Spectral Properties of Lamperti Operators

WOLFGANG ARENDT

1. Introduction. Weighted composition operators (that is, operators of the
form f+> k- fo ¢ defined on some Banach space E of complex valued functions
on a set X, where ¢ is a mapping from X to X and 4 a complex valued function
on X) have been studied for various domains. In particular, the spectra of these
operators have been investigated by several authors. For example, the case where
E is the disc algebra was considered by Kamowitz [4] and [5]; for E = L*(X),
see Petersen [13] and the survey article of Nordgren [12] with the literature men-
tioned there; if E = [*(N) or 1>(Z) weighted shift operators belong to this class
of operators and Shields [16, Section 5] gives an account of their spectral prop-
erties.

We are interested in the case where E is a Banach lattice. Although the common
Banach lattices (like C (K) or L” (X)) are function spaces, we prefer a more general
approach. Weighted composition operators preserve orthogonality (in the lattice
sense) and are order bounded. We call operators with these properties Lamperti
operators. This definition makes sense in arbitrary Banach lattices and coincides
with Charn-Huen Kan’s terminology (on L? (X)) [7]. In the literature, this kind of
operators appeared first in connection with isometries on L7 (X). Indeed, all iso-
metries on L7 (X) (1 < p < o, p # 2) are Lamperti operators. This was shown
by Banach [2, page 175] for X = [0,1] and by Lamperti [9] for the o-finite case.

The spectrum of these operators, too, has been studied in the literature. For
example, the monograph of Schaefer [14] contains an exposition for lattice homo-
morphisms (i.e. positive Lamperti operators), and Kitover [8] states several results
for invertible orthogonality preserving operators.

In the present paper we discuss basically two properties of the spectra of Lam-
perti operators. In Section 3 we prove that an invertible Lamperti operator T on
E, whose spectrum is contained in a sector of angle 2w /3, is in the center of E
(that is, T is a multiplication operator in the case £ = C(K) or L”(X), for ex-
ample). This is a generalization of the main result of [15]. The proof we give
here, however, uses a completely different idea and is considerably simpler.

Section 4 starts with a theorem (4.1) which asserts that certain spectral projec-
tions of a Lamperti operator have an ideal as image, and so one can decompose
the operator under preservation of the Lamperti property. As a consequence, a
relation between the spectrum of the operator and its modulus can be established
(4.4). Another application is the spectral characterization of uniquely ergodic
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homeomorphisms which we give in Section 5.

We begin with a preliminary part (Section 2) where basic properties of Lamperti
operators are put together.

As a general reference for terminology and theory of Banach lattices and pos-
itive operators we use the monograph of H. H. Schaefer [14]. Throughout this
paper, the term ‘‘Banach lattice’’ stands for complex Banach lattice [14, 11 §11].

2. Lamperti operators. Let E, F be Banach lattices, T: E — F a linear map-
ping. T is called order bounded if for every x € E. there exists y € F, such that
|Tz| <y whenever |z| < x. If for every x € E, the set {|Tz|:|z| =< x} has a su-
premum in F, then there exists a (unique) positive operator |T|:E — F such that

(2.1 IT|x = sup{|Tz|:|z| =x forall x€EE,}.

T| is called the modulus of T. If T has a modulus, then T is obviously order
bounded. Conversely, if F is order complete and T is order bounded, then T pos-
sesses a modulus. Finally, note that every order bounded operator is continuous.
See [14, IV §1 and V 7.3] for all this. T is a lattice homomorphism if |Tz| = T|z|
for all z € E. A bijective lattice homomorphism is called a lattice isomorphism.
If T is bijective, then T is a lattice isomorphism if and only if 7 and T~ are
positive. Therefore the adjoint of a lattice isomorphism is a lattice isomorphism.

Definition 2.1. T is a Lamperti operator if T is order bounded and Tx L Ty
whenever x, y € E such that x L y.

Note, if G is a Banach lattice, x, y € G, we say that x and y are orthogonal
if |x| A\ |y| = 0. We express this symbolically by x 1 y.

Example 2.2. 1. If X is a compact space we denote by C(X) the Banach
lattice of all continuous complex valued functions on X with the supremum norm.
Let X, Y be compact spaces, S: C(X)— C(Y) a linear mapping. S is a Lamperti
operator if and only if there exists a function ¢:Y — X and h € C(Y) such that

(2.2) Sz(t) = h(t) - z(@(9)) (t€Y) forall zE CX).

Obviously, & = S1y (where 1x(s) = 1 for all s € X). Moreover, ¢ is uniquely
determined and continuous on Y, = {t € Y: h(¢) # 0}. S has a modulus, given by

2.3) IS|2) = |h(@®)| - 2(6()) (€ Y) forall z€ CX).
In particular,
(2.4) IS||z| = |Sz| = ||S]z|  forall z& C(X).

Remark. 1If S is a lattice homomorphism this has been proved by Wolff [18].
The proof here is similar:

Proof. If § is given by (2.2) it is obvious that S is a Lamperti operator. To
prove the converse suppose that S is a Lamperti operator. Let ¢t € Y such that
p:=S8'd, # 0. We show that the support of |p| is a singleton.
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In fact, if this is not the case, then there exist u,, u, € C(X) such that u; N\
u, = 0 and (uy,|p|) > 0, (up,|]) > 0. Since (uy,|w]) = sup{|(z,w)| : |z| = u,}, it
follows that there exists z;, € C (X) such that |z,| < u, and [(z,,p)| > 0. Similarly,
there exists z, such that |z,| < u, and |(z,,)] > 0. Hence, |Sz, (9| = [(Sz,,8,)| =
[(z1,w)| > O and [Sz,(#)| > 0. This is a contradiction since z, L z,.

