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The Banach algebra M(G) of all bounded regular Borel measures on a locally 
compact group G is often represented on LZ(G) by the mapping p ~ T., 2, T., z f  
=#* f  (feL2(G)). This representation has the advantage of bringing the Hilbert 
space structure into play, thus the involution is preserved and the spectrum of 
Tu, 2 is easy to compute (if G is abelian or compact). There is nevertheless an 
inconvenience: The spectrum of # in the Banach algebra M(G) does not coin- 
cide with the spectrum of the operator Tu, z in general. This could be overcome 
by considering LI(G) instead of LZ(G). Another possibility, which conserves the 
Hilbert space structure, makes use of the fact that the operators T~, 2 are reg- 
ular operators on the Banach lattice L2(G) (i.e. linear combinations of positive 
operators). And indeed, the representation of M(G) in the smaller Banach al- 
gebra ~(L2(G)) (of all regular operators on L2(G)) behaves nicely, if G is ame- 
nable: 

It is an algebraic and lattice isomorphism of M(G) onto the full subalgebra 
and sublattice of those regular operators which commute with the (right-) 
translations. Consequently the spectrum of # in M(G) is the same as the spec- 
trum of T,, 2 in the Banach algebra ~r(L2(G)). 

This spectrum (of a regular operator T on a complex Banach lattice E in 
the Banach algebra ~r(E)) is called o-spectrum and was first investigated by 
Schaefer [14], A natural question arrising in the context of this new definition 
is whether the spectrum and o-spectrum are equal for a given operator. 

The main theorem of the first part of this paper gives a positive answer to 
this question for r-compact operators (i.e. operators which can be approxi- 
mated in L~e'(E) by operators of finite rank). 

In the second part applications to convolution operators are given. 
First of all the rich supply of examples known from Harmonic Analysis al- 

lows the illustration in this context of the behavior of the o-spectrum. Thus it 
can be shown that the theorem mentioned above cannot be significantly im- 
proved. In fact there exist compact positive operators with uncountable o-spec- 
trum. Conversely, results concerning the o-spectrum can be used to prove pro- 
perties of the spectrum of measures. For instance, we get as a corollary that 
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the group algebra of a compact group is symmetric (which is well known) and 
are able to calculate the spectrum in the group algebra by means of the Fou- 
rier transformation. 

The author would like to thank Professor Schaefer and Professor Wolff for 
many helpful suggestions. 

1. r-Compact Operators 

In this section we establish some elementary facts about regular operators. 
A basic notion is that of a complex Banach lattice, as it is defined in the 

monograph [13], which we shall use as a general reference. 
A complex Banach lattice E is the complexification Ee+iE~ of a real Ba- 

nach lattice E~. The modulus [zl of an element z =x + iy in E is given by 

Iz[= sup Re(ei~ sup ((cosO)x+(sinO)y). 
0e[0, 2re[ 0e[0, 2~[ 

Obviously, Iz[ ~E+ (the positive cone of E~). The norm on E is defined by 

Ilzll : =  I/{zl II, 

where II Izl II denotes the given norm of Izl in E~. The spaces Lv(X, S, IX) (1 _p  < oo) 
and Ce(K) (the continuous complex functions on a compact K) are typical ex- 
amples of complex Banach lattices. 

Let E, F be complex Banach lattices. By Aa(E, F) (S~F(E) if E=F) we denote 
the space of all bounded operators of E into F. For TEAf(E,F) there exist 
canonical operators ReT, ImT~(E~,Fa),  such that Tx=(ReT)x+i(ImT)x 
for all x~E~. An operator T~<LP(E,F) is said to be positive (T>O), if T is 
equal to Re T and Tx>O for x~E+; T is called regular, if T can be written as 
a linear combination of positive operators. The space of all regular operators 
of E into F is denoted by ~"(E,F) (~(E) if E=F). Obviously .~'(E,F) is a 
subspace of LP(E,F). In the following way a norm (the "r-norm") can be de- 
fined on ~'(E,F) such that it becomes a Banach space (a Banach algebra 
if E =F):  

[ITll,=inf{liSll ]Se~(E,F), S>O, IZzl<Slzl for all zsE} (T~Sf~(E,F)). 

In fact, it is easy to see that II it, is a norm, which satisfies in addition 

IITII~NTII r for all TE~Fr(E,F), 

]ITt] = I]TIt, for T _ 0 ,  

liT 1Tzllr<__ ]ITlll, llTzllr, T1, T2 ~ A~ (if E=F). 

1.1. Lemma. Let E, F be complex Banach lattices. For S, Ta~"(E,F) the follow- 
ing are equivalent: 

(i) ITzl <Stzlfor all z~E, 
(ii) Re(e-i~ for all 0~[0,2r~[. 
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Proof The canonical mapping j: E--*E" is a lattice homomorphism (i.e. pre- 
serves the modulus). Consequently, Irzl<Slzl for all z e E  is valid, iff 
[jZz] <jS]z] for all zeE; and this is satisfied, iff Re(ei~ for all 0~ [0,2~z[ 
by [13], IV 1.8, which is equivalent to (ii). 

It follows from the lemma that the norm of a real operator TESf'(E,F) (i.e. 
T = Re T) is given by 

IITll~=inf{lISII [S~2,r +_T <=S}. 

