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A Spectral Mapping Theorem for Representations of Compact Groups

W. ARExDT and C. D’AnTtont!)

Sei U eine stark stetige beschrinkte Darstellung einer lokal kompakten Gruppe G auf einem
Banachraum E. Ist u ein beschrinktes regulares Borelmafl, so bezeichnen wir mit U(u) den
Operator U(u) = f U(t) du(t). Wenn G abelsch ist, so ist bekannt, daB3

a(U(w) = f(sp (V)™

wenn der singulére stetige Anteil von p Null ist (wobei o(U(u)) das Spektrum des Operators
U(p), sp (U) das Arveson-Spektram von U und fi die Fourier-Stieltjes Transformierte von u
bezeichnet).

Im vorliegenden Artikel wird ein entsprechender spektraler Abbildungssatz fiir kompakte
(nicht-abelsche) Gruppen und absolut stetige Mafle bewiesen. Ferner wird gezeigt, dafl — im
Gegensatz zum abelschen Fall — der spektrale Abbildungssatz fiir atomare Mafle nicht gilt.

Ilycte U cuapHO HempepHBHOE OIPAHMYEHHOE TNPENCTABIEHME JIOKANBHO KOMHAKTHOR
rpynusl ¢ Ha GaHaxoBoe mpocTpaHcrso. Ecau p orpasuveHHas perynspHas GopelieBCHas
Mepa, mycts U(u) obosHauaer omeparop U(u) =f U(t) du(t). Ecan G-afenesad, 10 U3-
BECTHO, 4TO

o(Up)) = ffsp (U))~

eCIl CUHIYJNADHAA HENPepHIBHAA 4YacTh x pasHA myuo (rme o(U(p)) oGosnauaer cmekrp
oneparopa U(u), sp (U)-apBeconcknit cuektp U, u f-pyphe-cCTHIBTbeCOBoe Npeolpasosa-
HHUE u).

B pansoil crarbe [0Ka3aHAa NMOKO0HAA CHEKTpaJIbHAA TeopeMa 00 0TOOpaKeHNH JIid KOM-
TMAKTHHX (He aGeneBrIX) Ipynn U aGCOdIOTHO HelpepHIBHLIX Mep. HpoMe Toro gokasaHo, 4To
B IIPOTHBONOJNOHHOCTS 20eIeBOMY CIY4ai0 ANA YHUCTO NPEPHIBHBIX MeP CIHeKTpaJbHasa TeopeMa
00 oro0paskeHun He BepHA.

Let U be a strongly continuous bounded representation of a locally compact group G on a
Banach space E. For a bounded regular Borel measure u on G, we denote by U(u) the operator
U(u) = [U(t) du(t). If @ is abelian, it is known that

o(U(w)) = ii(sp U)~

holds if the continuous singular part of x4 is zero (where o(U(u)) denotes the spectrum of the
operator U(u), sp(U) the Arveson-spectrum of U and /i the Fourier-Stieltjes transformation of u.)
In the present article a corresponding spec®ral mapping theorem is proved for compact (non-
abelian) groups and absolutely continuous measures. Moreover, it is shown that — in contrary
to the abelian case — the spectral mapping theorem fails for purely discontinuous measures.

1) Supported in part by the Italian C.N.R.
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1. Intreduction

Given a suitably continuous homomorphism U of a locally compact group G into the
group of all isometries on a Banach space E, it is possible to define the representation
of M(@), the Banach algebra of all bounded regular Borel measures on G, by

Uu) = [ U, dult).

If Gis abelian (resp. compact) in the theory of spectral subspaces the spectrum sp (U)
of U is defined as a certain subset of the dual group of G [2] (resp. the dual object of
G [6]). : ‘

In the abelian case a spectral mapping theorem is proved in {5] (see also [9]),
stating

o(U(w)) = alsp (U))

for every measure u € M(G) whose continuous part belongs to L'(&). The purpose of
this paper is to prove the analogue of this theorem for compact groups. i

It is interesting that the corresponding theorem does not hold in this generality for
the non-abelian case: In fact, a counterexample given in this paper shows that it may
fail to hold for purely discontinuous measures.

2. The main theorem

Let £ be a Banach space, ¢ a compact group and U a homomorphism of G into the
group of invertible operators on E. That means:

U,e (B, U, =UU, U, =1 for s,t € G, where e ¢ G is the unit of G
and [ the identity operator on .

Suppose U is continuous in the sense of [2: assumption 1.1]. In particular, U may be
strongly continuous. Then for u € M(G) the operator U(u) can be defined by

Uu) = [ U, du(t)

(see [2]). U(u) is a bounded operator on E, ||U(u)|| = c|lu|| for a positive constant ¢
and all u € M(G). For u,» ¢ M(G) wehave U(uxv) = U(u) U(»), and U, = U(é,) for
the Dirac measure §, at the point ¢ € G. Thus U extends to a representation of M(G)
on E.

