L2(Rn) we write B1 ≤ B2 if B2−B1 ≥ 0.
Our aim is to prove the following comparison result.

Theorem 4.4.2. a) One has always

0 ≤ et∆D
Ω ≤ et∆N

Ω . (4.8)

b) If Ω1,Ω2 ⊂ Rn are open such that Ω1 ⊂ Ω2, then

0 ≤ et∆D
Ω1 ≤ et∆D

Ω2 . (4.9)

For the proof we use the notion of positive distributions. By D(Ω)′ we denote
the space of all distributions. For u ∈ D(Ω)′ we write

u ≥ 0 if u(ϕ) ≥ 0 for all ϕ ∈ D(Ω)+ .

Here D(Ω)+ := {ϕ ∈ D(Ω) : ϕ ≥ 0}. We identify L1
loc(Ω) with a subspace of D(Ω)′

by defining uf ∈ D(Ω)′ by

uf (ϕ) =
∫

Ω

fϕdx (ϕ ∈ D(Ω))

whenever f ∈ L1
loc(Ω). Then

uf ≥ 0 if and only if f ≥ 0 .

If u ∈ D(Ω)′ the Laplacian ∆u ∈ D(Ω)′ is defined by

(∆u)(ϕ) = u(∆ϕ) (ϕ ∈ D(Ω)) .

For u, v ∈ D(Ω)′ we write

u ≤ v if and only if u(ϕ) ≤ v(ϕ) for all ϕ ∈ D(Ω)+ .

Moreover, we let H1(Ω)+ := L2(Ω)+ ∩H1(Ω).



66 4. THE LAPLACIAN ON OPEN SETS IN RN

Lemma 4.4.3. Let λ > 0, u ∈ H1
0 (Ω), 0 ≤ v ∈ H1(Ω) such that

λu−∆u ≤ λv −∆v in D(Ω)′ .

Then u ≤ v.

Proof. Let 0 ≤ ϕ ∈ D(Ω). Then∫
Ω

λuϕdx+
∫

Ω

∇u∇ϕdx ≤ λ

∫
Ω

vϕdx+
∫

Ω

∇v∇ϕdx (4.10)

for all 0 ≤ ϕ ∈ D(Ω). It follows by density that (4.10) remains true for all ϕ ∈
H1

0 (Ω)+ (see Exercise 4.3.10). Note that (u− v)+ ∈ H1
0 (Ω). In fact, let uk ∈ D(Ω)

such that uk → u in H1(Ω) as k →∞. Then (uk−v)+ has compact support, hence
(uk − v)+ ∈ H1

0 (Ω) by Lemma 4.1.11. It follows that (u− v)+ = lim
k→∞

(uk − v)+ ∈
H1

0 (Ω). Now it follows from (4.10) applied to ϕ := (u− v)+ that∫
Ω

λu(u− v)+dx+
∫

Ω

∇u∇(u− v)+dx

≤ λ

∫
Ω

v(u− v)+dx+
∫

Ω

∇v∇(u− v)+dx .

Hence ∫
Ω

λ(u− v)+2dx =
∫

Ω

λ(u− v)(u− v)+dx

≤
∫

Ω

∇(v − u)∇(u− v)+

= −
∫

Ω

|∇(u− v)+|2dx (by (4.4))

≤ 0 .

It follows that (u− v)+ ≤ 0; i.e., u ≤ v.

Proof of Theorem 4.4.2. a) Since etA = lim
n→∞

(I − t
nA)−n strongly, where A = ∆D

Ω

or A = ∆N
Ω , it suffices to show that

R(λ,∆D
Ω ) ≤ R(λ,∆N

Ω ) (λ > 0) .

Let 0 < λ and R(λ,∆D
Ω )f = u, R(λ,∆N

Ω )f = v where 0 ≤ f ∈ L2(Ω). Then
u ∈ H1

0 (Ω)+, v ∈ H1(Ω)+ and

λu−∆u = f = λv −∆v in D(Ω)′ .

It follows from Lemma 4.4.3 that u ≤ v.
b) Let λ > 0, 0 ≤ f ∈ L2(Ω1). We have to show that

u := R(λ,∆D
Ω1

)f ≤ R(λ,∆D
Ω2

)f := v .
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One has u ∈ H1
0 (Ω1)+, v|Ω1

∈ H1(Ω1) and λu−∆u = f = λv −∆v in D(Ω1)′. It
follows from Lemma 4.4.3 that u ≤ v.

It follows from Theorem 4.4.2 that

0 ≤ et∆D
Ω ≤ G(t) (t ≥ 0)

where G denotes the Gaussian semigroup on L2(Rn). From this we can deduce
that et∆D

Ω is a kernel operator. We need a simple criterion, the Dunford-Pettis
Theorem, which describes operators defined by bounded kernels.

Let k ∈ L∞(Ω× Ω). Then

(Bkf)(x) =
∫

Ω

k(x, y)f(y)dy (4.11)

defines a bounded operator Bk ∈ L(L1(Ω), L∞(Ω)) and

‖Bk‖L(L1(Ω),L∞(Ω)) ≤ ‖k‖L∞(Ω×Ω) .

If E ⊂ Rn is a Borel set we denote by |E| the Lebesgue measure of E.

Theorem 4.4.4 (Dunford Pettis). The mapping k 7→ Bk is an isometric isomor-
phism from L∞(Ω× Ω) onto L(L1(Ω), L∞(Ω)). Moreover

Bk ≥ 0 if and only if k ≥ 0 (4.12)

for all k ∈ L∞(Ω× Ω).