From this the completeness of ~r(E~,F~) can be easily seen ([13], IV exercise 
3) and the completeness of ~q.q~r(E, F) follows from the inequality 

max { [] Re T [[ r, [I Im T I[,} _-< [] T ][~ __< [] Re T [It + [[ Im r I[~. 

1.1 shows in particular that the existence of sup{Re(ei~ 2rc[} is 
equivalent to the existence of inf{S~LP(E)+I[Tz[<=S[z[ for all z~E} (in the or- 
dered space ~r(E~)). The common value, if it exists, is called the modulus of T 
and denoted by [T]. 

If IT] exists its r-norm is ]IT[]~= [I [T] [[. 
Of course, if T is real and [T[ exists it is sup { T, - T}. 
If for every x~E+ the sup {[Tz[]iz[ <x} exists in F, then the modulus of T 

exists and is given by 

IT{x=sup{lTzlllzl<x} (s). 

As a consequence ~r(E~,F~ is a real Banach space if F is order complete, and 
~r(E,F) is its complexification ([13], IV, 1.8). 

Whereas the modulus does not exist for every T~ ~ ' (E ,  F) in general, it al- 
ways exists for elements of the closed subspace of ~ ( E , F )  generated by the 
operators of finite rank. This is due to Schlotterbeck [15] for the real case (in 
a slightly different version). 

1.2. Definition. Let E,F be (real or complex) Banach lattices. An operator 
TES~(E,F) is called r-compact if it can be approximated in the r-norm by 
operators of finite rank. The space of r-compact operators is denoted by 
E'@eF. 

1.3. Theorem. Let E,F be (real or complex) Banach lattices. Every r-compact 
operator T possesses a modulus IT[ given by (s) and [T[ is r-compact. 

Thus E' | is a Banach lattice (the complexification of E~@r if E, F are 
complex). Moreover the mapping E'@eF~LPr(E,F '') (T~ joT)  (where j: F ~ F "  
is canonical) is an isometric lattice homomorphism (i.e. preserves modulus and 
norm). 

For the proof we need two lemmas. Recall that a subspace F of a complex 
Banach lattice E is called a sublattice of E if z~F implies R e z s F  and 
[zl~f . 

1.4. Lemma. Let E be a complex Banach lattice, F a subspace of E. Denote by 
Fa= {Re zlz ~ F} the real part ofF. Suppose that 
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(i) F~=F 
(ii) F R is a closed sublattice of E w 

Then F is a closed subtattice of E. 

Proof. Let xeF.  Set A={Re(ei~ and denote by 2 the set of su- 
prema and infima of finite subsets of A. The space Eix I is isomorphic to some 
Cr ) ([13], II, w 2 is a <-directed set which converges to Ix] by Dini's 
theorem in the uniform topology of Cr hence afor t ior i  in the topology of 
E. It follows that lx[ eF,  since F is closed. 

1.5. Lemma. Let E, F be (real or complex) Banach lattices, Te ~;?~(E, F). 
Assume there exists a sequence (T,~)~ in ~ ( E , F )  such that 

(i) lim I! T -  T. ft~ = 0 
n ~  co  

(ii) [T~[ exists for every h e n  and is given by (s). 
Then IT[ exists and is given by (s). Moreover IT]= lim [T~[ in the r-norm. 

n ~ o o  

Proof. 1. We show that ][ ]T~I-[T,,] H,._- < [[T~- Tm][r for n, m e N .  
Let SeZf(E)+ such that [(T,-T,,)z[<S[z[ for all zeE .  
Then 

[Z.zl ~ [(T.- Tm) z] + ]r,.zl 

GSlzl+lZ,,llzl for all z6E.  
Hence 

IT~I < S  + IT,.t, and 

rT,.I<=S+IT~t (by symmetry). 

Consequently _+ ([T.[ - [T,.I) =< S, which implies 

l[ IT.l-IT,.[ lit< Hgl[. 

2. By 1, (IZ~l)~ is a Cauchy-sequence in 5f~(E,F). Set S = l i m  IZ~]. Let 
x ~ E + .  " ~  

We have to show that S x = s u p  {trzttlzl <x}. Since 

lZzl= lim IT. zl < lim tr.I Izl--Slzl 
n ~  co  ~ l ~  co  

we have [Tzl<Sx if Izl<x. 
To show the inverse inequality let w> [rzl for all z ~E satisfying [zt __<x. 
There exists a sequence ( R . ) . ~  of positive operators on E such that [(T. 

- T) z[ <= R.lz[ for all z ~ E  and 

lim ]LR, II =0. 
n ~ c o  

For [z[ _< x we have 

1T.zl < ](T. - T)z[ +lZzl < R~lzt + w < R~x + w. 

