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KATO'S EQUALITY AND SPECTRAL DECOMPOSITION 

FOR POSITIVE C -GROUPS 
o 

Woifgang Arendt 

Let A be the generator of a Co-semigroup {T(t); t ~ O} 
defined on a Banach lattice E. It is shown that T(t) is a 
lattice homomorphism for all t > 0 if and only if A satis- 
fies 

<Ixl, A'x'> = <sign q(x)Ax, x'> (x 6 D(A), x' s 

(where q: E ~ E" is the evaluation mapping). This equality 
is used to obtain a spectral decomposition for generators 
of positive groups. 

O. Introduction 

There are many interesting and important examples of 

one-parameter semigroups of lattice homomorphisms defined 

on a Banach lattice E. Typical examples are of the follow- 

ing kind: E is a Banach lattice of functions defined on 

some set X (like C(X), X compact, or LP(x,v)) and the 

semigroup {T(t); t ~ O} is given by T(t)f = h t �9 fo ~t 

(f6 E, t > 0), where {~t; t ~ O} is a semiflow on X and h t 

a positive function on X (t ~ O) (see [4] for the case 

E = C(X)). 

We present a contribution to the following problem: 

Given a C -semigroup {T(t); t > O} on a Banach lattice E, 
o 

find an intrinsic condition on the generator A of the 
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2 ARENDT 

semigroup which is equivalent to the condition that T(t) 

is a lattice homomorphism for all t ~ O. If E has order 

continuous norm R. Nagel and H. Uhlig [~0] proved that 

Kato's equality 

Aixl : sign(x)Ax (xCD(A)) 

provides such a condition (here, sign(x) is the difference 

of the band projections onto (x+) • resp. (x-) •177 and we 

refer to R. Nagel and H. Uhlig [10] for the necessary 

background and its relation to the classical inequality 

proved by T. Kato for the Laplacian). 

The main part of this paper is devoted to the gene- 

ralization of Nagel and Uhlig's result to arbitrary Banach 

lattices. Due to the possible absence of non-trivial band 

projections in the general case, one has to find another 

version of the above equality. We will show that the 

following weak form 

<IxI,A'x'> : <sign(q(x))Ax,x'> (x C D(A), x' E D(A')) 

(where q: E ~ E" denotes the evaluation map) is character- 

istic for generators of C -semigroups of lattice homomor- 
o 

phisms. 

Our proof is based on a simple but crucial observa- 

tion: Any convex function on a Banach lattice has monotone 

difference quotients and so is differentiable in some 

sense. It seems that our method gives - besides the im- 

proved generality - more insight in the known results and 

simplifies considerably their proofs. 

Besides the intrinsic interest of the above charac- 

terization Kato's equality can be used to obtain the 

following spectral decomposition for positive groups: 

Let A be the generator of a positive Co-grou p on a Banach 

lattice E. If ~ E R is not in the spectrum ~(A) of A, then 

E is the direct sum of two orthogonal bands I v and J~ which 

are invariant under the group such that 
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ARENDT 3 

~(AIj ~ 

) : {I E ~(A); Rel < ~}, 

) : {I C ~(A); Rel > ~}. 

Here All (resp. AIj ) denotes the generator of the group 
�9 

restricted to I~ (reap. J~). If E is an order complete 

Banach lattice this has been proved already by G. Greiner 

[ 5 ]- This theorem is of interest in connection with 

stability theory. In fact, it allows one to decompose the 

semigroup in two parts with distinct asymptotic behaviour 

(see Greiner's paper [5] for a discussion of this aspect). 

In section 5 we investigate the spectral decomposi- 

tion on C(X) (X compact). It follows, e. g., that ~(A) N 

is a closed interval if A is the generator of a positive 

group and X is connected. 

For notations and results concerning Banach lattices 

and positive operators we use Schaefer's monograph [11] as 

a general reference�9 

i. Differentiation 

Let E be a vector space and F a topological vector 

space for some topology ~ ; ~: E ~ F and g: 

[to,t o + ~) ~ F (where t o C~ and ~ > O) are given 

functions. 

DEFINITION 1.1. a) g i__ss ~ -differentiable i_nn to, i_ff 

g'(to) :: lim (l/h). (g(t o + h) - g(to) ) 
h$o 

exists in F for the topology ~. 

b) 0 is ~-Gateaux differentiable if for every x,y E E 

Dxe(y) :: lim (i/h) �9 (e(x+ hy) - e(x)) 
h$o 

exists in F for the topology ~. 
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4 ARENDT 

If F is a Banach space, we will speak of strong (resp. 

weak) differentiability (in the sense of 1.1 a) or b)) if 

is the norm (resp. weak) topology on F. Note that all 

derivatives in 1.1 as throughout the whole paper are right 

derivatives. We assume from now on that E, F are Banach 

spaces and that ~ is coarser than the norm topology on F. 