Proof. For f, g ∈ L1(Ω) we define f ⊗ g ∈ L1(Ω× Ω) by (f ⊗ g)(x, y) = f(x)g(y).
Then ‖f ⊗ g‖L1(Ω×Ω) = ‖f‖L1(Ω) · ‖g‖L1(Ω). It follows from the construction of the
product measure that the space

F := {
n∑

i=1

ci1Ei ⊗ 1Fi : n ∈ N , ci ∈ C , Ei, Fi ⊂ Ω measurable of finite measure}

is dense in L1(Ω× Ω). Let B ∈ L(L1, L∞). Define φ : F → C by

φ(u) =
m∑

i=1

ci

∫
Ω

(B1Ei)(y) · 1Fi(y)dy

where u =
m∑

i=1

ci1Ei ⊗ 1Fi . It is easy to see that this definition is independent of

the representation of u (see Exercise 4.4.11). Hence φ : F → C is a linear mapping.
We show that

|φ(u)| ≤ ‖B‖L(L1,L∞) · ‖u‖L1(Ω×Ω) .
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For that we can assume that Ei ∩ Ej = ∅ for i 6= j. This implies that

‖u‖L1(Ω×Ω) =
m∑

i=1

ci|Ei| |Fi| .

Hence |φ(u)| ≤
m∑

i=1

|ci| ‖B1Ei
‖L∞(Ω)‖1Fi‖L1(Ω)

≤
m∑

i=1

|ci| ‖B‖L(L1,L∞)‖1Ei‖L1‖1Fi‖L1

= ‖B‖L(L1,L∞)‖u‖L1(Ω×Ω) .

Since (L1(Ω×Ω))′ = L∞(Ω×Ω), there exists a function k ∈ L∞(Ω×Ω) such that
‖k‖L∞(Ω×Ω) ≤ ‖B‖L(L1,L∞) and

φ(u) =
∫

Ω

∫
Ω

u(y, x)k(x, y)dydx

for all u ∈ F . In particular, for simple functions f, g ∈ L1(Ω) we have∫
Ω

(Bf)gdy = φ(f ⊗ g) =
∫

Ω

∫
Ω

f(y)k(x, y)dyg(x)dx

=
∫

(Bkf)(x)g(x)dx .

It follows that Bf = Bkf for all simple functions f in L1(Ω). Hence B = Bk.
We have shown that the mapping k 7→ Bk : L∞(Ω × Ω) → L(L1(Ω), L∞(Ω)) is
surjective and isometric. Finally, since functions of the type

u =
m∑

j=1

fj ⊗ gj with fj , gj ∈ L1(Ω)+

are dense in L1(Ω × Ω)+ it follows that Bk ≥ 0 if and only if
∫

Ω×Ω

uk ≥ 0 for all

u ∈ L1(Ω× Ω)+; i.e., if and only if k ≥ 0 a.e.

Let B ∈ L(Lp(Ω)) where 1 ≤ p <∞. We define

‖B‖L(L1,L∞) := sup{‖Bf‖Lp : f ∈ L1 ∩ Lp , ‖f‖L1 ≤ 1} .

Corollary 4.4.5. Let 1 ≤ p <∞, B ∈ L(Lp(Ω)) such that

‖B‖L(L1,L∞) <∞ . (4.13)
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Then there exists a function k ∈ L∞(Ω× Ω) such that

(Bf)(x) =
∫

Ω

k(x, y)f(y)dy a.e. (4.14)

for all f ∈ L1(Ω)∩Lp(Ω). In that case B ≥ 0 if and only if k ≥ 0. Let 1 ≤ p <∞.

We say that an operatorB ∈ L(Lp(Ω)) has a bounded kernel if ‖B‖L(L1,L∞) <
∞. Then there exists a unique k ∈ L∞(Ω × Ω) such that Bf = Bkf for all
f ∈ L1(Ω) ∩ Lp(Ω). We call k the kernel of B. Note, if Ω has finite measure, then
Lp(Ω) ⊂ L1(Ω), thus B is given by (4.14) for all f ∈ Lp(Ω). It is worth it to state
explicitely the following (obvious) domination property.

Corollary 4.4.6. Let 1 ≤ p < ∞, B1, B2 ∈ L(Lp(Ω)) such that 0 ≤ B1 ≤ B2.
Assume that B2 has a bounded kernel k2. Then B1 has a bounded kernel k1 ∈
L∞(Ω× Ω) and

0 ≤ k1(x, y) ≤ k2(x, y) a.e. .

We apply the preceding results to the semigroup generated by the Dirichlet
Laplacian.

Theorem 4.4.7. Let Ω ⊂ Rn be open. Then et∆D
Ω has a bounded kernel kt satisfying

0 ≤ kt(x, y) ≤ (4πt)−n/2e−|x−y|2/4t a. e.

for all t > 0.

Proof. It follows from Theorem 4.4.2 that 0 ≤ et∆D
Ω ≤ G(t). By the results of

Section 4.3 the operator G(t) has the bounded kernel (4πt)−n/2e−|x−y|2/4t. So the
claim follows from Corollary 4.4.6.

Corollary 4.4.8. Let Ω ⊂ Rn be open of finite measure. Then the operator et∆D
Ω

is compact for every t > 0. Consequently, ∆D
Ω has compact resolvent and the

embedding
H1

0 (Ω) ↪→ L2(Ω)

is compact.

Proof. Since et∆D
Ω has a bounded kernel, it is a Hilbert-Schmidt operator. Thus

et∆D
Ω is compact for t > 0. Consequently, R(λ,∆D

Ω ) is compact for λ > 0 (see
Exercise (4.4.9c)). It follows from Theorem (3.4.7) that the injection H1

0 ↪→ L2(Ω)
is compact.

Exercise 4.4.9. Let T be a C0-semigroup on a Banach space X. Assume that T (t)
is compact for all t > 0.
a) Show that T : (0,∞) → L(X) is continuous for the operator norm on L(X).
b) Deduce that Q(λ) =

∫ 1

0
e−λtT (t)dt = lim

ε↓0

∫ 1

ε
e−λtT (t)dt is a compact operator.

c) Show that R(λ,A) is compact for all λ ∈ %(A).
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Hint: Use that (λ−A)Q(λ)x = x− e−λT (1)x.

Exercise 4.4.10. Let Ω ⊂ Rn be open of finite measure. Show that

‖et∆D
Ω ‖L(L2(Ω)) ≤ ct−n/2 (t > 0) .

Hint: Use that 0 ≤ et∆D
Ω ≤ G(t).