This implies t T.[x__< R.x  + w, hence Sx = lim 1T.I x < w. 
t t ~  CO 
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Proof of 1.3. 1. The assertion is true for real Banach lattices E, F 

a) If TEE' |  F, [rl exists and [Zl ~ E ' ~ F .  This follows from IV, 4.6 in [-13] 
because E'|  Moreover from the proof of IV, 4.6 in [13] 
it can be seen that l?'l is given by (s) and [j o T[ = jo  [r[. 

b) Let T~E'Q~F. There exists a sequence (T~)cE'|  such that T =  tim T, 
in the r-norm. ~ ~ 

From 1.5 it follows that IT] exists and is given by (s). Moreover IT[ 
= lim IT.l; thus [T[sE'(~F and 

~1-* o0 

o T[ = lim ~ o T.] = lim j o IZ.I =j o [T] 
n ~ o o  t t ~ o 9  

by a). In addition 

]lJ ~ TH, = H IJ ~ TtI] = IIj o ]TI ]I = ]1 IT11! = ]I TII,.. 

2. Let E ,F  be comp!ex Banach lattices. 

a) j(E'@eF ) is a closed sublattiee of ~'(E,F"). In fact, it easy to see that 
(E@eF)~=Eg@~F~), hence by 1. the hypotheses of 1.4 is satisfied. 

b) For T6E'(~eF and x6E+, 

L/o T1 x = sup~. {t(J ~ T)ztl[zl > x} = s u p v .  {j [Tzlt[zl ~ x} 

is an element of jE by a). This implies that supr{lrzll[zl<<_x} exists and 
j(supF {Irzlllzl <x) )= l jo  rlx. Hence Irl is given by (s) and jo  Irl--[jo rl.  

1.6. From the definition it follows that E'@eE is a closed algebraic ideal in 
2;~(E). Whereas E' |  is an ideal in AD(E), it can happen that for T ~ E ' ~ E  
there exists an R~C~(E) such that RT and TR are not regular. This can be 
seen in the following example: 

On the space E,=/2(2 ") there exists an operator A n such that IIA~tt = 1 and 

I[A,[[~=]/~ (neN) (see 1-13], IV w Example 1). Take E the/2-sum of the spa- 
ces En, let R be the diagonal operator on E given by A n on E, and T be the 
diagonal operator given on E, by cn-times the identity, (c,) being a sequence 

such that l i m c , = 0  and lim [c,[l/2-~-= ~ .  Then T~E'@~E, R~LP(E), but RT 
n ~ o o  n ~  

and TR are not regular. 

2. The o-Spectrum of r-Compact Operators 

2.1. Definition. Let E be a complex Banach lattice. The spectrum of a regular 
operator T in the Banach algebra ~~ is called the o-spectrum and denoted 
by ao(T ). 

Obviously the spectrum o-(T) of T in ~ (E)  is a subset of Go(T) and the 
"pure o-spectrum" ao(T)\a(T) consists of the complex numbers 2~p(T) ( t h e  
resolvent set of T) such that R(2, T): = ( 2 -  T)- 1 is not regular. 
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From the formula for the spectral radius it can be seen that r(T)=ro(T ) for 
T > 0 ,  where r(T) denotes the spectral radius for T in ~ ( E )  and ro(T ) the one 
in 6r The topological connection between a(T) and ao(T ) was discovered 
by Schaefer [14 3 (for E order complete). We want to formulate the result more 
generally. 

Let A be a Banach algebra with unit e and B a subalgebra of A such that 
e~B. Denote the norm of A by II IIA and suppose that there is a finer norm 
11 lIB on B such that B is a Banach algebra for that norm. 

For x ~ B  denote by ~7A(X ) the spectrum of x in A and by o-B(x ) the one in 
B. Obviously aA(X ) is a subset of o-B(x ). 

2.2. Proposition. Let x e B. For every clopen subset D 4: ~ of a~(x), a A(X ) C~ D 4= ;5. 

Proof D is a compact subset of ~I and by hypothesis there exists an open sub- 
set 01 of tE such that D=aB(x)c~O 1. Suppose DC~aA(X)=~. Then we have D 
=o-B(x)c~O for the open set O=OI\aA(X ). There exists a Cauchy domain G in 
C such that D c G c G c  O. Therefore OG c C aB(x), and the mapping 2 ~ R(2, x) 
from 0G into B is continuous. Let 20 s D. The integral (in the topology of B) 

1. ~ R(2,x)/(2_2`o)d2 exists and is an element of B. Because G c O  ~ aA(X ) 
7~1 c~G 

one has R(2o,X)= ~ 1  ~ R(2,x)/(2-2o)d2 (whereby the integral is defined in 
2ni ~a 

the topology of A and coincides with the integral above, since the norm of B is 
finer than the one of A). It follows that R(2`o, x )sB,  contradicting 2 o E as(x ). 

2.3. Corollary. aB(x)\a a(X ) has no isolated points. 

2.4. Corollary. I f  aB(X):#aA(X), the set 6A(X)\ff A(X ) is not countable. 

Proof Let 2O~as(X)\aA(X). There exists a real number to>0  such that {2[I2 
-2`o[--<ro} ~ aA(X). Suppose aB(X)\aA(X ) is countable. Then there exists an r, 
0 < r < ro, such that {2 E ~ 112`- 2o[ = r} c ~ aB(x ). Set 

D: = {2  ̀E o'B(x) I 12`-,t01 < r} = {2` ~ o-B(x) 1120- 2.ol < r}, 

then D ~ 6A(X) = ~, contradicting 2.2. 

