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The Banach algebra M(G) of all bounded regular Borel measures on a locally
compact group G is often represented on I?(G) by the mapping u—T, ,, T, ,f
=p=+f (fel?(G)). This representation has the advantage of bringing the Hilbert
space structure into play, thus the involution is preserved and the spectrum of
T, , is easy to compute (if G is abelian or compact). There is nevertheless an
inconvenience: The spectrum of x in the Banach algebra M{(G) does not coin-
cide with the spectrum of the operator T, , in general. This could be overcome
by considering L'(G) instead of I?(G). Another possibility, which conserves the
Hilbert space structure, makes use of the fact that the operators T, , are reg-
ular operators on the Banach lattice I?(G) (i.e. linear combinations of positive
operators). And indeed, the representation of M(G) in the smaller Banach al-
gebra Z7(I*(G)) (of all regular operators on I?(G)) behaves nicely, if G is ame-
nable:

It is an algebraic and lattice isomorphism of M(G) onto the full subalgebra
and sublattice of those regular operators which commute with the (right-)
translations. Consequently the spectrum of g in M(G) is the same as the spec-
trum of T, , in the Banach algebra £"(I*(G)).

This spectrum (of a regular operator T on a complex Banach lattice E in
the Banach algebra #"(E)) is called o-spectrum and was first investigated by
Schaefer [14]. A natural question arrising in the context of this new definition
is whether the spectrum and o-spectrum are equal for a given operator.

The main theorem of the first part of this paper gives a positive answer to
this question for r-compact operators (i.e. operators which can be approxi-
mated in #"(E) by operators of finite rank).

In the second part applications to convolution operators are given.

First of all the rich supply of examples known from Harmonic Analysis al-
lows the illustration in this context of the behavior of the o-spectrum. Thus it
can be shown that the theorem mentioned above cannot be significantly im-
proved. In fact there exist compact positive operators with uncountable o-spec-
trum. Conversely, results concerning the o-spectrum can be used to prove pro-
perties of the spectrum of measures. For instance, we get as a corollary that
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the group algebra of a compact group is symmetric (which is well known) and
are able to calculate the spectrum in the group algebra by means of the Fou-
rier transformation.

The author would like to thank Professor Schaefer and Professor Wollff for
many helpful suggestions.

1. r-Compact Operators

In this section we establish some elementary facts about regular operators.
A basic notion is that of a complex Banach lattice, as it is defined in the
monograph [13], which we shall use as a general reference.
A complex Banach lattice E is the complexification Eg+iEg of a real Ba-
nach lattice E. The modulus |z] of an element z=x+iy in E is given by
lzl= sup Re(e®z)= sup ((cosB)x+(sinb)y).

6e[0, 2n[ 6ef0, 2n[

Obviously, [z|e E, (the positive cone of Eg). The norm on E is defined by

Izfi== 11zl 1,

where |||z| || denotes the given norm of |z| in Eg. The spaces IF(X, 2, y) (1 <p< )
and C¢(K) (the continuous complex functions on a compact K) are typical ex-
amples of complex Banach lattices.

Let E, F be complex Banach lattices. By Z(E, F) (£ (E) if E=F) we denote
the space of all bounded operators of E into F. For Te Z(E,F) there exist
canonical operators Re T, Im Te #(Eg, Fg), such that Tx=(ReT)x+i(Im T)x
for all xeEg. An operator Te Z(E,F) is said to be positive (I'20), if T is
equal to ReT and Tx20 for xeE_ ; T is called regular, if T can be written as
a linear combination of positive operators. The space of all regular operators
of E into F is denoted by #"(E,F) (Z"(E) if E=F). Obviously ¥"(E,F} is a
subspace of Z(E,F). In the following way a norm (the “r-norm”) can be de-
fined on #°(E,F) such that it becomes a Banach space (a Banach algebra
if E=F):

(T, =inf{||S||Se L(E,F), S$=0, |Tz| =S|zl for all zeE} (Te#"(E, F)).
In fact, it is easy to see that | [, is @ norm, which satisfies in addition
ITH=IT|l, forall TeZL"(E,F),

IT)=|T|, for T20,
IMLIL=IT T, T, T,e L(E) (f E=F).

1.1. Lemma. Let E, F be complex Banach lattices. For S, Te £7{E, F) the follow-
ing are equivalent:

(1) |Tz<8|z] for all zeE,

(i) Re(e~*T)<S for all 8€[0,2x[.
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Proof. The canonical mapping j: E — E” is a lattice homomorphism (i.e. pre-
serves the modulus). Consequently, |Tz|<S|z|] for all zeE is valid, iff
i Tz|<jS|z| for all zeE; and this is satisfied, iff Re(¢’®j T)<jS for all 8e[0,2n[
by [13], IV 1.8, which is equivalent to (ii).