Let Y, = {t € Y:5'3, # 0}. Then for every ¢t € Y, there exists exactly one
¢(f) € X such that supp(S’'3,) = {¢(r)}. Hence there exists k() € C\{0} such
that S'8, = h()d,, (t € Y,). Let ¢(t) € X be arbitrary and h(t) = 0 if t € Y\Y,.
Then for every z € C(X), Sz(t) = h(?) - z(¢(?)) for all ¢+ € Y. In particular,
S1y = h. Therefore, h € C(Y). The fact that ¢ is continuous on Y, follows from
an Urysohn argument.

Example 2.2. 2. Let (X,3,1) be a measure space, ¢ :X — X a measure pre-
serving transformation and h € L™(X). Let S be defined on E = L”(X) (1 =
p =) by Sz() = h(?) - z(p(¥)) ¢ €EX) for all z € E. S is a Lamperti operator.

Lemma 2.3. Let G be a Banach lattice and x, y € G. Then x L y if and only
iflx+cyl=]x—cy|forc=1,i.

Proof. The lemma is true for G = C and follows from this for G = C(X)
(X compact). The general case can be reduced to the latter because, if x, y €
G, then x, y € G, where u = x + y, and G, (the principal ideal defined by u) is
isomorphic to some space C(X) [14, II 7.4 and §11].

Theorem 2.4. The following assertions are equivalent.
(i) T is a Lamperti operator.
(ii) T is order bounded and |Tx| = |Ty| whenever x, y € E such that |x| =

yl.

(iii) |x| < |y| implies |Tx| < |Ty| for all x, y € E.

(iv) There exists a lattice homomorphism S:E — F such that |Tz| < S|z| for
allz € E.

(v) |T| exists and satisfies |Tz| = | |T|z| = |T| |z| for all z € E. In particular,
T| is a lattice homomorphism.

Proof. (i) implies (v). Let x € E,. Since T is order bounded, there exists
y € F, such that TE, C F,. There exist compact spaces X and Y such that E, is
isomorphic to C(X) and F, to C(Y) [14, I1 7.4 and §11]. Under this identification,
the restriction of T to C(X) defines an operator T,: C(X) — C(Y) which is again
a Lamperti operator. Therefore T, has the form (2.2). It follows that |To|x =
sup{|Tz|: |z| = x} exists in F,. Since F, is an ideal in F, |T,|x is also the supremum
of {|Tz|:|z| =< x} in F. This proves that |T| exists. Moreover, the restriction of ||
to E, coincides with |T,|. Hence (v) follows from (2.4).

(v) implies trivially (iv) (take S = |T|).

(iv) implies (i). If (iv) is true, then T is order bounded. Let x, y € E such that
x L y. Then, |Tx| N\ |Ty| < S|x| A\ S|y| = S(x| A\ |y|) = 0. Therefore, Tx L Ty.

(v) implies (iii). Let |x| = |y|. Then |Tx| = |T| |x| = |T||y| = |Ty|.

(iii) implies trivially (ii).
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(ii) implies (i). Let x, y € E such that x L y. Then for c = 1, i, |x + cy| =
lx — cy| (by 2.3). Hence (ii) implies that [Tx + cTy| = |Tx — cTy| for ¢ = 1, i,
so that Tx L Ty (by 2.3).

It is an open problem whether in Definition 2.1 the condition of T being order
bounded is redundant. This is at least the case if T is bounded and E is o-order
complete (as for example E = L*(X), 1 = p < o; cf. [7]).

Theorem 2.5. Suppose that E is o-order complete and T is bounded. If x L
y implies Tx L Ty for all x, y € E, then T is a Lamperti operator.

Proof. We show that |T| exists.

I. Letx,y € E,. Then |Tx + Ty| = |Tx| + |Ty|. In fact, let u = x + y. There
exists a compact quasi-Stonian space X such that E, is isomorphic to C(X) [14,
II 7.4 and §11]. Therefore x (respectively y) can be (simultaneously) approximated
in C(X) (and so in E) by a function f (respectively g) of the form

f=zai1A,- g=ZBi1A,-
i=1 i=1
where {A;:i=1,...,n} is a partition of X in open and closed subsets and

o, B; €R. (i = 1,...,n). Note: for A C X, 1, denotes the characteristic function
of A. Since 1,, L 14 for i # j, we have by hypothesis T1,, L T1,. Consequently,

IT(f+ )l =

z (o, + BT, | = E (o; + Bi)lTlAil
i=1 i=1

n n

Z o;|T1, | + 2 BilT1a

i=1 i=1

> Tl | + |, BTl
i=1 i=1

= |7f] + ITg|.

+

Since T is continuous, this implies |T(x + y)| = [Tx| + |Ty|.
2. The map x — |Tx| from E, to F, is additive by 1 and obviously positive
homogeneous. Let S: E — F be the linear extension of this mapping. Then

sup Re(e®T) =S

0€[0,2m)

where the supremum is taken in the ordered Banach space £ (E,F) of all bounded
operators from E to F. This implies that |T| exists, and actually coincides with §
[14, V 7.3].