For the o-spectrum the preceding results obtain the form: 

2.5. Corollary. Let E be a complex Banach lattice, TeY~(E). 
a) I f  D is a non-void clopen subset Of ao(T), then Dna(T)4= ~. 
b) The pure o-spectrum ero(T)\a(T ) has no isolated points. 
c) I f  6o(T) 4= ~r(T), the pure o-spectrum is uncountable. 

We can now formulate the main theorem of this section. It shows that all 
the resolvents of a r-compact operator are regular. 

2.6. Theorem. Let E be a complex Banach lattice. For every TeE'  @e E, 

ao(T ) = a(T). 

For the proof of this theorem we need two lemmas. 
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2.7. Lemma. Let ~ = ~ xi | Yi eE | E (n ~ N), ") ' " ' (y~ , ~  being a Cauchy se- 

quence in E (i= 1,... ,  r), Then (Tn)~ N is a Cauchy sequence in SlY(E). 

Proof For n, m e N ,  T,,-7m= ~ X~| and therefore 
i = 1  

,n m ITs- T~l ~ lx'~l | ly, - y ,  I. 
i = l  

This implies that 

IIZ~-Zmll~ Z IIx'~ll IlyT-yT~ll, 
i = 1  

and the assertion follows. 

2.8. Lemma. Let T~ E' ( ~  E and (S,) ,~ be a sequence of regular operators such 
that IJS, iI~<M ( h e N ) f o r  a positive real number M. I f  (S~),~ is a Cauchy se- 
quence in 5~(E), (S,T),~N is a Cauchy sequence in ~ (E) .  

r 

Proof Let e > 0. There exists an operator of finite rank T O = ~ x[ | x~ such 
8 i = I  

that []T-To][~<~-M-. By 2.7 there exists a natural number n o such that for 
n,m>no, 

I]S, Zo-SmZo[l~ = ~ x~|  x, 
i i = 1  

Thus for n,m>=no, 

IIS, T -  SmTIt,~ IIS, T-S~ToI!, + ItS, To-SmZotl,+ ils,~ro- S,, T!Ir 

< 2 M  l iT-To  If,.+ ItS, To-S,,Zofl~<e. 

Proof of 2.6. Set A={S~LP'(E)IST= TS}. A is a closed subalgebra of 5F'(E) 
with I e ~ A. 

Because (2 - T 2)- 1 T = T(2 - T 2)- 1 for 2 6 ao(TZ), ao(T a) = o-a(TZ). Therefore 
ao(T2)=a(R), where R ~ ( A )  is defined by R(S)=ST 2 for S e A  (see I-2], w 
Prop. 4 (ii)). 

The proof is finished when it can be shown that R is a compact operator. 
Then a(R)= ao(T 2) is countable and ao(T) is so, too, because eo(T 2) = ao(T) 2 (spec- 
tral mapping theorem), and the proposition follows from 2.5c). 

We now prove that R is compact. 1 
Let (S , ) ,~  be a sequence in A, IlS.II~__<l for n~N.  We have to show that 

(R(S,)),~N has a convergent subsequence. Denote by U the unit ball of E. The 
set K." = TU (norm closure in E) is compact, T being a compact operator. The 
set {S,IKtn~N } is a relatively compact subset of Ce(K), the space of all con- 
tinuous E-valued functions on K with the supremum-norm. This follows from 
the theorem of Arzela-Ascoli, because 

I For the following argument cf. 9.1 of [1] 
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1. {Snl Ktn ~ N} is equicontinuous. (For x o, x c K, 

LIXnx-S~xoT[ < I[S~L[ IlX-Xol[ < [IS~lI~ [IX-Xoit < [IX-XolI 

ibr every n e N). 
2. For every x c K  the set { S , x l n c N }  is relatively compact in E. (Since 

ST  U = TS U c TU c K, it follows that S K c K for all SeA,  Il S II -< 1). 
Thus the sequence (SnlK),~ ~ has a convergent subsequence (S,ll~,)tr N in 

CE(K ). Consequently (Snz T ) l ~  is a Caucby-sequence in 2.L~(E). By 2.8, (S,,z Ta)z~ 
is a Cauchy-sequence in Yr(E), hence in A, which had to be proved. 

2.9. Corollary. Let E be a complex Banach lattice, TcG~'r(E). Suppose that there 
exists a non-constant hoIomorphic fimction f defined in a neighborhood of ao(T) 
such that f ( T )  6 E' QeE. Then a ( r )  = ero(r ). 

Proof By 2.6 and the spectral mapping theorem, a ( f ( T ) ) = a o ( f ( r ) ) - - f ( G ( r ) ) .  
Hence f(O-o(T)) is at most countable. Since f is not constant and O-o(T ) is com- 
pact, the set {2Cao(T)[f(2)=#} is finite for every # c f ( G ( r )  ). Consequently, 
G(T) being a subset of f - l ( f ( a o ( T )  ), is at most countable too, and the asser- 
tion follows from 2.5 c). 

The next result gives spectral properties of a special class of positive oper- 
ators. 

Let E be a complex Banach lattice, T a positive operator on E. The pe- 
ripheral o-spectrum rao(T) is the set rao(r)={2eao(T)II21=r(T)}.  A positive 
operator is said to have disjoint powers if 

inf{Tn, Tm}=0 for n, m c N u { 0 } ,  n # m  

(this means that if for n # m S is a real operator on E such that S_< T ~, T m, then 
S_<O). 