It follows from the lemma that the norm of a real operator Te #"(E, F) (i.e.
T=ReT)is given by

TN, =inf{[S|Se £ (Eg, Fg), £T =S}

From this the completeness of #"(Eg, Fp) can be easily seen ([13], IV exercise
3) and the completeness of #"(E, F) follows from the inequality

max {[|[ReT|,, Im T} < T|,<|ReT|,+ [Im T,.

1.1 shows in particular that the existence of sup{Re(e’T){0e[0,2x]} is
equivalent to the existence of inf{Se L (E)_ ||Tz|<S|z| for all zeE} (in the or-
dered space #"(Eg)). The common value, if it exists, is called the modulus of T
and denoted by |T}.

If |T| exists its r-norm is || T, = |T] |-

Of course, if T is real and |T| exists it is sup {7, — T}.

If for every xc E, the sup{|Tz|||z|<x} exists in F, then the modulus of T
exists and is given by

ITix=sup {|Tz|[|z/=x} (s).

As a consequence £’ (Eg, Fy) is a real Banach space if F is order complete, and
Y'(E,F) is its complexification ([13], IV, 1.8).

Whereas the modulus does not exist for every Te #"(E, F) in general, it al-
ways exists for elements of the closed subspace of ¥"(E,F) generated by the
operators of finite rank. This is due to Schlotterbeck [15] for the real case (in
a slightly different version).

1.2. Definition. Let E,F be (real or complex) Banach lattices. An operator
Te#"(E,F) is called r-compact if it can be approximated in the r-norm by
operators of finite rank. The space of r-compact operators is denoted by
E ®,F.

1.3. Theorem. Let E,F be (real or complex) Banach lattices. Every r-compact
operator T possesses a modulus |T| given by (s) and |T| is r-compact.

Thus E'®,F is a Banach lattice (the complexification of Ex®,Fy, if E,F are
complex). Moreover the mapping E'®@,F — %"(E,F") (T—joT) (where j: F—>F"
is canonical) is an isometric lattice homomorphism (i.e. preserves modulus and
norm).

For the proof we need two lemmas. Recall that a subspace F of a complex
Banach lattice E is called a sublattice of E if zeF implies RezeF and
|z|eF.

1.4. Lemma. Let E be a complex Banach lattice, F a subspace of E. Denote by
Fr={Rez|zeF} the real part of F. Suppose that
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(i) FgcF
(i1} Fgis a closed sublattice of Ey.
Then F is a closed sublattice of E.

Proof. Let xeF. Set A={Re(ex)|0<[0,2n[} and denote by A the set of su-
prema and infima of finite subsets of 4. The space E,, is isomorphic to some
Co(K) ([13], 1L, §11). A is a <-directed set which converges to |x| by Dini’s
theorem in the uniform topology of Cg(K), hence a fortiori in the topology of
E. 1t follows that |x|eF, since F is closed.

L5. Lemma. Let E,F be (real or complex ) Banach lattices, Te #(E, F).
Assume there exists a sequence (T,), . in L7(E, F) such that

() lim | T—T,J,=0

(i) |T;} exists for every neN and is given by (s).
Then {T| exists and is given by (s). Moreover |T|=lim |T,| in the r-norm.
Proof. 1. We show that || |T|—|T, |{,£|T,~T,|, for n,meN.

Let Se Z(E), such that (T, T, )z| <S|z| for all zeE.

Then

| T,z (T, — T,) 2l +|T,,2]
<S8l +1T,l1z] for all zeE.
Hence
IT)SS+|T,), and

IT,/SS+|T) (by symmetry).
Consequently +(|T,[—[T,))<S, which implies
HTI=1T 1. =[S

2. By 1. (T)),.n is a Cauchy-sequence in &"(E,F). Set S=lim |T,. Let
xekE, . e
- We have to show that Sx=sup {|Tz]||z| £x}. Since

|Tz| = lim |T, 2| < lim |, |2/ =$5]2|
we have [Tzl £Sx if jz| €£x.
To show the inverse inequality let w=|Tz| for all zeE satisfying |z < x.

There exists a sequence (R,),.n of positive operators on E such that |(T,
~T)z|ER,|z| for all ze E and

lim ||R,||=0.
W S0
For |z| £x we have
1Tz ZWT,— Tz} +|Tz| SRz} +wE R, x +w.

This implies |7 ]x <R x+w, hence Sx=1im |T|x<Zw.