The next exercise gives a measure theoretic argument needed in the proof of
the Dunford-Pettis Theorem. Let Ω ⊂ Rn be open. If A is a Borel set in Ω × Ω
then it is well-known that A1(y) = {x ∈ Ω : (x, y) ∈ A} is a Borel set for all y ∈ Ω.

Exercise 4.4.11. a) Let A ⊂ Ω×Ω be a Borel set. Show that the following assertions
are equivalent:

(i) A has a Lebesgue measure 0;

(ii) there exists a Borel null set N in Ω such that for each y ∈ Ω \ N , the set
A1(y) has measure zero.

Hint: Use Fubini’s theorem.

b) Convince yourself that assertion a) can be reformulated in the following way.
Let P (x, y) be an assertion for each (x, y) ∈ Ω×Ω. Then P (x, y) is true for almost
all (x, y) ∈ Ω× Ω if and only if for almost all y ∈ Ω, P (x, y) holds x -a.e..

c) Let fi, gi ∈ L1(Ω) such that u(x, y) =
m∑

i=1

fi(x)gi(y) = 0 (x, y)-a.e.. Let B be

a bounded operator on L1(Ω). Show that

n∑
i=1

∫
Ω

(Bfi)(y)gi(y)dy = 0 .

4.5 The Neumann Laplacian and the extension prop-
erty

We have seen in the last section that ∆D
Ω has compact resolvent whenever Ω ⊂ Rn

is a bounded open set. This is not true for the Neumann Laplacian, in general. We
give at first a 1-dimensional example which illustrates the situation very well.

Example 4.5.1. Let Ω = (0, 1) \ { 1
n : n ∈ N, n ≥ 2}. Then ∆N

Ω has not a compact
resolvent in L2(Ω). By Theorem 3.4.7, this assertion is equivalent to saying that
the injection H1(Ω) ↪→ L2(Ω) is not compact.

Proof. Let vn = cn1( 1
n+1 , 1

n ) where cn > 0 is chosen such that ‖vn‖L2(Ω) = 1. Then
vn ∈ H1(Ω) and v′n = 0. Thus, the sequence (vn)n∈N is bounded in H1(Ω). How-
ever, ‖vn − vm‖2L2(Ω) = 2 whenever n 6= m. Hence the sequence has no convergent
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subsequence in L2(Ω).

In the preceding example, the set Ω ⊂ R is open and bounded, but not
connected. This might look artificial. However, it is easy to modify the example a
little bit in order to produce an example of a connected bounded open set Ω in R2

such that ∆N
Ω does not have a compact resolvent:

Example 4.5.2. Let

Ω = {(x, y) ∈ (0, 1)× (0, 1) : x 6= 1
n

for all n ∈ N whenever 0 < y ≤ 1
2
} .

Then Ω is open, bounded, connected, but the injection H1(Ω) ↪→ L2(Ω) is not
compact.

Proof. Let ϕ ∈ C∞[0, 1] such that
∫ 1

0
ϕ(x)2dx = 1 and suppϕ ⊂ [0, 1

4 ]. Define

un(x, y) =

{ √
(n+ 1)nϕ(y) if x ∈ ( 1

n+1 ,
1
n )

0 if x 6∈ ( 1
n+1 ,

1
n ) .

Then un ∈ C∞(Ω) and

‖un‖2L2(Ω) =
∫ 1

0

∫ 1/n

1
n+1

un(x, y)2dxdy

=
∫ 1

0

(
1
n
− 1
n+ 1

)(n+ 1)nϕ(y)2dy

= 1 .

Moreover,
∂un

∂x
≡ 0 and

∂un

∂y
(x, y) =

{ √
(n+ 1)nϕ′(y) if x ∈ ( 1

n+1 ,
1
n )

0 if x 6∈ ( 1
n+1 ,

1
n ) .

Thus un ∈ H1(Ω) and

‖un‖2H1(0,1) = 1 + (
1
n
− 1
n+ 1

)(n+ 1)n
∫ 1

0

ϕ′(y)2dy

= 1 +
∫ 1

0

ϕ′(y)2dy .

Thus (un)n∈N is a bounded sequence in H1(Ω). However, since

‖un − um‖2L2(Ω) = 2
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whenever n 6= m, this sequence does not have a convergent subsequence.

The bounded sets considered in these two examples have a very irregular
boundary. And indeed, if the boundary of a bounded open set Ω is sufficiently
regular, then the Neumann Laplacian in L2(Ω) has a compact resolvent. In order
to see this, we introduce the following extension property.

Definition 4.5.3. An open set Ω ⊂ Rn has the extension property if there exists a
bounded linear operator

Q : H1(Ω) → H1(Rn)

such that (Qu)|Ω = u for all u ∈ H1(Ω). Such an operator is called an extension
operator.

Examples 4.5.4. a) Assume that Ω is a bounded open set whose boundary is Lips-
chitz continuous. Then Ω has the extension property.
b) If Ω is an open bounded set with boundary of class C1, then Ω has the extension
property. This is a special case of a).
c) If Ω is unbounded with finite volume, then Ω has not the extension property.

For these examples we refer to R. Adams: Sobolev Spaces, Acad. Press 1975,
and also to H. Brézis: Analyse Fonctionelle, Masson, Paris 1983 in the case b).

Theorem 4.5.5. Let Ω ⊂ Rn be an open, bounded set. If Ω has the extension
property, then the injection H1(Ω) ↪→ L2(Ω) is compact. Consequently, ∆N

Ω has a
compact resolvent.

Proof. Denote by Q : H1(Ω) → H1(Rn) an extension operator. Let B be an open
ball containing Ω̄. Let ξ ∈ C∞c (B) such that ξ|Ω̄ = 1. Define Q1 : H1(Ω) → H1

0 (B)
by Q1u = (ξQu)|B (u ∈ H1(Ω)). Note that ξQu has a compact support contained
in B. So (ξQu)|B ∈ H1

0 (B) for all u ∈ H1(Ω) by Lemma 4.1.11 . Then Q1 is a
bounded operator and (Q1u)|Ω = u for all u ∈ H1(Ω). Since the injection of H1

0 (B)
into L2(B) is compact, for each bounded sequence (un)n∈N in H1(Ω), there is a
subsequence (unk

)k∈N such that (Q1unk
)k∈N converges in L2(B), and consequently

also in L2(Ω). Thus (unk
)k∈N converges in L2(Ω). We have shown that the injec-

tion of H1(Ω) into L2(Ω) is compact.