2.10. Proposition, Let E be a complex Banach lattice. I f  T is a positive operator 
on E with disjoint powers, then the peripheral order spectrum of T is given by 

r Cro(T ) = {.,l~ r t 12} = r(T)}. 

ProoJ'. For l~-l >r(T),  R(2, T )=  ~ Tn/2 ~+1 (Neumann's series, converging in 
n = 0  

~(E) ) .  Routine arguments involving the disjointness of the powers of T show 
that 

]R()~, T)[ = sup {Re (e ~~ T)I0e [0, 2~[} 

exists and is given by 

[R(2, T)[= ~ ]2]-(n+l)T n. (*) 
n = O  

There is a sequence (r.)~ N such that r~>r(T) for all n~N,  lim r~=r(T) and 
n ~  oo 

lim t!R(r~, T)II =co (see V, 4.1 of [13]). Suppose r(T) >0  (otherwise the proposi- 
n-4- co 
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tion is trMaI) and tet/~clE, il~I=r(T). Set e=r(T).  Then F~= Iim r,,se and by (*) 

lira liR(r,e, T)II,. = lira ilR(r,, T)I1-- do. 

Since the mapping v~R(v ,  T) of C G(T) into ~"(E) is continuous, this implies 
p ~ Go(T ). 

2.11. Corollary. A positive operator T~E' @r with disjoint powers is quasi-nit- 
potent. 

It wilt be shown in the next section that the corollary is no longer true for 
positive compact operators. 

3. Convolution Operators 

Throughout this section we assume that G is a locally compact group. By a 
measure on G we understand a complex regular Boret measure. The space of 
the continuous complex-valued flmctions on G having compact support is de- 
noted by C~(G), and by Co(G ) we denote the space of the continuous functions 
vanishing at infinity. 

The space M(G) of all bounded measures on G may be identified with the 
dual space of Co(G ). 

M(G) is a Banach algebra with unit when multiplication is defined by con- 
vdution: For #, v~M(G) # ,  ~'EM(G) is given by 

<f, IX * ~'> = ~if(s t) d#(s) d v(t:) 

for are Co(G ). The unit of M(G) is the Dirac measure 6~ in the unit e of G. 
There is an involution ~ on M(G) which is defined by 

<f,~~> =<Z#>, (f~ co(o)) 

where the bar denotes complex conjugation and # is defined by <ffi>=<~#> 
for f s  Co(G), f (s)=f(s  -~ 1) (s E G). The spectrum of an element # of M(G) related 
to the Banach algebra M(G) is denoted by o'(/~) and its spectral radius by r(#). 

On the positive cone M(G)+ of M(G) the norm is multiplicative, i.e. 

l)t,vH=l)tli Hvli for #,veM(G)+. 

In particular, I!ld!l = li#il" (for all nsN) ,  hence r(/t)= [I/~li for #eM(G)§ as can 
be seen from the formula for the spectral radius. 

The positive cone defines the structure of a Banach lattice on M(G). 
In the following, the spaces LP(G) (1 <p < do) are always understood relative 

to the left Haar measure on G, as is the expression "almost everywhere" (a,e,), 
Invoking the Radon-Nykodim theorem, I2 (G) can be identified with a band in 
M(G), in particular L 1 (G) is a closed sublattice of M(G). Moreover, LI(G) is an 
algebraic ideal in M(G). Consequently the spectrum of an element f of LI(G) 
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related to the Banach algebra L I(G) is the same as the one related to the Ba- 
nach algebra M(G), we denote it by a(f). 

For a measure # on G and f e  Cc(G ) a continuous function # * f  can be de- 
fined on G by the formula 

# *f(s) = S f ( t -  1 s) d#(t) (s e G). 

If # is bounded # , f  is in LV(G) and 

II#* flip < ]l#ll llfllp ( l < p <  oo). 

We call the continuous (resp., weakly continuous if p =  or) extension to LP(G) 
of the mapping ( f - -*# , f )  of Cc(G ) into LV(G) the convolution operator Tu, p on 
LP(G). 

In this way we get a Banach algebra homorphism zp of M(G) into ~(/~(G)) 

%(#) = L, 
% preserves the involution 

2 

(S* denotes the Hilbert space conjugate of S e 5r For p = 1 

(T . ,  1)' = 

(S'E ~ (L ~~ (G)) is the Banach space adjoint of S e ~ (D (G))). 
Up to now all these facts are standard and can be found in the monograph 

[7]. 
For our purposes the following observation is important: The operator T,,p 

is positive if # is positive; since every measure in M(G) is a linear combination 
of positive bounded measures, every convolution operator is regular. Thus the 
mapping zp in fact gives a representation of M(G) into the Banach algebra 
~r(LP(G)) (l__<p__<oo); we are going to investigate this representation in what 
follows. 

Every a e G defines a translation operator R, on LP(G) by 

(R,f)(s) =f(sa)  (s e G). 

It is easy to see that the convolution operators commute with the translations. 
Moreover, this property characterizes the (positive) convolution operators 
among the positive operators on LP(G) ( l < p <  or) if the group is amenable. 
This can be seen from the following two theorems. 

