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1. Introduction 

The Fourier-Stieltjes algebra B(G) of a locally compact group G is the space of all 
linear combinations of continuous positive definite functions on G. Whereas B(G) 
has usually been investigated as a Banach algebra (with pointwise multiplication), 
we consider another structure. We view B(G) as an ordered vector space in two 
senses; these orderings are determined by : the cone P(G) of all continuous positive 
definite functions on G and the cone B(G)+ of all pointwise positive functions on G. 

The purpose of this article is to show that the "biordered space" (B(G), P(G), 
B(G)+) is a complete invariant for the locally compact group G. More precisely, if 
G 1 and G 2 a r e  two locally compact  groups, then G t is isomorphic t o  G 2 as a 
topological group if and only if there exists a bijective linear mapping T: 
B(G1)~B(Gz) such that TB(GO. =B(G2) + and TP(Gx)=P(G2). 

In this way we have found a complete invariant for locally compact  groups 
which is very simple to define. Only the structure of a topological group is 
necessary for its definition. In particular, the Haar  measure is not needed. 

The proofs, however, make use of Haar  measure. In fact, they depend on 
Walter's theorem [9, Theorem 2], which says that two locally compact  groups G 1 
and G 2 are isomorphic if and only if there exists an isometric algebra isomorphism 
T from B(G,) onto B(G2). Here the norm of B(G), which is defined via LI(G), is 
essential to obtain complete invariance. 

So our first step towards the main result is to show that in Walter's theorem the 
condition that T be isometric can be replaced by the assumption that T is an order 
isomorphism for the positive definite ordering (Sect. 3). This seems to be of 
independent interest, since it shows that the "ordered algebra" (B(G),., P(G)) is a 
complete invariant (which is "Haar  measure free"). 

The next step is to investigate order isomorphisms for the pointwise ordering. 
In Sect. 5 we obtain the following characterization: A bijective linear mapping T 
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from B(G1) onto B(G2) satisfies TB(GO+ =B(G2) + if and only if there exists an 
invertible element h in B(G2) + and a .-algebra isomorphism V: B(GO~B(G2) such 
that Tf= h. Vf (fe B(Gt) ). Both steps put together show that, up to a multiplicative 
positive constant, biorderisomorphisms have to be isometric *-isomorphisms, so 
that Walter's result applies. 

In a previous paper [1], we made an analogous investigation of the Fourier 
algebra A(G). We would like to comment on how those results and their proofs are 
related to the present paper. In [1] we showed that the "biordered space" (A(G), 
A(G)nP(G), A(G)+) is a complete invariant of G as well. This space, however, is 
more complicated to define than B(G) (it involves the norm of B(G), since A(G) is 
the closure of all functions in B(G) which have compact support; see [3] for this 
and equivalent definitions of A(G)). The proofs are related in the following way: 
The first step described above is a generalization of the corresponding result for 
A(G). To deal with order isomorphisms for the pointwise ordering, however, is a 
completely different matter in the two cases. Actually, for A(G), we used the fact 
that the maximal ideal space of A(G) can be identified with G. This is not true for 
B(G) in general. Hence our proof for A(G) does not carry over to the B(G) case. On 
the other hand, the method in the present paper involves the multipliers of B(G), 
which are given by the elements of B(G) itself. The same method applies to the 
Fourier algebra of amenable groups, mainly because in that case the multiplier 
algebra of A(G) coincides with B(G). This fails in general, however (see also the 
remark following the proof of Theorem 5.2 below). 

Finally, we point out that our main result can be applied to the group algebra. 
So we prove in Sect. 6 that Lt(G), too, carries the natural structure of a biordered 
space which, as above, is a complete invariant of G. 

2. Preliminaries 

As a basic reference we use Eymard's fundamental article [3]. Throughout  this 
paper G, G 1, G 2 are locally compact groups. We denote the set of all continuous 
positive definite functions on G by P(G). It is a proper cone in the vector space 
Cb(G) (of all continuous bounded complex valued functions on G), i.e. : 

�9 .+ P(G) C P(G) 

P(G) + P(G) C P(G) 

P ( G ) n ( -  P(G)) -- {0}. 

