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Introduction

Even though the theoryv of positive =emigroups has progressed
rapidly during the last few years, so far an intrinsic charac-
terizaticn of generators of positive semigroups has nct been
given.

The proklem is obvicus from the general theoryv: Since the infi-

renerator determines a semigroup uniquely, one expects

)

nitesimal
to find a2 condition on the generatecr which describes the posi-
tivityv of the semigroup.

From a practical point of view as well there seems to be a need
for such a characterization. In fact, it lies in the very naturé
of the theorv that frequently the generator but not the semigroup
is known explicitly. Since a variety of results (concerning
spectral theory, asymptotics, perturbation theorv etc.) for
positive semigroups is available today, it is important to finc
conditions on the generator which enable one to verify positivity
(of the associated semigroup) .

Characterizations of positivity together with additional proper-

ties are known. Phillips characterized positive contraction

semigroups by dispersiveness of the generator. The more general

notion of p-dissipativity with respect to a half-norm p was

introduced in 5  and allows cne to treat contractivity in a very

- -

general sense (see also the article by Battv and Robhinson 8 ).



A conditon of a different kind is the following abstract version

of RKato's inequality

lIA

(K) <(sign f)Af,¢> <|fl,a">

f € D(A), 0 < ¢ € D(A').

Of course, this inequality is inspired by ZXato's classical
inequality for the Laplacian. It was R. Nagel who conjectured
that some abstract version of this inequality is equivalent to
positivity.

We confirm Nagel's conjecture in the following form. Let A be the
generator of a semigroup on a Banach lattice E (which for sim-
plicity is supposed to satisfy some mild restrictions). Then the
semigroup is positive if and only if A satisfies (K) and the
adjoint A' of A possesses a strictly positive subeigenvector ¢

(i.e., ¢ € D(A') and A'¢4 < r¢ for some ) € R).

So far, the discussion has focused on finding necessary and
sufficient conditions for the generator of a strongly continuous
semigroup tc assure the positivity of the semigroup. In Chapter
II, we consider things from a different point of view.

Given an operator A (without assuming that A 1is a generator),
what conclusions can be drawn from the positivity of the resol-
vent? We show that A has similar properties to a generator. In
analogv to the classical theorem of Bernstein, the resolvent of
A is representable as the Laplace-Stielties transform of an
operator-valued increasing function. As a consequence, the

abstract Cauchy problem associated with A has unique solutions



for a large class of initial values. For more information, we

refer to the detailed introduction to Chapter II.

It is a pleasure to express my thanks to the Functional Analysis
group in Tibingen for its support and the 1lively atmosphere
favorable to mathematical research. T would like to cordially

thank Prof. T. Kato and Prof. P.R. Chernoff for their advice and

stimulating discussions.



CHAPTER I

¥ato's Inequality

A Characterization of Generators of Positiwve Semigroups

This chapter is devoted to the characterization of positive
semigroups by Kato's inequality. The main result is stated and
>xplained in section 1; in section 2 we give the proofs. They are
based on the technique developed in [5] .

The examples in section 3 are chosen in order to demonstrate that
the results cannot be essentiallv improved. But they also illus-
trate how the conditions are handled for concrete operators.

A related problem is to express in terms of the generator when
one semigroup is dominated by another. This can be done in a
similar manner by an inequality involving the "signum operator".
It is remarkable that here it 1s not necessarv to start with a
generator. The inequality and a range condition are sufficient to
obtain a semigroup.

In the last section we investigate a special kind of domination.

Disjointness preserving semigroups are described as those semi-

groups which are dominated by a lattice semigroup. This puts a
new complexion on "Kato's equality", which is known to charac-
terize generators of lattice semigroups by a result of Nagel and

Uhlig [31] .



1. The characterization.

Let E be a o-order complete real Banach lattice [42 ,II §11. We

first describe the sign operator. Let £ € E. There exists a

unique bounded operator 'sign f' which satisfies

(1.1 | (sign fig| = |g]| (g € E)

(1.2) (sign f)g = 0 if £+ g

(1.3) (sign £)f = |f].

Here we understand by f + g that £ and g are disjoint, i.e.

inf {|£], |g|} = 0.

If for u € E, the band prcjection ontc the band u generated by

u is denoted bv Pu, then

1 £ = - -
(1.4) sign £ P+ Pe--

Example. Let E = IP(X,u) (where (¥X,p) 1s a measure space and
1 = p s =) and £ ¢ E. Let m ¢ L” be given by
T1 if f(x) >0
mx) = ¢ -1 if £(x) < 0
% 0 if f£(x) =0
Then (sian f)g = m*g (g e E).
Now let (T(t))tzo be 2 semigroup (by that we always mean a

strongly continuous semigroup of linear operators) on E with

generator A. We first consider necessary conditions for the



positivity of the semigroup.

Proposition 1.1. If T(t) 2z O (t z 0) then Kato's inequality
holds in the weak form , i.e.
(K) <(gign f) Af, o> £ <|f], A'¢>

(f e DAY, 0 2 ¢ ¢ D(A")).

Proof. Let £ ¢ D(A), O £ ¢ ¢ D(A'). Then

< {sign f) Af, ¢> = 1lim 1/t <(sign £) (T(t)f - £f), ¢>
t+0

= lim 1/t <{(sign £)T(t)f - |£], ¢>
t=+0

IA

lim 1/t <|T(8)E] - |£|, ¢ >
t+0

IA

lim 1/t <T(t)’f| - lf[, b>
t+0

= lim <|[f|, 1/t(T(t)'¢ ~ ¢)>
t+0

Let D(A')+ = E; n D(A") Consider the condition
O(E’,E)
(1.5) D(A') = B

(which is satisfied if the semigroup is positive). If (K) and
{1.5) hold, then Kato's inequality hcolds in the strong form as

well, whenever it malkes sense, i.e.



Al E! (1f £, | £l ¢ DI{AY).

A

\

it will be seen in section 3 that (K) and (1.5) are not

However,

sufficient for the positivity of the semigroup. So we consider
sufriclent

another necessary condition.

Definition 1.2. A subset M' of E' is called strictlv positive 1if

for every fe E_, <%, ¢> =0 for all ¢ ¢ M' implies f = 0. An

element ¢ cof E; is called strictly positive 1f the set {4} 1is

strictly peositive.

Example 1.3. Let E = LP(X,u) (1 < p £ »}, where ({X,u} is a
o-finite measure space. Then ¢ ¢ E' = Lq!x, ) (where

1/p + 1/g = 1) is strictly positive if and cnly if
6(x) > 0 p-a.e. Note that strictly positive elements of E'

alwave exist in this case.

Definition 1.4. Let B be an operator on a Ranach lattice F and

let uw ¢ F. Then u is called a positive subeigenvector of B 1if

a) o < u e D(B) and

b) Bu < xu for scome ) ¢ R

Proposition 1.5. If the semigroup (T(t))t>o is positive, then

there exists a strictlv positive set M' of subeigenvectors of A’
(the adjoint of +the agenerator A). Moreover, 1f there exist

strictly positive linear forms on E, then there exists a strictly

positive subeigenvectcr of A’



proof. Let » > 0 such that R(x,a) = (x - A)—l exists and
R(»,A) 2 0. Let N' < E; be strictly positive. Then
M' := {R(A,A)'Y : ¥ ¢ N'} © D(A') N E]. We show that M' is

strictly positive. Indeed, let f ¢ E+ such that <f, ¢> = 0 for

all ¢ e M'. Then <R(x,A)f, ¢y> = 0 for all ¢ € N', Hence
R(r»,2)f = 0 since N' is strictly positive. Consequently, f = 0.
The set M' consists of subeigenvectors of A'. 1In fact, let

v ¢ N', ¢ = RIXA,A)'y. Then A'¢ = 2¢ - ¥ £ A¢p. [

The following is our characterization.

s positive if and only if

|_l .

Theorem 1.6. The semigroup (T(t))tzo
its generator A satisfies the following condition.

There exists a strictly positive set M' of subeigenvectcrs of A’
such that

(X) <({sign f) Af, ¢> < <|f], AT o>

for all £ € D(A), ¢ € M',

Corollary 1.7. Assume that E' contains strictly positive

functionals. Then the semigroup is positive if and only if there

exists a strictly positive subeigenvector ¢ of A' such that

(K) <(sign f) Af, ¢> = <|f]|, A'¢> for all f e D(B).
Remark 1.8. For the application of our criterion the following

improvement (ocf one direction of +the characterization) is



important. If condition (K) is merely satisfied for all f ¢ Do
where DO ie a core of A, then the semigroup is positive. This

will be obvious from the procfts.

Remark 1.9. In Theorem 1.6 and Corollary 1.7 one can replace

inequality (K) by the inequality
(1.7) <{(P_+)Af, ¢> = <f , A'¢>,

Indeed, (1.7) for -f gives <(-P.-)Af, ¢> = <f , A'¢>. Adding up
both inequalities one obtains <(sign f)Af, ¢> = <|f], n'¢>.

On the other hand, if A generates a positive semigroup, one sees
by the obvious alterations in the proof of Propcsition 1.1 that

(1.7) holds for all f e D(A), ¢ € D(A')+.

We conclude this section by formulating our result for the space
CO(X). If the Banach lattice E is not o-order complete there are
some difficulties to defining the signum operator. One still can
define sign f as an operator from F into E'' (cf. [37). Here we
consider merely the case E = CO(X) in which this can be done in a
natural way.

Let X be a locally compact space and E = CO(X) the space of all
real valued continuous functions on ¥ which vanish at infinitv.
Note that E is not o-order complete unless X is o-Stcnian. For

f e CO(X) we define the function sign f by

1 1if £{x) > O
(sign f) (x) = - =1 if fix) < 0
0 if £(x) =0



Then (sign f) is a bounded Borel

Tf poe M(X) = C (X} we set <g,

for every bounded Borel function

function.
[ g(x) du(x)

> =

g on X.

Theorem 1.10. Let A be the generator of a semigroup on CO(X). The

semigroup is positive if anéd only if there exists a strictly
positive set M’ of subeigenvectors of A’ such that

(K) <{sign £)Af, p> < <|f], A'p> for all £ e D(A), p e M',
Remark. We point out that for compact ¥ a simpler condition is

equivalent to positivity,

namely a minimum principle

(see [51).

For a comparison of Kato's inequality and the minimum principle

we refer to [4].
cone the space CI(X)

our context

2. The proofs

Our arguments are based on

semigroups and p-dissipative operators

Let P be a Banach space.

sublinear functional if

Due to the non-empty
(X compact)

(see also Chapter II,

A mapping

interior of the positive

plays an exceptional role in

sec. 2).

the results of [5] on p-contraction

(see also [8]).

p : F + R is called a

(f,9 ¢ F)

(f ¢ F, A € P+).



p is called a half-norm if in addition
(2.3) p(f) + p(-f) > 0 for all 0 £ £ ¢ F

Then ”f”p := p(f) + pl(-f) defines a ncrm on F. (This is the

motivation for the terminology.)