DEFINITION 1.2. e is locally Lipschitz continuous if for 

every x o s E there exists a neighbourhood U of x o and L > 0 

such that 

l i e ( x )  - e ( y ) l l  <~ L I I x  - yll 

for all x,y 6 U. 

LEMMA 1.3. (Chain rule) Assume that e is ~-Gateaux differ- 

entiable and locally Lipschitz continuous. If g is strong- 

ly differentiable i_nn to, then e o g i__{s ~-differentiable i__nn 

t o and 

(8 ~ g)'(t o) = Dg(to)e(g'(to)). 

Proof. By hypothesis, there exist functions Og: (0,6) ~ E 

and O: (0,6) ~ F such that 

1.1) g(to+h) : g(to) + g'(to)h+Og(h ) (0 < h < 6) 

1.2) lim Og(h)/h : 0 strongly 
hr 

1.3) 8(g(t o) + g' (to)h) = e(g(to)) + hDg(to)e(g'(t o )) + O(h) 

(O<h< 8) 

1.4) ~ - lim O(h)/h : O. 
h$o 

Hence 

- lim (l/h). (e(g(t o +h)) - e(g(to)) - h.Dg(to)e(g'(to))) = 
h$o 

- lim (l/h) �9 (8(g(t o) + g'(to)h + Og(h)) - 8(g(t o) + g'(to)h)) 
h$o 

+ ~- lim (1/h)(e(g(t o) + g'(to)h) - e(g(to))-hDg(to)e(g'(to)))= 
h$o 
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ARENDT 5 

- lim (l/h) �9 (e(g(t o) + g'(to)h + Og(h)) - 8(g(t o) + g'(to)h)) 
h$o 

+ ~- lim O(h)/h : 
h$o 

= 0 by (1.2) and (1.4), since the norm of the first ex- 

pression above is dominated by LllOg(h)ll/h for small h. 

2. Functions which operate on the domain of a generator 

Throughout this section {T(t); t ~ O} is a Co-semi- 

group on a Banach space E with infinitesimal generator A. 

Let e: E ~ E be a locally Lipschitz continuous function. 

By q: E ~ E" we denote the evaluation map. If no confusion 

is possible, we identify xE E with q(x)E E". 

THEOREM 2.1. If q o e is ~(E",E')-Gateaux differentiable, 

then the following assertions are equivalent: 

(i) e(T(t)x) = T(t)e(x) (xE E, t ~ O) 

(ii) <e(x),A'x'> = <Dx( q o e)(Ax),x'> 

for all xE D(A), x' E D(A') 

Proof. Assume (i) and let xE D(A). By g(t) := T(t)x 

(O ~ t ~ i) we define a strongly differentiable function g 

with values in E. Applying the chain rule 1.3 one obtains 

that for x' E D(A') 

<e(x),A'x'> : d/dtlt=o<T(t)e(x),x'> 

: d/dtlt:o<q(e(g(t))),x'> 

= <Dx(q o e)(Ax),x'>. 

To prove the other implication assume that (ii) holds. 

Since e is continuous and D(A) dense in E, it is enough to 

show that 

( 2 . 1 )  e ( T ( s ) x )  = T ( s ) e ( x )  f o r  s ~ O, xC D(A) .  
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6 ARENDT 

Let xE D(A), x' E D(A'), and define q: [0,s] ~ E by 

n(t) : T(s -t)e(T(t)x). We will show that 

(2.2) d/dtit:to<q(t),x'> : -<e(T(to)x),A'T(s - to)'X'> 

+ <DT(to)X (q o 8)(AT(to)x),T(s - to)'X'> 

for t o E (O,s). Then (ii) implies that 

d/dtit:to<n(t),x'> : 0 (t o~ (0,s)). 

Hence <q(O),x'> = <n(s),x'>. Since x' E D(A') is arbitrary, 

it follows that q(0) = q(s), that is (2.3) holds. 