Moreover, P(G). P(G) C P(G) and 1 e P(G). Thus, B(G) = span P(G) is a unital 
subalgebra of Cb(G). It is called the Fourier-Stieltjes algebra of G. B(G) can be 
canonically identified with the dual space of C*(G), the enveloping C*-algebra of 
LI(G), and is a Banach algebra with respect to the dual norm ][ ][. This norm 
satisfies 

Ilul[oo_-<liull (ueB(G)) 
]lpll = ]]pl[~=p(e) (peP(G)) 



Order Isomorphisms of Fourier-Stieltjes Algebras 147 

where tlu[l~ = sup lu(t)[ and eeG denotes the unit element of G. B(G) is an 
teG 

involutive Banach algebra for the involution - -  given by 

w 

~(t )  = u(t)  

(where ~ denotes the complex conjugate of z~ tl?). 
The cone P(G) defines an order relation on B(G). We refer to it as the positive 

definite ordering. 
There is another order relation on B(G) which is defined by the cone B(G)+ of 

all pointwise positive functions in B(G). That is, for u~B(G), ueB(G)+ if and only if 
u(t)>O for all t6G. 

We refer to this order relation as to the pointwise ordering and write 

u<v if and only if v-uEB(G)+. 

Of course, B(G)+ is a proper cone. It is also generating, that is, span B(G)+ = B(G). 
1 

In fact, if u~B(G), then Reu=~(u+fi)~B(G) and I m u =  ~(u-fi)EB(G). Since 

u=Reu+iImu, it is enough to show that v~spanB(G)+, whenever v is a real 
valued function in B(G). Since -Ilvtl~l<v<l[vll~l, it follows that v l =  
v+ IlvlI~teB(G)+ and vz=llvll| So v=�89 

Corresponding to these two orderings are the notions of positive linear 
mappings: A linear mapping T:B(GI)~B(G2) is positive for the positive definite 
orderin 9 (resp., the pointwise ordering) if TP(G1)) C P(G 2) (respec- 
tively, TB(G~)+CB(Ge)+). T is called an order isomorphism for the positive 
definite ordering (respectively, the pointwise ordering) if T is bijective and 
TP(G1)=P(G2) (respectively, TB(G1)+=B(G2)+). Finally, we say that T is a 
biorder isomorphism if T is an order isomorphism for the positive definite and the 
pointwise ordering. 

3. Kawada's Theorem for the Fourier-Stieltjes Algebra 

Kawada showed that the ordered algebra L~(G) is a complete invariant for G. 
More precisely : G 1 and G 2 are isomorphic if and only if there exists an algebra 
isomorphism T from LI(GO onto LI(G2) such that f > 0  (a.e.) if and only if Tf>O 
(a.e.) for all f e  LI(G1) I-6, Theorem 1]. The purpose of this section is to establish an 
analogue of Kawada's theorem for the Fourier-Stieltjes algebra. This amounts to 
replacing, in Waiter's theorem, the assumption that the algebra isomorphism T is 
isometric by the assumption that T is an order isomorphism for the positive 
definite ordering. Actually, we find a device (Lemma 3.1) which also allows the 
deduction of a "Kawada-type-theorem" from a "Wendel-type-theorem" in other 
situations (here we make allusion to Wendel's classical theorem [10, Theorem 1] 
characterizing isometric isomorphisms of group algebras). 

Let 9.1 be a yon Neumann algebra and R its predual. By 9~+ we denote the 
usual positive cone (of all hermitian elements with positive spectrum) in ~. We 
denote by R+ C R the cone of all positive, normal functionals on 9.I. Then ~+  is the 
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dual cone of R+, i.e. 

2 1 + = { x s 2 1 1 ( f , x ) > 0  for all f e R + } .  