Lemma 2.6. If T is a Lamperti operator, T' has a modulus and |T'| = |T|'.
Proof. Lety' € F',. One always has
2.5) sup{[T'z"|:|z'| <y} < [T'y".



LAMPERTI OPERATORS 203

Let x € E,. Since T is a Lamperti operator, by 2.4 (v), we get
(osupf{|T'z"|:[2'| = y'}) = sup{[(x,T'z")| : 2" | = y'}
= sup{{(Tx,z")|:|z'[ = y'} = (Tx|,y") = (T|x, ") = (x.[T|"y").

Since x € E, is arbitrary, this shows that actually the equality is valid in (2.5).
This proves the lemma.

Proposition 2.7. Suppose that T is a Lamperti operator. T is invertible if and
only if |T| is invertible. Moreover, if T is invertible, then T™' and T' are Lamperti
operators and |T™'| = |T|™".

Proof. 1. Suppose that T is bijective. Then |T| is injective. In fact, |T|z = 0
implies 0 = ||T|z| = |Tz| (by 2.4 (v)). Therefore, z = 0 since T is injective. |T|
is surjective. In fact, if y € F, there exists x € E such that Tx = y. Hence,
y = |Tx| = |T||x|. We conclude, |T|E, = F, which implies |[T|E = F.

2. Suppose that |T| is invertible. We show that T is invertible.

2.6) \zll = W=l = ] Al = N1l

holds for all z (by 2.4 (v)). Hence T is injective. Moreover, |T| is a lattice iso-
morphism; hence |T|’ is a lattice isomorphism. By Lemma 2.6, [T'| = |T|’, so it
follows from 2.4 (iv) that T’ is a Lamperti operator. Moreover, |T'| is invertible
so that 7" is injective (by (2.6) applied to T'). Therefore, (TE)’ = Ker T’ = 0.
This implies that (TE)™ = (TE )® = F, that is, T has dense image. From (2.6) it
follows that T is invertible.

Let x € F,. Then,

IT|'x = sup{|T| 'y:0 <y =< x} = sup{|z| : z € E,|Tz| = |T||z| = x}
= sup{|T ~'w|:|w| = x}.

Hence, |[T~'| exists and [T ~'| = |T|". It follows that [T ~'| is a Lamperti operator
since [T~'| = |T|™" is a lattice homomorphism.

3. Lamperti operators with spectrum in a sector. Throughout this section
E denotes a Banach lattice. Z(E) is the Banach algebra of all bounded operators
on E. The center of E is the closed subalgebra of £ (E) consisting of all operators
T on E such that |Tz| =< c|z| for all z € E and some ¢ = 0. If T € Z(E), then T
is a Lamperti operator and |T| € Z(E). (In fact, if T € Z(E), then T" € Z(E").
Hence T" preserves orthogonality. It follows from 2.5 that 7" is a Lamperti op-
erator, and so T" satisfies 2.4 (iii). But then T also satisfies 2.4 (iii); that is, T
is a Lamperti operator. It can be seen from 2.4 (v) that |[T| € Z(E).)

We quote two theorems which describe the principal properties of the center.

Theorem 3.1. There exists a compact space X and an isometric algebra iso-
morphism ® from C(X) onto Z(E) such that |®(f)| = ®(|f|) for all f € C(X).
In particular, Z(E) is a commutative Banach algebra and a Banach lattice (with
norm, multiplication and order induced by £ (E)) and ® is a lattice isomorphism.
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The proof of 3.1 can be found in [11] for real Banach lattices. The complex
case is an easy deduction from the real one.

Recall, a projection P on E is called a band projection if PE and Ker(P) are
orthogonal bands (i.e. Px L (y — Py) for all x,y € E). P is a band projection if
and only if 0 = P < I [14, II 2.9]. Hence every band projection is in the center.
In particular, if T € Z(E), then T commutes with every band projection. The
converse is also true if E is o-order complete [11, 7.12 and 4.2].

Theorem 3.2. Suppose that E is o-order complete and let T be a bounded
operator on E. Then T € Z(E) if and only if TP = PT for every band projection
PonE.

If A is a Banach algebra and a € A we denote by o,4(a) the spectrum of a in
A. We write simply o(a) if no confusion can arise. For a bounded operator S on
a Banach space G, o(S) always denotes the spectrum of the operator S, that is,
the spectrum of S in the Banach algebra £ (G).

Corollary 3.3. Z(E) is a full subalgebra of £(E) (that is, 0, T) = o(T)
forall T € Z(E)).

Proof. Let T € Z(E) be invertible in £(E). It has to be shown that T_, €
Z(E). Considering T’ if necessary we can assume that E is order complete. Let
P be a band projection. Since PT = TP, we have T~ 'P = T™'PTT™' =
T™'TPT™' = PT™". It follows from 3.2 that T~' € Z(E).

Example 3.4. 1. Let E = C(X) (X compact). Then ®:C(X)— Z(E) given
by ®(f)g=f-g for all g €EE, f€ C(X) is an isometric, algebraic and lattice
isomorphism from C(X) onto Z(E).

Example 3.4.2. LetE=L"(X),1=p=o,(X,3,n) a o-finite measure space.
Define ®:L*(X)— Z(E) by ®(f)g =fg (fEL*(X),g € E). ® is an isometric,
algebraic and lattice isomorphism from L”(X) onto Z(E) (see [11] or [19]).