We prove now (2.2). Let t E (0,s). Let 

g(h) : (I/h) �9 (8(T(t +h)x) - e(T(t)x)) (h > 0). Then by 

1.3 o(E",E') - lim g(h) = DT(t)x( qo e)(AT(t)x) :: z"EE" 
h~o 

In particular, the set {g(h); 0 < h ( 3} is weakly bounded 

in E; hence strongly bounded. Moreover, since x' C D(A'), 

lim U(T(s - t-h)' - T(s -t)')x'll : 0. Hence 
h@o 

(2.3) lira I<T(s-t-h)g(h),x'> - <z",T(s-t)'x'> I : 0. 
h~o 

In fact, lim I<T(s -t-h)g(h),x'> - <z",T(s- t)'x'> I 
h@o 

~< ~ ]<g(h),(T(s -t-h)' -T(s- t)')x'> I + 
h~o 

lim [<g(h) - z", T(s-t)'x'> I = O. 
hr 

Now we obtain (2.2) by the following calculation: 

lim (i/h)<q(t+h) - q(t),x'> 
~o 

= lim (i/h)<T(s- (t+h))e(T(t+h)x),x'> - <T(s-t)eT(t)x,x'>) 
h$o 

= lim (<T(s-t-h)g(h),x'> + (i/h)<(T(s-t-h)-T(s-t))e(T(t)x),x'>) 
h~o 

= <z",T(s-t)'x'> + d/drir=t<T(s-r)e(T(t)x),x'> (by (2.2)) 
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ARENDT 7 

= <DT(t)x( q o 0)(AT(t)x),T(s - t)'x'> - <~(T(t)x),A'T(s - t)'x'>. 

COROLLARY 2.2. If 8 is ~(E,E')-Gateaux differentiable 

then the following assertions are equivalent: 

(i) 

(ii) 

0(T(t)x) = T(t)0(x) ( x E E ,  t ~ O) 

l_~f xE D(A), then 0(x) E D(A) and A0(x) = Dx0(Ax). 

EXAMPLE 2.3. Let X be a locally compact space and 

~: [O,~)K X ~ X a continuous semiflow on X. Then 

T(t)f(p) = f(~(t,p)) (fE Co(X) , pEX, t ~ O) 

defines a Co-semigroup {T(t); t ~ O} on Co(X) (the space 

of all continuous functions on X which vanish at infinity). 

Let A be the generator of this semigroup. If k is a differ- 

entiable function on ~ with continuous derivative, then 

8(f) = k o f (f E C (X)) defines a function from C (X) 
O O 

into itself such that T(t)(e(f)) = e(T(t)f). Moreover, 0 

is locally Lipschitz continuous and O(Co(X),M(X))-Gateaux 

differentiable. More precisely, 

(2.4) Df0(g) = (k'o f) �9 g (f~gE Co(X)). 

In fact, let ~ be a bounded Borel measure on X. Then 

t~ol'm (i/t)[k(f(p) + tg(p)) - k(f(p))] = k'(f(p)) �9 g(p). 

It follows from the dominated convergence theorem that 

lim<(i/t)(k 0 (f + tg) - k o f),~> = <(k' ~ f) �9 g,~>. 
t$o 

So we obtain from 2.2: 

Every differentiable function k on ~ with continuous de- 

rivative operates on D(A) (i. e. fE D(A) implies 

k,fED(A)) and A(ko f) = (k'o f) .Af for fED(A). 

EXAMPLE 2.4. Let (X,Z,~) be a c-finite measure space and 

~: [0,~) x X ~ X a mapping such that 

(i) ~(O,x) = x ~ - a.e. 

(2) ~(s + t,x) = ~(s,~(t,x)) ~ - a.e. for all s,t ~ O 
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8 ARENDT 

(3) ~t: X ~ X (defined by ~t(x) = ~(t,x)) is measure 

preserving for all t > 0 

~(r : 0 for all S E z. (4) lira 
t$o 

�9 L ~ 

Then T(t)f = f o ~t (t ~ O, fE LP(x,z,~)) defines a C o- 

semigroup on E = LP(x,z,~) (i ~ p < ~). Denote by A the 

generator of this semigroup. Let k: ]R ~ ~ be a Lipschitz 

continuous function such that k(O) = O. Define 0: E ~ E by 

0(f) = k o f. Then 0 commutes with the semigroup, and it is 

easy to see that 0 is strongly Gateaux differentiable with 

derivative 

D f e ( g )  = ( k ' o  f )  �9 g ( f , g [  E ) .  

( N o t e  t h a t  k i s  a b s o l u t e l y  c o n t i n u o u s ,  s o  t h e  d e r i v a t i v e  

k' of k exists almost everywhere. Moreover Ik'(x) l ~ L 

(a. e.) if L denotes the Lipschitz constant of k.) We 

conclude from 2.2: 

Every Lipschitz continuous function k: ~ ~ ~ satisfying 

k(O) = 0 operates on D(A) and A(k ~ f) = k' �9 Af (f E D(A)). 

As an application one obtains that every function of that 

type operates on the first Sobolev space 

n 
wl,P(m n) : ~ D(~/~x i) 

i=1 

(~/~x i is the generator of the translation semigroup 

~Ti(t); t ~ O~ on LP(~ n) given by (Ti(t)f)(x I .... ,x n) = 

f(xl,...,Xi_l,X i + t,xi+ 1 .... ,x n) (i = 1,...,n)). 