In the following exercise we show that the extension porperty is not necessary
to have a compact embedding of H1(Ω) into L2(Ω).

Exercise 4.5.6. Let Ω = (−1, 0) ∪ (0, 1) ⊂ R. Show that Ω has not the extension
property. Still, the injection of H1(Ω) into L2(Ω) is compact.

Exercise 4.5.7. Let Ω ⊂ Rn be open. For u : Ω → R we set

ũ(x) =
{
u(x) if x ∈ Ω
0 if x ∈ Rn \ Ω .
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Let H̃1
0 (Ω) = {u ∈ L2(Ω) : ũ ∈ H1(Rn)}.

a) Assume that Ω has the extension property. Show that H̃1
0 (Ω) is an ideal in

H1(Ω).
b) Show that for Ω = (−1, 0) ∪ (0, 1) ⊂ R, the space H̃1

0 (Ω) is not an ideal in
H1(Ω).

Exercise 4.5.8. Let Ω = {(x, y) ∈ (0, 1) × (0, 1) : y > 1
2 if x = 1

2}. Show that the
injection of H1(Ω) into L2(Ω) is compact.

Hint: Use that the injection H1(Ωj) ↪→ L2(Ωj) are compact, j = 1, 2, where

Ω1 = (0,
1
2
)× (0, 1) and Ω2 = (

1
2
, 1)× (0, 1) .

Exercise 4.5.9. Let Ω1,Ω2 ⊂ Rn be open such that Ω1 ⊂ Ω2 and such that Ω2 \Ω1

is a null set. Assume that the injection of H1(Ω1) into L2(Ω1) is compact. Show
that also the injection of H1(Ω2) into L2(Ω2) is compact.

Compactness of the injection of H1(Ω) into L2(Ω) depends on local regularity
of the boundary of Ω. This is made more precise in the following two exercises.
The first shows that we may perturb any bounded open set in an arbitrarily small
neighborhood of a boundary point in such a way that the new open set does not
have the compact embedding property.

Exercise 4.5.10. Let Ω ⊂ R2 an arbitrary bounded open set, z ∈ ∂Ω, ε > 0. Then
there exists an open set Ω̃ ⊂ R2 such that

Ω4 Ω̃ ⊂ B(z, ε)

and the injection of H1(Ω̃) into L2(Ω̃) is not compact. Here Ω4Ω̃ := (Ω\Ω̃)∪(Ω̃\Ω)
denotes the symmetric difference of the two open sets.

Hint: Take a tiny version Ω1 of Example 4.5.2 such that Ω1 ⊂ B(z, ε). It
yields a sequence of functions un ∈ C∞(Ω1) with compact support in B(z, ε)
bounded in H1(Ω1) but having no converging subsequence in L2(Ω1). Now choose
Ω̃ = (Ω \ B̄(z, ε)) ∪ Ω1. Of course, if Ω is connected by a slight modification one
can arrange things such that also Ω̃ is connected.

In the next exercise we show how a local version of the compact embedding
property leads to the corresponding global property.

Exercise 4.5.11. Let Ω ⊂ Rn be a bounded open set. Assume that for each z ∈ ∂Ω
there exists an ε > 0 such that the injection H1(B(z, ε)∩Ω) ↪→ L2(B(z, ε)∩Ω) is
compact . Show that the injection of H1(Ω) into L2(Ω) is compact.

Hint: Cover Ω̄ by a finite number of balls Bk such that the injection H1(Ω∩
Bk) into L2(Ω ∩Bk) is compact for each k.

Finally we show that the extension property implies density of smooth func-
tions in H1(Ω).



74 4. THE LAPLACIAN ON OPEN SETS IN RN

Exercise 4.5.12. a) Let Ω ⊂ Rn be a bounded open set with extension property.
show that the space

{ϕ|Ω : ϕ ∈ D(Rn)}

is dense in H1(Ω).
b) Show that the assertion of a) is wrong for Ω = (−1, 0) ∪ (0, 1).

Hint: Use Proposition 4.1.12.

We should mention that by the density theorem due to Meyers and Serrin,
the space C∞(Ω) ∩ H1(Ω) is always dense in H1(Ω), without any restriction to
the open subset Ω of Rn.

4.6 Classical Solutions

In this section we prove interior regularity and deduce from this that the semi-
groups generated by the Dirichlet and Neumann Laplacian yield classical solutions
of the heat equation. However, we do not investigate the behaviour of the solutions
at the boundary of the open set.

Let Ω ⊂ Rn be an open set. Let

L2
loc(Ω) := {f : Ω → C measurable:

∫
K

|f(x)|2dx <∞ for all compact K ⊂ Ω} .

Note that L2
loc(Ω) ⊂ L1

loc(Ω). We define

H1
loc(Ω) := {f ∈ L2

loc(Ω) ∩W (Ω) : Djf ∈ L2
loc(Ω) for j = 1, . . . , n} ,

where W (Ω) was defined in Section 4.1. Then we define inductively,

Hk+1
loc (Ω) := {f ∈ H1

loc(Ω) : Djf ∈ Hk
loc(Ω) , j = 1, . . . , n} .

We need the following characterization of functions in Hk
loc(Ω). As before, for

f : Ω → C we define f̃ : Rn → C by

f̃(x) :=

{
f(x) if x ∈ Ω

0 if x ∈ Rn \ Ω .

But we identify D(Ω) with a subset of D(Rn); i.e., we omit the ∼ sign for test
functions.