3.1. Theorem (Brainerd-Edwards [3]). Let T be a positive operator on LP(G) 
(1 <p < oo) satisfying RaT= TR a for every a e G. Then there is a positive measure 
# on G such that 

T f =  # * f  for every f e  cc(a ). 

It is not difficult to see that for p = 1, oo, the following is valid: 

a) If # is a positive measure on G such that 

# . f eLP(a )  and II#,fllp<cLlfllp 
for a positive constant c and all f e  C~(G), then # is bounded. 
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b) lIT., ,plt = !t~II for ~M(G)+. 
For 1 <p  < ~ the following theorem is valid (see [5] and [10]). 

3.2. Theorem. For every p, 1 < p <  0% the following assertions are equivalent: 

(i) G is amenable 

(ii) [ITu, v]] = H#/I for every positive # ~ M ( 6 )  
(iii) I f  # is a positive measure on G such that #*f~LV(G) and 

]l t * f Ll v < c ]l flip for a positive constant c and every f E Co(G), then # is bounded. 

Every compact and every Abelian locally compact group is amenable. For  
this and the usual definition of "amenable" we refer to [6] and [10]. In the 
following we will use the notion "amenable" only in the sense (ii) and (iii) of 
3.2. 

In order to characterize the convolution operators in ~( /Y(G))  we define 
the following subspace of 5q~(LP(G)): 

~ v = { r e ~ r ( I Y ( G ) ) l R ,  r = r R ,  for all a s G }  for l < p < o e .  

3.3. Proposition. The space ~v(1  < p <  oe) is a closed sublattice and a full subal- 
gebra of c~(LP(G)). Consider the mapping 

z;: M(G)- -+~ p, r p. 

I f  p = 1 or G is amenable, then ~p is an isometric algebra and lattice isomorphism 
onto ~P. 

Remarks. 1. Let B be a closed subalgebra of a Banach algebra A with unit e, 
such that eEB. B is said to be full in A when the following condition is satisfied: 
If x ~ B is invertible in A the inverse x -  1 is an element of B. 
This condition implies aA(X)= aB(X ) for x ~B. 

2. Let E~,E 2 be Banach lattices. An injective linear mapping T of E~ onto 
a sublattice of E 2 is called a lattice isomorphism, if 

Tz>O iff z > 0  for all zeE~.  

This is equivalent to 

ITzl=Tlzl for all z ~ E  1. 

ProQf. of 3.3. a) For  S, T ~  p, a~G, R ~ ( S T ) = S R a T = ( S T ) R  a. Thus S T ~  v. If 
T6~ V is invertible in ~r(LV(G)), R , , T - t = T - a T R ,  T - I = T - 1 R ~ T T - 1  
= T -  1R~ for every a ~ G, hence T -  1E ~-P. 
We have proved that ~ v  is a full subalgebra of ~r(/Y(G)). 

b) ~ P  is a sublattice of ~r(LP(G)). 
In fact, take T~ ~p.  Since R~ (a ~ G) is a real operator, one has 

R~(Re T) = Re(R~ T) = Re (TR,) =(Re  T) R,. 
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Hence Re T s Y  p. Since R~ is a lattice isomorphism, the mappings (S~R~S) 
and (S~SR,)  of ~'(LP(G)) onto s are lattice isomorphisms, too (they 
are positive with positive inverse). Hence R, ITI = IR~ Ti = I TR~I = [TIR~ for all 
a ~ G, which implies ITt ~ ~ v  

c) For f e  C~(G), ( f , # )= (#* f ) ( e ) ,  and # , f  is a continuous function. Hence 
~p is injective and T~,,~__>0 iff #=>0. 

d) The assertion concerning vp follows now for p = l  from 3.1 and the re- 
mark after it, and from 3.t and 3.2 for 1 < p < Go (note that by c)lT~,p[ = T~{,~). 

The following theorem is a consequence of 3,3. 

3.4. Theorem. i. For p = 1, o9, 

a(#)=ao(T~,p)=a(T,,p) for every ~EM(G). 

2. l f  G is amenable, l <p<oo, then 

o'(/~)=ao(T,,p) ./br every geM(G). 

And conversely, 
3. I f  there exists p, I <p < o% such that 

o-(#)=cro(T,,p) for every peM(G), 

then G is amenable. 

Proof a) Since every operator on LP(G) is regular if p = t ,  oo ([t3], IV 1.5), 
%(T~,v)= a(T~,v) for every/~e M(G) in this case. 

b) Suppose G is amenable or p = l .  Since ffP is a full subalgebra of 
s (3.3), ao(Tu, v) coincides with the spectrum of T~,p in the Banach al- 
gebra ~P  and consequently with a(#), 5(tt~T~,p) being an Banach algebra 
isomorphism of M(G) onto ffP (3.3). 

c) Let p = Go. 
By a) and b), 

~,o(T~. ~o)=,(T,,. ~)= o((g. 1)~)= ~(r~. 1) 
= ~ ( ~ )  = ~(#). 