Let us fix the following notation. For r, > 0, 6, 6, € [0,2m), we call the subset
A(r,00,0,) = {re"":O <r=ry0,=6<80,+6,}

of C\{0} a sector. 0, is the angle of the sector.
The following is the main theorem of this section.

Theorem 3.5. Let T be a Lamperti operator on E. If o(T) is included in a
sector of angle 2w/3, then T € Z(E).

At first, let us note some consequences of Theorem 3.5.

Corollary 3.6. Let T be a Lamperti operator on E. Then
1. o(T) C (0,%) if and only if T € Z(E) and T = ¢l for some € > 0;
2. 0(T) ={1}ifand only if T = 1.

Proof. By 3.5, o(T) C (0,%) implies that T € Z(E). Denote by ®:C(X) —
Z(E) the isomorphism of 3.1. Since ® is an algebraic isomorphism and because
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of 3.3, a(®'M)) = Ozey(M) = o(M) for all M € Z(E). But in the Banach
algebra C (X) the spectrum of f € C(X) coincides with f(X). Thus, if M € Z(E),
then o (M) C (0,%) if and only if ®~'(M) = ely for some € > 0, and the latter
is equivalent to M = &l for some € > 0 because P is a lattice isomorphism sat-
isfying ®(1y) = I. Similarly, if o (M) = {1}, then ®~' (M) = 1,. Consequently,
M=oy =1

Corollary 3.6.2 might be considered as an analog of a result of Kamowitz and
Scheinberg [6], which says that an automorphism U on a semisimple commutative
Banach algebra A satisfying o(U) = {1} is the identity operator.

In order to prove Theorem 3.5 we note the following easy special case of 3.5
and the just-mentioned result of Kamowitz and Scheinberg.

Lemma 3.7. Let X be compact and U an automorphism (equivalently, a lat-
tice isomorphism satisfying Uly = 1y) on C(X). Then o(U) = {1} implies that
U=1

As we said before, the lemma follows from [6]. But of course, it is also possible
to give a short direct proof of this easy case.

We will prove Theorem 3.5 by a reduction to 3.7. Let us describe this procedure
which seems to be of independent interest.

Recall, Z(F) is a commutative Banach algebra with unit. We denote by Aut(Z(E))
its automorphism group. By 3.1, Z(F) is also a Banach lattice and it actually
follows from 3.1 that every U € Aut(Z(E)) is isometric and a lattice isomorphism
(in fact, keeping the notation of 3.1, ®'U® is an automorphism on C(X); so
there exists a homeomorphism ¢ on X such that ® ' U® f = fo ¢ for all f € C(X);
hence ®~'U® is an isometric lattice isomorphism and so the same is true for U
since @ is an isometric lattice isomorphism itself).

By 2.7, the inverse of a Lamperti operator is a Lamperti operator, and it follows
immediately from the definition that the composition of two Lamperti operators
is a Lamperti operator. Thus, the invertible Lamperti operators form a group which
we denote by G(E).

Proposition 3.8. The mapping ~:T — T, where
T(M)=TMT™' (M E Z(E))

defines a group homomorphism from G (E) into Awt(Z(E)). If E is o-order com-
plete, then Ker ~ = G(E) N Z(E).

Proof. 1. LetT € G(E). If M € Z(E), TMT ™" is a Lamperti operator. By
definition of Z(E), there exists ¢ > 0 such that |M| < cl. Hence, [TMT™'| <
iT| |M{|T|™" < cI. Consequently, TMT ' € Z(E) Thus, T maps Z(E) into Z(E).
T is an automorphism since T(MN) = TMNT ™' = TMT'TNT ' = T(M)TWN)
for all M, N € Z(E) and T has the inverse (T ')

2. ~ is a group homomorphism. In fact, let S, T € G(E). Then (ST) (M)
STM(ST)™' = STMT'S™' = S(T(M)) for all M € Z(E). Thus, (ST)~
S$~T~. Moreover, (T)™' = (T™")".
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3. Since Z(E) is commutative, Z(E) N G(E) C Ker ~. Conversely, let T €
Ker ~. Then T = I. Hence, TP = TPT 'T = T(P)T = PT for all P € Z(E). If
E is o-complete this implies T € Z(E) by Theorem 3.2.

Example 3.9. Let E = C(X), X compact (respectively E = L7 (X),(X,3,p) a
o-finite measure space, 1 = p = x). Let T: E — E be given by Tz = h-zo ¢ for
all z € E where ¢ : X — X is a homeomorphism (respectively an invertible measure
preserving transformation) and s : X — C is continuous (respectively measurable)
such that |h(s)| =€ > 0 for all + € X (respectively almost all ¢ € X) for some
e > 0.

T is an invertible Lamperti operator on E. If Z(E) is identified with C (X) (re-
spectively L™ (X)) as in 3.4, then Tf = fo¢ for all f € C(X) (respectively f €
L*(X)).

For the proof of 3.5 we denote the approximate point spectrum of a bounded
operator S by Ao (S). Note that the topological boundary of o (S) is included in
Ao(S).

Proof of Theorem 3.5. Considering T' instead of T if necessary, we can as-
sume that E is order complete.

By hypothesis, there exists 8, € [0,27) such that o(T) C A(r(T),0y,27/3).
Replacing T with a suitable scalar multiple of T, we can assume that 6, = 0.