Denote by @ the dual object of @, i.e. G is the set of all equivalence classes of con-
tinuous unitary irreducible representations of G. For « € & chose u, € «. u, is a homo-
morphism of @ into the group of all unitary =, X n,-matrices. Denote by u,;;() the
matrix entries of u,(t), and by u.;; the coordinate function & — u.;(t) on G (1 < 4,
j = n,). For u € M(@) let o, = f u,(t71) du(t) for o € G (i.e. f, is the n, X n,-matrix
( f Ugii (F71) d,u(t));j). We identify LY(G) with a subspace of M(G) in the canonical way.
Thus we set f, = (fm); (x € @) and U(f) := U(fm) for f € L1(R), where m denotes the
Haar measure on G. »

2.1 Definition: sp (U) = {ax € G | f«=0 forall fe¢ I}, where I is the closed
ideal of L}(G) defined by I = {f ¢ LYG) | U(f) = 0}. '

This definition is equivalent to the one given in [6] and coincides with Arveson’s
definition in the abelian case. We can now formulate the main theorem.
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2.2 Theorem: 1. For u ¢ M(Q), Pa(U(y)) = U o).
«€spll)
2. For ¢ LY(&

o(f) u{0} if sp (U) is infinite
a€sp(U)
U o(fa) if sp(U) is finite.
agsp(U)

oAU(f) =

Note: o(7') denotes the spectrum and Po(7') the point spectrum of a bounded
operator T' on E. For u € M(®), x € G let o(2,) denote the set of all eigenvalues of

the matrix f,.
For the proof of the theorem we need some lemmas.
The coordinate functions are continuous and satisfy
Uaij * Ugpy = 100050300t
(BeG 1<i,j=n, 1=<kl=ny (see[8:27.20]).

Let V,;:= Umau,) (x€G,1=4,5<n,).
The operators V,;; satisfy the composition rules
VaiiVow =0 if ap or j=+k, } ©
VaiiVat = Vau-
In particular V,; and P, := } V,;; are projections {« € G, 1 <i<n,).
i=1
2.3 Lemma: For u ¢ M(G), x € G,
a) PaU(/") = U(/L) P, = 2 faaiiVaii (1 = 1’7 = My),

hj=1
b) Vai]‘Pa = PaVaii = Vai;‘ (1 é @:7 é na);
¢y P.Pg=PsP, =0 for o«=8.

Proof: By [8: 27.20],

o I .
* Uyyy = ) f Uaji(8) Ap(s) Uaji = 2 Laijthaij
=1

and

Ba g
Uaii % pp = ) [ waig(s) dp(s) vhasj = Z; frajithaji-
=1 i=
Consequently,

P, U(:u (nv‘z Uaii * ) = ( 2 laaltuﬂt?) glﬂ“fiV“if

ij=1
R
=U (y * ”“Z uaﬁ) = Ulp) P,.
;=1
b) and c) are obvious from (C) R

There is an alternative description of sp (U).

9 Analysis Bd. 2 Heft 2, (1983)
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2.4 Lemma: sp (U) = {x € & | P, == 0}.
Proof: Let 8§ = {x ¢ & | P, == 0}.

a) Let « € sp (U). Since (uaj;)aij = 1/n, (see [8: 27.19]), u sii § I by the definition
of sp (U). From the definition of 1 follows that V,;; == 0 (1 =< ¢ < n,) and consequent-
ly, P, & 0 (use 2.3b)). Hence & € 8.

b) Let x € 8. Then V,; &= 0 (1 <14, j =< n,). From 2.3a) and (C) follows that

VeiiPU(f) Vajs = FajiVaij Hence, f € I implies f. = 0; i.e. « € sp (U)
2.5 Lemma: If U(fyx = 0 for all { ¢ LYG), then x = 0.