Examples 2.1. a) p(f) = !lf]l defines a continuous half-norm
on F.
b) Let E be a real Banach lattice. N{f) = l,f+l’ defines a

continuous half-norm on E (the canonical half-norm ).

c) Let & ke a real BRanach lattice and ¢ e E'. Let p(f) = <f+,¢>

(f ¢ E). Then p is a continuous sublinear functional. Moreover, p

is a half-norm if and only if ¢ is strictlv positive.

Remark 2.2. To every continuous half-norm p on F there corre-

sponds a closed proper cone Fp := {f ¢ E : p(-f) £ 0}. In
Example 2.1. a), we have Fp = {0}; in b}, Ep = E, and in c),
Ep = E+ 1f ¢ is strictly positive.

Let p be a2 continuous sublinear functional on F. The subdiffe-
rential dp of p is defined as follows. Let £ e F; then

(2.4) dp(f) = {¢ ¢ F' : <g,¢> = plg) for all g ¢ F and

<f,6> = p(f)}.

It follows from the Hahn-Banach theorem that dp(f) £ ¢ for all

fe F.



an operator A on F is called p-dissipative if for every f e D(A)

there exists ¢ e dp(f) such that <Af, ¢> = 0.

proposition 2.3. Let A be the generator of a strongly continuous

semigroup (T (t)) Then the following are equivalent.

tz0°
(1) T(t) is p-contractive for all t 2z 0;
i.e. p(Tit)f) = p(f) (f ¢ E).

(ii) A is p-dissipative.

(1ii) There exists a core DO of A such that AIDﬁ is
p-dissipative. ‘

Remark. Suppose that P is a continuous half-norm. If A

satisfies the equivalent conditions of the proposition, then the

semigroup is pecsitive for the ordering induced by p (see Remark

2.2).

For the proof of Propesition 2.3 see [5, Theorem 4.1] or

(8, 2.1.117.

Proposition 2.4. Let A be a densely defined operator on E and

b € D(a'), ~ such that A'¢ =< 0. Denote by p the sublinear
functional given by p(f) = <f+,¢>. If
(K) <(sign f) Af, ¢> < <|f|, A'¢> (f € D(n)),

then A is p-dissipative.



25995, Let P = I - Pt - P.-, 0= P+ + 1/2 P and ¢ = Q'¢.
We show that

(2.5) v e dp(f)

Let g e E . Since 0 £ Q0 £ I we have <g, y> = <Qg, ¢> <
<Qg+, ¢> = <g+, ¢> = plg). Moreover, <f, ¥> = <Qf, ¢> =

<P+ £+ 1/2 PE, 4> = <f 4> = p(f) . So (2.5) follows by the

definition of dp(f).

The procf will be finished when we have shown that

[\
(o))
A
]
th
~
h=g
Y
A
o

(2.7) <(Pf+ + Pf— + P) Af, ¢> = <£f, A'¢> .

Addition of (2.7) and (X) gives

I\
(@]

<(2P_+ + P) Af, ¢> < <2f , A'¢>

f
Hence <Af, ¢> = <QAf, ¢> 0. O

IIA

Proof of Theorem 1.6. Proposition 1.1 and 1.5 give one

implication. In order to show the other assume that the condition
in Theorem 1.6 is satisfied. We have to show that T(t) 2 0 for

all t 0

v

Let ¢ e M'. Consider the half-norm p(f) = <f , ¢> and the

< Then

Operator B = A - X , where A e R is such that A'¢ £ 1¢

B satisfies B'¢ £ 0 and (K) as well. So it follows from Propo~



sition 2.4 that B is p-dissipative.
since B generates the semigroup (e T(t))tzo we obtain from

Proposition 2.3 that p(e_AtT(t)f) s p(T(t)f) (f e E, t z 0).

Hence,

(f e E, £t 2z 0)

IIA
M
A
Hh
=
\

(2.8) <(T(t)E)", ¢>

Now let t > 0 and £ £ 0. Then f+ = 0 , so it follows from {2.8)
that <(T{t)f) , ¢> £ 0 . Since ¢ e M' is arbitrary and M' is
strictly positive, it follows that (T(t)f)+ =0 ; i.e.,

T(t)f £ 0. This implies that T(t) z 0. [

The proof of Theorem 1.10 is identical to the proof given above

if the symboles (sign f), Pf+, etc. are interpreted as Borel

functions.

Remark 2.5. a) Proposition 1.1, which gives one implication of
Theorem 1.6, had been proved (in a different way) ih [3, Re-

mark 3.9]. The other implication of Theorem 1.1 has been obtained
independently by A.R. Schep [46] with a different method of
pProof. In particular, Schep's argument seems not to apply for the
case where condition (K) is only known to held on a core of A
(cf. Remark 1.8).

b) Using Proposition 2.4 one can show with the help of the proof
of [5, Theorem 2.4] that a densely defined operator which satis-

fies the conditions of Theorem 1.6 is closable (cf. Theorem 4.4).



Remark 2.6. The proof of Theorem 1.6 shows the following. If A
Remat?™

is the generator of a positive semigroup and E' contains strictly
positive linear forms, then there exist a continuous half-norm

on E and w ¢ R such that A-w 1is p—-dissipative. We stress

p

that p cannot be replaced by the norm, since in general none of
. -wt . .

t+he semigroups (e T(t))t>O (w ¢ R) is contractive for the

norm (cf. [71 and [171]).

3. Examples and discussion

As a first example we consider the first derivative with boundary

conditions on E = Lp[O,lj (1 <p < »). By AC[0,1] we denote the

space of &all absolutely continuous functions on [0,1]. Let Amax
be given by
= . ' P
D(Amax) = {f ¢ AC[O0,17 « £' ¢ L¥[0,17}
-— I
Amaxf = f (f ¢ D(Amax)).
Lemma 3.1. Let f e AC[{0,1]. Then |f| ¢ AC[O0,1] and
|£|' = (sign £f).f' (a.e.)
This is easy to prove.
As a consequence of the lemma, D(Amax) is a sublattice of E and
i < £ = £ (£ (
(3.1) (sign £)a___f A | £ (£ eD(A__ ).



(@8]

ror » > 0 one has

(3.2) ker (x - Amax) = Ree where ek(x) = e,

Hence Amax is not a generator. We impose the following boundary

conditions.

Let d ¢ R. Consider the restricticen ACq of Amav with the domain

Jay = . 1 = 4df 1

D(“d) {f € D(Amax) : £(1) df (0)}
Then Ad ie the generator of the semigroup (Td{t))tgo given by
(3.3)  T.(t)f(x) = a" f(x+t-n) if x+t e [n, n+l) (n e N).

This is not difficult to prove. Actually (3.3) defines a group if
d £ 0 and if we let t e R, n e Z. For d = 0 one obtains the

nilpctent shift semigroup on E. One sees from (3.3) that the

semigroup (Td(t))+>0 is positive if and only if & z 0.
Let us fix ¢ < 0. Let A = Ad and T(t) = Tﬂ(t) for t z 0. Then
(T(t))tZO is a semigroup which is not positive . Nevertheless its

generator A satisfies Kato's inegquality. Even the egquality is

valid; i.e.

(3.4) <(sign f) Af, ¢> = <] £, ave >

for all £ € D(A), 0 £ ¢  D(R").,

Proof., Tt is not difficult to see that




(3.5) DI(A') = {o & ACLO,1] : ¢' e L9C0,17, ¢(0) = do(1}}

A'¢ = -¢ for all ¢ = D(A").

where 1/p + 1/g = 1. Let ¢ € D{(A') . Since d < 0, it follows

<

+hat ¢(0) = ¢(1) = 0. Hence for f ¢ DIA),

<(sign f) Af, ¢> = <{(sign £f) £', ¢> = <l£]y, o>

Remark 3.2. The equality (3.4) does not hold for all ¢ ¢ DI(A"),
however. In fact, this would imply that |f| € D(A) and

(sign f)af = Alf|] for all f € D(A). Thus by [31,3.51 (or
Corollary 5.6) the semigroup would consist of lattice homomor-
phisms. The reason why in this example the equality holds will be
explained from a more general point of view in section 5 (see
Proposition 5.9).

Even though the semigroup (T(t))tgo is not pesitive its generater
A has other surprising properties besides (2.4). For instance,
the positive cones DI(A), := D(A) N E, and D(A"), := D(A") N E;

-+

Satisfy



c(E',E)}

(3.6) D(a), = E, and DI(RA") = E

Thus the cuestion following Remark 3.10 in [3] (resp. Problem

1.5 in [4]) has a negative answer.

Moreover, (3.1) shows that A satisfies Kato's inequality (in the

strong sense) formally. In order to formulate this more pre-
cisely, observe that it follows from (3.2) that D(Amax) =
D(A) + R~e\ (where 0 < X € p(A)). Thus the extension Amav ct A

satisfies the following.

(3.7 A a is closed.

max
(3.8) D(A } is a sublattice of E.
max
(3.9) D(A) has codimensicn one in D (A ).
max
(3.10) (sign f) Af = A___If| for all f e D(A).
max

It is also remarkabkle that there exists a dense sublattice

DO i= {f ¢ D(A) : f{0) = £(1) =0} of E which is included in DI{A).

But DO is not a core of A {(this would imply the positivity of the
semigroup by [4, Thecrem 3.47 if !d! < 1).

Since (T (t)) is not positive but (3.4) holds, it follows from

t20

Theorem 1.6 that there exists no strictly positive subeigenvector

of A'. In fact, more is true.

.\
w
t—
[
-
o
IA
=
m
w]
e
-
<
>
o
A

Le for some p e R dimplies ¢ = 0.



oof. Suppcse that 0 2 ¢ = D{A') such that -¢' = 2'¢ < p¢. We
proof
san assume that 0 5 u. Let y(x) = o(1-x). Then v’ (x) = -4’ (1-x) s
po (1-%x) = py (%) . Since Vv (0) = 0, we get

= fx p'(v)y dy £ fx p(y) dvy (xx ¢ [0,11)
d}(x) - 0 - 4 = ' 0 4 L rLd) .
Tt follows from Gronwall's Lemma that ¢ < 0. Hence ¢ = v = 0 . [J

In view of the preceding example one might presume that the
existence c¢f a strictly pocsitive set of subeigenvectors of the
adjoint of the generator actually implies the positivity of the
semigroup. This is not the case.

To give an example consider E = LZ(R) and the operator B given by

BRf = f(B) with domain
2 2 - {3) 2
D{B) = {£f ¢ C°(R) «+ £', £'' ¢ L"(R), £'' ¢ AC(R), £ e L7(R)}

Then B is the generator of an unitary group (U(t})teP” In par-

ticular, B is skew-adjoint, i.e. B' = -B.