Let 1 be the algebra unit in 21. Then 

[lf l l=(f ,  1) for all f e R + .  (3.1) 

Assume now in addition, that R is a Banach algebra. We will consider the 
condition that 1 is a multiplicative linear functional on R, that is 

( f . g ,  1 ) = ( f l ) ( 9 , 1 )  ( f g e R ) .  (3.2) 

Since spanR+ =R,  (3.2) is equivalent to 

Ilf'gll=llJll'llgl[ for all f g e R + .  (3.3) 

Lemma 3.1. For i= 1, 2, let R i be a Banach algebra and the predual of a yon 
Neumann algebra 21i such that the unit element, 1, of 21i is a multiplicative linear 
functional on R i. Let T: R 1 --~R 2 be an algebra isomorphism such that 

T(R1)+ = ( R 2 ) +  �9 

Denote the adjoint oJ T by T'. Then T' 1 = 1 and T is an isometry. 

Proof First of all, T is continuous as a consequence of the positivity condition (see, 
e.g., the proof of [1, 3.1]). For i=  1, 2 let M i denote the set of all multiplicative 
linear functionals on Ri. If xeMi ,  then x is bounded and [Ix1[ <1 [5, VIII, 2.8 
Lemma]. Hence x < l  for every xeM~n(21i) +. By our assumption, it follows 
that l=max{xlxe(21i)+nMi}. Since T is an algebra isomorphism, we 
have T'M 2 = M 1 ;  and since Tr(212)+ =(~'~1)+' it follows that 
T'((212) + nm2)  = (~[1)+ ~M1 
. Consequently, 

T'I = T'(max{x[x6 (212) + nmz})  = max{ T'x]x~ (212) + rim2} 

= max{x[x~(211)+ c~ml } = 1. 

It follows from [7, Corollary 1] that T' is a contraction. Similarly, (T') -1 is 
contractive. Thus T' is an isometry, and consequently T is an isometry, as well. 

Theorem 3.2. Let T:B(GI)-~B(G2) be an algebra isomorphism and an order 
isomorphism for the positive definite ordering. Then there exists a topological group 
isomorphism or antiisomorphism ~: Gz-*G 1 such that 

Tf=fo~ for all f~B(G1). 

Proof R =B(G) is a Banach algebra which satisfies the conditions considered in 
Lemma 3.1. In fact, B(G) is the dual of C*(G). Hence its dual is a von Neumann 
algebra because it is the bidual of a C*-algebra. Moreover, R+ =P(G) and for 
u~P(G), (u, 1) = [lull =u(e). Hence 1 is a multiplicative functional on B(G). So we 
can apply 3.1 to conclude that T is an isometry. It follows from Waiter's theorem 
[9, Theorem 2] that there exists a topological group isomorphism or anti- 
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isomorphism a:Gz--*G 1 and s~G~ such that Tf(t)=f(s~(t)). In particular, 
f ( e ) = ( f  1) = ( f ,  T ' I ) = f ( s )  for all f~B(G O. This implies that s=e, so that T has 
the desired form. 

In the same way, one can obtain Kawada's theorem [6, Theorem 1] from 
Wendel's theorem [10, Theorem 1] and also our earlier result [1, Theorem 3.2] (a 
Kawada type theorem for A(G)) from [9, Theorem 3] (a Wendel type theorem for 
A(G)) with the help of Lemma 3.1. 

The situation for M(G) is similar. We describe it explicitly: M(G) denotes the 
Banach space of all bounded regular complex Borel measures on G. With 
convolution as multiplication, M(G) is a Banach algebra. For  pEM(G), we write 
p > 0  if # is a positive measure in the usual sense. M(G) is the predual of a von 
Neumann algebra and (3.3) is satisfied. So Lemma 3.1 allows to deduce the 
following result from Johnson's theorem [4, Theorem 3]. 

Theorem 3.3. Let T: M(G1)~M(G2) be an algebra isomorphism such that 

I~ >0 if and only if Tp>O 

(#~ M(G1)). Then there exists a topological group isomorphism ~: G z ~ G 1 such that 
T has the form 

Tp(K)=#(~(K)) 

for all #6M(G1) and all compact subsets K of G z. 