[ aaadive]
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Proof of 1.3. 1. The assertion is true for real Banach lattices E, F

a) If TeE' ® F, |T| exists and |T|e E'®,F. This follows from IV, 4.6 in [13]
because EQFcFE @mF cE’@eF . Moreover from the proof of IV, 4.6 in [13]
it can be seen that [T is given by (s) and |jo T}=j|Tl.

b) Let Te E'®,F. There exists a sequence (T,)=E' @ F such that T=1lim T,
in the r-norm. mow

From 1.5 it follows that |T] exists and is given by (5). Morcover |T|
= lim |T}); thus |{T|e E'® F and -

n— o

jjo Ti=lim ljo T,| = lim jo |T,|=jo|T]|

H— 0O H— 0

by a). In addition
e Tl,=11eTl=jITH =T =TI,

2. Let E, F be complex Banach lattices.

a) j(E ®eF) is a closed sublattice of FT(E,F"). In fact, it easy to see that
(E®,F)p=Ex®,Fg), hence by 1. the hypotheses of 1.4 is satisfied.

b) For TeE'®,F and xeE_,

Ve Tlx=supg. {{(jo T)zl||zl =X} =supp. {j|Tz| | |z] = x}

is an element of jE by a). This implies that sup,{|Tz|||z|=<x} exists and
J(supp {ITz| | |z2|£x})=ljo T|x. Hence |T| is given by (s) and jo|T|=lic T|.

1.6. From the definition it follows that E'®,E is a closed algebraic ideal in
&"(E). Whereas E'®QE is an ideal in #(E), it can happen that for TeE ®,E
there exists an Re #(E) such that RT and TR are not regular. This can be
seen in the following example:

On the space E,=1%(2") there exists an operator 4, such that |4, =1 and
HA,,H,:ﬁ (neN) (see [13], IV § 1, Example 1). Take E the [*-sum of the spa-
ces E,, let R be the diagonal operator on E given by A, on E, and T be the
diagonal operator given on E, by c,-times the identity, (c,) being a sequence
such that lim ¢,=0 and lim |c,“/§“= . Then TeE'®,E, Re Z(E), but RT

#—cC n— o

and TR are not regular.

2. The o-Spectrum of r-Compact Operators

2.1. Definition. Let E be a complex Banach lattice. The spectrum of a regular
operator T in the Banach algebra #"(E) is called the o-spectrum and denoted
by o (T).

Obviously the spectrum o(T) of T in Z(E) is a subset of o,(7T) and the
“pure o-spectrum® o (T)\o(T) consists of the complex numbers iep(T) (the
resolvent set of T) such that R(4, T):=(4—T)~ ! is not regular.
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From the formula for the spectral radius it can be seen that #(T)=r,(T) for
T 20, where r{T) denotes the spectral radius for T in #(E) and ry(T) the one
in #"(E). The topological connection between ¢(T) and o (T) was discovered
by Schaefer [14] (for E order complete). We want to formulate the result more
generally.

Let A be a Banach algebra with unit e and B a subalgebra of A such that
eeB. Denote the norm of 4 by | |, and suppose that there is a finer norm
I 1z on B such that B is a Banach algebra for that norm.

For xeB denote by ¢,(x) the spectrum of x in 4 and by og(x) the one in
B. Obviously ¢ ,(x) is a subset of 64(x).

2.2. Proposition. Let x e B. For every clopen subset D+ & of 64(x), 6 ,(x)nD 2.

Proof. D is a compact subset of € and by hypothesis there exists an open sub-
set O, of € such that D=g,z(x)n0,. Suppose Do ,(x)=2&. Then we have D
=g5(x)n O for the open set O0=0,\o,(x). There exists a Cauchy domain G in
€ such that DG =G <O. Therefore 0G <[ o5(x), and the mapping 1 — R(4, x)
frorn 0G into B is continuous. Let 1,eD. The integral (in the topology of B)
2— j R(4, x)/(A— )bo) d). exists and is an element of B. Because G=Oc[ g ,(x)
one has R(4g,x)= 2— { R(A,x)/(A—2Ay)dA (whereby the integral is defined in

the topology of A and comc1des with the integral above, since the norm of B is
finer than the one of A). It follows that R(4,,x)€ B, contradicting A, € g4(x).

2.3. Corollary. ¢,4(x)\0 4(x) has no isolated points.
2.4, Corollary. If o5(x) 0 ,(x), the set o (x)\o 4(x) is not countable.

Proof. Let Ayeog(x)\o,(x). There exists a real number r,>0 such that {Ai[[1
— Aol Zr} = 0 4(x). Suppose oy(x)\0,(x) is countable. Then there exists an r,
0<r=<ry, such that {Ae[||A—Ao|=r} = o5(x). Set

D= {deoy(x)| I~ ol <r} ={Aeay()||i—Agl <1},
then D no ,(x)= &, contradicting 2.2.