An example of a function k of the type considered here is 

the modulus function k(x) = Ixl. This function will be 

considered in more detail in the next section. 

3. Semigroups of lattice homomorphisms 

During this section E and F denote real Banach 

lattices. 
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ARENDT 9 

DEFINITION 3.1. A function 0: E ~ F is called convex 

e(kx + (1-1)y) .< e(x) + (1-1)0(y) for all x,y6E, 

0 .< k .< 1. 

if 

LEMMA 3.2. Let 8: E ~ F be a convex function. Given 

x,ys E let A: ~\ {0} ~ F denote the function 

A(t) = (l/t)" (e(x + ty) - e(x)). 

Then A is monotone increasing (i. e. A(t) (A(s) whenever 

t (s). 

The easy proof is omitted. 

PROPOSITION 3.3. Let 0: E ~ F be a convex function. Then 

q o e: E ~ F" is ~(F",F')-Gateaux differentiable (where 

q: F--~F" denotes the evaluation mapping). If F has order 

continuous norm, then 8 is strongly Gateaux differentiable. 

Proof. Let x,y s E. It follows from 3.2 that for any x' 6F~ 

(3.1) lim <A(t),x'> = inf <A(t),x'> 
t$o t$o 

exists. Moreover, 

<A(-1),x'> ~ lim <A(t),x'> ~ <A(1),x'> 
t$o 

Hence <Dx0(Y),X'> := lim <A(t),x'> exists for all x' 6 F' 
t$o 

and defines a continuous linear form Dx0(y) on F'. If F 

has order continuous norm, then DxS(y) = t~ol'm A(t) exists 

strongly. 

We say the element as is projectable if the band 
•177 

a generated by a is a projection band. In that case we 
I• 

denote by Pa the band projection onto a . An arbitrary 

element a of E is said to be projectable if both a + and a- 

are so. Note: in a ~-order complete Banach lattice (e. g. 

LP(x,z,U)) every element is projectable. But if X is local- 

ly compact, then us Co(X) + is projectable if and only if 

supp(u) := {p 6 X; u(p) > 0}- is open. In that case Pu is 
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10 ARENDT 

given by Pu v : isupp(u ) �9 v (vC Co(X)) (where isupp(u ) 

denotes the characteristic function of supp(u)). 

DEFINITION 3.4. If xEE is projectable the functions 

sign(x) and sign(x) from E into E are defined by 

sign(x)y : Px+y - Px-y (y E E) 

si~n(x)y : sign(x)y + (i - Pixi)lyl (y [ E). 

Note: sign(x) is a linear operator, but sign(x) is not 

unless Ixl •177 = E. 

LEMMA 3.5. Let xC E be projectable. Then 

(3.2) inf i t>o ~(Ix + ty - Ixl) : si~n(x)y ( y E E ) .  

Proof. Let Q = i - P 

projection, we obtain 

Then Qx = O. Since Q is a band 
xI" 

(3.3) 
i 

Q(inf [(Ix + tyl - Ixl)) : ~lyl- 
t>o 

Since Q + Px+ + Px- : i, (3.2) will follow from (3.3) and 

the following two equalities: 

(3.4) inf i x + I x+) t>o T( + tPx+Y - : Px+Y 

(3.5) inf i t>o ~( -x- + tPx-y I - x-) = -Px-y. 

Since (3.5) can be obtained from (3.4) by replacing x with 

-x and y with -y, it is enough to show (3.4). 

Let z : x + + Iyl. There exists a compact space K such 

that E z is isomorphic to C(K). Px+ and i -Px + leave E z 

invariant. So x + is also projectable in C(K). Since E z is 

an ideal in E, it is enough to show that (3.4) is valid if 

the infimum is taken in E z. We identify x + and y with con- 

tinuous functions on K. Let B : {p EK; x+(p) > O}. Then 

is open and closed and Px+f : ~[ �9 f for f C C(K). But for 
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ARENDT l l  

p C B, 

inf 1 x + t>o ~(Ix+(P) + t(Px+Y)(P)I - (P)) : 

i 
inf y(lx+(p) + ty(p) l - x+(p)) = y(p) = (Px+y)(p). 
t>o 

Moreover, for p E K~ B, 

i 
inf T(Ix+(p) + t(Px+y)(p) I - x+(p)) = 0 = (Px+y)(p). 
t>o 

So the pointwise infimum in (3.4) coincides with Px+y 

outside a rare set. This implies (3.4). 

Let {T(t); t ~ O} be a Co-semigroup with generator A. 

The following is a generalization of [10, 3.3]. 

