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The purpose of the present note is to prove the following: Let V be a lattice 
homomorphism from an order complete vector lattice E into E. Then given a 
positive linear mapping S on E every positive linear mapping T dominated by 
So V has a factorization T = S I  o V where S t is a positive linear mapping on E 
dominated by S. 

In the special case where S is the identity mapping this can be considered a 
Radon-Nikodym type theorem and has been proved by Luxemburg and Schep 
[12, 4.23 (see also [11, 4.1] and [6, Satz 91). Here we don't use the theory of 
components (as in [12]) but give an elementary proof via the vector lattice 
valued Hahn Banach theorem. 

Two different applications of our result are given. The first concerns in- 
jective Banach lattices. We show that the injective objects in the category of all 
Banach lattices are the same no matter whether the positive contractions or 
the regular operators with contractive modulus are considered as morphisms. 
As another easy consequence we obtain that the o-spectrum (see [3, 14]) of a 
lattice homomorphism is cyclic. Our notations follow Schaefer's monograph 
[133. 

1. Factorization by Lattice Homomorphisms 

Let E, F, G be vector lattices, E order complete, and V : F - ~ G  be a lattice 
homomorphism. 

Theorem 1.1. Given a positive linear mapping S: G ~ E ,  every positive linear 
T: F ~ E which satisfies T <=S o V admits a factorization 

T = S l o V  

where SI: G ~ E  is linear and O<S 1<__S. 

Proof. Let G I = V F .  G 1 is a sublattice of G. Define So: G I ~ E  by S o V x = T x  
(xeF). S O is well defined. In fact, let Vx=O. Then I r x l < T I x l < S V l x l = S l V x [  
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=0,  and so Tx=O. Consequently, if V x x = V x  2, then T ( x l - x 2 ) = O ,  hence 
S o Vx 1 =S  o Vx a. S o is obviously a linear mapping. 

Let p: G ~ E  be defined by p(y)=Sy  +. p is sublinear. In fact, let yl,  yz~G. 
Then (Yl +Y2) + <Y[ +Y~. Hence P(Yl +Y2)=S(Yl  +Y2) + < S y [  +Sy~  =p(y~) 
+P(Y2). Moreover, for yeG, 2~N, 2>0,  p(2y )=S(2y )+=2Sy+=2p(y ) .  We 
show next that 

Soy<p(y  ) (y~G1). (1.1) 

Let y = Vx (xEF). Then S o y = Tx < Tx + < SVx + = S(Vx) + = S y + =p(y). By the 
vector lattice valued Hahn Banach theorem [13, II 7.91 S o has a linear 
extension $1: G ~ E which satisfies 

s~ y__<p(y) (y~G). (1.2) 

S 1 has the desired properties. In fact, S 1 V x = S o V x = T x  (xEF) by the defini- 
tion of S o. Moreover, S, is positive. In fact, let y~G+. Then - S z y = S , ( - y )  
<=p( -y )=S( -y )+=O.  Hence S,y>O. Finally, for yeG+, S ~ y < p ( y ) = S y  (by 
(1.2)). Hence S 1 <S. 

A positive linear mapping R: G--+ F is called interval preserving if R maps 
order intervals onto order intervals; i.e. if R [ x , y ] = [ R x ,  R y l  for all x, yeG, 
x<y .  

A linear mapping T: F ~ E is called regular if T is difference of positive 
linear mappings. The space ~r (F ,  E) of all regular linear mappings from F into 
E is an order complete vector lattice [13, IV, w (recall that E is assumed to 
be order complete). 

Corollary 1.2. The right composition operator Rv: 5f~(G, E ) ~  Za~(F, E) defined 
by R v S  =S o V is interval preserving. 

Remark. a) If E = ~ ,  then R v is the adjoint of V. In that case 1.2 has been 
proved by Lotz [10, 1.2]. 

b) Other relations between order properties of a positive linear mapping 
and the associated composition operator R v have been investigated recently by 
Aliprantis, Burkinshaw and Kranz [1]. 

Corollary 1.3. The space ~r(G, E) o V: = {S o V; S~5~'~(G, E)} is a (lattice-)ideal 
in 5U (F, E). 

We proceed with a dual version of 1.1. For  the sake of simplicity we 
assume that E, F, and G are Banach lattices. 

Theorem 1.4. Assume that G has order-continuous norm. Let U: G + F  be an 
interval preserving positive operator. Then, given a positive operator S: E--+G, 
every positive operator T: E --+ F which satisfies T< U o S admits a factorization 

T = U o S  1 

where S~: E ~ G  is a positive operator such that SI <S. 

Proof T <  U o S implies that T' <S 'o  U'. Since U' is a lattice homomorphism by 
[10, 1.21, it follows from 1.1 that there exists a linear mapping R: G'-+E' such 
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that 0 _< R _< S' and T' = R o U'. Consequently, T" = U" o R' and 0 _< R' _< S". Since 
G is an ideal in its bidual [13, II5.10] and S"E=SE~_G, the last inequality 
implies that R ' E c G .  Define Sz as the restriction of R' to E. Then O<__SI<=S 
and T = U o S  1. 

Question. Can the assumption that G has order continuous norm be omitted? 
A partial answer is known: It can if G=E and S is the identity operator and V 
is order continuous [12, 3.1]. 