Remark. It is possible to prove 3.3 directly via Kawada's theorem : A subspace J of 
M(G) is called an order ideal if Ivl <)pl, where #~ J, implies that v6 J. Now LI(G) is 
the smallest element (for inclusion) in the set of all closed, non-zero order and 
algebra ideals of M(G). [Indeed, let J be a closed, non-zero order and algebra ideal 
in M(G). Suppose, there exists t o6G such that f(to)=O for all 
f~  Jo : = JnLI.(G) c~ Cb(G) �9 Then f(e) = (6to*f) (to) = 0 for all f 6  Jo. Hence i f / ~  J, 
then ( f  p)  = f . # ( e ) =  0 for all continuous functions f on G with compact support 
(where f(t)  =f( t -  l) (for t~ G)), i.e. p = 0, a contradiction. Thus for every t~ G there 
exists f6Jo  such that f(t)#:O. Since J is a closed order ideal, it follows that 
LI(G)CJ.] Thus, if T: M(G1)~M(G2) is an order and algebra isomorphism, then 
TLI(Ga)=LI(G2) and we can apply Kawada's theorem to conclude that G 1 and 
G 2 are isomorphic. Moreover, T is uniquely determined by its restriction to 
LI(Ga). So the precise form of T given in 3.3 can be obtained once it is established 
for the restriction. This is done through Wendel's modification [10, Theorem 2] of 
Kawada's result. 

4. Multipliers 

By M(B(G)) we denote the space of all multipliers of B(G), i.e. (since B(G) has a unit) 

M(B(G)) = {Mhlh ~ B(G)} 

where Mh :B(G)~B(G ) is defined by Mhf=h. f ( fe  B(G)). 

Lemma 4.1. Let M : B(G)~ B(G) be a linear mapping. Then M is a multiplier if and 
only if for every feB(G) and te G, f ( t ) = 0  implies M f(t)=O. 
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Proof. The condit ion is clearly necessary. To  prove sufficiency assume that  f ( t )= 0 
implies M f(t) = 0 ( f  ~ B( G), te G). Let h = M 1 and g~ B( G). We show that Mg = h.g. 
Let t~ G. Then ( g -  g(t)l) (t) = 0. Hence by our  assumption,  

Mg(t ) -  g(t)h(t) = M ( g -  g(t)1)(t) = O. 

That  is, 

Mg(t)=h(t)g(t) for every t~G .  

We give now an order  theoretical characterizat ion of multipliers which are 
positive for the pointwise ordering. 

Proposition 4.2. Let M : B(G))~B(G) be a linear mapping satisfying 
MB(G)+ CB(G)+. Then M is a multiplier if and only if there exists c>__O such that 

M f ~ c f  for all feB(G)+. (4.1) 

Proof. If M = M h for some he B(G), then h = M 1 ~ B(G) +. Since h < I[ h I[ o~ 1, it follows 
that Mr= hf< II hll ~ f  for all f e  B(G)+. This establishes one implication. To prove 
the other  one we assume that (4.1) is valid. Let  g~ B(G), t e G such that  g(t)= 0. In 
order  to apply 4.1 we have to prove that  Mg(t)=O. Consider  the scalar product  

[k,h]=M(k.h)(t)  (k, heB(G)). 

Applying the Cauchy-Schwarz inequality to k = g and h = 1 we obtain : 

IMg(t)l 2 = ][g, 1112 =< [g, g] [1, 1] = M(lgl 2) (t) [1, 1]. (4.2) 

Since g(t)=0, it follows from (4.1) that  M([gl2)(t)<= clgl2(t)= clg(t)[ 2 =0 ,  and so by 
(4.2) we conclude that  Mg(t)= O. 

Next,  we characterize isometric multipliers and multipliers which are order  
isomorphisms for the positive definite ordering. 

Lemma 4.3. Let hE B( G). I f  l] h I] = Jh(t)] ~ 0 for all t ~ G, then h /h( e) is an character ( i. e. 
a homomorphism from G into ~).  

Proof. By [3,(2.14)] there exist a uni tary representat ion n : G ~ e ( H )  in some 
Hilbert  space H and ~, r/e H such that  h(t)= (n(t)(, t/) and Ilhll = II ~II" IIt/ll. Hence 

Ilhll =lh(t)l=l(n(t)~ltl)l < II~[l" lit/It = Ilhll (teG). 