(3.12) B' has a strictly positive subeigenvector ¢

Proof. Let A > 0 and

e_AX for x 2 1
b (x) = g (x) -1 < x <1
eAX for x £ -1

2

where g ¢ C°[-1,1] such that g(x) > 0 for all =z ¢ [-1,1] and such



I

that ¢ € c”(R). Moreover, choose g such that g (0) 1 and g' (0} =
2
g''{(0) = 0. Since g, g(3) e C(R) and inf {gfx) : x ¢ [-1,1]} > 0©
2
there exists p 2z A~ such that —g(3)(x) s p gfx) for all

x ¢ [-1,1]. Consequently,

22 e (x 2z 1)
L E S B L S NN R o U . A Y O
23 *E (x < -1)
Hence B'¢ = '¢(3) = ¢ O

But the semigroup (U(t))tzo is not positive. In fact, we show

that there exists f ¢ D{B) such that

(3.13) <(sign f) Bf, ¢> > <|f|, B'¢>.
Proof. Let f£ € DI(B) be such that fix) = e™* sin x in a

neighborhood of 0 and f(x}) > 0 for ¥ > 0 and f(x) < O

for » < 0. Then

A
a—)\
'—J-
Q
s ]
th
o3
rh
S
v
1]
1
—
1 O
8
—h
w
9
S
b
Qs
b
+
—
O 8
+h
"
bat
-
B
Qs
»

—~
(¥
-

By ax + 7 f60 (-0 (0) ax



(@]
+ [f''e 1] - (' ¢l
. ,

= <(sign f) Bf, o> + 2f''(0)¢(0)

< <(sign f) Bf, o>

since f£''(0)¢(0) = £71(0) = -2 . [

We now show that B satisfies FKato's inequality for pocsitive

elements, however; i.e.

(3.14) P Bf = Bf for all £ ¢ D(B}+.

In fact, more is true. B is local, i.e.

(R) .

[l

(3.15) f <+ g implies Af -+ g for all £ ¢ DB}, g ¢

Proof. Let A be the generator of the translation group. Then A is

local bv [31, 3.3]. Hence B = A3 is local as well. [

So this example shows that even 1f there exists a strictly
positive subeigenvector of the adjoint of the generatcor, Kato's
inequality for positive elements alone does not suffice for the

positivitv of the semigroup.

Next we make some observations concerning positive
subeigenvectors. Assume that A is the generator of a positive

semigroup {T(t)) on a Banach lattice E. Let ¢ e D(A'),  and

t20

I\



L ¢ R. Thern

é(3,16) A'¢ = A ¢ 1f and only if T(t)'¢ = At¢ (t20)
_ , At
" proof. If T(t)'¢p < e ¢ for all t z 0, then
Latg = o(E',E)-1im 1/t (T(t)'¢ - ¢) < lim 1/t ety - ¢} = Ao

t-0 t~+0

. For the converse let f ¢ E, . Then

<f, TIt) 4> = <f, ¢> + [C <f, T(s)'A'¢> ds

t
< <f, 6> + A fo <f, T(g)'¢> ds.
It follows from Gronwall's lemma that <£, T(t)'¢> =< e’\t <f, ¢>. O

Assume now thet ¢ is a subeigenvector of A'. Then it follows from
(3.16) that the ideal J := {f e E : <|f|,s> = 0} 1is invariant

under the semigroup. From this we conclude

Proposition 3.3. If the semigroup is irreducible (see [451), then

every positive subeigenvector of A' is strictly pocsitive.

Example. mi > (T )) idere t the
Example For d > 0 the semigroup d(t”tzo considered at t
beginning o0f this section is irreducible. Thus every positive

subeigenvector of Aé is strictly positive.

The existence of positive subeigenvectors 1is related to the

Krein-Rutman theorem. If 2 has a compact resolvent and



o (B) + ¢, then the Krein-Rutman theorem asserts tha+* *there exists
a positive eigenvecteor of A' (and A) for the eigenvalue

s(a) := sup {Red : X e o(B)}.

1t is easy to see that Ad has compact resolvent and o(Ad) + ¢ for

d # 0. Thus Aé has a positive eigenvector if and only if d > 0.

4. Domination

Frequently it is useful to be able to compare two semigroups on a

Banach lattice with respect to the crdering.

In this section we assume that E is a o-order complete complex

Banach lattice [42, II §11]. Let (T(t))tzo be a positive semi-

Q

group with generator A and (u{t))t>0 a semigroup with generator

B. We say, (T(t))tzo dominates (S<t)>t20 if
(4.1)  |s(e) £l < T(t)|£f] for all £ ¢ E, t> 0.

We first observe that dominaticon of the semigroup is equivalent

to domination of the resolvents. More preciselyv, (4.1) holds

if and only if

(4.2) |R(x,R)f| € R(X,A)|£f| (f ¢ E) for large real i.

Proof. (4.2) follows from (4.1) since the resclvent is given by

the ILaplace transform of the semigroup. Converselv, if ({4.2)
P g P 3

holds, then



i

_ : LN
lim L, | ((n/t) Rin/t,B))"f

n

|5 (t) £

1im ((n/t) Rin/t,R)) |f|

n>e

A

v

= T(t)]|f] (t 0, £f e E). O

one can describe domination by an inequality for the generators

in a manner analoguous to the characterization of positive
semigroups in section 1, however, no positive subeigenvectors are

needed here.

We briefly want to explain the sign operator in a complex Banach

lattice. Let f ¢ E. There exists a unique operator S e S (E)

satisfying

(4.3) sSf = |f]
(4.4) |sg| = |g] (g ¢ E)
(4.5) Sg =0 if g + £

(see [31 ,2.17).

Example 4.1. Let E = Lp(X,u) (1 < p < ») and £ e E. Then
£(x) /] £(x) | if £(x) £ 0

-

(sign f) (x) =
0 otherwise

. ) . oo . »
defines a function in L . The operator S is given by

Sg = (sign f).g (g ¢ E).

We define sign £ := S ¢ / (E). Thus in the case E = P we
identify the function sign f and the multiplication operator it

defines.



remark 4.,2. If fTit))_ ., 1s a positive semigroup on a o-order
= ey

v

complete complex Banach lattice, ther its generator satisfies
Kato's inegualityvy in the form (K) if 'sign f' 1is interpreted as
above (see also [4]). However, for the characterization of posi-
tive semigroups one can restrict oneself to the real case by
making use of the following chservation.

et E be a complex Banach lattice. Denote by ER the real Banach

lattice associated with E. Then E = Eﬁ + iEP; i.e. for £ e E

there exist unique elements Ref, Imf of Ep such that

£ = Ref + iImf. Let £ = Ref - ilmf.

Let (S(t))t>n be a semigroup on E with generator A. We say that
(S(t))t;o is real if S(t)Ep < Ep for all t z 0. It is easv to
describe this in terms of the generator. We say that A is real if
f e D(A} implies f e D(A) and Af = Af. Then

(4.6} (S(t)+>0 is real if and only A is real.

Theorem 4.3. Let (T(t))t>n be a positive semigroup with
generator A and (S(t)) a semigroup with generator B . The

tzo

following assertions are equivalent.

(1) ls(t)£] < ()] Fl for all f ¢ E, £t > 0
(i1) Re <{sign £} Bf, ¢> < <{f|, At g>

for all £ ¢ D(B), ¢ ¢ D(A")

The author learnt Thecrem 4.3 from T. Kato. There are similar re-

sults due +to B. Simen [47], [487 and Hess, Schrader and



o

im is to generalize Thecrem 4.3 bv rerlac-

ghlenbrock [247. OQur
ing the conditicn that B is a generator by a range condition. The

precise formulation is the feollowing.

Theorem 4.4. Let (T(t))f be a2 positive semigroup with generatcr

A. Let B be a densely defined operator such that

Re <(sign £} Bf, ¢> < <l f], BA's>
(4.7)
for all f ¢ DI(B), ¢ ¢ D(A")
+
Then B is closable. Moreover, if {)» - B)D(R) is dense in E for

, #
some A > max{0, s{A}}, then B (the closure cof B} generates a

semigroup which is dominated by !T{t))f>0.

We will use the fcllowing notion. Let A be the generator of =a

positive semigroup. The spectral bound s(A) is defined by

0 for all

%

s(2) := sup {Rer: A € ofA)}. Note that RI{A,A)

A 2 s(A) {gsee section II 1 for more details}.

Proof of Theorem 4.4. 1. We show that B is closable.

Let D (R) u, - 0 such that Bun + v. We have to show that v = 0.
Considering 2 - p and B - u for some p > s{A) instead of A
and R we mav assume that s(a) < 0. Then there exists a
Strictlv pesitive set M' < E' such that

A

(4.8) 4 ¢ DA') and A'4 0 for all ¢ ¢ M'

(see the procZ of Propositicn 1.5).



Let ¢ € M' and p be the sublinear functional given by p(f) =
<’f1, 6>. We show that B is p-dissipative.

Let f € D(B)Y, v = {(sign f)'¢. Then it is easy to see that

g e dplf) = {v e B' : Re<g,v> = plg) (g e E) ; <F,b> =p(f)).

Moreover, Dby (4.7) and (4.8) one obtains that

Re<Bf,y> = Re<(sign f) Bf, ¢> s <[£], A'¢> £ 0.

Thus B is p-dissipative; 1i.e
p((x - B)E) 2 ap(f)  for all £ e E, A > O.

By the proof of [5, Theorem 2.4] one csees that piv) = 0; i.e.
<|v|,¢> = 0. Since ¢ ¢ M' was arbitrary we conclude that v = 0.

= =

2. Let » > A_ := max {s(A),0}. We show that for £ e D(B),

(0]

(4.9) g = (A - BYf implies |£] = R{A,2)|g].

Let ¥ ¢ EL. We have to show that <[f],w> = <R(A,A}§g[,w>.

Let ¢ = R(A,A) 'V ¢ D(A') . Then by (4.7)
. Y

<|£],0> = <|f], (A = A')¢> = Re<(sign £) (rf), ¢> - <|f|, A'¢>
= Re<(sign f) {x - B)f, ¢> + Re<(sign £f)Bf,¢> - <|[f|,A"¢>
< Re<(sign f) (» - B)f, ¢> = Re<(ecign f) g, ¢>
< <|gl, ¢> = <|g|, R{A,A)"w> = <R(X,B)[gl|, v>.

It follows from (4.9) that for » » »_ and £ ¢ D

#

"V f implies |f

A

R(x,B) |gl.

(4.10) g= (A -B

In particular, (» - B") is injective for i > ko. Moreover,



&

IA

(4.11) [R{x,B") g R(x,n) gl for all g ¢ E

whenever xo < X e p(B").

Assume NOWwW that there exists uo> Ao such that {(u - B)DI(RBR) 1is
dense in E. Then (p - B#)D(B#) = E. (Indeed, let h ¢ E. There
exists fp e D(B) such that 9, = (b - B)fn = h. By (4.9) it

follows that |fn - f | = R(X,A)!gn - gml. Thus (fn) is a Cauchy

sequence. Let £ = limn+m fn. Then f ¢ D(B#) and {p - B#)f = h.)

=

Thus U € p{B"}.