Lemma 4.6.1. Let k ∈ N. Then

Hk
loc(Ω) = {f ∈ L2

loc(Ω) : (ψf)∼ ∈ Hk(Rn) for all ψ ∈ D(Ω)} .
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Proof. “⊂”. Let k = 1. Let f ∈ H1
loc(Ω), ψ ∈ D(Ω). We show that (ψf)∼ ∈ H1(Rn)

and

Dj(ψf)∼ = (Djψ · f + ψ ·Djf)∼ . (4.15)

In fact, let ϕ ∈ D(Rn). Then

−
∫

Rn

Djϕ(ψf)∼dx = −
∫
Ω

Dj(ϕ · ψ)f +
∫
Ω

ϕ(Djψ) · fdx

=
∫
Ω

ϕψDjf +
∫
Ω

ϕDjψ · fdx

=
∫

Rn

ϕ[ψ ·Djf +Djψ · f ]∼dx .

This proves the claim for k = 1. Now assume that the inclusion “⊂” is proved for
k ∈ N. Let f ∈ Hk+1

loc (Ω), ψ ∈ D(Ω). Then it follows from (4.15) and the inductive
hypothesis that Dj(ψf)∼ ∈ Hk(Rn), j = 1, . . . , n. Hence (ψf)∼ ∈ Hk+1(Rn).
“⊃”. Let k = 1. Let f ∈ L2

loc(Ω) such that (ψf)∼ ∈ H1(Rn) for all ψ ∈ D(Ω).
Choose ωk ⊂ Ω open and bounded such that ω̄k ⊂ ωk+1 and

⋃
k∈N

ωk = Ω. (One

may take ωk = {x ∈ Ω : |x| < k, dist(x, ∂Ω) > 1/k}. Let ψk ∈ D(Ω) such that
ψk ≡ 1 on ωk. Then

Dj(ψkf)∼ = Dj(ψk+1f)∼ on ωk . (4.16)

In fact, let ϕ ∈ D(ωk). Then∫
Rn

ϕDj(ψkf)∼dx = −
∫

Rn

Djϕ · ψkf̃dx

= −
∫

Rn

Djϕ(ψk+1 · f)∼dx

=
∫

Rn

ϕDj(ψk+1f)∼dx .

Since ϕ is arbitrary this implies (4.16). In virtue of (4.16) we may define gj ∈
L2

loc(Ω) by

gj(x) := (Dj(ψkf)∼)(x)

for x ∈ ωk. We claim that

Djf = gj weakly on Ω .
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In fact, let ϕ ∈ D(Ω). Choose k ∈ N such that suppϕ ⊂ ωk. Then

−
∫
Ω

Djϕ · fdx = −
∫

Rn

Djϕ(ψkf)∼dx

=
∫

Rn

ϕDj(ψkf)∼dx

=
∫

Rn

ϕgjdx .

This proves that f ∈ H1
loc(Ω) and Djf = gj .

The inclusion “⊃” is proved for k = 1. Assume that it is valid for k ∈ N. Let
f ∈ L2

loc(Ω) such that

(ψf)∼ ∈ Hk+1(Rn) for all ψ ∈ D(Ω) .

By the case k = 1, we have f ∈ H1
loc(Ω) and for all ψ ∈ D(Ω),

Dj(ψf)∼ = Djψ · f̃ + ψ(Djf)∼

by (4.15). Thus ψ · (Djf)∼ = Dj(ψf)∼− (Djψ · f)∼ ∈ Hk(Rn) by the hypothesis.
Now the inductive hypothesis implies that Djf ∈ Hk

loc(Ω), j = 1, . . . , n. The defi-
nition implies that f ∈ Hk+1

loc (Ω).

If ϕ,ψ ∈ D(Ω), then the following product formula holds

∆(ϕ · ψ) = (∆ϕ) · ψ + 2∇ϕ · ∇ψ + ϕ ·∆ψ .

We now prove a weak version of this identity.

Lemma 4.6.2. Let u ∈ H1
loc(Ω), v ∈ L2

loc(Ω). Assume that ∆u = v weakly. Then

∆(ψu)∼ = (∆ψ · u+ 2∇ψ · ∇u+ ψ ·∆u)∼ in D(Rn)′

for all ψ ∈ D(Ω).
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Proof. Let ϕ ∈ D(Rn). Then

〈∆(ψu)∼, ϕ〉 =
∫
Ω

ψu∆ϕdx

=
∫
Ω

(∆(ψϕ)− 2∇ψ∇ϕ−∆ψ · ϕ)udx

=
∫
Ω

ψϕ∆udx− 2
∫
Ω

n∑
j=1

Dj(ϕDjψ)udx

+2
∫
Ω

ϕ∆ψ · udx−
∫
Ω

∆ψ · ϕ · udx

=
∫
Ω

ϕψ∆udx+ 2
∫
Ω

ϕ

m∑
j=1

Djψ ·Djudx+
∫
Ω

ϕ∆ψudx

=
∫

Rn

ϕ(ψ ·∆u+ 2∇ψ∇u+ ∆ψ · u)∼dx .

The preceding results allow us to reduce regularity in the interior of Ω to reg-
ularity results on Rn. Those are easily obtained with help of the Fourier transform.
We first prove a Sobolev embedding result. Recall that

C0(Rn) := {f : Rn → C continuous : lim
|x|→∞

|f(x)| = 0} .

Proposition 4.6.3. One has

(a) Hk(Rn) ⊂ C0(Rn) if k > n
2 ;

(b) Hk+m(Rn) ⊂ Cm(Rn) if k > n
2 ;

(c)
⋂

k∈N
Hk(Rn) ⊂ C∞(Rn).

Proof. (a) Let f ∈ Hk(Rn). Then Ff ∈ L2(Rn, (1 + x2k)dx). Hence∫
Rn

|(Ff)(x)|dx =
∫

Rn

|Ff(x)| · 1
1 + x2k

(1 + x2k)dx

≤ ‖Ff‖L2(Rn,(1+x2k)dx) (
∫

Rn

1
(1 + x2k)2

(1 + x2k)dx)
1
2

< ∞ if k >
n

2
.
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In fact ∫
|x|>1

1
1 + x2k

dx ≤
∫

|x|>1

1
x2k

dx =

∞∫
1

r−2krn−1dr <∞ if k >
n

2
.

Thus Ff ∈ L1(Rn). It follows from the Fourier inversion theorem that f ∈ C0(Rn).