For the o-spectrum the preceding results obtain the form:

2.5. Corollary. Let E be a complex Banach lattice, Te ¥"(E).
a) If D is a non-void clopen subset of ¢ ,(T), then Do (T)+ .
b) The pure o-spectrum ¢ (T)\o(T) has no isolated points.
¢) If o, (T)*£a(T), the pure o-spectrum is uncountable.

We can now formulate the main theorem of this section. It shows that all
the resolvents of a r-compact operator are regular.

2.6. Theorem. Let E be a complex Banach lattice. For every TeE' ®,E,
o (T)=0o(T).

For the proof of this theorem we need two lemmas.
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27. Lemma. Let T,=) x{®yicE'QE (neN), (V]),on being a Cauchy se-
=1
quence in E (i=1,...,7). Then (T,),. is a Cauchy sequence in &' (E).

Proof. For n,meN, T,— T, = ¥ x,®(y7—y™, and therefore
i=1

IL—T,l= 'Zl beil @ Iy =7l

This implies that

1T, =Tl = 'Zl il e =yl

and the assertion follows.

2.8. Lemma. Let TeE' ®,E and (S,),.x be a sequence of regular operators such
that |S,II,.EM (nelN) for a positive real number M. If (S),.n is a Cauchy se-
quence in L(E), (S,T),.n is a Cauchy sequence in #"(E).

Proof. Let ¢>0. There exists an operator of finite rank T,= Z x{ ® x; such

that | T—T,|, <
mzn(h

y M By 2.7 there exists a natural number nO such that for

HSnTO_SmTOHf':

¥ r
&
z X; ® Snxi— Z x; ® Smxi éz
i=1 i=1 r

Thus for n,m2n,,

%ISnT_SmTI{r§ IESnT_SnTO[§r+ HSnTO _SmTO“rni— EISmTO_SmTH?
S2MT-T|,+1S,To— S, Tl e

Proof. of 2.6. Set A={Se X" (E)|ST=TS}. A is a closed subalgebra of #"(E)
with I e A.

Because (A—T?) "' T=T(A-T*"! for Lec (T?), 6,(T*) =0 ,(T*. Therefore
oo(T*)=0(R), where Re #(A) is defined by R(S)=ST? for SeA (see [2], §5,
Prop. 4 (ii)).

The proof is finished when it can be shown that R is a compact operator.
Then o(R)=0,(T?) is countable and 6 (T) is s0, too, because ¢ (T*) =0 (T)* (spec-
tral mapping theorem), and the proposition follows from 2.5¢).

We now prove that R is compact.*

Let (S,),n be a sequence in A4, ||S,],<1 for neIN. We have to show that
(R(S,)),cn has a convergent subsequence. Denote by U the unit ball of E. The
set K:=TU (norm closure in E) is compact, T being a compact operator. The
set {S,[nelN} is a relatively compact subset of Cy(K), the space of all con-
tinuous E-valued functions on K with the supremum-norm. This follows from
the theorem of Arzela-Ascoli, because

1 For the following argument cf. 9.1 of [1]
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L. {S,|neN} is equicontinuous. (For xq,x€ K,

18, =S8, %o I SIS, 1x —xo [ S IS, 1x = Xoll £ X = X0

for every neN).

2. For every xeK the set {S,x|neNN} is relatively compact in E. (Since
STU=TSU cTU cK, it follows that SK =K for all Se4, ||S]<1).

Thus the sequence (S,,),.n has a convergent subsequence (Sm ).y I
C(K). Consequently (S, T),., is a Cauchy-sequence in & (E). By 2.8, (S,,T%),n
is a Cauchy-sequence in %"(E), hence in 4, which had to be proved.

2.9. Corollary. Let E be a complex Banach lattice, Te #"(E). Suppose that there
exists a non-constant holomorphic function f defined in a neighborhood of o,(T)
such that f(TYe E' ® E. Then o(T)y=0y(T).

Proof. By 2.6 and the spectral mapping theorem, o(f{T))=0,(f(T)=f(c,(T)).
Hence f(o,(T)) is at most countable. Since f is not constant and ¢,(T) is com-
pact, the set {iea (T)|f(A)=u} is finite for every puef(o,(T)). Consequently,
0,(T) being a subset of f~!(f(s,(T)), is at most countable too, and the asser-
tion follows from 2.5¢).

The next result gives spectral properties of a special class of positive oper-
ators.