PROPOSITION 3.5. If the semigroup consists of lattice 

homomorphisms, then the following holds: 

l__ff xC D(A), y" E E~ such that Ix I ^ y" : O, then 

(3.6) <IAxl ^ y",x'> : 0 for all x' E D(A'). 

In particular, if y"E E, then IAxI ^ y" = O. 

Proof. Since D(A')+ - D(A')+ : D(A'), it is enough to 

show (3.6) for x' E D(A')+ :: E+ N D(A'). 

So let xs D(A) y"E E" such that Ixl ^ y" : O, and , + 

let x' E D(A')+. Since T(t)" is a lattice homomorphism 

[8, (1.2)], it follows that 

(3.7) IT(t)xl ^ T(t)"y" : 0 (t ~ 0). 

Hence 

1 
< I A x l  ^ y " , x ' >  = l i r a  < ~ l T ( t ) x  - x I ^ y " , x ' >  

t o o  

1 . .  y",x' (by [ l l ,  II 1.6 Corollary]) .< lim <TIT(t)• ^ > 
tr 

: lin{ :i ( ) I i  ^ (y" - T(t)"y" + T(t)"y") x'> t $ o  < , T _ t  x ,  

~< lira (~[T(t)x I ^ (y" - T(t)"y"),x'> + <~IT(t)xI ^ T(t)"y",x'>) 
t$o b "  b "  " 

(by Ill, II 1.6 Corollary]) 
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12 ARENDT 

I . .  

<~IT(t)xl ^ (y" - T(t)"y")x'> (by (3.7)) 
t$o 

lira <y" - T(t)"y",x'> 
t$o 

= lim <y",T(t)'x' - x'> = 0 since x' s 
t$o 

Now let 8: E ~ E denote the modulus function, that is, 

8(x) = Ixl for all xE E. 8 is clearly convex and Lipschitz 

continuous. So it follows from 3.3 that q o 8 is ~(E",E')- 

Gateaux differentiable and by 3.5 

( 3 . 8 )  Dx( q o @)(y) = ( s i ~ n ( q ( x ) ) y  ( x , y  E E) 

THEOREM 3.6. The following assertions are equivalent. 

( i )  I T ( t ) x l  = T ( t ) l x l  ( x m E ,  t ~ O) 

(ii) For xC D(A), x' s D(A') 

<Ixl,A'x'> = <sign(q(x))Ax,x'> (Kato's equality). 

Proof. It follows from 3.5 that <(sign(q(x))Ax,x'> = 

<(si~n(q(x))Ax,x'> for all x' E D(A'). So the theorem is a 

consequence of 2.1 and (3.8). 

COROLLARY 3.7. Let {T(t); t ~ O} consist of lattice ho- 

momorphisms. If xE D(A) is projectable, then 

IxI s D(A) and Alx I : sign(x)Ax. 

Proof. It follows from 3.5 that <sign(x)Ax,x'> = 

<sign(q(x))Ax,x'> for all x' E D(A'). So the assertion 

follows from 3.6 (ii). 

COROLLARY 3.8. If E is ~-order complete, then the follow- 

ing assertions are equivalent: 

( i )  I T ( t ) x l  : T ( t ) t x l  ( x C E ,  t ~ O) 

(ii) If xE D(A), then Ixl s D(A) and 

Alx I : sign(x)Ax (Kato's equality). 
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ARENDT 13 

REMARK 3.9. 3.8 is due to H. Uhlig [12], and for the 

case that the norm is order continuous a proof can be 

found in [10]. In [10], [12] strong Gateaux differentiabi- 

lity is used exclusively. Indeed it is proved that the mo- 

dulus function is strongly Gateaux differentiable in cer- 

tain directions. However, their proof (see [10, 2.2]) uses 

complicated estimates coming from the algebra structure of 

E z via Kakutani's theorem. So the simple observations 3.2 

and 3.3 above seem to clarify considerably the matter. 

REMARK 3.10. If {T(t); t ~ O} is merely a positive semi- 

group, a slight modification of our arguments shows that 

(3.9) <Ixl,A'x'> ~ <(sign(q(x))Ax,x'> for x6 D(A), 

x' 6 D(A')+ (Kato's inequality) 

Moreover, it is easy to see that 

(3.10) D(A)+ := D(A) N E+ is dense in E+ 

(3.11) D(A')+ is ~(E',E)-dense in E$. 

So one can reformulate the conjecture by Nagel and 

Uhlig [10, 1.3] in the following way: 

QUESTION: Does Kato's inequality (3.9) together with 

condition (3.10) and (3.11) imply the positivity of the 

semigroup? The answer is positive if E = C(X), X compact. 

In that case one can show (using [2, 5.2]) that the semi- 

group is positive if (3.9) and (3.11) hold (cf. proof of 

5.1). 