If f ∈ Hk+1(Rn), k > n
2 , then Djf ∈ C0(Rn). Hence f ∈ C1(Rn). We obtain

(b) by an inductive argument. Moreover, (c) follows from (b).

Combining Proposition 4.6.3 and Lemma 4.6.1 we obtain the following local
embedding theorem.

Proposition 4.6.4. Let k ∈ N, k > n
2 . Then Hk+m

loc (Ω) ⊂ Cm(Ω) for all m ∈ N0.
Moreover, ⋂

m∈N
Hm

loc(Ω) = C∞(Ω) .

Here we let C0(Ω) = C(Ω). With help of the Fourier transform one easily
proves the following global regularity result.

Proposition 4.6.5 (global elliptic regularity). Let f ∈ L2(Rn), u ∈ H1(Rn) such
that u−∆u = f weakly. Then

(a) u ∈ H2(Rn);

(b) f ∈ Hk(Rn) implies u ∈ Hk+2(Rn).

Proof. It follows from the definition of the Dirichlet Laplacian on L2(Rn) and
the fact that H1

0 (Rn) = H1(Rn) that u ∈ D(∆D
Rn). But D(∆D

Rn) = H2(Rn) by
Corollary 4.2.6. This proves (a). Moreover taking Fourier transforms we obtain

(1 + x2)Fu = F(u−∆u) = Ff .

Since, by Corollary 4.2.2, f ∈ Hk(Rn) if and only if Ff ∈ L2(Rn, (1 + x2k)dx),
(b) follows.

Next we deduce local regularity from Proposition 4.6.5. Let Ω ⊂ Rn be open.

Proposition 4.6.6 (local elliptic regularity). Let f ∈ L2
loc(Ω), u ∈ H1

loc(Ω) such
u−∆u = f weakly. Then

(a) u ∈ H2
loc(Ω);

(b) f ∈ Hk
loc(Ω) implies u ∈ Hk+2

loc (Ω);

(c) f ∈ C∞(Ω) implies u ∈ C∞(Ω).
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Proof. Let ψ ∈ D(Ω). Then by Lemma 4.6.2

(ψu)∼ −∆(ψu)∼ = (ψf)∼ − 2(∇ψ∇u)∼ − ((∆ψ)u)∼ (4.17)

in D(Rn)′.
a) Since the right side is in L2(Rn) it follows from Proposition 4.6.5 that (ψu)∼ ∈
H2(Rn). Since ψ ∈ D(Ω) is arbitrary we conclude that u ∈ H2

loc(Ω) by Lemma
4.6.1.
b) We prove b) by induction. Letting H0

loc(Ω) = L2
loc(Ω), it holds for k = 0 by

a). Assume that k ∈ N0 such that (b) holds. Assume that f ∈ Hk+1
loc (Ω). Then

by the inductive assumption u ∈ Hk+2
loc (Ω). Hence (∇ψ∇u)∼ ∈ Hk+1(Rn). Thus

the right side of (4.17) is in Hk+1(Rn). Now it follows from Proposition 4.6.5 that
(ψu)∼ ∈ Hk+3(Rn). Thus u ∈ Hk+3

loc (Ω) by Lemma 4.6.1.
c) Since

⋂
k∈N

Hk
loc(Ω) = C∞(Ω), the last assertion follows from (b).

Now we are ready to prove the existence of classical solutions of the heat
equation with Dirichlet or Neumann boundary conditions. In fact, we formulate
the result more generally in order to treat both problems simultaneously. Let
Ω ⊂ Rn be an open set. A closed operator A on L2(Ω) is called a realization of
the Laplacian in L2(Ω) if

Af = ∆f weakly (4.18)

for all f ∈ D(A) and
D(A) ⊂ H1

loc(Ω) . (4.19)

Remark 4.6.7. a) Recall that (4.18) means that 〈Af, ϕ〉 = 〈f,∆ϕ〉 for all ϕ ∈ D(Ω),
where 〈f, g〉 =

∫
Rn

fgdx for f, g ∈ L2(Rn).

b) It will be shown in Exercise 4.6.16 that (4.18) actually implies (4.19).

Lemma 4.6.8. Let A be a realization of the Laplacian in L2(Ω) such that %(A) 6= ∅.
Let k,m ∈ N0, k > n

4 . Then

D(Ak+m) ⊂ Cm(Ω)

and the injection is continuous.

Proof. In view of Proposition 4.6.4 it suffices to show that

D(Ak) ⊂ H2k
loc(Ω) (4.20)

for all k ∈ N0. Let λ ∈ %(A). Then D(Ak) = R(λ,A)kL2(Ω). Let k = 0, f ∈ L2(Ω),
R(λ,A)f = u. Then ∆u = Au = f − λu weakly. It follows from Proposition 4.6.4
that u ∈ H2

loc(Ω). Now assume that assertion (4.20) holds for k ∈ N0. Let u =
R(λ,A)k+1f , where f ∈ L2(Ω). Then ∆u = Au = R(λ,A)kf − λu ∈ H2k

loc(Ω) by
the inductive hypothesis. It follows from Proposition 4.6.6 that u ∈ H2k+2

loc (Ω).

Now we need the following lemma which describes the identification of a
function in two variables with a vector-valued function in one variable.
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Lemma 4.6.9. Let v ∈ C((0,∞), C(Ω)). Define u(t, x) = v(t)(x) (t > 0, x ∈ Ω).
Then u ∈ C((0,∞)× Ω).
If v ∈ C∞((0,∞); Cm(Ω)) for all m ∈ N, then u ∈ C∞((0,∞)× Ω).

Proof. a) Let tn → t in (0,∞), xn → x in Ω. Choose K ⊂ Ω compact such that
xn ∈ K for all n ∈ N. Then v(tn) → v(t) in C(K); i.e., u(tn, y) → u(t, y) (n→∞)
uniformly in y ∈ K. Hence u(tn, xn) − u(t, x) = u(tn, xn) − u(t, xn) + u(t, xn) −
u(t, x) → 0 (n→∞).
b) If v ∈ C∞((0,∞), Cm(Ω)) for all m ∈ N, it follows that all partial derivatives
of u exist and are continuous on (0,∞)× Ω by a).