Thus the equali ty in the Cauchy-Schwarz inequality holds, and so there exists 
2 ( t ) e r  such that  n(t)~=2(t)rl. In particular, ~=2(e)t/ so that  n(t)~=(2(t)/2(e))~. 

it 
Hence X = 2 - ~  is a character  and h = c ' L  where c = (r h(e). 

Proposition 4.4. Let heB(G). M h is isometric if and only ~ h=c.•, where Z is a 
continuous characto" on G and c ~ ,  Icl = 1. 

Proof. If X is a cont inuous character,  then X E P(G). Hence ]lxll = z (e )=  1. Similarly, 
I[X- 'll = 1. Thus  IIMxll = II(Mx)- x[I = 1 ; i.e., M x is an isometry. Conversely, suppose 
that  M = M  h is an isometry, where h~B(G). Then [[hl l - - [JMl[[=[[ l [ l=l .  Fo r  
teG, let 6tEB(G)' be defined by (u,6t)=u(t)  (ueB(G)). Then [l~,[l=l.  Hence 
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Ih(t)[= Ilh(t)6,ll : IIM'6,11 : 116,11:1 (t~G) (here M' denotes the adjoint of M). It 
follows from 4.3 that h/h(e) is a character. Hence h has the desired form. 

Proposition 4.5. Let he B(G). M h is an order isomorphism for the positive definite 
ordering if and only if 

h = c. Z, where Z is a continuous character and c > 0. (4.3) 

Proof Suppose that M h is an order isomorphism for the positive definite ordering. 
1 

Then h=Mhl~P(G ) a n d ~  =M~llcP(G).  Let x=h/h(e). Since x~P(G), we have 

]Z(t)[ < z(e) = II zll = 1. Moreover, 1/Z~ P(G) so that I1/;~(t)l < 1/z(e) = 1 for all te  G. 
Consequently, [Z(t)l= 1 = llzll for all teG. It follows from 4.3 that X is a character. 
Hence h=h(e)z has the form (4.3). The converse implication is obvious. 

5. Order Isomorphisms for Fourier-Stieltjes Algebras 

Proposition 5.1. Let V: B(G1)-~B(G2) be a *-algebra isomorphism (that is, V is a 
bijective linear mapping such that Vff= Vf and V(f .g)= Vf. Vg for all f g~B(G)). 
Then V is an order isomorphism for the pointwise ordering. 

Proof Denote by A(Gi) the Fourier algebra of G i ( i=1,2)  (see [3] for the 
definition). We show first that Vf>O whenever feA(G1) and f > 0 .  In fact, for a 
given t~ G 2, the map f ~  Vf(t) is a multiplicative linear functional on A(Gx). Let Y 
be the set of all te  G 2 such that this functional does not vanish identically on A(G1). 
Then by [3, (3.34)], for all t~ Ythere exists a(t)~ G 1 such that Vf(t)=f(~(t)). Since 
Vf(t)=O for tCY, it follows that Vf>O whenever feA(Gl) and f > 0 .  Replacing V 
with V-1 we also have 

V-lg>O for geA(G2) , g>=O. (5.1) 

We show now that V is positive for the pointwise ordering. If this is not true, then 
there exists f e  B(G1) + such that Vf(t) < 0 for some te G 2 (observe that Vf( = Vf= Fff) 
is real). Choose heA(G2) , h>=O, such that h(t)#O and h vanishes outside 
{se G2J Vf(s) < 0} (use [3, (3.2)]). Then 0 # Vf. h <_ O. Since A(G2) is an ideal in B(G2), 
Vf.heA(G2). So it follows from (5.1) that O#f .V - lh=V- l (V f . h )<O.  Since 
V- lh  > 0  (again by (5.1)), this contradicts f > 0. Replacing V with V - i  we obtain 
that V- 1, too, is positive for the pointwise ordering; so V is an order isomorphism 
for the pointwise ordering. 

We can now characterize order isomorphisms for the pointwise ordering. 