Let E be a complex Banach lattice, T a positive operator on E. The pe-
ripheral o-spectrum ro (T) is the set ro (T)={iea (T)||A=r(T)}. A positive
operator is said to have disjoint powers if

inf{T" T"}=0 for nmelNU{0}, n¥m

(this means that if for n4=m S is a real operator on E such that S<T", T™, then
§<0).

2.10. Proposition. Let E be a complex Banach lattice. If T is a positive operator
on E with disjoint powers, then the peripheral order spectrum of T is given by

rao(T)={2eC||A|=r(T)}.

@0
Proof. For |A|>r(T), R(A,T)= Y T°/A"*' (Neumann’s series, converging in
n=0
F"(E)). Routine arguments involving the disjointness of the powers of T show
that

IR(4, T)|=sup{Re(e"*R(4, T)|0[0,2x[}

exists and is given by

RG,T) =Y 13-+ *)

a=0

There is a sequence (7)), . such that »,>r(T) for all neN, limr,=r{T) and

lim |R(r,, T)|| =00 (see V, 4.1 of [13]). Suppose r{T)>0 (otherwise the proposi-

F> 00
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tion is trivial) and let peC, jpj=r(T). Set a=7(T). Then y=lim r,x and by (%}

B> 0O

lim R, T)|,= lim [ R, T)] = co.

Hr 00 B 00
Since the mapping v— R(v, T) of [ o,(T) into #"(E) is continuous, this implies
nea(T).

2.11. Corollary. A positive operator TeE' &,E with disjoint powers is quasi-nil-
potent.

It will be shown in the next section that the ecorollary is no longer {rue for
positive compact operators,

3. Convolution Operators

Throughout this section we assume that G is a locally compact group. By a
measure on G we understand a complex regular Borel measure. The space of
the continuous complex-valued functions on & having compact support is de-
noted by C{G), and by C,(G} we denote the space of the continuous functions
vanishing at infinity.

The space M(G) of all bounded measures on G may be identified with the
dual space of Cy(G).

M{G) is a Banach algebra with unit when multiplication is defined by con-
volution: For p,ve M{(G) p»ve M{G) is given by

Sopxvy=[{f(s)duls) dv(r)

for fe Cy(G). The unit of M(G) is the Dirac measure d, in the unit e of G.
There is an involution ~ on M{G) which is defined by

Fu>={fD, (feColG)

where the bar denotes complex conjugation and j is defined by {f, > ={f >

for fe Co(G), f(s5)=f(s"1) (s G). The spectrum of an element u of M(G) related

to the Banach algebra M(G) is denoted by o{u) and its spectral radius by r(u).
On the positive cone M(G), of M(G) the norm is multiplicative, i.e.

flusvli=lpllvi for pve M(G),.

In particular, [[g"f=jg]"* (for all neN), hence r(w)=|u|| for pe M(G),, as can
be seen from the formula for the spectral radius.

The positive cone defines the structure of a Banach lattice on M{G).

In the following, the spaces IP(G) (1 £p=< o) are always understood relative
to the left Haar measure on G, as is the expression “almost everywhere” (a.e.).
Invoking the Radon-Nykodim theorem, I} (G) can be identified with a band in
M(G), in particular I} (G) is a closed sublattice of M(G). Moreover, I}(G) is an
algebraic ideal in M(G). Consequently the spectrum of an element f of [MG)
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related to the Banach algebra I'(G) is the same as the one related to the Ba-
nach algebra M(G), we denote it by o(f).

For a measure ¢ on G and fe C (G) a continuous function p#f can be de-
fined on G by the formula

prf@E)={f"1s)dut) (seG).
If y is bounded p=f is in L(G) and

It ll, =Mul 51, (A=p=oco).

We call the continuous (resp., weakly continuous if p=o0) extension to I7(G)
of the mapping (f— uxf) of C(G) into IF(G) the convolution operator T, , on
7 (G).

In this way we get a Banach algebra homorphism t, of M(G) into Z(Z(G))
(@, W=T,,).

17, preserves the involution

(T,

2

=T,
(S* denotes the Hilbert space conjugate of Se £ (I*(G))). For p=1
(T,L, 1), = TFL [eo]

(S’ e Z(I*(G)) is the Banach space adjoint of Se (L (G))).

Up to now all these facts are standard and can be found in the monograph
[7].

For our purposes the following observation is important: The operator T, ,
is positive if u is positive; since every measure in M(G) is a linear combination
of positive bounded measures, every convolution operator is regular. Thus the
mapping 7, in fact gives a representation of M(G) into the Banach algebra
F"(I(G)) (1£p=o); we are going to investigate this representation in what
follows.

Every ac G defines a translation operator R, on I7(G) by

R N)s)=f(sa) (s€G).