Now we obtain the following regularity result for semigroups generated by a
realization of the Laplacian in L2(Ω).

Theorem 4.6.10. Let A be the realization of the Laplacian in L2(Ω) which generates
a differentiable C0-semigroup T on L2(Ω). Let f ∈ L2(Ω), u(t, x) = (T (t)f)(x)
(t > 0, x ∈ Ω). Then u ∈ C∞((0,∞)× Ω).

Proof. By Proposition 2.3.3 we have T (·)f ∈ C∞((0,∞); D(Ak)) for all k ∈ N.
Hence T (·)f ∈ C∞((0,∞); Cm(Ω)) for all m ∈ N by Lemma 4.6.8. Now the claim
follows from Lemma 4.6.9.

Remark 4.6.11. Theorem 4.6.10 should be interpreted in the right way. A priori,
T (t)f is only defined almost everywhere. The result says, that we may choose a
representative T (t)f in C∞(Ω), which we always do.

Thus the orbits u(t, x) = (et∆D
Ω f)(x) and u(t, x) = (et∆N

Ω f)(x) are both
classical solutions of the heat equation{

u ∈ C∞((0,∞)× Ω)

ut(t, x) = ∆u(t, x) (t > 0, x ∈ Ω)
(4.21)

(where the Laplacian is understood with respect to the space variable x only).

We mention that the boundary conditions are satisfied in a weak sense only.
For example, in the case of Dirichlet boundary conditions, we have

u(t, ·) ∈ H1
0 (Ω)

for all t > 0. Regularity conditions on the boundary of Ω are needed in order to
deduce that u(t, ·) ∈ C0(Ω). This is a different subject.

We conclude this section by showing that both semigroups (et∆D
Ω )t≥0 and

(et∆N
Ω )t≥0 are strictly positive. This follows from Theorem 4.6.10 with help of the

following classical maximum principle.
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Proposition 4.6.12 (strict parabolic maximum principle). Let Ω ⊂ Rn be open and
connected, and let τ > 0. Let

u ∈ C2((0, τ)×Ω)∩C([0, τ ]×Ω̄) such that ut(t, x) = ∆u(t, x) (t ∈ (0, τ) , x ∈ Ω) .

Assume that there exist x0 ∈ Ω, t0 ∈ (0, τ ] such that

u(t0, x0) = max
t∈(0,τ]

x∈Ω

u(t, x) .

Then u is constant.

Theorem 4.6.13 (strict positivity). Let Ω ⊂ Rn be an open connected set. Let A be
a realization of the Laplacian in L2(Ω) which generates a differentiable, positive
C0-semigroup T . For example, A = ∆D

Ω or A = ∆N
Ω . Let 0 ≤ f ∈ L2(Ω), f 6= 0.

Then T (t)f ∈ C∞(Ω) and
(T (t)f)(x) > 0

for all t > 0, x ∈ Ω.

Proof. We know from Theorem 4.6.10 that u ∈ C∞((0,∞)× Ω) satisfies the heat
equation (4.21). Moreover, u(t, x) ≥ 0 for all t > 0, x ∈ Ω, by hypothesis. Assume
that there exists t0 > 0, x0 ∈ Ω such that u(t0, x0) = 0. Let ω be open, bounded,
connected such that ω̄ ⊂ Ω. The strict parabolic maximum principle applied to −u
shows that u(t, x) = 0 for all t ∈ (0, t0], x ∈ ω. A simple connectedness argument
shows that u(t, x) = 0 for all t ∈ (0, t0], x ∈ Ω. Since f = lim

t↓0
u(t, ·) in L2(Ω), it

follows that f = 0.

In the following exercises we give some further results on elliptic regularity.

Exercise 4.6.14. Let f, g ∈ L2(Rn) such that ∆f = g weakly. Show that f ∈
H2(Rn).

Hint: a) Let k ∈ L1(Rn). Show that ∆(k ∗ f) = k ∗ g weakly.
b) Consider the Gaussian semigroup G on L2(Rn). We know that its generator A
is given by D(A) = H2(Rn), Au = ∆u (u ∈ H2(Rn)). Show that 〈G(s)f , ∆ϕ〉=

〈G(s)g, ϕ〉 for all s ≥ 0, ϕ ∈ D(Rn). Show that
t∫
0

G(s)gds = G(t)f − f (t ≥ 0).

Exercise 4.6.15. Show that the space F = {ϕ − ∆ϕ : ϕ ∈ D(Rn)} is dense in
L2(Rn).

Hint: Let f ∈ L2(Rn) be orthogonal to F . Use Exercise 4.6.14 in order to
show that G(t)f = etf (t ≥ 0). Since G is contractive, this implies that f = 0.

Exercise 4.6.16. Let u, v ∈ L2
loc(Ω) such that

∆u = v weakly .

Show that u ∈ H2
loc(Ω).
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Hint: Show the result by proving the following three steps. Let ψ ∈ D(Ω),
f = (ψu)∼.
a) Show that

|〈f, ϕ−∆ϕ〉| ≤ c‖ϕ‖H1

for all ϕ ∈ D(Rn).
b) Use the Riesz-Fréchet lemma to show that there exists g ∈ H1(Rn) such that

〈f, ϕ−∆ϕ〉 = 〈g, ϕ−∆ϕ〉 .

c) Conclude with help of Exercise 4.6.15 that f = g.



Chapter 5

Forms generating holomorphic
semigroups

Sequilinear forms give a nearly algebraic tool to define holomorphic semigroups
on a Hilbert space. In addition, most interesting examples can be treated by this
method.
Let V be a complex Hilbert space. A sesquilinear form a : V ×V → C is a mapping
satisfying

a(u+ v, w) = a(u,w) + a(v, w)
a(λu,w) = λa(u,w)

a(u, v + w) = a(u, v) + a(u,w)
a(u, λu) = λ̄a(u, v)

for u, v, w ∈ V, λ ∈ C. In other words, a is linear in the first and antilinear in the
second variable. We frequently say simply form instead of sesquilinear form. The
form a is continuous if (and only if) there exists a constant M ≥ 0 such that

|a(u, v)| ≤M‖u‖V ‖v‖V (5.1)

for all u, v ∈ V .
Finally, the form a is called coercive if there exists α > 0 such that

Re a(u, u) ≥ α‖u‖2V (u ∈ V ) . (5.2)

A mapping f : V → C is called antilinear if

f(u+ v) = f(u) + f(v) and f(λu) = λ̄f(u)

for all u, v ∈ V, λ ∈ C. The space V ′ of all continuous antilinear forms is a Banach
space for the norm

‖f‖ = sup
‖u‖V ≤1

|f(u)| .
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We call it the antidual of V . Frequently we write

〈f, u〉 = f(u) (u ∈ V, f ∈ V ′) .