Let R, L:$(E) = Z%(E) be defined by R(S) = ST™' and L(S) = TS (S €
£(E)). By [3, §2 Proposition 19], c(R) = o(T™") and o (L) = o(T). Since
Re°L = LoR, we have

o(ReL) Co(l) - o(R) =o(T) o(T)"

2w 27
CA (r(T),O,?> A (r(T),O,—3—>

o 2w 27
Cere”:0<r, —<0<—.
3 3

Moreover, (R°L)Z (E)CZ(E) (bX 3.8) and T is the restriction Qf RoL to Z(E).
Hence, Ao (T) C o(R°L). But o(T) C {z € C:|z| = 1} because T is an isometry.
Hence,

-1

o) =Ac() C {eie;lz—w << —}
3 3

Since z € o(T) implies that z* € o(T) for all n € Z (by [14, V 4.4] because T
is a lattice homomorphism or by [6, Theorem 3] because T is an automorphism),
it follows that o(T') = {1}. From 3.7 we conclude that T = I. Hence, T € Z(E)
(by 3.8).

4. A spectral decomposition theorem. Let E be a Banach space and T a
bounded operator on E. We denote by r(T') the spectral radius of T and by r,,(T)
the real number r,,(T) = inf{|\|: X € o(T)}. Note that r,,(T) = r(T )" if T is
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invertible. For A € p(T) (= C\o(T)), we denote by R(\,T) = (\ — T)"! the re-
solvent of T in \. If |\| > r(T), then N € p(T) and R(\,T) is given by the
Neumann’s series R(\,T) = 2o, T"/\"*1.

A spectral subset o, of o(T) is by definition an open and closed subset of o (T).
To such a set the spectral projection P given by

1
pP= —ij()\,T)d)\
2mi J,

is canonically associated, where c is the positively oriented boundary of a Cauchy
domain having o, in its interior and o,: = o(T)\o; in its exterior. P reduces T,
that is, PT = TP, or equivalently, PE and Ker P are invariant under 7. If T,
(respectively, T,) denotes the restriction of T to PE (respectively, Ker P), then
o(T;) =0; (i =1,2).

From now on we assume that E is a Banach lattice. Then in general, order
properties of T are lost in the spectral decomposition. PE and Ker P do not need
to be sublattices. The next theorem, however, gives a positive result.

For s € [0,0), we let [, ={z€C:|z| =5}, =T, Let T € L(E). If [, N
o) =B and r,,(T) < s < r(T), let

o,(T)={z€ o(T):|z| = s}.
o,(T) is a spectral subset of o(T).

Theorem 4.1. Let T be a Lamperti operator on E. Suppose that there exists
s € (r,(T),r(T)) such that T'; N o(T) = (J. Then the spectral projection belong-
ing to o,(T) has an ideal as image.

Proof. Let P = (1/2wi) [r,R(\,T)d\, E, = PE and denote by T, the restric-
tion of T to E,. Since r(T,) < s, we have for x € E,

(T e
R(s,T)x=R(s,T))x = 2 <s”+11) X = 2 <s"”> X
n=0

n=0

and

I
\ZE

n=0

Since T" is a Lamperti operator, it follows from 2.4 (iii) that |T"y|| < ||T"x|| for
|y| = |x| (n € N). Hence, for all A € T, and all y € E such that |y| < |x|,

) o

T"y T"x
Z A'H—l = 20 n+1 <,
n=0 n=
Moreover,
~ Ty ~ T"y
\=-T), =57 = lim = T) > i
n=0 m—e n=0

Tm+ly
="11i_130( - W>=y;
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that is,

© n

T
ROy = N,f, (€ T, ly| = |x).

n=0

Consequently, fory € E satisfying ly| = |x],

= — )\ = —_—
Py 2mi Jr, 12 0)\"“ ,,20211' )\"“

(since the series is uniformly convergent for A € I';). We have proved that y €
E, if |y| = |x| for some x € E; that is, E, is an ideal.

d\T"y =1y

The spectral projection in the theorem need not be positive, even if T = 0. (For
example, let E = C? and let T € £(E) be represented by the matrix

(4 o
1 0/
Then o(T) = {0,1}. Let s = 1/2. Then o,(T) = {0}. For A € p(T),
( I/A—1) 0 )
R(\,T) = .
I/W—=1D =1/ 1/\

Hence,

1 0 0
=5—_ R()\,T)d)\=< )

wi Jr, -1 1

is not positive.) The situation is different if 7' is also a Lamperti operator, as the
following corollary shows (cf. [8, Theorem 2]).

Corollary 4.2. Let T € L(E). If T and T' are Lamperti operators and if
§ € (r,(T),r(T)) such that I', N o(T) = J, then the spectral projection associ-
ated with o,(T) is a band projection.

Proof. Let P = (1/2wi) [r,R(\,T)d\. By 4.1, PE is an ideal. Since P' =
(1/2wi) fr, R\, T")d\, P’ is the spectral projection associated with o,(T"). Con-
sequently, J := P'E’ is an ideal of E' (by 4.1 again). Hence Ker P = J° is an
ideal (by [14, II 4.8 Corollary]). This implies that P is a band projection [14, II
2.7 and 2.8].

If J is a closed ideal which is invariant under a bounded operator S on E we
denote by S|, the restriction of S to J and by S, the operator on E/J induced by
S (that is, S;(x +J)=Sx +Jforallx + J € E/J).