4. Spectral decomposition 

Now we are able to apply the previous results to ob- 

tain the spectral decomposition of positive Co-groups on 

arbitrary Banach lattices. Let {T(t); t > O) be a C o- 

semigroup on a Banach lattice E with generator A. If M is 

a closed subspace of E which is invariant under {T(t); 
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t ~ 0}, then the restrictions of T(t) to M define a C o- 

semigroup {T(t)IM; t ~ O} whose generator will be denoted 

by AIM. Moreover, every T(t) defines an operator T(t)/M on 

the quotient E/M by T(t)/M(X + M) : T(t)x + M. Then 

{T(t)/M; t ~ O} is a Co-semigroup on E/M whose generator 

will be denoted by A/M. By o(A) := ~(A) \ r we denote the 

resolvent set of A. 

THEOREM 4.ft. Let A be the ~_enerator of a Co-semigroup of 

lattice homomorphisms. Let ~ E p(A) N ~. The space I~ = 

{x E E; R(~,A)Ix I ~ O} is a closed ideal of E which is in- 

variant under {T(t); t ~ 0}. The spectrum of A is decom- 

posed by Ip in the following sense: 

(4.1) ~(AII ~) : {~(A); Re~ < ~} 

( 4 . 2 )  o ( A / I  ) : {~ s a ( A ) ;  ReX > ~} 

THEOREM 4.2. Su_ppose that {T(t); t E ~} is a positive C o- 

group with generator A. Let ~ E p(A) N ~. Then E is the 

direct sum of the orthogonal projection bands 

I~ : {xEE~ R(p,A) Ix 1 ~ O} and 

J~ : { x C E ;  R ( ~ , A ) l x [  ~ 0}.  

Moreover, I~ and J~ are invariant under T(t) (t E ~ )  an d 

~(AII ~) : {~C~(A)~ Re~ < ~} 

u(A~j )i = {I s a(A); Rel > ~]. 

Our proofs of 4.1 and 4.2 are modifications of those 

given by Greiner [5] in the order complete case. We first 

prove 4.~. It is known that I v is a closed invariant ideal 

[5, Lemma 2]. So it remains to show (4.1) and (4.2). By 

the arguments given in the proof of [5, Proposition], we 

are done, as soon as the following lemma is proved. 
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LEMMA 4.3. Let ~ C p(A) N~. Then 

(4.3) (R(~,A)y) + s I for all y EE+ and 

hence (R(~,A)/I ~ ~ O. 

Proof of 4.3. Let y CE+. First we show that 

(4.4) IR(~,A)yl = R(~,A)" sign(q(R(~,A)y))y. 

This is a consequence of Kato's equality 3.6 (ii). In fact, 

let y' C E' Set x := R(~,A)y, x' := R(~,A)'y'. It 

follows from 3.6 that 

<IxI,A'x'> : <sign(q(x))Ax,x'>. Hence 

<Ix],(~ -A')x'> : <sign(q(x))(~ -A)x,x'>. 

(Note that sign(q(x))x : Ixl by definition of sign(q(x))). 

We obtain 

<IR(~,A)yl,y'> : <R(~,A)"sign(q(R(~,A)y))y,y'>. 

Since y' E E' is arbitrary (4.4) follows. 

, i 
Let Yl : [(sign(q(R(~,A)y))y + y) E E". It follows 

from (4.4) that 

(4.5) (R(~,A)y) + : R(~,A)"y~. 

In order to show that (R(~,A)y) + E I ~, by [5, Lemma 2] it 

is enough to show that 

s; (4.6) sup II e -us T(s) (R(~,A)y) + ds[l < ~. 
r>o 

r 
We show (4.6). For r > 0 let V(r)z : [ e -us T(s)z ds 

(z E E). Then V(r) . . . .  o ms a posmtlve Imnear operator on E. By a 

well known formula, V(z) : R(~,A)(I - e-~rT(r)) (r > 0). 

Hence O ( V(r)"y~ : R(~,A)"y~ - e-~rT(r)R(~,A)"y[ 

: R(~,A)"y[ - e-~rT(r)(R(~,A)y) + 

R(n,A)"y~. 

So sup llV(r) ylll (IIR(~,A) Yl]l = :: c. 
r>o 

Using (4.5) one obtains 
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sup ItV(r)(R(~,A)y) +11 : sup liR(~,A)"V(r)"y~Jl (lIR(~,A~.c<~, 
r>o r>o 

so that (4.6) holds, and the proof is finished. 

Proof of 4.2. Let ~ s p(A) N ~. It is enough to show that 

E = I~ + J~. We first show 

(4.7) D(A) c I~ + J~. 