2. Injeetive Banaeh Lattices 

Injective Banach lattices were introduced and investigated by Lotz [10]; 
Cartwright [5] and Haydon [8] obtained characterizations. 

Definition 2.1. A Banach lattice E is called injective, if for every isometric 
lattice homomorphism V: F ~ G (F, G Banach lattices) and for every positive 
operator T: F--->E there exists a positive operator T: G ~ E  such that T=  7"o V 
and IITII=IITH. 

Using the language of categories, injective Banach lattices are the injective 
objects in the category of all Banach lattices with the positive contractions as 
morphisms. As a consequence of the factorization Theorem 1.1 we are going to 
show that the injective objects are the same if the regular operators with 
contractive modulus are taken as morphisms instead of the positive con- 
tractions. This result was mentioned by Schaefer [15]. It can be used to give 
characterizations of Banach lattices with injective dual space via the projective 
tensor product for Banach lattices [15, 4.1]. 

Theorem 2.2 Let E be an order complete Banach lattice. The following assertions 
are equivalent: 

(i) E is injective. 
(ii) For every isometric lattice homomorphism V: F ~ G  (F, G Banach lat- 

tices) and every regular operator T: F ~ E  there exists a regular operator 
T: G ~ E such that T= To V and l[ T[I~ = 1l Tl]r. 

Recall that if E, F are Banach lattices and E is order complete, then 
S ' ( F , E )  is an order complete Banach lattice with respect to the r-norm 
defined by IITll,.'= I[ITII[ (T65~r(F,E)), where IT] denotes the modulus of T 
[13, IV w 1]. 

Proof For every isometric lattice homomorphism V: F--+G consider the map- 
ping Rv: ~fr(G, E)--* =LPr(F, E) defined by Rv T= To V (T~Cf~(G, E)). By 1.2 R v is 
interval preserving. 

Denote by B 1 (resp. B2) the closed unit ball of ~r(G,  E) (resp. 2'~(F, E)) 
and let B I + = ~ r ( F , E ) + ~ B I ,  B2+=~r(G,E)+c~B2. Then (i) means that 
RvBI+=B2+ and (ii) is equivalent to R v B I = B  2. Using the fact that R v is 
interval preserving it is not difficult to show that RvBI+ =B2+ if and only if 
R v B  1 = B  2. 
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Remark 2.3. Theorem 2.2 remains valid if the assumption that E be order 
complete is omitted. In fact, every injective Banach lattice is order-complete 
since there exists a positive projection from the Dedekind completion /[ of E 
onto E. On the other hand, even if E is not assumed to be order complete (ii) 
makes sense if the r-norm is defined by Ilr]lr=inf{[lrl+rall; r = r l - z 2 ,  
T I > 0, T z >0} [12, p. 231]. But (ii) implies that there exists a regular projection 
P from E onto E with [IPll,<l. An unpublished argument by D.H. Fremlin 
shows that P is positive. So (ii) implies that E is actually order complete. 

Remark 2.4. Also the non-metric version of 2.2 is valid. In fact, one can show 
in a similar way via 1.2 that the injective objects in the category of all Banach 
lattices are the same no matter whether the positive or regular operators are 
considered as morphisms. In particular, one sees by a suitable modification of 
the proof that [15, 4.3] remains valid if injectivity is interpreted in this sense. 
The relation between this non-metric and the metric notion (Definition 2.1) of 
injectivity has been investigated in [9]. 

3. The o-Spectrum of Lattice Homomorphisms 

Let E be an order complete Banach lattice. Then 5r is a Banach algebra 
with respect to the r-norm. The spectrum of TEY~r(E) in this Banach algebra is 
called the o-spectrum of T and denoted by ao(T). This notion is discussed in 
[2, 3], and [14]. 

Since 5~ is a subalgebra of S(E) ,  one has a(T)cao(T ) (where o-(T) is 
the spectrum of the operator T in the usual sense), but G(T) may differ from 
~o(T). An example where T is a unitary operator in 12 and a(T)@ao(T) is 
given in [14], and in [3] a positive, hermitian, compact operator T on L2[0, 1] 
is found such that Cro(T)+a(T ). However, it is an open problem whether 
spectrum and o-spectrum of lattice homomorphisms are equal. As a con- 
sequence of the factorization Theorem 1.1 one can at least see that the o- 
spectrum of a lattice homomorphism shares nice geometric properties with its 
spectrum. More precisely, let V be a lattice homomorphism on E. Then it is 
known that a(V) is cyclic; that is, if rei~ ( r>0,  0~[0,2~ D, then 
rein~ for all n~Z [13, V 4.4]. 

Theorem 3.1. ao(V) is cyclic. 

Proof Consider the right multiplication operator Rv: S~(E)--* ~"(E) defined by 
R v S = S  o V. By 1.2 R v is interval preserving. So by [10, 1.2], (Rv)' is a lattice 
homomorphism. Hence cr((Rv)' ) is cyclic. But ao(V)=a(Rv)=a((Rv)') (by [4, w 
Prop. 4(ii)]). 

Remark 3.2. The problem whether a(V) and cro(V) are equal is discussed in 
more detail in [2] and [7] and partial answers are given. The best result is the 
following: If V and V' are lattice homomorphisms (in particular, if V is a lattice 
isomorphism), then a(V)=ao(V) [7, 5.19]. 
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