A form a : V × V → C is called symmetric if

a(u, v) = a(v, u) .

Thus, a continuous, coercive, symmetric form on V is the same as a scalar prod-
uct on V (we say an equivalent scalar product). So the following theorem is a
generalization of the Theorem of Riesz-Fréchet to a non-symmetric form.

Theorem 5.0.17 (Lax-Milgram). There exists an isomorphism A : V → V ′ such
that

〈Au, v〉 = a(u, v) (5.3)

for all u, v ∈ V . Moreover, ‖A−1‖L(V ′,V ) ≤ 1
α .

The space V ′ is always isomorphic to V (and thus a Hilbert space). We may
apply Theorem 5.017 to the usual scalar product. But for the applications we have
in mind another identification of V ′ will be more useful.

Now we assume that the Hilbert space V is continuously and densely injected
into another Hilbert space H, i.e. V ⊂ H and there exists a constant c > 0 such
that

‖u‖ ≤ c‖u‖V (u ∈ V )

and V is dense in H for the norm of H. We define a mapping from H into V ′ using
the scalar product of H in the following way. For u ∈ V let j(u) ∈ V ′ be given by

〈j(u), v〉 = (u | v)H (v ∈ V ) .

Then ‖j(u)‖V ′ = sup
‖v‖v≤1

|(u | v)H |

≤ sup
‖v‖v≤1

‖u‖H‖v‖H

≤ c‖u‖H .

Thus j is a continuous, linear mapping. Moreover, j is injective. In fact, if j(u) = 0.
Then ‖u‖2H = (u | u)H = 〈j(u), u〉 = 0. Hence u = 0.

In the following we identify V with a subspace of V ′ omitting the identifica-
tion mapping j, i.e., we write

〈u, v〉 = (u | v)H

for all u, v ∈ V where 〈u, v〉 = 〈j(u), v〉.
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Lemma 5.0.18. V is a dense subspace of V ′ and H = V ′ if and only if H = V .

Proof. a) The first assertion means more precisely that j(V ) is dense in V ′. Since
V is reflexive, this is equivalent to saying that for u ∈ V, 〈j(v), u〉 = 0 for all v ∈ V
implies that u = 0. Taking v = u we have 0 = 〈j(u), u〉 = (u | u)H , hence u = 0.
b) If H = V ′, then the norms ‖ ‖H and ‖ ‖V ′ are equivalent on V ′. Hence also
‖ ‖H and ‖ ‖V are equivalent on V .

Example 5.0.19. Let (Ω,Σ, µ) be a σ-finite measure space and m : Ω → [1,∞)
measurable. Let H = L2(Ω, µ), V = L2(Ω,mµ). Then V ↪→ H. We have V ′ =
L2(Ω, 1

mµ) if we write the duality as

〈v, u〉 =
∫
vūdµ(x)

(u ∈ V, v ∈ V ).

Now we consider a continuous coercive form a : V ×V → C and the associated
operator A : V → V ′ given by (5.3). We may see A as an unbounded closed
operator on the Banach space V ′.

Theorem 5.0.20. The operator −A generates a bounded holomorphic semigroup on
V ′.

Proof. For Reλ ≥ 0 we consider the form aλ defined by aλ(u, v) = λ(u | v)H +
a(u, v). Then aλ is continuous and coercive and the associated operator is λ+A.
Thus λ + A : V → V ′ is an isomorphism and ‖(λ + A)−1‖L(V ′,V ) ≤ 1

α for all
Reλ ≥ 0 by Theorem 5.0.20. Since λ(λ+ cA)−1 +A(λ+A)−1 = I it follows that

‖λ(λ+A)−1‖L(V ′) ≤ 1 + ‖A(λ+A)−1‖L(V ′)

≤ 1 + ‖A‖L(V ′)‖(λ+A)−1‖L(V ′,V )

≤ 1 +
1
α
‖A‖L(V,V ′)

for Reλ ≥ 0. This proves the claim.

Now we consider the part A of A in H, i.e., the operator A is defined by

D(A) = {u ∈ V : Au ∈ H}
= {u ∈ V : ∃ f ∈ H a(u, v) = (f | v)H for all v ∈ V }

Au = v .

The operator A is called the operator associated with a (on H). This is the
operator we are really interested in for most applications. In fact, −A generates a
bounded, holomorph semigroup on H.
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Theorem 5.0.21. The operator −A generates a bounded holomorphic semigroup on
H.

Proof. Since (λ + A) : V → V ′ is an isomorphism and V ↪→ H ↪→ V ′ it follows
that (λ+A) is invertible and (λ+A)−1 = (λ+A)−1|H for all Reλ ≥ 0. Let f ∈ H
and u = (λ+A)−1f, i.e.,

λ(u | v)H + a(u, v) = (f | v)H (v ∈ V ) .

In particular
λ‖u‖H2 + a(u, u) = (f | u)H .

This implies

α‖u‖V 2 ≤ Re a(u, u) =
Re(f | u)H − Reλ‖u‖H2 ≤ ‖f‖H‖u‖H and

|λ|‖u‖H2 ≤ M‖u‖V 2 + ‖f‖H‖u‖H .

Hence |λ|‖u‖H2 ≤ (M
α + 1)‖f‖H‖u‖H and so |λ|‖u‖H ≤ (M

α + 1)‖f‖H . We have
proved that ‖λ(λ+A)−1‖L(H) ≤ (M

α + 1).
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