Let y [E+. By (4.5) (R(~,A)y) + E I~ and 

(R(~,A)y)- : (-R(u,A)Y) + : (R(-u,-A)Y) + E Ju 

(: {z~E; R(-~,-A)Izl ~ o}). Thus 

R(~,A)y : (R(~,A)y) + - (R(~,A)y)- [ I~ + J~. It follows th~ 

D(A) : R(u,A)E c Iu + J~. 

From (4.7) we obtain: 

E : D-~ c I~ + J~ : Iz + J~ (by [Ii, III 1.2]). 

The spectral decomposition obtained in 4.1 and 4.2 

has several interesting consequences. Those given in [5] 

can now easily be generalized to arbitrary Banach lattices, 

and we refer to the discussion given there. 

5. Spectral decomposition on C(X) 

Let X be a compact space and C(X) the Banach lattice 

of all continuous functions on X. The spectral decomposi- 

tion which we obtained in section 4 can be improved on 

C(X). In order to reformulate Kato's equality we identify 

the dual space of C(X) with the space M(X) of all bounded 

regular Borel measures on X. By q: C(X) ~ M(X)' we denote 

the evaluation mapping. Let fE C(X)+. The band projection 

Pq(f) on M(X)' is given by 

(5.1) <Pq(f)q(g)'~> : I g(x)d~(x) 
{x;f(x)>o} 
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for all g6 C(X)+. [In fact, 

<Pq(f)q(g),~> : sup <nf ^ g,~> : I g(x)d~(x), 
n6~ 

{x;f(x)>o} 

since (nf a g)n6~ converges to l{x;f(x)>o} �9 g everywhere.] 

Let A be the generator of a Co-semigrou p {T(t); t > O} 

on C(X). It follows from 3.6 and 5.1 that T(t) is a 

lattice homomorphism for all t > 0 if and only if 

(5.2) 
f <]fl ,A'~> : | Af(x)d~(x) - 

{x;f(x)>o} 

for all f6D(A), ~6D(A') 

I Af(x)d~(x) 

{x;f(x)<o} 

(Kato ' s equality). 

PROPOSITION 5.1. Let A be the generator of a Co-semigrou p 

{T(t); t ~ O} o_~f lattice homomorphisms on C(X). Then A 

generates a group if and only if ~(A) n ~ is bounded. 

Note: Of course, by saying that A generates a group we 

mean that T(t) is invertible for t > 0. In that case 

{T(t); t > O} can be embedded in a positive Co-grou p . 

Proof. In order to prove the non-trivial implication assume 

that ~(A) n ~is bounded. By [2, 5.1] it is enough to show 

(5.3) f6 D(A)+, ~ 6 M(X)+, <f,~> : 0 implies <Af,~> ~ O. 

From (5.2) we obtain 

<Af,v> = I Af(x)dv(x) for all v 6 D(A'). (5.4) 
{x;f(x)>o} 

Since D(A') is ~(M(X),C(X))-dense in M(X), (5.4) is also 

valid for v = u. Consequently, <Af,~> = O. 

REMARK 5.2. Proposition 5.1 is of interest in connection 

with the spectral decomposition theorem 4.1 for E = C(X). 

Indeed, keeping the notation of 4.1, Proposition 5.1 shows 

that A/I u generates a positive group on C(X)/I v (which 

again can be identified with a space C(XI) , 

XIcX compact). 
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REMARK 5.3. Proposition 5.1 is no longer true on arbitra- 

ry Banach lattices. In fact, there is an example of a C - 
o 

semigroup of lattice homomorphisms whose generator has 

empty spectrum [6, w 4]. On the other hand, generators of 

positive groups never have empty spectrum [6, 3.4]. 

Recall: The type r of a Co-semigrou p {T(t); t ~ O} is 

defined by 

(5.5) ~o = inf {~ 6 ~; there exists M ~ i such that 

IIT(t)ll ~ Me tr for all t ~ 0}. 

If A is the generator of the semigroup for the sake of 

convenience we let r := r The following holds: 

(5.6) e tr = r(T(t)) (t ~ 0). 

The spectral bound s(A) of A is defined by 

(5.Y) s(A) : sup {Re~; ~6~(A)}. 

One has always -~ (s(A) (~(A), but ~(A) and s(A) may be 

different even if A is the generator of a positive group 

on a Banach lattice [14, sec. 4]. If E : C(X), L i of L 2, 

then spectral bound and type for positive semigroups are 

equal (see [9] for a detailed discussion of this matter). 

PROPOSITION 5.4. Let E be an AM-space and A the generator 

of a positive Co-semigroup {T(t); t ~ 0}. l_~f T(t)' i_ss a 

lattice homomorphism for all t > O, then 

~(A) : s(A). 