Theorem 5.2. Let T: B( G i )~  B( G 2) be a linear mapping. T is an order isomorphism 
for the pointwise ordering if and only if T has the form 

Tf =h. Vf (feB(GO), (5.2) 

where V: B( G I )~B(  G2) is a *-algebra isomorphism, he B( G2) + and h is invertible in 
1 

B(G2) (that is, h(t)>0 for all te G 2 and -h ~ B(G2) ). 
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Remark. Order isomorphisms for the pointwise ordering are continuous. In fact, if 
S:B(G1)~B(G2) is linear and positive, then S is continuous for the supremum 
norm (since - l < u < l  implies - S I < S u < S 1 ) .  So it follows from the closed 
graph theorem that S is continuous. 

Proof. It is clear from 5.1 that every operator of the form (5.2) is an order 
isomorphism for the pointwise ordering. To prove the converse assume that 
T:B(GI)~B(G2) is an order isomorphism for the pointwise ordering. Let 
feB(G1) +. M =  TMyT -1 is a linear mapping from B(G2) into B(G2). We show 
that M is a multiplier. In fact, M is positive for the pointwise ordering. Moreover, 
since 0Nf<f l f l loo l ,  it follows that f .T - lg<l l f l looT- lg ,  and consequently 
Mg= Z(f .  T - lg )<  Ilfll oog for all geB(G2) +. It follows from 4.2 that MeM(B(G2) ). 
Since span B(G1) + = B(G1) we conclude that 

TMyT-IeM(B(G2))  for every f eB(Gi) .  (5.3) 

So there exists a mapping V: B(G1)~B(G2) such that 

T M f T - i = M v f  for all f~B(GI) , (5.4) 

with the property that Vf>O if f > 0 .  
From (5.4) follows that V is a *-algebra isomorphism. In fact, for g, heB(G1), 

Mvr ) = TM f.gT- 1 = TM fM gT- i = TM f T -  1TMgT- 1 = Mv f. Mv 9 = M(v f)(vg). 

This implies that Vf . Vg = V(f  . g). Similarly, V(~f + fig) = ~ Vf + flVg, 
Fff=Vf (~,f ler  and it is easy to see by exchanging T and T-1 that V is 
bijective. 

Finally, let h = T1. We show that Tf= h. Vffor all f e  B(GI). Indeed, Tf = TMf l  
= TMIT-1T1  =Mv rh=h. Vf (by (5.4)). Of course, h=  T1 >0. Let g =  T-~I .  Then 

1 
h. Vg= Tg= 1. Hence h is invertible in B(G2) and ~ = VgeB(G2). 

Remark. The above theorem is the analogue of [1, Proposition 4.2], where it is 
proved that if T:A(G~)~A(G2) is a continuous order isomorphism for the 
pointwise ordering, then there exists a bijection ~:G2~G ~ and a function 
h: G2~(0, oo) such that Tf=h . fo~  for all feA(G~) (it is easy to show that ~ is 
actually a homeomorphism and h is continuous). To see the analogy, one has to 
observe that fo~eM(A(G2) ) ithe algebra of multipliers of A(G2), considered as 
functions on G2) whenever feA(G1). Indeed, if geA(G2), there exists gleA(G1) 
such that g = Tgl, and ( fo~) .g=  T( f .g l )e  A(G2). Consequently the conclusion of 
[-1, Proposition 4.2] can be restated so as to assert the existence of an injective 
�9 -homomorphism V: A(G1)~M(A(G2) ), f ~ f o ~ ,  and a function h as above such 
that Tf=h .  Vf for all feA(G~). In this form, Proposition 4.2 of [1] can be proved 
along the same lines as Theorem 5.2 above. 

If moreover G i and G 2 are amenable, V actually maps A(G1) onto A(G2), and 
heB(G2). 

The following is the main theorem. 

Theorem 5.3. Let T: B(G1)-~B(G2) be a biorder isomorphism. Then there exists a 
topological group isomorphism or antiisomorphism ~: G 2-~ G 1 and a constant c > 0 
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such that 

Tf =c. f oe 

for all f eB(G 0 . 