It is easy to see that the convolution operators commute with the translations.
Moreover, this property characterizes the (positive) convolution operators
among the positive operators on I(G) (1<p< ) if the group is amenable.
This can be seen from the following two theorems.

3.1. Theorem (Brainerd-Edwards [3]). Let T be a positive operator on IF(G)
(1=p= ) satisfying R,T=TR, for every ac G. Then there is a positive measure
u on G such that

Tf=pu=f  for every fe CG).

It is not difficult to see that for p=1, o, the following is valid:
a) If p is a positive measure on G such that

pxfell(G) and |u=f],Zclfl,

for a positive constant ¢ and all fe C,(G), then p is bounded.
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b) T, )= ull for pe M(G),.
For 1 <p< oo the following theorem is valid (see [5] and [10]).

3.2, Theorem. For every p, 1 <p< oo, the following assertions are equivalent:
(i) G is amenable
(i) |T, I =llpl for every positive pe M(G)
(i) If u is a positive measure on G such that uxfel?(G) and
lxfl,Zclfl, for a positive constant ¢ and every fe C (G), then p is bounded.

Every compact and every Abelian locally compact group is amenable. For
this and the usual definition of “amenable” we refer to [6] and [10]. In the
following we will use the notion “amenable” only in the sense (i) and (iii) of
3.2, :

In order to characterize the convolution operators in ¥"(I#(G)) we define
the following subspace of #"(I#(G)):

FP={Te ¥"(I?(G)|R,T=TR, for all ac G}  for 1<p<oo.

3.3. Proposition. The space F7(1<p< ) is a closed sublattice and a full subal-
gebra of #"(IF(G)). Consider the mapping

T, M(G) > F7,  pu-T, .

If p=1 or G is amenable, then t, is an isometric algebra and lattice isomorphism
onto F7.

Remarks. 1. Let B be a closed subalgebra of a Banach algebra 4 with unit e,
such that eeB. B is said to be full in A when the following condition is satisfied:
If xe B is invertible in A the inverse x~' is an element of B.
This condition implies ¢ ,(x)=0y(x) for xeB.

2. Let E,,E, be Banach lattices. An injective linear mapping T of E; onto
a sublattice of E, is called a lattice isomorphism, if

Tz=0 iff z20 for all zeE,.
This is equivalent to
|[Tz|=Tlz| forall zeE,.

Proof. of 3.3. a) For §,Te #?, acG, R(ST)=SR,T=(ST)R,. Thus STe #*. If
Te#? is invertible in L"(IX(G), R, T~ '=T-'TR, T '=T-'R,TT!
=T~'R, for every aeG, hence T~'e #~.
We have proved that #7 is a full subalgebra of ¥ (IF(G)).

b) 7 is a sublattice of £"(I7(G)).
In fact, take Te #7. Since R, (a€G) is a real operator, one has

R (Re T)=Re(R,T)=Re(TR,)=(Re T)R,.



282 W. Arendt

Hence Re Te#7. Since R, is a lattice isomorphism, the mappings {(§ —R,S)
and (S»«»SR,,) of 3’(2’(6)) onto FT{IP{G)) are lattice isomorphisms, too {they
are positive with positive inverse). Hence R, |T|=|R,T|=|TR,=|T|R, for all
ae G, which implies |[T]e #7.

¢) For fe CAG), {fiud>=(u+f)(e), and u*f is a continuous function. Hence
T, is injective and T, ,20 iff u=0.

d) The assertion concerning 7, follows now for p=1 from 3.1 and the re-
mark after it, and from 3.1 and 3.2 for 1 <p< o (note that by ¢} T, I=T, )

The following theorem is a consequence of 3.3.
34. Theorem. 1. For p=1, 00,

6(W)=0,(T, J=0(T, ) for every ueM(G).
2. If G is amenable, 1 <p oo, then
o(w=0,(T,,) for every peM(G).
And conversely,
3. If there exists p, 1 <p< o0, such that
o(W=0,(T, ) for every HeM({G),
then G is amenable.

Proof. a) Since every operator on I7(G) is regular if p=1,00 ([13], IV 15),
o,(T, ,)=06{T, ) for every pe M(G) in this case.

b) Suppose G is amenable or p=1. Since F7? is a full subalgebra of
L ((G)) (3.3), 6,(T, ) coincides with the spectrum of T, , in the Banach al-
gebra #7? and consequently with o(u), 7, (u— T, ,) being an Banach algebra
isomorphism of M(G) onto F7? (3.3).

c) Let p= o0,
By a) and b),
0T, ) =0(T,, ) =0{(T; ))=0(Ty )
=o(f)=0().