Lemma 4.3. Let T be a Lamperti operator on E. Let J be a closed ideal of
E. Then TJ C J if and only if |T|J C J. If TJ C J, then T, and T, are Lamperti
operators. Moreover, |T|,| = |T|, and |T,| = |T|,.
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Proof. The first assertion follows immediately from 2.4 (v). Let J be a closed
ideal in E which is invariant under T (hence under [T|). We show that T} is a
Lamperti operator and that |T,| = |T|,. Let z € E. Then

T,z + D =Tz +J|=Tz| + T =|T||z| +J
=|T|,(|z| +J) = |T|,|z + J|.

Since |T|, is a lattice homomorphism, it follows from 2.4 (iv) that T is a Lamperti
operator. Since for every x €EE,, |T,|(x + J) = |T,(x + J)| = |T|,(x + J), we
conclude that |T;| = |T|,.

To show the use of Lemma 4.3 in our context let us assume that we are in the
situation of Theorem 4.1. Let J = PE where P is the spectral projection associated
with o,(T). Then T|, and T, are Lamperti operators and o(7|,) = o,(T) and
o(T;) = o(T)\o,(T). In particular, r(T|,) <s < r,(T,). We have found a spec-
tral decomposition of T into the two Lamperti operators T'|, and 7.

We will now use this to prove a relation between o (T) and o (|T]). To simplify
the notation we let |o| = {|z|:z € o} C [0,%) if o is a subset of C.

Theorem 4.4. Let T be a Lamperti operator on E. Then
lo ()| = o (IT) N [0,%).

Proof. a) We show that r(T) = r(|T|). For every n € N, T" is a Lamperti
operator and |T”| = |T|". Moreover, if S is a Lamperti operator, then ||S| =
I1S1|| (this follows immediately from 2.4 (v)). Hence

r(T) = lim ||T"||"" = lim |||T|"||"/" = r(T]).
n—oc n—o

b) We show that r,(T) = r,(T]). By 2.7, 0 = r,(T) if and only if 0 =
rn(T]). Suppose now that r,(T) > 0. Then T ' is a Lamperti operator
and [T7'| = |T|™" (by 2.7). Therefore it follows from a) that r,(T) =
r@ Y =r(TI™)7" = r.(T).

¢) We show that o(T]) N (ra(T),r(T)) = |o@)| N (rn(T),r(T)). Let s €
(ru(T),r(T)) and suppose that s € |o(T)|. Then I, N o(T) = &. By 4.1, there
exists a closed ideal J of E which is invariant under T such that r(T|)) < s <
rn(T;). It also follows from 4.3 and a) and b) that |T| leaves J invariant and
r(T|,) <s<r,(T|,). Since o(T| C a(T|,,) Ua(T|,), we conclude that
s € o (|T]). Conversely, let s € (r,,(T),r(T)) such that s € o(|T|). Since |T| is a
lattice homomorphism, z € o(|T|) implies |z| € o(|T|) [14, V 4.4]. Therefore
[, No(T)) = &. By 4.1, there exists a closed ideal J which is invariant under
IT| such that r(IT|,)) <s<r,(T|,). It follows from 4.3 and a) and b) that
r(T),) <s < ru(T,). Since 6(T) C o(T},) U 6(T,), we conclude that s & |o(T)|.

d) We prove the equality in the theorem. Let s € o(|T|) N [0,). If s €
(rn(T),r(T)), then s € |o(T)|, by ¢). If s = r(T) (respectively s = r,,(T)), then
s € |o(T)| because I,y N o (T) # O (respectively, I, 7 N o(T) # D).
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Conversely, let s € |o(T)|. Again, if s € (r,,(T),r(T)), then s € o(|T|) by c).
If s=r(T)=r(T)), then s € o(|T|) because r(|T|) € o(|T|). Finally, let s =
rn(T). If r,(T) = 0, then r,(T)) = 0 by a). Therefore s =0 € o(|T]). If
rn(T) >0, then r,,(T|) = r(IT|™")"". Since r(|T|™") € a(IT|™"), it follows that
s=r(TI ™ € a(T]™) " = o (T)).

Definition 4.5. A bounded operator T on E is called irreducible if there exists
no closed ideal J # 0, E such that TJ C J. T is called band irreducible if there
exists no band projection P # 0, I such that TP = PT.

Corollary 4.6. Let T be a Lamperti operator. If a) T is irreducible or b) T is
band irreducible and T' is a Lamperti operator, then

o ()| = [rn(T),r(D)].

Remark 4.7. The condition of T’ being a Lamperti operator can be formulated
in terms of |T|: If T is a Lamperti operator, then T’ is a Lamperti operator if and
only if (|T|E)" is an ideal. We omit the proof, even though it is not quite obvious.
Note however, if T is an invertible Lamperti operator, then T’ is a Lamperti op-
erator by 2.7. Therefore the hypothesis 4.6 b) is satisfied in this case.

Example 4.8. 1. Let T be a Lamperti operator on C(X) (X compact). By
2.2.1, there exists a function ¢ :X — X and h € C(X) such that Tf = h-fo ¢ for
all f € C(X).

The closed ideals in C(X) correspond one-to-one to closed subsets § of X by
S—>I={fECX):f(s) =0foralls € S}. Let X, = {s € X: h(s) # 0}. I is in-
variant under 7T if and only if ¢ (S N X,) C S. We conclude from 4.6:

If there exists no closed subset S # &, X of X such that ¢(S N X,) C S, then
o ()| = [rn(T),r(D)].