We have now proved the assertion t. and 2. of the theorem. To prove 3., let 
pe(1, oo) and suppose G is not amenable. By 3.2(ii) there exists #eM(G)§ such 
that II T~,pll < ]t~ll. It follows that 

ro(Z~,p)=r(Z,,p)~ iI T/,,fi < I1~11 = r(~), 

consequently ~o (T~, p) 4: a(/0. 

If G is Abelian with dual group G we denote by /~ the Fourier-Stieltjes 
transform of #e  M(G), i.e. 

a(~e)=.f  (s, ;~) d~(s) for  ~e e 8 .  
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Since the Fourier transformation coincides with the Gelfand transformation 
on L 1 (G) the spectrum of f e  L 1 (G) is 

a ( f )  = {f(7)[ 7 a G} -,  
whereas 

~(~) .~ {/2(7)17 ~ G} - 

for # ~ M ( G )  in general (see El2], Chap. 5). 

3.5. Corollary. Let G be a locally compact Abelian group with dual group G, 
#~M(G).  I f  D is a non-void clopen subset of r~(#) there exists 7~G such that 
/2(7) ~ D. 

Proof. Denote by ~ :  I~(G)--.L2(d) the Plancherel-transformation. Let 
~ J~L-~ -- i ~ " T:=Y~T .Y" T is the multiplication operator on L2(G) given by ~ - f = g . f  

# ,  Z A " 

for all feL2(G). Therefore 

r 2)= a(T) = {/2(7)I V ~ G} -. 

From 2.5 it follows that r Since D is open in a(#), there exists an 
open subset O of ~ such that D = a(#)c~ O. 

Hence {/2(?)[y ~ G} - ~ O = {/2(7)[7 ~ G} c~ D =~ ~, which implies 

as O is open. 

3.6. Corollary. I f  2 is an isolated point of ~(#), then there exists ? ~ d such that 
fi(7)=2. I f  r;(#) is contable it is equal to {/2(~)17~d}-. 

3.7. A Counterexample. We give an example of a compact (positive) operator T 
such that o-(T)=t= O-o(T ). Thus Theorem 2.6 cannot be essentially improved. 

Chose E=L2(G), G the one dimensional torus. It follows from [17] (see 
also [11]) that a positive measure # exists on G such that 

2. #nA],lm=0 for n~=m, n, m e N w { O }  
(/P denotes the n-th convolution power of #). 

3. /2~Co(~ ). 

Let T =  T,, 2. 

Then T has the properties: 

a) r is positive (in the sense of Banach lattices), selfadjoint, II T [] = 1 

b) 

c) 
d) 
e) 

Proof 
b) 

T has disjoint powers. 
T is compact. 

~(T) is countable and a subset of IR. 

co(T) = {;~ e r I I,~[ = 1} 

a) (T,,2)* = Tu~ 2= T,,2; ]]T,,21 ] = H#]] =1 by 3.2 
follows from 3.3 
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c) Denote by ~ :  La(G)~ P(~) the Plaucherel transformation. T: = J~ T.~--1 
is given by T(a~),~e=Oi(n)a,,),~e; so T is compact, because/zaco(2g ). 

d) follows from c) and a) 

e) follows from b) and 2.10. 

4. Compact Groups 

In this section we consider convolution operators related to compact groups, 
Therefore we will assume that G is a compact group in the following, otherwise 
keeping the notations of the last section. 

Moreover, the Haar measure on G will be denoted by m, the dual object of 
G by G. For every ~ s G  we denote by u~u (1 <i,jNn~) the coordinate functions 
corresponding to a representation in e (see [7]~ w 27 or [4], Chap. 8). In partic- 
ular 

u~u is a continuous function on G 
u~(s) = (u~u(s)) u is a unitary (n~ x n~)-matrix 

u (s-0 = 

u~(s-1)=u~(s)-l=u~(s) * for s, taG. 

To establish a connection to the main theorem of section 2 we note first of all: 

4.1. Proposition. With p, l<p<o% set E=LP(G). For every feLl(G), 
Tf~,pEE'@~E. 

Proof( 1. Assume f is a coordinate function, say f = u~i ~. Then for g E/Y(G), 

(Troy" pig)) (s) = (m -f) * g(s) =.[ g( t -  1 s)f(t) dt 

= ~ g(Of(st- 1) dt = S g(t) u~u(st-1) dt 

k = l  

= E fgtt)uSjtt)dtuik(s) (a.e.) 

n ~  

Hence E * u~k j | u~ k is an operator of finite raslk. 
k = l  

2, tt follows from 1. that Ty.mEE'| for f a trigonometric polynomial (i.e. 
a linear combination of coordinate functions). 

3. Let f be arbitrary. There exists a sequence (J~),~s of trigonometric poly- 
nomials such that lira Ilf-f//l=0 (see 27.39 in [7]). By 3.2 (resp. the remark 

n ~ c o  

preceding 3.2 for p = 1, oo), 

ilTj=,,,,~-Tj-m,p[I,= liTly._yl.,,p[l = [If,,-fl[1, (n~N). 

Hence lim Ty,m,p= Ty,,,p in Y~(E), consequently Tf,,,paE'-| 
n ~  co 
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A Banach algebra with involution is called symmetric if every setf-adjoint 
element has real spectrum. In this notation we get the well known fact (see [9, 
16] for example): 

4.2. Corollary. Let G be a compact group. L ~ (G) is a symmetric Banach algebra. 

Proof If f is self-adjoint, the operator Tym,2 is self-adjoint, hence a(Ts.m,2) is 
real. Since a(f)=ao(Tf.m,2)=a(Tf.m, 2) by 4.1 and 2.6 f h a s  real spectrum. 