Let AO < A € p(B#). Then it follows from (4.11) that
#\

| < [Ir(x,2)]] < ][R(AO,A)[! = C. Hence,
aist h,oM)) = rrGL,eY T 2 [RGB T 2 170
-

[|R (2, B

1\

This implies that [ko, w) < p(B"). Moreover, it follows from

(4.11) that

(4.12) IR(x,BM)f] s R(3,2) 7 £ (f e B, ne .

/

Let w > u(A) {the type of {T{t))t ). Then it follows from

\

0
(4.12) that
B2 s 11 - wBPR(L,A) D] for all A > w, n e M,

%

So by the Hille-Yosida theorem, R’

[t = w)Br(2,B

is the generatcr of a semi-

group (S (%)) Finally, the domination follows from (4.11). [

tz0°

Proof of Theorem 4.2 One direction follows from Theorem 4.4. The

B

Other can be proeved in a way similar to Proposition 1.1. U



gxample 4.5. As an 1illustration of Theorem 4.3 we consider +*he

plex version of the first example of section 1.

com
Let B = Lp[O,lj. For d ¢ C let Adf = f£' with domain
D(Ad) = {f ¢ AC[O0,17 : £{1) = df(0)}. Then Ad generates a
semigroup (Ty(t)) . .. Let |d| = c. Then (Tqft)) ., is dominated
by (Tc(t))t;O' This can be seen by Theorem 4.3 as follows. Let f
¢ D(Ad)’ 0 <= ¢ ¢ DfAé)- Then ¢ (0) = c¢ (1). Hence
Re <(sign f)A f, ¢> = Re <{sign f)f', ¢> = <lE0Y, 4>

= <|f|, =¢'> + (If(x)[¢(x))lé

= <|£], (2))"¢> + [£(1)|¢(1) = [£(0)]¢(0)

= <|£l, (Ac)'¢> + [ £(0) ¢ (1) (]@] = <)

A

<If!, (A) "¢>.

Of course, in this example domination can also be verified by
inspection of the semigroups.

Example 4.6, Let {T(t))t be a positive semigroup with
generator A. Let M ¢ Z(E) (the center of E (see [53 , chapter
201). For example, if E = P (%, ) (where (¥,n) is a g-finite

measure space and 1 < p < «) then M is the multiplication

operator defined by a function in L% (X,p).
Let B = A + M. Then B generates a semigroup (S(t))t>0.

D(A') .. Then

+

Assume that ReM < 0. Let f ¢ D(B) and ¢

™

£y ME

) BE, 4> Re<(sign f) Af, ¢> + Re<(sign £)MFf, ¢>

I

Hh

Re< (sign

Re<(sign f) AZ, 4> + Re<M|fl|, ¢>

< fl, A'g

A\

IA



b_‘] Theorem 4.2 ’ {S (t) ) is dominated by (T (t) ) >0

Thus, t=0

pomination and positivity are characterized simultaneously as

follows.

4.7. Let E be a g-order complete real Banach lattice.

Let (T(t))t>0 be a positive semigroup with generator A and

let (S(t))t>0 be a semigroup with generator B. The following

are equivalent.

(1) 0 < S(t) < T(t) for all £ =z 0,
+
(ii) < P+ BE, ¢> s < , A'g> for all f ¢ D(B), ¢ e D(A'), .
(1ii) <P+ Bf, ¢> = <f', A'¢> for all £ ¢ D_, ¢ ¢ D(B'),
where Do is a core of B
Remark 4.8. Condition (ii) implies (4.7) (cf. Remark 1.9).

Proof. One proves as in Proposition 1.1 that (i) implies (ii).
It is trivial that (ii) implies (iii). Assume that (iii) holds.
Let ) > A, = max {s(p),=s(B),0}. In a similar way as {4.10) one

shows that for all f ¢ DO
. . +
(4.13) »f - Bf = g implies f < R(A,A)qg .

Since DO is a core it follows that (4.13) also holds for all

+ +

f ¢ D(R). lies that (R{a,B)g) = R{i,A)g for all

3

his im

o)



v o> A Consecquentlv, 0 £ Rix,B) £ R(x,A) for all
e By o -

g
S o0lds. {1
> }\o Hence f{i) holds. |
e : N , | X '
pinally, 1f it is known that the semigroup (S(t’)tzo alsc 1is

positive/ domination can be characterized as follows.

EEQEQEEEEEE- 4.9. Let E be a real Ranach lattice, (T(t)}tzn a

positive semigroup with generator A and (S(t))tZO a positive

semigroup with generator B. Consider the following conditions.

(1)  s(t) = T(t} (t z 0).
(1i) <Bf,¢> s <f,A'¢> for all £ e D(B)_, ¢ e D(R'), .

(iii) Bf £ Af for 0 < £ ¢ D(2) N D(B).
Then (i) and (ii) are equivalent and imply (iii).

Moreover, if D(A) € D(B) or D(B) < D(A), then (iii} implies (i).

Proof, 2Assume that (i) holds. Then for £ ¢ D(B)+, o € D(A')+,

<Bf,¢> = limt+o 1/t <S{t)f - £, ¢> < lim o 1/t <T{t)f - £, ¢>

s proved similarly.

=5

So (ii) heolds. (iii)

Now assume (ii). Let A > max {sf{A), s(B)}. Let g ¢ E+, ) e E|.
Then <R{A,B)g - R{(X,A)g, Y>> =

<R(X,A)g, AR(A,B) 'Y - ¥> - <AR(x,A)g - g, R(X,B) "y> =
<f, B'¢> - <Af, ¢> = 0 where f = R(},A)g ¢ D(A)_ and

¢ = R(A,B) 'y € D(B’)+. Hence R{(A,B) £ R(X,3) and (i) follows.
Finally, we prove that (iii) implies (i) if D(B) < D(A), say.

Let A > max {s(a), (B) }. Then (A - B)R(x,B) is a positive

m



I\
(o»]

operator . Hence R{A,A} - R{A,B}) = R{A,A) (2R - B)R{A,R) This

implies (i). U

Let B be t+he generator of a positive semigroup

—E'}_(’aj—n‘g—l—g 4.10.

m(t))tzo, C a bounded positive operator. Ther A = B + C with

p(A) = D{B) is the generator of a semigroup (T(t)}tzo. It can bhe

seen from the product formula (see e.g. [13]) that (T(t)), 5, is
L=

positive. Since Bf £ Af for all f ¢ D(B)+, it follows from Propo-

gition 4.9 that S(t) = T(t) for all £ 2z 0.

The preceding results can be applied to the perturbation by

multiplication operators. Let (X,u) be a o-finite measure space

IIA

and E = LP(z,u {1 p <«}. Consider a pcsitive semigroup

(T(t))t>O with generator A. Let m : X -+ [R be a measurable

function such that m(x) = 0 for all x ¢ X. Let

D(m) = {f ¢ E : fem ¢ E}. Define the operator B with domain

D{B) = D(2) n Di{m) by Bf = Af + m-f (£ ¢ D(R)).

Theorem 4.1i. If there exists a cuasi-interior subeigenvector u

s closable and the closure B# of

[

of 2 such that u e D{(m}, then B
B is the generator of a positive semigroup (S(t))t>o which is

dominated bv (T (t))

For the procf of the thecrem we need the following lemma.



Let A and B be generators of positive semigroups

dominates {(S(t))

v
%

(T(£)) ;> {resp., S{t) >0). IFf (T!t))t 0 £207

max {Xx,s(B)}

v

proof of Lemma 4.12. Let A > s(&). Then for all

v

one has 0 = R{p,B) = R(A,A), and so dist(u,0(B)) ”R(H,B)”“l >

”R(X,A)“—l. This implies that [X,») < p(R). U

EEQEE of Thecrem 4.11. There exists i > 0 such that Au £ pu.

Let A > max {s(A), pl. Then AR(A,A)u = 2R(X,A)u+u = uR(A,A)u + u.
Hence R(A,A)u = c¢c u where ¢ > 0 . It follows that R(X,A)Eu c
E N D{(A) = DI(B}Y . Hence D(R) 1is dense.

Let £ ¢ D(B), ¢ ¢ D{A')+. Then

(4.14) <P_+ Bf, ¢> £ <f , BA'¢>.
L

Il

In fact, <P_+ Bf, ¢> = <P_+ Af, ¢> + <P_+ m-f, ¢>

+
<P+ Af, ¢> + <m-f , ¢>

A

<P .+ Af, ¢>
T

IA

<£7, A'¢> (by (1.7)).

’

But (4.14) implies (4.7). So it follows from Theorem 4.4 that B

is closable. Moreover, if we can show that (r - Bﬁ)D(B#) is

4
dense in E , it follows that B" is the generator of a semigroup

(S(t))tZO . In that case (4.14) implies by Proposition 4.7 that
(S (t ] ina T
))tzo is dominated by (T (t)) ..
. AL
We show now that (X - B#)D(Bw) is dense in F
Le = © - i i = 3
t m_ sup im, an} (n € N) and B, A+ m . Then E_ is

the generator of a pesitive semigroup and it follows from



Propositicn 4.9 that 0 < P’;,Bn+1) < P(‘,Bn) < R{x,R) for
a1l 0 o€ M, » > s({A) . (Note that szn} £ s{A) by Lemma 4.12)}.
£ E . = 4 . = ; ) =

et 0 = £ e Ey Let g P(A,Bn)f Then g jnfnéhi g,

. xi I i - ) =
1., 9, exists. Moreover g e D{B} and llmn+oo (A B,gn

£+ lim (B - Blg, = £, since !(Bn - B)gni < (m - m)!gnf
- (mn—m}fR(A,Bn)f! < (mn—m)R(x,A)lff < c¢' (m, - m)u . But

1im (m_ - mlu =0 since u ¢ D(m) . Thus g ¢ D(B#) and

S o T ) I

O - B#)g = £ . We have shown that Eu = (A - B#)D(B#) . Hence

# #

- B")D(B ) 1is dense in E. [J

pxample 4.13. If DIA) < L7(X,u) and m ¢ IP(X,u) , then the
Examp:¢

“hypotheses of Theorem 4.11 are satisfied.

5. Semigroups of disjointness preserving operators

In this section we consider a special case of domination. Let E

be a complex Banach lattice. 2 bounded operator S on E is called

disjointness preserving if

(5.1) £ -+ g implies Sf + Sg (f,g ¢ E).

Note that an operator S is a lattice homomorphism [42 , II

2,47 if and only if S 1is positive and disjointness preserving.
Y P J P g

In the following we will consider disjointness preserving semi-

Toups (by this we mean semigroups of disjointness preserving



Operators}. An example is *he semigroup [T’(t))t*ﬂ defined in

section 3.