We have now proved the assertion 1. and 2. of the theorem. To prove 3, let
pe(l, o) and suppose G is not amenable. By 3.2{ii) there exists ue M(G), such
that || T, | <lull. It follows that

(T, ) =T, YSNIT, Il < llpl =r(u),
consequently o,(T, )=+ a(n).

If G is Abelian with dual group G we denote by i the Fourier-Stieltjes
transform of ue M(G), ie.

A=y duls) for yed.
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Since the Fourier transformation coincides with the Gelfand transformation
on L'(G) the spectrum of feI}(G) is

a(N)={/IyeG}~,

(W2 {AM)|7eG}~
for e M(G) in general (see [12], Chap. 5).

whereas

3.5. Corollary. Let G be a locally compact Abelian group with dual group G,
ueM(G). If D is a non-void clopen subset of o(u) there exists yeG such that
A(y)eD.

Proof. Denote by 7: I2(G)—I?(G) the Plancherel-transformation. Let
T:= FT,, T is the multiplication operator on LZ(G) given by Tf=pu-f
for all f ELZ(G) Therefore

o(T, )=a(D)={a()lyeG} .

From 2.5 it follows that ¢(T, ,)n D+ &. Since D is open in ¢{y), there exists an
open subset O of Cfuch that D=a(u)QO.
Hence {a(y)|ye G}~ nO={f(y)|yeG} ~n D+ @, which implies

{a()lyeGrnD={a()yeG}n0+ 2,
as O is open.

3.6. Corollary If 2 is an isolated point of o(u), then there exists ye G such that
w(y)= A If () is contable it is equal to {fi(y)|yeG}~.

3.7. A Counterexample. We give an example of a compact (positive) operator T
such that ¢(T)+0¢,(T). Thus Theorem 2.6 cannot be essentially improved.

Chose E=I*(G), G the one dimensional torus. It follows from [17] (see
also [11]) that a positive measure u exists on G such that

Lop=up~, ful=1

2. wPApm=0for nEm, nmeNuU {0}

(#" denotes the n-th convolution power of ).

3. fecy(Z).

Let T=T, ,

Then T has the properties:
a) T is positive (in the sense of Banach lattices ), selfadjoint, | T| =1
b) T has disjoint powers.
c) T is compact.
d) o(T) is countable and a subser of R.
¢) o,(T)=>{AeC||A=1}
Proof. 2) (T, 2)* =T, =T, 5; IT, ,ll=llul=1by 32
b) follows from 3.3
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¢) Denote by #: I’(G)—1*(Z) the Plaucherel transformation. Ti=FTF*
is given by T(a,),., ={{(n} a,),.z: so T is compact, because pecy(Z).
d) follows from c) and a)

e) follows from b) and 2.10.

4. Compact Groups

In this section we consider convolution operators related to compact groups.
Therefore we will assume that G is a compact group in the following, otherwise
keeping the notations of the last section.

Moreover, the Haar measure on G will be denoted by m, the dual object of
G by G. For every aeG we denote by u,; (1£i,j<n,) the coordinate functions
corresponding to a representation in « (see [7], § 27 or [4], Chap. 8). In partic-
ular

U is a continuous function on G

aif
u,(5) ={uu;(s);; is a unitary (n, x n,)-matrix
ua(’s ) t) = i{a(S) ) ua(t)

ufs™H=u )"t =u,ls)* for 5,teG.

To establish a connection to the main theorem of section 2 we note first of all:

4.1. Proposition. With p, 1<p=<co, set E=II(G). For every fel’(G),
T € E'®.E.

Proof. 1. Assume [ is a coordinate function, say f = u,;. Then for ge I#{G),

Ty, @) =(m-1) xgle)=[ g )f O dt
=8 flst™ N dr=[g(tyuylst™ Yde

:k;i Ig(t) Ui (8) 15 (E7 Ydt

Ne

=Y [g@u () dtuy(s) (ae)

LE

By
Hence Ty, ,= ) uk,;®u,, is an operator of finite rank.
k=1

2. Tt follows from 1. that 7, eE ®E for f a trigonometric polynomial (ie.
a linear combination of coordinate functions).

3. Let f be arbitrary. There exists a sequence (f,),.n of trigonometric poly-
nomials such that lim [|f—f,|l; =0 (see 27.39 in [7]). By 3.2 (resp. the remark

A QO

preceding 3.2 for p=1, o0),

gl Tfnm,pm Tfm,pé%rz “'TIf,z—j'{m,pél = an“f{é 1 (HEN)
T cE'®,E.