Proof. By 5.2, T = M  h. V where V is a *-algebra isomorphism and heB(G2) + is 
invertible in B(G2). Moreover, Mvg=TMoT -1 for all geB(Gl) (by (5.4)). Let 
ge P(G O. Then Mg and consequently Mvg = TMgT- ~ are positive linear mappings 
for the positive definite ordering. This implies that Vg = Mvol e P(G2). Hence V is 
positive for the positive definite ordering. The same argument applied to V- ~ 
shows that V is an order isomorphism for the positive definite ordering. It follows 
from Theorem 3.2 that there exists a topological group isomorphism or anti- 
isomorphism ~:G2--*G 1 such that V f = f o e  for all f eB(G 0. Moreover, 
M h = TV-  ~ is an order isomorphism for the positive definite ordering. So h/h(e) is 
a character by 4.5. Since h>0 ,  it follows that h(t)/h(e)= 1 for all teG 2. Thus, with 
c=h(e), Tf =c . foe  for all feB(G1). 

Theorem5.4. Let T:B(G1)--*B(G2) be an isometric order isomorphism for the 
pointwise ordering. Then there exists a topological group isomorphism or anti- 
isomorphism cr G2--*G1, and seG~, such that 

Tf(t)=f(s.~(t)) (teG2) for all f eB(G 0.  

Proof By 5.2 there exists a ,-algebra isomorphism V: B(G1)~B(G2) and he B(G2) 
such that T=MhV. Moreover, by (5.4), T M r T - I = M v f  for all feB(G1). Hence, 
II Vfll = I l m v y l l  -- II T M I T -  11t - -  I l m i I I  - -  I lf l l  for all f e  B(G1); i.e. V is an isometry. 
By Waiter's theorem [9, Theorem 2], there exists a topological group isomor- 
phism or antiisomorphism e: G2-~G 1 and s e G, such that Vf(t)= f(s .  e(t)) (re G z) 
for all f e  B(G O. Since V and T -  1 are isometries, M h = TV-  ~ is also isometric. It 
follows from 4.4 that h=c.)~, where Z is a character and cel t ,  Icl = 1. Moreover, 
because of 5.1 V-1 is an order isomorphism for the pointwise order; and 
consequently, so is M h. This implies that h = 1 so that T = V 

Taken together with the Theorems 3.2 and 5.3, the preceding result allows us to 
formulate the following conclusion, which summarizes the remarkable interplay 
between the algebraic, metric, and order structure of the Fourier-Stieltjes algebra : 
In Waiter's theorem one can replace at will the multiplicative structure of B(G) by 
the pointwise ordering, and/or its norm by the positive definite ordering. 

6. Order Isomorphisms of Group Algebras 

The space LI(G) is defined as usual with respect to a fixed left Haar measure. LI(G) 
is an involutive Banach algebra with convolution as multiplication and the 
involution * defined by 

f*(t) = A(t)- I f ( t -  1) (T~LI(G)), 

where A denotes the modular function of G. Again, there exist two orderings on 
LI(G). The positive definite ordering is defined by its involutive Banach algebra 
structure; i.e. by the closed convex cone LI(G)v =g6 {g**g[g~Ll(G)}. 
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By [2, 13.4.5] the dual cone of Li(G)p in L~176 is P(G); that is 

P(G)={peL~ for all feLl(G)p}. (6.1) 

Remark 6.1. If G is abelian, then Li(G)p= {feLl(G)lf(7)>O for all 7 E G}, where 
denotes the dual group of G. 

The pointwise orderin9 on LI(G) is defined by the positive cone 
LI(G)+ ={f~Ll(G)lf(t)>O for almost every te G}. 

Corresponding to these two orderings we have again the notion of order 
isomorphisms : Let T: L~(GO--*L~(G2) be a bijective linear mapping. T is an order 
isomorphism for the positive definite orderin9 (respectively for the pointwise 
ordering) if TLl(G1)p=Li(G2)p (respectively TLa(G1)+ =LI(G2)+). T is called a 
biorder isomorphism if T is an order isomorphism for both orderings. 