Remark 5.1. In [2]1 we called order bhounded disjointness preserv-
Remar®

ing operators Lamperti operaters, and it was shown +that on a
g-order complete Banach lattice every disjointness preserving
operator is automatically order bcunded. More recently Ahramovich

(1] showed that the assumption of o¢-order continuity can be

omitted and de Pagter [35] gave a simplified prcof of this fact.
If S ¢ {E) is disicintness preserving, then the modulus |s! of s

€
o
<

. ! . . . .
existe. |8l je a lattice homorphism &and is related to

Proposition 5.2. Let (S<t))t20 be a2 disjointness preserving

semigroup. Let T(t) = |S(t)| (t z ©) . Then (T(EY) o is a

strongly continucus semigroup.

Proof. Let 0 z s,t and f ¢ L Then hv (5.2),

T(S)T(t)f = mis)le(e)f] = Is(s)sit)f] = |s(s+t)fl = T(s+t)=.

Since span E, = E, it follcows thet <T(t))fso is a semigroup.

Mo £ . 74 { - 4 | @ [ = —- £
reover, for f ¢ E, . lim T(t)f 1$mt+o [S{t) £l L £l T.

This implies that (T(t))t\o is stronglv continuous. [0

Remark, R. Derndinger [16] investigates the modulus cof a

Seémigrcup in other cases.



EEEEELE 5.2. Let d ¢ C and S(t) — Ld(t) be given by [3‘3). Then

EEEEQEEEEEE 5.4. Let B be the generator of a disjointness pre-

on a Banach lattice E. Then B is

serving semigroup (S(t))tgo
local; i.e.
(5.3) Bf = g if £ ¢ D(B), g ¢ E such that £ - g.

The preof of [31, 3.31 can be adapted in an obvious way.

We ncw describe the relation between the generator of a
disjointness preserving semigroup and the generator of the

modulus semigroup.

Theorem 5.5. Assume that E is a complex Banach lattice with
order continuous norm. Let (S(t))t>O be a semigroup with

generator B . The following assertions are eguivalent.

is disjointness preserving.
(1) There exists a semigroup (T(t))t>O with generator A

such that

(5.4) £ ¢ D(R) implies |fl ¢ D(A) and Re ((sign f) Bf) = B|f|

Moreover, 1f these equivalent conditions are satisfied, then

T(t) = lsity! (= 0).



EEEEEE' The relation (5.4) is equivalent to

ge ((sign £)BE) 6 > = <|£l,a'e> (£ € D(B), ¢ € D(2")).
In the case where A generates a positive semigroup, this is
condition (4.7) in Theorem 4.4 with the inegualityv replaced by
the equality. It 1is remarkable that , 1in contrast to the
gituation ccensidered in Thecrem 4.4, here condition {ii) implies

the positivity of {Tlt} . = .

proof. This is an adaption of the procf of [31, Theorem 3.4]
given by Nagel and Uhlig. Assume that (i) holds. Let £ € D(B).

S(t)f is differentiable in t. By the chain rule [31 ,3.1]

Then

re) £l = ls(e)£] ie alsc differentiable and d/dt|,_, T(t) | £
= Re(sign f)Bf (by [31 ,2.21 and Proposition 5.4). Hence |f| ¢
D (A) and Alf] = Relsign f}BE. Conversely, assume that (ii)
holds. Let s > 0, £ € E . We show that ls(e)fl = T(t)|£f]. This
implies that S(s) 1s disjointness preserving and lsis)| = m(s)

(by [2,Theorem 2.41). Since D{(B) is dense we can assume that f
€ D(B). TLet «¢l{t) = T(s-t)|s(t)fl (£ € [0,s1) . Then using

again [31 , 3.11, [31 ,2.2] and Propositicn 5.4 one cbhtains

d/at c(t) = -AT(s-t)!s{t) !l + m(s-t) (Re(sign S(t)FIRSI(t)F) = 0 by
the assumption (ii). Hence £(0) = £{s) , i.e.

Ists) el = sy el O

For the case where ©S(t) = T{t) (t20) we obtain

Corollary 5.6 (Nagel, Uhlig [31 ,3.41). Let (T(t))t>O be a
semigroup with genersator A . The following assertions are

equivalent.



i) T(t) 1is a lattice homomcrphism for all t z 0.
i) £ € D(A) implies |f]| € D(A) and Rellsign f)Af) = A|fl
5 Let E = LP(X,u) (where (X,u) is a c-finite measure

E/Xa__an,l__e— _,.7.
space and 1 £ p < « and Ao be the generator of a semigroup of

jny
”
D

ov)

lattice homomocrphisms. Let h € L” and B = AO + is given

by Bf = Aof + h+*f for £ e D(B) = D{AO)). Let A = AO + Reh .

D)

since Ao generates a semigroup of lattice homomorphisms, we have

/2 1P ign £)A = £, _
[£] e D,PO) whenever f ¢ D(AO) and Pe((sign f) of) Ao[ | . Hence

£y = a Il + (rReh)!fl

Re((sign f)Bf) = Re((sign f)AOf) + (Reh}-
=A|f| for all £ e D(B). Thus it follows from Theorem 5.5 that B

generates a disjointness preserving semigroup whose modulus

semigroup is generated by A.

Next we describe in terms of the domain of the generator when a

disjointness preserving semigroup is pcsitive.
P

Proposition 5.8. Let E be a2 complex Banach lattice with order

continuous norm and B be the generator of a disicintness

Preserving semigroup (S(t))t>0 . The semigroup 1is positive if
and only if B is real and span D(B}+ = D(B).
E{ggﬁ. The conditicns are clearly necessarv. In order to prove

Sufficiency, we can assume that E 1is real. Denote by A the

9eénerator of (T(t)) ., where T(t) = |S(t)|. Let £ ¢ D(B),. Since
B is local we have Bf = P, Bf = {sign f) Bf = alfl = af. Bv
dssumpticn, span D(B)+ = DIB). Thus i1t follows that B < A. This

lmplies that R = A s<ince 0iB} N o(2) £ ¢. O



Finally, we show that for generators ot dlsjcintness Preserving

semigroups Kato's inequality holds in the reverse sense.

proposition 5.9. Let B be the generator of a disjointness pre-

serving semigrcup (S(t))t>0 ©n a real Banach lattice E with

order continuous norm. Then

(5.5) “(sign f)Bf, ¢> 2 <|f|, B'¢»

for all f ¢ D(B}, ¢ € D(B’)+.
Procf. Let T{t) = !S(t){ and denote hv A  +he generator of
(T(t))tgo . Let £ ¢ DI(B), ¢ ¢ D(B')+ - Then <fsign f}BRf, ¢> =
<Alf], o> = im, o (17%) <T(y €] ~[£], 4> 2
lim L/t <ste) [£] = |£], ¢> =<|£]|, B'4>. O
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ChaEter IT

Recclvent Positive Operators

h

The Hille-VYosida theorem vields the following characterization o

generators of positive semigroups in terms of the resolvent.

Theorem. ILet 2 Dbe a denselv defined operator on an ordered

1

Banach space E . Then A generates a positive stronglv con-

tinuous semigroup if and only if the following *wo conditicns are

satisfied.

a) There exists w £ R such that (w,») < p{(A) and R{X,R2) :=
-1

(A=A} z 0 for &all 2 & (w, =) {where p (A) denotes the

resolvent set of A ).

n

Given a concrete operator, condition b) 1is frequently difficult
to verify since the powers cf RO A} are involved. So we take

condition a) as a definition.

Definiticn. An opereateocr A on ar ordered BRanach space E 1is
called resclvent positive if there ewists w e R such that

(w,») = p(A) and PR(i,A) 2 0 for all + > 0 .



(W)
20
!

The PuUrpose of thies chapter 1is *o investigate svstematically
resolvent positive operators. We first shew +that 1in  some
exceptional cases (for evemple, 1if E = C{K) , K compact) a
resolvent positive operator 1s autecmatically a generator. On

P-spaces anc CO(X) (X locallv compact; this is nct +true, how-

ever. In fact, there are many natural evamples of such operators
which are mnot generators. Nevertheless hese operators have
remarkable properties. We will prove that if 2 is a resclvent

positive operator and if either the deomwain ©DI{A} of 2 is dense

h

E is reflexive, then the Cauchy problem

=

!

or

o
[wn)
Il
th

.
has a unigue sclution u e C ([(C,=),E) for every initial wvalue

(

But resclvent positive operators are also interesting from 2

0]

orrespond

bt
-+
-4
m
3
[81]
+
o
iy
&
}. .
©
]
Qu
9]

structural point of view. In fact,
to the historical development +o consider semigroups from the
point of view of Laplace +ransforms. Then +the Hille-Yosida
theorem characterizes those operators whose resolvent is a
Laplace +ransformation. The corresponding classical theorem is

N .
the following.



'I’/h%?_f.ejﬂ [51, 6.87. Let w ¢ [F, M > 0 and g = ~% (v =) . There
exists @ measurable function f on [0,«) satisfving |fit)' = M wt
(t 2 0) such that

g0 = [7 7' fie) ar (O > W)
if and only 1if

PR g™ Gyt s G s ow, mo= 0,00 )

7o see the analogy, observe that the derivatives of the resolvent

of an operatcr A are given by

yntl (n e ).

There is alsc a classical theorem characterizing those functions

which are Laplace-Stieltjes transforms of increasing functions,

namely,

[e9]
Theorem (Bernstein) [51, 6.71. Let a € K and g e C (a,=) .
There exists an increasing function a : [0,y =+ FE such that
o At ;
g(M) = [, e da (t) (r > a)

if and only 1f g is completely monotonic; i.e.,

n _I(n)

(-=1) () 2 0 for all A > a, n=0,1,2,...

K

Now let A be a resclvent positive operator. Then



ompletely monotonic. In fact, we will show that
c
2 00 -\ + -
R{\N,R) = JO e - ds(t) (A ilarge)
for @ strongly continuous increasing family {S(t))t>0 of

pOsitive cperators. This theorem will be proved by twc different
approaches. One uses the Hille-Yosida theorem and can be applied

A  is densely defined. The second approach is based on a

when

.ector-valued version of Bernstein's theorem which we prove in

section 5. Here we have to restrict the class of spaces {allowing

reflexive spaces 1¥-spaces for lgp<eo and c_ ) but it is no
I O 4

longer necessary to assume that A 1is densely defined.

The relations between the operators (S(t))t>0 and A are

similar +to those of a semigroup tc its generator. For instance,

tors (S(t))t>0 induce the soluticons of +the Cauchy

problem menticned abcve,

In the 1last section we give a characterization cof resolvent

positive operatcrs by means of Kato's irequality.

Generzl assumption. Throughout this chapter E denotes an ordered

Banach space with generating and normal positive cone F,.

Moreover, we asgume that the norm !! f! on E is chosen in such a

wav that

[letl < gl (f,9 ¢ E)



(which can always be done). For further properties of F which

will frequently be used we refer to Appendix A.

1, Basic Properties.

Even though in the definition of resolvent positive operators it
is merely reguired that a half-line lies in the resolvent set we

show that this entails much stronger consequences.

Definition 1.1. Let 2 be a resolvent positive operator (see the

introduction to this chapter for the definition). Then

s{A) = inf {weF : (w,») © p(A) ané R{a,A) 2z 0 for all A > w }

is called the spectral bound of A.