Hence lim 7, g

B O

o, p = in #"(E), consequently Ty, ,
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A Banach algebra with involution is called symmetric if every self-adjoint
element has real spectrum. In this notation we get the well known fact (see [9,
16} for example):

4.2. Corollary. Let G be a compact group. I}(G) is a symmetric Banach algebra.

Proof. 1f f is self-adjoint, the operator T, , is self-adjoint, hence o(7;.,, ,) is
real. Since a(f)=0,(T;.,, ,)=0(T}.,, ,) by 4.1 and 2.6 f has real spectrum.

More can be said. R
We denote by f the Fourier transform of fe'{G). It is a family (f)),.¢ of
matrices defined by

Fi= 118 u,; (s~ Nds(aeG, 12i,j<n,).

The mapping & defined by & f=f for fe I?(G) going from I7(G) onto the Hil-
bert space.

L2 G)={(Pacc|®, a n,x n-matrix, 3 n,[¢,]I3 <0}

aeG

(I, 3=trace(d* ¢,)), with the scalar product

(6, 9)= Y. n, trace (Yo 0,)

asl

is a unitary operator, called the Plancherel transformation (see [4], Chap. 8 for
all that).

We denote by a(f) the spectrum of the matrix f,(feI}G), ucG). The fol-
lowing formula for o(f) is analogous to the corresponding expression in the
Abelian case.

4.3. Theorem. For felI}(G) the spectrum o(f) of f in the Banach algebra L' (G) is
the set

a(f)= Uaa(fx)u{O} if G is infinite

and

a(f)= U@ o(f) if G is finite.

Proof Since o(f)= G(Tfm 5) by 4.1 and 2.6, we have to show that o( tm2) 18
given by the expression of the theorem. Set T=%#T fm,ﬁ" -1, then o(T)
=0a(T},, ,). T is the operator on #?(G) given by

T($0)red) = (Puf et
We first show that U ()= a(T).

Let ﬁeG and /Iea( f,,) Then there is an n,; xng-matrix By=0 such that
By(A fﬂ) 0. (use [2], § 5 Prop. 4(ii)). Thus T¢=21¢ for p=(¢,),.s6 F*> (G) de-
fined by ¢,=0 for = and ¢;=B;. Consequently A is in the (pomt) spectrum
of T
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If G is infinite, I?(G) has infinite dimension, hence OEUET}, T being com-
pact. If G is finite, then G is finite and it is obvious that o(T)< { ] (/). It re-
G

mains to show that a(T)\{O}cUo(f) Take Aleo(T), A+0. Since

(1fu) e €co(G), there exists a finite subset A of G such that | f,} <1/2]4 for
a¢A. Set H, ={pec LXG)|¢,=0 for all a¢ A}, H, = {de £*E) |q§ =0forall acA}.
Then & z(G) is the direct Hilbert sum of H, and H,, and T leaves H, and H,
invariant. Set T,= T (i=1,2) then a(T)= a(T}wa(?z)

Since m*z<1f2 ; A¢a(Ty). Thus iea(T))= U a(f).

4.4. Corollary. For fel}(G),

0(Tpy, )= o(f)u{0}  if G is infinite and
aeG
=] a(f) if G is finite (1<p<o0).

xe G

In particular the spectrum of Ty, , is independent of p.

Proof. (T}, )=0,(T;
from 4.3,
Of course, 3.5 and 3.6 can be extended to the compact non-abelian case
using the same arguments:
4.4. Proposition. Let pe M(G), f,=[u (s~ du(s) for aeG.
a) If Dco(y) is clopen, there exists oG such that D no(fl,)+ 2.
b) Every singular point of o{p) is element of o(f1) for some aeG.
¢} If oy is countable it is equal to | | o(ft,).
xslr

mp

Y=0(f) by 4.1, 2.6 and 3.4. The assertion follows now

M, P

4.5. Corollary. If 1 is an isolated point in ¢ (T, ), then 1 is an eigenvalue of T, ,
(Isp=0)

Proof. Since o,(T, )=a(y) there exists aeG such that Aeo(f,) by 44b). Con-
sequently there ex1stq a n,xn,-matrice B,=0 such that j,B,=AB,. Let f be
the trigonometric polynormal satlsfymg f,=B, and fﬁ =0 for f+a. Then o f =
4f by the uniqueness of the Fourier transform. Since feIP(G) (1<p<w)
and f+40 1 is an eigenvalue of 7, ,

Finally we want to formulate for I}{G) the analoguous statement of 2.11.

4.5. Proposition. The only positive function in I}G) with disjoint convolution
powers is the O-function.

Proof. If feI}(G),. has disjoint powers the same is true for T, (1Sp=S0),
hence r(T;.,)=r(f)=0 by 2.11. This implies =0 since r(f)=|f]|.
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