I5 is a projection band if and only if S is open and closed. Moreover, T is
reduced by the corresponding band projection if and only if ™'(S) N X, = § N
X,. Using Remark 4.7, one can show that T’ is a Lamperti operator if and only
if ¢ is injective on X,. So we conclude from 4.6:

If ¢ is injective on X, and there exists no open and closed subset S # X, & of
X such that ¢~'(S) N Xo = S N X,, then |o(T)| = [r(T),r(T)].

Example 4.8. 2. Let (X,2,p) be a measure space and ¢ : X — X an invertible,
measure preserving transformation. Let 2 € L*(X) such that |h(f)] = &€ > 0 for
almost all # € X and some ¢ > 0. Let E = L?(X), 1 =p =< and define T €
LEYbYyTf=h-foe (f € E). T is an invertible Lamperti operator.

If P is a band projection on E, then there exists a measurable subset S of X
such that Pf = 15f (f € E) where 15 denotes the characteristic function of S. P
reduces T if and only if w(¢~'(S)AS) = 0. Therefore, T is band irreducible if and
only if ¢ is ergodic. So 4.6 gives:

If ¢ is ergodic, then |a(T)| = [r,(T),r(T)].
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Example 4.8. 3. Let E = [”(N) (respectively E = [P(Z)), | =p=w,and T
be a weighted shift operator on E given by (Tx), = a,x,+, for all n € N (respec-
tively n € Z) and x = (x,) € E, where (a,) € [”(N) (respectively, (a,) € [7(Z)).
It is obvious that T is a Lamperti operator. Also T' is a Lamperti operator. This
can be seen using 4.7 or, for 1 < p < », from the explicit form of 7'. Moreover,
T is band irreducible if and only if a, # O for all n € N (respectively n € Z).

Finally, o(T) is rotationally invariant, that is, A € o(T) implies a\ € o(T)
for all « € I'. (In fact, let o € I'. Define U:E — E by (Ux), = o "x,. Then
UTU ™' = oT. Hence o(T) = o(UTU ") = o(aT) = ac (T)).

We now apply 4.6 and get:

o(T)={z€C:r,(T) = |z| = r(T)}.
(Of course, in the case E = [?(N),r,(T) = 0.) A different proof of this result (for
p = 2) can be found in [16].

5. Uniquely ergodic homeomorphisms. Throughout this section X denotes
a compact space and ¢ a homeomorphism on X. Every h € C(X) defines a Lam-
perti operator T, on C(X) by means of

Tif=h-foe (fECX)).

T, is a lattice isomorphism if and only if 4 is strictly positive (that is, hA(s) > 0
for all s € X).

The purpose of this section is to compute o (7)) N [0,%) in terms of 4 and ¢.
For h € C(X), let

Path) = (h-hog-...-heg" )" (nEN)
Theorem 5.1. Let h € C(X) be strictly positive. Then

o (T,) N [0,) = (U N pn(h)(X))

meN nzm

={r>0:Ye>0 VmeEN 3Inz=m
such that  p,(h)"'(r — e,r + ¢) # &}

For the proof we need the following lemma.

Lemma 5.2. Let h € C(X) be strictly positive. Then
a) [T = sup{p,(h)(s): s € X}
b) |T:"7V" = inf{p,(h)(s):s EX}  (nEN).

Proof. Since T}, is given by (T},)"f = p,(h)"fe¢" for all f € C(X), it follows
that

I3 = sup{p.(h)s):s EX}  (nEN).
Let n € N. The inverse of T, is given by
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Ty f=(/ho@ ) fo0™  (fFECX)).
Therefore,
Th"f=Q/(the@™ - ...-ho@ ™) fee™  (fECX)).
Consequently,
W57 = [sup{1/(h(e ™" @) - ... - h(e ™" (@) :t € X}/
= [sup{1/(h(s)- ... - h(@" (s):s € X7V
= [1/(nf{p,(W)(s) :s € XP]™'
= inf{p,(h)(s):s € X}.
Proof of Theorem 5.1. Let h, = p,(h) (n € N). It is clear that
M, .= (U N h,,(X)) ={r>0:YVe>03dmEN

mEN nzm

Von=mh,'(r — e,r +¢) #J}
C{r>0:YVe>0VmENIn=m

h'(r —e,r +¢e) #J}
=:M2.

It has to be shown that o (T,) N [0,0) = M, = M,.

1. We show that o (T},) N [0,0) C M,. Let r > 0 such that r € M,. Then there
exists ¢ > 0 and an increasing sequence (1 );en in N such that h,,'k' (r—e,r+
g) = & (k € N). Let k € N be so large that

(r = e)l(max k() /(min k)], /p .,
and
(r + e)(min A(0) /(max hOD], /p -, .
Let
X, ={teX:h,O)=r—e={t€X:h,)<r}
X,={t€X:h,®O=r+e={EX:h, () >r}

Since h,, is continuous, X,, X, are open and closed. Moreover, X = X, U X,,
X, N X, = J. We claim that ¢(X;) C X; ({ = 1,2). Fort € X,

By (@) = [h(e®) - ...~ h(e™()]'/™
= h,, () - [h(@™ (1) /R ()]'™.
Thus, by the choice of k, h, (¢(1)) <rift € X, and h, (¢() > rif t € X,.
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Since ¢ is bijective, it follows that ¢ (X;) = X; (i = 1,2). The projection band
Ji={fe€CX):f(® =0 for all ¢t € X,} is invariant under T. Let T, be the restric-
tion of T to J; (i = 1,2). By 5.2, if J, # {0}, then

r(Ty) < |T%#|"™ = supth, (O :t € X,} <r,
and if J, # {0}, then
rm(Ty) = r(T3H) 7 = |7 7Y™ = inflh, () :t € X,} > r.