Proof. Denote by {T(t)~; t ~ O} the adjoint semigroup 

[7, 14.4] with generator A | defined on E ~. Then E ~ = 

{x' 6 E'; ~!~ T(t)'x' : x' strongly) (by [7, 14.4.2]). 

Since T(t)' is a lattice homomorphism for every t > O, E ~ 

is a closed sublattice of E' and hence an AL-space. It 

follows from [3, (3.3)] that s(A | : r This gives the 

desired conclusion since s(A) : s(A e) and r : r s) as 

a consequence of [7, i4.3.3]. 
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We are now in the position to prove a "real spectral 

mapping theorem" for Co-semigroups of surjective lattice 

homomorphisms and to improve the spectral decomposition on 

C(X) .  

THEOREM 5.5. Let A be the generator of a Co-semigrou p 

{T(t); t ~ O] of surjective lattice homomorphisms on C(X). 

a) exp (t~(A) Am) : o(T(t)) N m+ holds for all t > O. 

b)  L e t  ~ E o(A) A m .  Then I~  : { f E  C(X) ;  R ( ~ , A ) I f  I ~ O] 

and J~ : { f E  C(X) ;  R ( ~ , A ) I f  I ( O} a r e  o r t h o g o n a l  p r o j e c -  

t i o n  b a n d s  s u c h  t h a t  I~  + J~ : C(X) .  M o r e o v e r ,  I~  and J~ 

a r e  i n v a r i a n t  u n d e r  T ( t )  ( t  ~ O) and 

~(AII U) : {I E ~(A); ReX < u} 

~(AIj u) = {x E ~(A); ReX > ~} 

The band projection P o_~n I v is given by 

I R(l,T(t))dZ P = ~-~ F 

for every t > O, where r = {z C r Iz] = exp (~ �9 t)}. In 

particular, P commutes with all T(t) (t ~ 0). 

Proof. a) The inclusion exp (t~(A)) c ~(T(t)) 

(t > O) always holds. So one has to verify that 

exp (tp(A)N m)c o(T(t))N m+. Given ~ E o(A)N m we find 

the closed ideal I~ according to 4.1. In particular, 

s(A I ) < ~" Since T(t) is a surjective lattice homomor- 

phism, T(t)' is a lattice homomorphism as well (use 

[8, 1.2]). So by 5.4, ~(AII ) = s(A I ) < ~" Consequently, 

Moreover, by 5.~ the ope- r(T(t)ll ~), < exp (t~) (t >~0) ' ~ 

rator A/I generates a positive group. Since a(A/l ~ ) c 

{I E @; Re~ > ~} and s(-A/l ~) = ~(-A/I ) , it follow~ that 

r((T(t)/l )-~) < exp (-ut). Hence 

exp(t~) E p(T(t)[l ~) U o(T(t)/l ~) c p(T(t)) (t > 0). 

b) Let ~ E p(A)n m, t > O. By a) exp (t~)E o(T(t)). 

It follows from [i, 4.2] that the spectral projection 
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P = 2~i R(l,T(t))dl is a band projection (where F : {z E {; 

IzI = exp (t~)}). Let I : PC(X). We show that I : I . 

Let xE I . Since r(T(t)ii ~) < exp (tz), R(l,T(t))x : 

T(n �9 t)x/l n+i for I E r. Consequently Px = x, i.e. 
n:o 

xE I. We have proved that I~ c I. Suppose that I ~ I. 

Then there exists xE I\ I~ such that x > O. Since T(t)/l ~ 

is a lattice isomorphism and r((T(t) )-i) < exp (-t~) 
/I~ 

(by a) applied to A/I ), it follows that R(exp(t~),T(t)/! ~) 

0 (use Neumann's series). So there exists y E I v such 

that R(exp (t~),T(t))x + y ( O. On the other hand, since 

x C I, we have R(exp (t~),T(t))x ~ O. Hence 0 

R(exp (t~),T(t))x ( -y C I~. Since Iz is an ideal, we con- 

clude that R(exp (t~),T(t))x E I~ and so xE I , because I~ 

is invariant under T(t). This is a contradiction. 

COROLLARY 5.6. If in addition to the assumptions of 

Theorem 5.4 X is connected, then one has the following 

alternative: 

Either A generates a positive group and 

~(A) n m : [-s~A),s(A)] 

~(A) n m : (--,s(A)]. 

or 

Concluding, we want to point out that, due to 5.4, 

one can obtain a "real spectral mapping theorem" for 

positive groups on AM-spaces in the same way as in 5.5: 

PROPOSITION 5.7. Let A be the generator of a positive C o- 

group {T(t); t E ~] on an AM-space E. Then 

~(T(t)) N JR+ = exp (to(A) N JR) 

holds for all t E ~. 
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