We will eventually show that s(A) = sup {Rex : » ¢ o{(A)} (Theo-

rem 1.4), which justifies the terminologyv.




Let A he an cprerat T and ) = 0 op (2 such <t
yﬂ!ﬁ-l 2 e e rerator on nc o € p (2) such that
RU\O’A) = 0
(1) If Aq < A such that Al e p (A) and P(Al,A) > 0, then
(e o) € p{pr) ~and 0 s R(;_,A) £ RO,A) £ Ry ,A) for all

(11) rf S 1= inf {Al e plR) : R(A],A) > 0 > -», then
s ¢ ofA)

proof. a) Let x, e o(A) N R, » < u, R{NA) = O, R{u,A}) =z 0.
Then R{x,A) z R(p,B2). In fact by the resolvent eguation, R({),A)}

- R{p,B) = {pn - MR{OH,AMRu,2) 2 0,

b) If A ¢ p{RA) and R( ,AR) =z 0, then there exists ¢ > 0 such thet
(A\-e, A1 < pfA) &and R{u,2) z 0 for all u e {A-c,r].

In fact, let ¢ > 0 such that lu - A! < ¢ implies

b e pi2)Y. Then for p e {(A-¢,r 1,

P N s B n+1
R{y,Rn) = Lp=0 (A=) "RA(A,2) z 0.
This proves b). Moreover, b) implies (ii). [In fact, 1if s > -=,
then there exist s < Xn e p (A) {néM) such that R(AP,A) z 0 and
lim A = s . Fence if s¢p{A), then R((s,2) = lim R{(x_,A) = 0
n+e n N~ n

and b) leads to a contradiction to the definition of s.]

We prove (i). Let s = inf {r e K : r 2 A,, (r,AGW < o (R) and
L @

R(x,2) =z 0 for all x e (r, >Oﬁ] We have to show that s = K

It fellows from b) that s -~ Ao' Assume that s > A,. Then it

follows from b) thet = ¢ c{A) (cf. the proof cf (ii} above). Fcr

; - - L
oe (S,AO], R(),RD) < P{)l,ﬂ) bv a). Hence M := sup {'|R(},A)
A e (s, 1} < «. Conseguentlv, for i ¢ (s, )C],



23

dist(o(A), Ay oz [ Iraa,BY|!' 7T z M T » 0, contradicting s ¢ ¢ (B).
This proves that s = Al. C
gRemark 1.3. By Lemma 1.2, an operator A is resolvent positive
Remal®
4+t 1 s y { 1 ¥ 3 4
whenever there exists a sequence ‘xn)nsﬂl in p(2) n F such
i = Yz for 1 J
that 1im_ . Aj and RI{A_,A) z 0 for all n e M.
Theorem 1l.4. Let A be a resolvent positive operator. Then for
2neo-—
Rer > s{RA) we have X e p (&) and
(1.1) '<R(x,R)f, ¢>| = <R(Rex,A)f, o> for 211 f e E_, ¢ ¢ E!.
+
Moreover, if s(A) > -=, then s(A) e o(2).
Proof. Let H = {}x ¢ €C : Re)d > s(B)} and denote hv K the con-
nected component in H 0 p {A) containing (¢fp), o). We claim
that {(1.1) holds for every 1 e K. In fact, let f ¢ E., ¢ ¢ E;.
Then the functiorn * -+ <EIi,A)f,¢> (A & (g{D),=)) is com-
pletelv monotonic (see the introduction to this chapter). Hence
by Bernstein's theorem, there exists an increasing function
¢ ¢ (0,») =+ [F such that
3 = B _>‘t b Y
<SR(A,A)F, ¢> = Jo e da (t) (L > s(h)).
. © - At ; \
The functions X =~ fo e "% da(t) and A + <P(i,A)f,6> are
both hclomorphic on K and ccincide cr (0,»). So theyv are identi-
co A ,

cal. Hence for } e %, !<P(A,A),,o>| = | fo e t da {t) I <
f® -Re ) - . . v e . .
J e € t da (t) = <R (Reir,B)f,é>. This proves the claim

Q



fFor T s{p) let Kr = 1y e ¥ Re z r! Then for AoE Yrr
’<R(>\,P)f,d)>[ £ <R{(Rex,B)f,¢> = Ri{r,A)f, o> (bv Lemma 1.2).
gence SUp (] RGL,RYI] = e Kr} < e, Since dist{l,oc{Rr)) =z
,{R(A,A)]!‘l’ it follows that K_ = {) e € : Rek > r}. Since

r > s (A) was arbitrarv, we ccnclude that H < p (A) and (1.1)
holds for all A e H. Finally, it follows from Lemma 1.2 that

s(A) € o(A}), whenever s(a) > -=. 0

Now let A be a resclvent positive operator. Then by Lemma 1.2,

n

(1.2) R{p,A) 2 R{i,A) 0 whenever s{A&) < p £ A,

In particular, for every AO > s (A),

(1.3) sup 1] IR(x,B)]] + A z Al < e
If A is densely defined, then

{1.4) lim, R(A,A)E =0 for all f ¢ E and
A >
(1.5) lJ_m\+°0 AR(M,2)Ff = £ for all £ e D(A)
Procf. a) Let £ € D(A). Let u > s(A) and g = (u=RA)£f. Then

R(A,A)f = P(A,A)R(u,2)g = 1/(Ar-p) (R{u,A)g - R{A,A)q) - 0 for
A + o (because of (1.2)).

b) (1.4) fellows from a) and (1.2) bv a 3e-argument since DI(R2) is



AR(ArA)” = AR(N,2)R(p,B)g = 2/ (i-p) (Rip,Alg - RI{i,A}q) -
R(k,B)g = f for i - « (by {(1.4)). This proves (1.5). [O
4
k. Note that in general lim [AR(A,A}) || = « even if B
Remal g !
Refa-> ———)A>x©

;s densely defined (see Example 7.3 b)).

We will use the following definitions.

)

{ — ) {2 ] YA T) - 1 HIAY
(1.6) D(A)+ E+ i D{A) and D{A )y E+ (i (27}
(where we assume 2 +to be densely defined in the second defini-
tion). Since DA} = R(X,A)E and DIA'}) = R()x,A)'E' and

I3

R(A,A) 2 0 for » > s{A) one obtains

D(a"), - D(a"),.

o
~J
lw]
(9
fl
)
>
|
lw)
2
ja}]
3
(o)
)
Y
]

In particular, D{A) is an ordered Banach space with respect to
the graph norm and the positive cone D{A), . However, this cone is

not ncrmal in general.

Remark. Cperators with positive resolvent have been considered
by Kato [29] and Nussbaum [341. Theorem 1.4 is proved by Nussbaum

crresponding result for bounded

Q

(l.c.) by reduction tc the

pPositive ocperators [41, App. 2.2].



v

72, Resolvent Positive Cperators which are Automatica

Generators.
cenerdacolt -

Resolvent pcsitive cperators admit norm estimates for the
resolvent. On C(K) (K compact), they are sufficient to vield the
norm condition regquired by the Hille-Yosida thecrem. In other
special cases, an additicnal mild norm condition or order

condition suffices to cbtain a semigroup.

Lemma o.1. Let A be a resolvent pesitive operatcr such that

s(A) < 0. Then

+

2 A . 3 "1 i
(2.1) R(0,2) = R(,B) + ARGL,A) S + 3°R(3,8)° + ... + 327 1gyy ayn
+ "R G,2) "R (0,2)
for all n ¢ N, A z C. Consequently,
(2.2) sup LID™ RO RO, s n e M, 3 2 0] <

Proof. Bv the resolvent equaticn,

(A > 0). Thi

(=]
n
=
o)
s
=
h
0
R
s}
I
|—
—
-+
D
3
ol
ot
l_l
5
Q

this equation vields

(2.1) for all n e M. |

Remark 2.2. Relation (2.1) implies that }r—l R(A,A)n < RI0,A)
-1 .
for all nel, 220. Hence sup {!!aD Ry, A :oxz 0, ne?l < o,
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h
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and onrly

b

strongly contiruous semigroup

a pounded

PR G, s 2 2 0, noe MY < w,

sup {

A subset C of E+ is called cofinal in E, if for every f e E+

there exists g € C such that f = g .

is & positive strongly continuous semigroup with

v

0
generator B, then the tvpe (or growth bound) wi{B) is defined by

[1AY

re (T(E)) .

w(B) = inf {w ¢ P : there exists M 2z 1 such that ey |1 = Me"t
for all t z 0}.

One alwavs has s(B) £ w(B) < =, but it can happen that

s(B) #+ w(B) even 1f B generates a positive group {{22] and

[527).

Theorem 2.3. Let A be a densely defined resclvent positive

cr 1if D(A'") is cofinal in

operator. If D{A) is cofinal in E+ +

—+

E', then A is the generator of a strongly continuous positive

semigroup. Moreover, s({RA) = u{B).

Proof. a) Assume that s{A) < 0. We claim that A generates a

bounded strongly cortinuous semigroup, if one of the conditions

in +he theorem is satisfied.

We first assume that DIA) is cofiral. Let £ e E,. Then there
exists o ¢ D(A).-+ such that £ £ g . Let h = -Ag and k ¢ E_ such
that h £ k. Then f £ g = R(0,A)h £ FI/0,7A)k. It follows from
(2.1) +that e, %f < PR ia,2)"R(0,2)k = FR(0,B)k. Hence



!
>
»

!

ince E = E_ - E_,, it

v
O
~
3
m
=
—
A
8
140}

up (RO, TN
s |

follows that (APru,m)™ 2 2z 0, ne N} is stronaly bounded;
¢hus it is norm-bounded by the uniform boundedness principle. The

IﬁllE’YOSida theorem implies that 2 generates a strongly contin-

gous bocunded semigroup.

1f D(A')+ is cofinal in EL consider f € E+, b € E;. Ther there

exists ¢ ¢ E} such that ¢ = R(0,A)'v. Hence bv (2.1),

afr(n,a) ", o> = <aA"ROL,A)PE, R(O,A) > = <A"R0O,2)TR(0,A)E, V>

< <R(0,A)f, ¥>. Since E, and E; are generating this implies that

)n : » 2, ne N} is weakly bounded, and so ncrm-bounded.

{A"R (2,2
Again the Hille-Yosida theorem implies the claim.

b) If s{2) is arbitrary consider B = A - w for some w > s{A).

Then s{BR} < 0, and sco by &), B i1s the generator o a bounded

semigroup (T(t))t20° Hence A generates the semigroup
Wt

(e" " T(t)),,,. Moreover wla) £ w. [

Corollary 2.4, Assume that int E, L ¢ . If A is a denselv

defined resolvent positive operator, then A is the generator of a

strongly continuous pcsitive semigroup and s(A) = wi{R) .
Proof. Since int E+ L ¢ and D(an) is dense, there exists

u e int E_ (1 D{(2). The set {u} 1is clearly cofinal in E,. U

2 denselv defined operatcr with positive

Corollary 2.5. Let 2 be o
=S ¥
1, - . SN
resolvent on I~ (Z,u) (where (¥,pn) is a o-finite measure space).