Thus, r € o(T}) U o(T,) = o(T) (where o (T)): = J if J, = {0}).
2. We show that M, C o(T) N (0,»). Let r € (0,%) such that r € o(T). We
can assume that

rm(T) <r<r(T) (since by 5.2,
rn(T) = lim (inf A,(¢)) and r(T) = lim (sup h,(D)).
n—x (€X n—o  teX

By 4.2, there exists a projection band J # 0, E such that J and J 1 are invariant
under T and such that 7(T,) <r <r,(T,), where T, = T|,, and T, = T|,,. There
are open and closed subsets X;, X, of X suchthat X, U X, = &, X, N X, = X
and

J={fECX):f(n =0 forall r&X,}
JEP={fECK):f(t)=0 forall t&X,}.
By 5.2,
lim (sup b, () =r(T) <r

n—o  (€X,
and

lim (inf h, () = r,(T,) > r.

e t€X)

This implies that r & M,.

Corollary 5.3. Let h € C(X) be strictly positive.

(a) If p,(Weoe@" = p,(h) (in particular, if hoe" = h) for some n € N, then
o (T,) N [0,%) = p,(W)X).

(b) If (p,(h),en converges uniformly to some function k € C(X), then
o (T,) N [0,%) = k(X).

(c) Let r > 0. Then o(T},) N [0,°) = {r} if and only if lim p,(h) = r- 1 uni-

formly.

Proof. (a) For n = 1 the assertion follows immediately from 5.1. Letn > 1,
r > 0. Then r € o(T,) if and only if r" € o((T},)"). But, since (T;,)"f = (h,)""
fee, (f € C(X)), this is equivalent to r"” € h;,(X) by the case n = 1, and this
means that r € h,(X) (where h, = p,(h)).
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(b) and (c) are immediate consequences of 5.1.
For f € C(X) let

ln—l
M,f= . Ef°<P'"~
m=0

¢ is called uniquely ergodic if for every f € C(X), the sequence (M, f),en cOn-
verges uniformly to a constant function (see [17]).

Corollary 5.4. The following assertions are equivalent.
(i) ¢ is uniquely ergodic.
(ii) o(T,) C {z € C:|z| = r(T,)} for every strictly positive h € C(X).

Proof. The mapping f — exp(f), where (exp(f))(?) = ¢/® for all ¢ € X,
maps Cgr(X) (the set of all real valued functions in C(X)) onto the set of all
strictly positive functions in C(X). Let f € Cgr(X). Since exp(M, f) = p,(exp(f))
for all n € N, we get for c € R:lim M, f = cly uniformly if and only if

n—w

lim p,(exp(f)) = €°- 1x uniformly, and by 5.3, the latter assertion is equivalent

t0 0 (Texp(ry)) = {€°}. From this the corollary follows.

Remark 5.5. If X is infinite and ¢ is uniquely ergodic, then for strictly pos-
itive h € C(X) one actually has:

o(T,) ={zE€C:|z| = r(T))}.

In fact, one can assume that »(T,,) = 1. Suppose the inclusion of 5.4 (ii) is proper.
Since o(T},) is a union of subgroups of I' [14, V 4.4], it follows that ¢ (7},) consists
of roots of the unity with a common upper bound p, say. Then z” = 1 for all
z € o(T,). By 3.5, this implies that 7' = I. In particular, ¢”' = id. Therefore,
lim M, (f) = M, (f) for all f € C(X). Since ¢ is uniquely ergodic, this implies

n—o

that M, (f) is a constant function for all f € C(X). This cannot be unless X is
finite.

Example 5.6. Let ¢:I' — I be defined by ¢(z) = zz,, where z, € I such that
zg# 1 for all n € N. Then ¢ is uniquely ergodic [17, Chapter 5]. Let E =
L*(T') (with respect to the Haar measure) and consider for each h € L™(I) the
operator S, on E defined by S,f=h-fee forall f € E.

If h is continuous and strictly positive, then r(S,) = r,,(S).

In fact, denote by T}, the restriction of S, to C(I'). By 5.4, r(T},) = r,,(T},). One
sees from the formula for the spectral radius that »(S,) = r(T,) and r,,(S,) =
r.(T;). Hence, r(S,) = r,(S,).

On the other hand, there exists h € L™ (I") such that 0 < r,,(S,) < r(S,).

In fact, there exists a compact Stonian space X and a lattice isomorphism
U:L*(T'")— C(X) such that Ul = 1. Hence, R = U, U~ is a lattice iso-
morphism on C(X) satisfying R1y = 1. Therefore, there exists a homeomorphism
Y on X such that Rg = go for all g € C(X).
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Since X is Stonian, it follows from [1, Section 4, Proposition 1] that ¢ is not
uniquely ergodic. By 5.4, it follows that there exists a strictly positive k € C(X)
such that r,(R,) <r(R,), where R, = MR, M,g =k g(g € C(X)). Since
M, € Z(C (X)), it follows that M := U 'M,U € Z(E). By 3.4.2, there exists
h € L*(T) such that Mf = h-f for all f€ L*(T). Moreover, U 'R, U =
U 'MUU'RU = MS,, = S,. Therefore, r,,(S;) = rn(Re) < r(R) = r(S).
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