Proof: For every ¢ € E, (a separating subspace of the dual space of E according
to the assumption in {1] (if U is strongly continuous. E is just the dual space of E)),
f (U, p) f(t) dt = Ofor every f € L1{G) by hypothesis. Since the functiont — (U, ¢)
is continuous, it is identically zero, hence (x, ¢) = 0. This implies x = 0, E, being
separating W

2.6 Lemma: If Px = 0 for every « € sp (U), then x = 0.

Proof: The hypothesis implies that P, = 0 for every, « € G. Consequently,
Ulusyy) © = 0 for every « € G, 0, j¢c{1,...,n), hence U(p) xz = 0 for every trigono-
metric polynomial p on @, which implies U(f) ¢ = 0 for every f € L1(G), the trigono-
metric polynomials being dense in L'G). It follows from 2.5 that z = 0 1

2.7 Lemma: If p, = O for every « € sp (U), then U(u) = 0.

Proof: I g, = 0 for every « € sp (U), then P,U(u) = 0 for every « € sp (U) by
2.3; consequently U(u) = 0 by 2.6 1

Proof of the theorem:

1. Let u € M(G). For « € sp (U) let F = P,K. F is not reduced to 0 and invariant
under U{(x) by 2.3. Denote by U, the restriction of U(u) to F. V,;; is a projection which
leaves F invariant by 2.3 Set F;:= V,;F (1 =i < n,n :=n,). We have F. = F,
4 ...+ F, and F; n F; = Ofor i = j. From the composition rules (C)it can be seen
that the restriction of V,;; to F; is an isomorphism of F'; onto F;, which we denote by
V. Moreover, V; = I; (the identity operator on F;),

(Vi) = Vi (1=4j=mn).
Fore =2, + -+ + 2, € F; + --- + F, = F we have by 2.3 and (C)

Up)x = Ulu) Pax = 2 BasiVaji = 21 Pais Vi (1)

i.j=1 hj=
n .

Set H := X F, (n-times the Cartesian product of F, with any norm inducing the

m=1 -
product topology on H) and define V : F — H by (x; + - + x,) = (V325, Viea, .00,
Vinx,). V is an isomorphism with inverse

VAH—~F, (Y, oo ¥a) > Vs + Voo + -+ + Vial)-
Let U, = VU,V1. From (1) it can be seen that U, has the mitrix representation

;atxllIl ﬂam[l vee ;aanIIl
(7 ﬂol%ll p'a2211 e :a,an211

‘aalnll ﬂalnll ﬂarmI]
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From this it is easy to see that o(U,) = o(U,) = o(f,) and o(U,) = Po(U,). Thus
6U(U)a(/l«) < Po(U(u)).
aCsp f

To show the inverse inclusion, let 2 € PoU((u)). Then there exists z € E such that
2+ 0 and U(u) x = iz. By 2.6 there is an « € sp (U) such that y = P,z == 0. It
follows from 2.3 that U(u) y = Ay. Hence 4 € o(U,) = a(f,).

2. Letf € LY@). a) If sp (U) isinfinite, 0 € U o(f,), because (llfa”)aeé tends to O
€sp(U)

at oofin the discrete topo]ogy on (). Hence 0 ¢ a(U(f)) by 1.

Weshow that o{U(f)) \ {0} == U a(f ). Let 2 ¢ U o(f.) u {0}. It has to be shown that

aEsp(U) a€sp(U)

Ag a( f)) Since (||f, H)aeé tends to zero at oo, the set N := {x € G |1 ¢ o(f,)} is
finite. There exists a trlgonometmc polynomial g on G such that §, = f, forall x ¢ N
and §, = O for « ¢ N (use (u,,,,)ﬂkl = (Uasj * ugy) (€) = 1/n, 8,p040y; by [8: 27.20 (iii)]).
Teth = f —g. Thenh € IMG), hy = f fora ¢ Nand h, = Oforx ¢ N.In particular,
24 U&a(ﬁ .), Which implies by [1: 4.3] that 1 ¢ o lh), ie. there exists k € LY(@Q)

L33

such that (18, — k)  (1/46, — k) = (1/28, — k)% (Ad¢ — k) = &,. Hence

A—Um) (12— Uk) = (/2 — Uk)) (2 — U®)) =1 (2)

From our assumption on 1, N nsp (U) = @, hence k, = f, for all x € sp (U). This
implies that U(h) = U(f) by 2.7. Consequently (/‘L - U (f)) is invertible in ¥(E) by (2),
ie. 14 a(U(f,)

b) Let sp (U) be finite and suppose 0 ¢ U :(f .). In order to show that 0 ¢ G(U f))
take a trigonometric polynomial g satlsféyll)ilg) go = (fo) ! for all & ¢ sp (U). Then
(g% Ps = Quf s = I = (8) = (f % g)5 for every « € sp (U). 1t follows from (2.7) that
U Ug)= Ulg )U(f)_l hence of.Oé{o‘(U(f)

3. Discrete measures

- It has been shown in [5] that for abelian groups the theorem corresponding to the
second part of 2.2 remains true if f is replaced by a measure on G whose singular
part is completely discontinuous. This is no longer true for compact non-abelian
groups. In fact, while we can prove that theorem 2.2 part 2 holds for point measures,
we show that there exists a completely discontinuous measure u on a compactgroup G
such that

oUw) + U olfa),

aCsp(U

where U is a suitable representation of G on a Banach space Z.
3.1 Proposition: For every t € G,

a(Uy) :( U a(ua(t‘l)))‘.