D(A'Y I L (%X,u) such that odfx) 2 e > 0

m

If there exists ¢

for almest all x ¢ X, then A is the generator of a strongly

continuous positive semigroup.
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Remark. Corollary 2.4 has been proved In [5] and Corclilary 2.5
/_—-

by Batty and Robinson [8] with & different apprecach using

half—norms.

Theorem 2.6. Let A be a dercely defined resolvent positive
Theor &l

operator. If there exist AO > g{A) and ¢ > 0 such that

(2.4) RO MVEN] 2 c |[£]] (f e E),

then A is the generator of a strongly continuous semigroup and

s(A) = wiRA).

Procf. Let s(A) < w < AO. Let B = A - w. Then s(B) < 0. Since
R(0,B) = R(w,A) =z R&AO,A) (by (1.2)), it follows from (2.4)

that | |R{0,B)f]| LIR(x _,B)f > c ||F] for all f ¢ E,. Using
oz | .

W

(2.2) one obtains a constant M>0 such that || (AR(x,BIVTF[| <

cHIr(0,B) R(,ENE[| s M ||£]] for all £¢ E,, » 20, n e N

Since E = E - E it follows that the set {AHR(A,B)H :n e N,

T+ +
Az O} is strongly bounded and so ncrm-bounded. Thus by the
Hille-Yosida theorem, B = 2 - w generates a bounded strongly

continuous positive semigroup. Hence A is a generator and

Remark. Theorem 2.6 {(except the assertion concerning the spec-
tral bound) is cAue to Batty and Robinsorn [8] (with a different

proof} whc analvse condition {2.4) in more detail.



pheorem 2.7. Suppose that the norm is additive on the positive
/

. | S -
cone, i-e. |f+af = (£} + |g] for all f£,9 € E (e.q. F =
Ll(X,u))- Let A be a densely defined operator. Then the follow-

ing assertions are equivalent.

(i) A generates a strongly continuous positive group.
(iiy 2 and -A are resolvent positive and there exist

A > max {s{A}), s(-A)} and c¢ > C such that

(2.5) IIR(x,zR)£]] c [[£]] for all f e E_.

[

v

Proof. Assume that A generates a positive group (T{t))teP' Then

there exist w > 0, M 2 1 such that |l (T(-t)|! ¢ M e for all t
> 0. This implies that ||T(t)£]] =z M1 &™VF| ||| (£ ¢ E).
- ( ™ £ _ e =it o - |
Hence for A > w(h), f ¢ By !'R(A,A)L[] = ’! Jo e T(t) £ dt \‘
© -Art ron - o - -wt
= (2 e miyg] ] at 2 v [T T TR )] ar =
o o
((w) M)~ 1 |1£]]. similarly for R(A,-2) where A > w(-2). Thus

{(ii) holds. The converse follows from Theorem 2.6. [

Remark. Condition ((2.4) deces not hold for generators of posi-
tive groups on every Banach lattice. For example, it fails for
the generator of the rotation group on C(T), where T is the

l-dimensicnal torus [2, Example 2.2.1231.

Example 2.8. We show by an example that condition (2.5) cannot

be omitted in Thecrem 2.7.
Let B be the generator of the group (T(t))teP on Ll(P) given by

T(t)£ix) = f(x+t). Then D(B) = {feAC(R) : £' ¢ LY(R)} and

-
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AZ e =RV - _
R(}\/B)f(}{) = e\ va e _"17\ dj’ ar\d -—P {/-—-”’B)I(X) = P(/ ,*B)I(}f)
e—}x fx 2" f(y) dv for A > 0, £ e E. For n e Il let

= —_c0 -

2—n+1

n ;
p {f) = (3/2) / I £(x)]| dax
~—N

1 ™ 00
= [f LR ) { < Then E i a
and Eo r£ ¢ L (RY L= pn\f) w} ., Then E is a Ranach
Jattice with the norm ]?f!{o = !If[il + 22_1 p, (£). Of course,
. . L. 1 .
E is isomorphic to L7 (F,u} for a suitable measure u. We show
o)
that R(A,B)EO c EO for all » ¢ R \ {0}. In fact, let » > 0, f ¢
E . Thern
o)
2—n+l
b (R(x,B)£} = (3/2)% ] X T MWolgyy| ay ax <
n Ay -7/ = i - - )
-n
-— T )
2 n+1 2
- n n \ P
'lf]ll (3/2)7 [ ax = (3/4) !!‘|!1. Hence | _. pn{PfA,B)~) < oo,
,~n
Similarlv for A < (0. Let A be the operator on EO defined on
D(RA) = {f ¢ EO n D{RB) : RBf ¢ EO} by Af = Bf. Then it is easy to
see that K \ {0} < p(A) and R(r,2) = R{},B) |, for x ¢ R
{0}. Hence PR{A,A} =2 0 and R{pr,-2} = -R{-),2) =z 0 £for » > O.
We show that D{2) is dense in E. Let f ¢ EO. For n ¢ N
let £ = £.1 -n.,. Then f-f_= f.1 -n.. Hence
“n - Rvro, 2 77 n T T[0,2 7] }
[lf - f !{ -~ 0 for n » =. Moreover, p_ (f-f ) =0 for m < n
n '1 m n
and f-f = f) for > n. Hen 7o f-f j =
p (£-f ) p,<f) or m > D ce [o_q Pplf-f,
™ 0
£ 0 for . e har hown that
Zm=n+1 pm(r) - r n - o We  have  sho that
E := {f ¢ E : there exists ¢ > 0 such that £, . = 0} is
oc 'f0,el
dense in E . Now let f ¢ Eno. Then there exists ¢ > 0 such that
f = (0, It is easy tc see tha*t there exists a sequence £
)[OIE] - n
< ACI(FY szuch that fr,»_ e L™ (F), fn [0.e/21 = 0 and



£ - £ I -+ 0 for n - «, Then f_ ¢ D(A}. Since

|1 £ n 1 n 1

and [{ E!r are ecguivalent ncrms on EE/7 = {f e L°(R) : f(x) =
/ T 3 — g 4 iy —~ . 2 g —_— 2

o for x £ [c,e/2]) a.e.; C Eo, it fellows that len+w £, = f in

g . Finally, we show that A is not a generator. In fact, assume

o

that there exists a semigroup (To(t))t>o on E_, which is strongly

B e—AtT

continuous for t > 0, such that R}, A)f = }O o

4o

large * > 0. For f ¢ EE, T{t)f is ceontinuous in t for the rorm

anéd R(a,A)f = j; e_At T{t)f dt. Sc -t follows £from the

uniqueness theorem for Laplace transforms, that To(t)f = T(t)f

-n .

o)
2

-

(t>0) for all £ € Eoo' Let £t > 1 ané f = 2

- n
Then I;I!lo = !lf[[l = 1, Rut To(t)f = 2 1[2—n,2_n+1]' Hence
£ 2 (P (t)f) = (3/2)". Th T 3 t continuous
]lTo(t),[!O z p (T _(t)f) {3/2) us T_(t) is no ntinuc
for t > 1. 0O
Remark. -A 1is not a generator either ({(see Example 7.3).

3. Perturbation and Framples.

In +this section we present *+wo kinds of perturbations which
demonstrate that there exist many natural resolvent positive

operators which are not generators.

Thecrem 3.1. Let 2 be a resolvent positive operator and

mn

cm

r

B : D(A) » E a positive operator. If <r{BR(,A)) < 1 for

A > g{(k), then 2 + B with domain DI(A! 1s a resclvent positive



operator and s (A+R) < 2A.
woreover, if sup {fuR(u,2)| : uw z X} < =« f(e.g., if A is the
generator of a strongly continuous semigroup!), then

sup {“UR(H;A+B}” UL o2 A} <o

Note: Bv assumpticn, BR({X},A) is a positive, hence bounded

operator on E; we denote by r(BR(X,A)) its spectral radius.

Proof. Let £ € DI{A)Y. Then (b — (A+RY)E = {I - BR{)A,A)} (N - A)F.
— / by _1 V‘m \n

Let S := (I = BRI(>,n)) = 0 (BR(),A)) z 0. Then

R(A,A)SA(A - (A+BY)f = £ for all f € D(2} and

(x = (A+B))R(X,A)S E. Hence X € p{A+B) and

>
Q
I
Q
+
0
[
js)]
(-
o)
Vo]
m

R(A,A+B) = R{),A)S. 2 0, If pu > A, +then BR(u,A) £ BRI(A,R) by

(1.2), and so 1xr{(RR{p,A)) £ r(BR(),A}} < 1. Hence also no €
p (A+R) and R{p,A+B) = 0. Moreover, SLL < SA and R{p,a) =<
R(x,2) so that pR(p,A+B) = uR(u,A)Su < uR(u,A)SA. Hence sup

{[[JurRfp,24B) | = w2 2} <= sup {[uR(p,2)] ”%}“ tpz )] < o if

the additional assumption is satisfied. 0

The £fcllowing examples show that even 1in rather simple and
natural cases perturbations as in Theorem 3.1 may vield resolvent

pesitive operators which are not generators.

Example 3.2. TILet o € (0,1) . Define the operator 2 by

Af(x) = £'(x) + = £(x) x € (0,1]
on the space E = Cc_{0,1] := {£f € C[0,1] £(0}) = 0} with
1
domain D(A) = {f € C7[0,12 =+ f£'(0) = £{(0) = 0}. Thernr A is



,esolvent pcsitive but not a generatcr.

moreover, S(A) = -= and sup ffuR(u,2) ) = w2z 0} £ 1/(1-a).
[ | o PR ; 3\ o~ . ,
EEQQE' Let Aof = -1 with domein D(AO; = D(A). Then AO is the

by

fix-t) %z t

T{t)f(x) =

0 otherwise
Moreover, g{A ) = @ and R{x,A )Ef(x) = e M fg Y fiy) dy
(» € €, f € E}, Let B D(AO) + E be given by
Bf(x) = o fix)/x {x > 0), RE(O) = 0. Let T € E and
g = R{0,2)f. Then ;Bg(x)] = |a/x fg fly) dyv' < o Hf”w- Thus

”BR{O,AO)” £ a < 1, So Theorem 3.1 implies that A = A + B 1is

resclvent pcositive and s{A) < 0. Moreover, for oy 2z 0 one has

-1
= { | Q 1 = T = B¢
uR (p, A} uR(u,AO)Su < uPk({ ,AO)LO , where Su (I BK\M,AO)) .
Since HuR(u,AO)H £ 1 and “SO” < 1/1{1-a) 1t follecws that

| -
sup {Jlur(u, 23 : w2z 0} = 1/(1-c).
It remains +*o checw that A 1s not a generator. One can easily

check that for all » € € ocne has A ¢ p{2a) and PRIx,A)Yf(x) =

-Ax X - » \ b % Ly "0 ey = ;
e % kY IB v “ e’ fly) @y = jO x(x-t)  “Fix-t)e t et {£ € E).
Suppose that there exists a semigroup (T{t}}1_>n which 1is

strongly continuous for t > 0 such that ER{)x,A}Ef =
o -\ +
it £

a e~ T(t}f dt for all £ ¢ F end all eufficiently large

real A. Then by the unigueness theorem for Laplace transforms

(Thecrem C5), for (0 < + < 1, one woulé have T(t)fix) =
(% tz=£1 %) £(x-t) for x 2z £ ard T{t)fi{x) = 0 otherwicse. This

does nct define a bourded operator on C_(0,17.



t follows from a result of Renvamini [ 9] that c (0,1

-

gemart
isvisomorphic acs a Banach space to a space C{K) (K compact). Thus

e 3.2 vields an operator B on C(K) such that o (B) = ¢ and

~ gxampl

¢ saticfi IR s Sl y D L L s N
(pe resolvent satisfies sup {27 "R(},B] =420, nenN <=
sup {”AR(A,B)” : A z 0} < « , But B is not a generator. Of
course, B is not resclvent positive bv Corcllary 2.4.