More can be said. 
We denote by f the Fourier transform of fEL~(G). It is a family (~)~8 of 

matrices defined b}r 

L i j  = ~Jz'(S) Uoeij( s - "~) ds (~ ~ G, 1 N i,j <= n~). 

The mapping Y defined by ~ f = f  for f~IZ(G) going from L2(G) onto the Hil- 
bert space. 

s176 = {(qS~)~0]~b~ a n~ x n~-matrix, ~ n~ ]l~b~]t 2 < oo} 

I 2 (I] qS~ 11 z = trace (qS* o qS)), with the scalar product 

(~b, F )=  ~ n~ trace (7-'* o qS), 

is a unitary operator, called the Plancherel transformation (see [4], Chap. 8 for 
all that). 

We denote by a(j~) the spectrum of the matrix f~(feLl(G), c~G~). The fol- 
lowing formula for ~r(f) is analogous to the corresponding expression in the 
Abelian case. 

4.3. Theorem. For f ~ L  ~(G) the spectrum ~(f) o f f  in the Banaeh algebra L ~(G) is 
the set 

a ( f )=  ~. o'(J~)u{O} if G is infinite 
~ G  

and 
a(f) = ~_ cr(f~) f G is finite. 

c~G 

Proof. Since o-(f)=o-(Ty,~,2 ) by 4.1 and 2.6, we have to show that cr(Tim, 2 ) is 
given by the expression of the theorem. Set T = ~ T s , , , 2 ~  -1, then o-(T) 
=a(Tzm, 2 ). ~ is the operator on s given by 

T((O,)~) = (~J,),~8. 

We first show that U_ o'(f~) c o-(7~). 
aEG 

Let f led  and 2ea(~). Then there is an n~xn~-matrix B~4=0 such that 
B~()o-j~)=0. (use [2], w Prop. 4(ii)). Thus Tq~=2~b for q~=(qS~)~Se~C~~ de- 
fined by q5 = 0 for e 4= fl and ~ = B~. Consequently 2 is in the (point) spectrum 
of ~. 
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If G is infinite, L2(G) has infinite dimension, hence 0ecr(T), T being com- 
pact, If G is finite, then d is finite and it is obvious that cr(~)c ~ a(f~). It re- 

~eG 

mains to show that c~(T)\{O}cUa(f~), Take 2ea(~),  2+0. Since 
a~G 

(llf~llL~a~co(a'), there exists a finite subset A of G such that ltf~t] <1/2121 for 
e~A. Set It  1 = {4e~2(d)l 0~ =0 for all eCA}, H 2 = {~es2(6)1 ~ = 0  for all seA}. 
Then L~2(G) is the direct Hitbert sum of H 1 and H~, and T leaves H1 and H 2 
invariant. Set ~ =  Tin. (i= 1, 2) then ~r(T)=~(Tt)ua(~).  

Since iI~li < 1/2i)~i, )~cr(T2)-Thus 2e~r(~'0= ~ cr(j~). 
c~eA 

4.4. Corollary. For feLl(G), 

a(Tf,,,v)= U a(J~)u {0} if G is infinite and 

= U^a(f~) ifG isfinite (l=<p<=oo), 
o:eG 

In particular the spectrum of Ti,~, p is independent o[ p. 

Proof a(Tr,~,v)=ao(Ts,,,p)=a(f ) by 4.1, 2.6 and 3.4, The assertion follows now 
from 4.3. 

Of course, 3.5 and 3,6 can be extended to the compact non-abelian case 
using the same arguments: 

4.4. Proposition. Let #eM(G), #~=~u~(s )d#(s) for c~e d, 
a) l f  Dcr;(N is clopen, there exists c~e8 such that Dc~a(fi~)~=~. 
b) Every singular point of a(#) is element of a(~) for some eeG. 
c) I f  a(#) is countable it is equal to ~)_ ~r02~). 

~ e G  

4,5. Corollary. I f 2  is an isolated point in ao(T,,v) , then 2 is an eigenvalue of Tu, p 
(l <=p<_ oo). 

Proof Since ao(T~,;)=a(#) there exists ~ e d  such that 2r by 4.4b). Con- 
sequently there exists a n~• n~-matrice B~=0 such that ~B~=2B~. Let f be 
the trigonometric polynomial satisfying )~ =B~ and j~ = 0 for fi 4= c~. Then # , f  = 
2f  by the uniqueness of the Fourier transform. Since feLV(G) (l<_p<oo) 
and ,)c #:0 2 is an eigenvalue of T,,v. 

Finally we want to formulate for LX(G) the analoguous statement of 2.11. 

4.5. Proposition. The only positive function in Lt(G) with disjoint convolution 
powers is the O-fimction. 

Proof If feL~(G)+ has disjoint powers the same is true for Tr (l__<p<oo), 
hence r(Tf.m) = r ( f ) = 0  by 2.11. This implies f = 0  since r(f)--]INH. 
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