Let e :G 2 ~ G 1 be a topological group isomorphism. Because of the uniqueness 
of the Haar measure, for every measurable function f on G~, feL~(Gi) if and 
only if focteL~(G2) and there exists a unique constant c(c0>0 such that 

c(c 0 ~ f(ct(t))dt= ~ f(s)ds for all feLl(G1). (6.2) 
G2 G1 

From this it is easy to see that the mapping 

V~:L'(G1)~LI(Gz), V J  = c(~)fo~ (6.3) 

is a ,-algebra isomorphism. Hence V~ is an order isomorphism for the positive 
definite ordering (this is immediate from the definition of this ordering). Moreover, 
V, is obviously an order isomorphism for the pointwise ordering. Thus V~ is a 
biorder isomorphism. 

The mapping W:Li(G2)~LI(Gz) defined by W f = A ~ l f  (fELl(G2)), where 
f(t) = f ( t -  1) and A 2 denotes the modular function of G2, is a biorder isomorphism, 
too. Indeed, it is obviously an order isomorphism for the pointwise ordering. 
Moreover, the adjoint W':L~(G2)~L~(G2) of W is given by W'f=f.  Hence 
W'P(Gz)=P(Gz). It follows from (6.1) that W is an order isomorphism for the 
positive definite ordering. Thus, 

T = WV, is a biorder isomorphism. (6.4) 

The following theorem shows that up to a positive constant every biorder 
isomorphism has the form (6.3) or (6.4). 

Theorem 6.2. Let T: L I( G i )-~ L I( G 2) be a biorder isomorphism. Then there exists a 
topological group isomorphism ~: GE-~G 1 and a constant c > 0 such that 

Tf(t)=c.f(~(t)) (teGE, f~Ll(G1)) (6.5) 

o r  

Tf(t) = c" 32(0- lf(ct(t- 1)) (t~ G 2, f e  Ll(G1)). (6.6) 

Note. Concerning the formulation of (6.6), one should observe that ~t: G2-~G i is a 
topological group isomorphism if and only if fl:G2-~G 1 defined by fl(t)--~(t-l) is 
a topological group antiisomorphism. 
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Proof By I-8, II, 5.3], T is continuous. Denote by T' : L~176 the adjoint 
of T. Since T is an order isomorphism for the positive definite ordering, it follows 
from (6.1) that T'P(G2)= P(Gi). Hence T'B(G2)= B(G1) and so the restriction S of 
T' to B(G2) is an order isomorphism for the positive definite ordering from B(G2) 
onto B(Gx). Since T is an order isomorphism for the pointwise ordering, S is so, 
too. By Theorem 5.2, there exists a topological group isomorphism/~:G~--*G z and 
a constant c~ > 0  such that S is given by 

Su(s) = c 1 u([3(s)) (sa G l, u~ B(G2)) (6.7) 

or  

S U ( S )  = r  - 1)) (SE Ga, ue B(G2)). (6.8) 

If (6.7) is valid, then by (6.2), 

(Tf,  u) = ( f ,  Su) = c  1 ~ f(s)u(fl(s))ds 
Gl 

1 
�9 I f ( ~ -  l(t))u(t) dt =C1 ~ G2 

for all f~LI(G1),  u~B(G2). Since B(G2) separates LI(G2), it follows that 
Tf=(cl/c(f l)) . fof l-1 for all f~LI(G1). Hence (6.5) is valid for c=cl/c(#) and 

If (6.8) holds, then by (6.2) again 

(rf~ U) = C 1 I f(s)u(~(s- 1))ds = c I ~ f(s)fi(~(s))ds 
Ol Ol 

1 
= c 1 " ~  ~ f ( ~ -  l(t))h(t)dt 

t ,~p!  G2 

= ct ~ A2(t)-lf(•-l(t-1))u(t)dt 
c(#) G~ 

for all feLl(G1),  uEB(G2). Hence Tf(t)=(Cl/C(fl))A2(t)-lf(fl-l(t-1)) for all 
fELl(G1),  and almost all tEG 2. Thus T has the form (6.6) with c=cl/c(fl) and 

Remark6.3. Theorem 6.2 implies that the "biordered space" (LI(G), LI(G)+, 
LI(G)v) is a complete invariant for the locally compact group G. 

Remark 6.4�9 For abelian groups, Theorem 6.2 has been proved in [1] (in fact, by 
Remark 6.1, Theorem 6.2 is another formulation of [1, 4.3]). 
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