x€sp(U)

Proof (cf. [4: 6.3] for the abelian case): One inclusion follows from 2.2 part 1. For

the reverse inclusion suppose 1 ¢ M := ( U o Ua(t‘l)))‘ and let W an open set in
afspll)
I' = {z € €| [z] = 1} containing M but A ¢ W. We can find a C2-function f on I" which

9%
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coincides with z — (2 — 2)™* on W. Then the Fourier expansion is absolutely con-
vergent and we have f(z) = ) a,2" with ) |a,| < co. Let § = Y a,Usn. In order to

n€Z neZ ncZ
show S — Uy =1 let y = 2 @0\ * (A — ;). By 2.7 it is enough to show that
fe = I, i.e. (Zanuat ”)(l~uat‘l):l,forevery(xEsp(U).

Let « € sp (U). If we consider the representation V of Z given by V(n) = wu.({{—"),
and its lifting to I*(Z) given by V Z bu,(t—") for b € I1(Z) then by [4. 6.4] sp (V)

= [a(ua(t‘l))] {being aware that the co Founer transformation is considered in [4]).
By definition of W, sp (V)= W1, Consequently, d(z) (A — 6,* (z) = f(z"1) (A — 2™
= 1forall z¢ W1, Thisimplies V(a V(A — 8,) = I by [4:3.3vi], that is (Za N (e "))

(/'L - u‘,(tfl)) = I.(A— U, 8 = I can be shown in the same way. Hence, 1 ¢ o(U,) 1

For the counterexample we need some additional notation. Let G be a locally com-
pact group. For B M(G) we define BL = {u ¢ M(G) | int {|u|, |»]} =0 for all
v € A}. A subset Bof M(Q) is called a band if B = BL L, If Bisa bandin M(®), M(G)
is the direct sum of B and BL. By M ,(G)wedenote the space of all continuous measures
in M(Q). MyG):= M(G)* is the space of all completely discontinuous measures in
M(G) and is isomorphic to IM{G4). M4(G) is a subalgebra and M (G) an algebraic ideal
of M (G (see [8]). Recall, a subalgebra 4, of an algebra A is called full if for every
x € Ay, which is invertible in 4, x™1 € 4,.

3.2 Lemma: My(G) is a full subalgebra of M(G).

Proof: Assume u € My(Q)is invertible in M(G). We have to show that u= ¢ M4(G).
There are uniquely determined measures », € My(@), v, € My(G)L = M (G)such that
wl =, + v, Hence 8, = p * v, + u * v, Since M (G) is an algebraic ideal, u * v,
=0y — u ¥ v € M (G) n My(G) = {0}. Thus px», = 0, which implies », = 0, i.e.
pte My@) '

Let H be a subgroup of G4 (G with the discrete topology). (H) can be identified
with the band in M (@) consisting of the measures in M4(G), which are concentrated on

H.
3.3 Lemma: I{(H) s a full subalgebra of ING,).

Proof: a) I1{H) is a subalgebra of I1{(G). This is obvious. b) [{(H) * DH(H)L — I{H)!L:
Let u ¢ P(H)*t. It isenough to show that 6, * u € IN(H)! forallt € H. Lett € H.ucan
be written u = Za dt,, where ¢, ¢ G\HandZ |@,| < co. Thusd, * u = Za S,

€ nH)*L, because tt € @\ H, H being a subgroup of G.

¢) I(H) is full in I{G): Assume p € IH{H) is invertivle in I'(@). Then ! = v, + v,
for uniquely determined measures v, € IM{H), », € IMH)L. Hence 8, = p * v, + u * vy,
and u * vy = 8, — p * v, € (H) n {H)L = {0} by a) and b), which implies v, = 0,
te. e MH) 1 ‘

3.4 Corollary: I'(H) can be identified with a full subalgebra of M(G).
To construct the counterexample, let & = SO(3, R), E = LYG). Define U:

G—LE) by (Uf)(s) =ft7s) (s € @) for all t€ G, fc LYG). Then U(u)f =u « f
for u e M(G), { € LY(G), according . to the definition in sectlon 2. For u € MG,

ouem)= oU(w)) 3)
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as is well known (see also [1]). The free group on two generators His a subgroupof Gy
(see [7]). In I*(H) there exists a hermitian measure u such that ¢ € opey(u) ({3)).
It follows from 3.4 and (3) that ¢ € O’(U(/,L)). But since u is hermitian, the matrices
A« are selfadjoint, which implies Uaa(/la) < R.

ag
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