Let E = Lp[o,lj, where 1 < p < «. Choose

E{im—E—l—e— 3.3.

« € (0, (p=1)/p). Define the operator A by

Af(x) = -f' (%) + la/x)f(x)

gith domain DI(A) = {f ¢ acro,11 : £' ¢ tPro,17, £(0) = 0}.

Then 2 is resclvent positive, Moreover, =(A) < 0

sup {[[AR{A,2)] =+ A 2 0} < . But A ies not a generator.
p i i g

! with domain D(A ) = D(a). Then Ao

Proof. Let A f = -f o

generates the semigrcup (To(t))+>p on E given by To(u)f(x)—

and T (£)f(x) = 0 ctherwise. Moreover,

ot

fx-t) for x 2

s(a)) = -« and R(0,A)f(x) = J§ £ly) év. et B : D(R) - E be

defined by Bf{x) = (a/x)f(x). Then by [11, Lemma 1]
BR(O,AO) ¢ (B} and HBR(O,AO)H = ap/!p-1). Hence Theorem 3.1
implies the first assertions stated above. It remains to show

that 2 is not a generator. It is not difficult to check that the

o =Ax [ MY v Y £ (v)ay

resolvent of A is given by RN, A)f(x) = x e 0
= /3 <% (x-t) % (x-t1e At (4 > o). Let E, = {f ¢ E : there
exists 6 > 0 such that £{¥) = 0 for almost all x ¢ [0,8)].
Define T (f) EO - E by T(t) =0 1if + z 1 and

% tx=t)"% Fl-t) if x 2ot

C otherwise



N
|

[

t < 1. Then T{(.)f 41is continucus from [0,«») into E and

if 0 2

LB E =f§ e T(t)f at for all i =z 0 if £ € E,. Thus if
there exists a semigroup (Tl(t))t>0 which 1is strongly con-
cinwous for t > 0 and such that R(,A)f = [7 e " T, (£) £ at

(f € E) for large &, it follows from the unigueness theorem for

Laplace transforms that Tl(t)f = T{t)f for all £ € E , tz2 0.

put for t € (0,1) the mapping T (t) is not continuous (from EO

with the induced norm intoc E). In fact, let B8 > 0 such that

l1-op < Bp < 1 , and for n € N , let £ (x) = 1[1 () XHB.

Then f_ € E and sup {|f

v

| 1 _ap i _ 1-
”T(t)fn”g = ft x4/ (x-1) *P In(X—t)p dx £ P IO t fn(y)p/yap dy =

£OF fl_t g *BIP 9y .« for n -+ = since (a+BYp > 1. O

1/[1—\‘ - 4

Proposition 3.4. Let (X, un) be a2 oc-finite measure space and E

= LPx, ) (1 £ p < ) [resp., X locally compact and E =

CO(X)]. Let A be a resolvent positive operator. Suppcse that m

X =+ [0,») 1is measurable (resp., continuous) such that

mi{x} > 0 a.e. {resp., mi{x) > 0 for all x € ¥X) and (1/m)f € E
for 211 £ € D(A).

Let D(A#) = {g € E : m-g € D(3d), (1/m)A{m-g) € E} and

A#g = (1/m)A{m-g). Then A# is a resolvent positive operatcr and
sia®) £ s(a).

Proof. For X > s{(A) let P#(x)f = (1/m)R(X,A) (m+f) (f ¢ E).
Then R#(A) is a positive, hence bounded operator. It is easy to
show that R (A) = (a-aH)71, [



Fag

EEEEE&E 3.5. Let E = Lp[O,lj, 1 p < », and A be given by Af

A

_ f' with D(B) = {f € acf0,1] : £' ¢ 0,11, £(1) = 0}. Then

A is the generator of the semigroup ('I‘(t))JC>O given by T (t)f (x)

- f(x+t) 1if x+t =z 1 and TI(t)f(x) =0 1if x+t > 1. Moreover,
A 1 — X

s(d) = -» and RI(3,B)f(x) = e [, e M oe(yy dy (f € E).

Let o € (0,1/p) and mix) = x*. Then 1/m € Lp[O,l] and since

D(A) © C[0,11 it follows that (1/m)f € LPr0,11 for all £ ¢

T
L
#
T

D(2). By Proposition 3.4 the operator A is resolvent posgi-

#) ={f €E :mf €D(2), (1I/mA(m-£f) € E}

tive, where D{a

and A#f = (1/m)A{m.£f) = x—a(xaf)’ = f! + (a/x)F.

D(A#‘ is dense in LPEO,lj. In fact, D(Ra) N { £ ¢ Lp[O,l] :

J

0 for some € > 0} & D(A#) . But DI(A) is dense in

Flto,e3

Lp[O,l], and it is easy to see that every £ € D(2) =

{g € AC[O,11 : g' € Lp[O,lj, g{l) = 0} can be approximated by
functions in D{A) which vanish in a neighbecrhood of 0.

assume that

#

A" is not the generator of a semigroup. In fact,

there exists a semigroup (T(t))+>o which is strongly continuous

-At e
ficilent-

th

# o .
for £ > 0 such that R{),A")f = IO e T(t)f dt for su

ly large ». It is not difficult to see that

P(A,A#)f{x) = x ¢ AX fi e—ky fiy) v dy
= fé~x e—’\t ¥ ¢ fix+t) (x+t)% at Similerly as 1in

Example 3.3 one shows that for 0 < t < 1,

T(t) f{x) = % % (x+£)® Flx+t) for x+t < 1. This does not define

a bounded operator on Lp[O,l].



|
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# c ;

ce For p * 1, R{i,27) iz the adjeint of R(A,A) in Example
Note .

;.3 on 1.9¢0,1) iwith 1/p + 1/q = 1). Thus AF{A,A") is

nOr-m—bounc?N?, for A + o, This is also the cace for p = 1. One

_an arcue as follows. AR 0,ah ] = [aeo 2% ] = hro,at ) =

- A4 -0y } % o N
sup {Aya e - fa bl e dx : ¢y € [0,11} = ”AR(A)”, where R (1)

denotes the resolvent cf the cperator A on CO(O,1] in Example

1/(1-a) (x z 0., [

A

L
3.2, Hence hz0,a%)]

Remark. In the literature, the first example of a resolvent
Remarls

generator was given by Battv and

Q

positive operator which is not

cn C_(F). A similar example on Ll(F) appears in [8,

Davies [77 R 5
o

Example 2.2.111. Independentlv, H.P. Lotz constructed an example

by a renorming procedure similar tco Example 2.8 [(unpublished).

4. Positive Resclvent as Laplace-Stieltjes Transform

For definition and properties of the vector-valued Riemann-

tieltjes integral and the ILeaplace-Stieltjes transform we refer

to Appendix B and C.

Let A be a densely defined resoclvent positive operator.



1. There exists & unique stroncly continucus familv

peoren < 3
ﬁ(t))tzo of positive operators satisfying S(0} = C and S{s) <

g(t) for 0 = s £ £t such that

(A > si{B}))

I
—
O 8
D
|
S
(—1—
Qu
107]
(+

(4.1) ROV, R)

(where the integral converges in the operator norm).

For the proof of the theorem we use the following construction

which is due to P.R. Chernoff (unpublishedj.

Construction 4.2. Iet A be a resolvent positive operator

satisfying s(2) < 0. Then for A > 0 one obtains from the

resolvent equation

(4.2) R{(0,2)AR{X,2) = R(0,A) - R(XA,A) £ R(0,D).

: = inf {R(0,8)q| : 2£ £ g} (= |r(0,2) || if E is a

Let |f

=
i
ES

Banach lattice). Denote bv El the completion cf E with respect to

this norm. For f € E, A > 0 one has

|

AR(O,2) £ = inf {|R(c,A) g : * JROL,RA)E £ g)

| £ £ < h)

A

inf {||R(0,A) R(}\,A)R

< inf {/rR(0,3)h] : £ £ £ h} (by (4.2))



Thus R(A,2} has a unicue continuous extensicn R, (M) cn E, which

Satis fies

A
[
—
P
V]
D

4.3 Ry

1t is cobvious that (R1!k))k>o is a pseudcresolvent. Since
D(A) C Rl(A)E] (A > 0), it has a dense image, and sc it is the

resolvent cf a densely defined operator A, on E [i5, Theo-

1
£

}—

rem 2.6 1. It follows from the Hille-Ycsida theorem that Al is

the generatocr of a streoncgly continuocus centraction semigroup

Observation 4.3. The operator R(0,A) satisfies

A

(4.4) Izt0,n) £ Hle (f € E).

(In fact, let £ € ®E and *f £ g. Then *R{0,A)f £ RI{C,A)q.

[R(0,2)qll. Thus [[R(0,R}f| < inf {Ir(o,n) g -

Hence ”R(O;A)fﬁ s

t £ £ gl = Hf”l.) Consequentlv, the extension Rl(O) of R{0,R)
onto E, maps E. into E. Moreover, (R, (})} (> = 0 included)
is a pseudoresclvent too. Thus Rl(O) = R(O,Al). This implies that
(4.5) D(Al) = P(O,Al)E1 C E.

The closure E1+ of E+ is a cone in E which is invariant under
R(A,Al) for A z 0 This ccne is proper [in fact, let £ € E. .
n (~El+), then b(O,Pl)f € E, r (-E,), henc R(O,Al)f = N, and
so £ = 0J]. Thus (B, ,.B, ) is an crdered Berach space and the



gemigroup (Tl(t))t>o is pesitive. (If E is a Banach lattice,

+hen E1 is a Banach lattice as well.)

r1lustration 4.4. In order to illustrate the construction 4.2,
Iriiustrat o0

consider the cperator A# on Ll[O,lj given in Example 3.5. Then

- bl
r0,29) 700 = =7 L £(y) v* ay. mhus ], = [rio,af)[g)) =
1 -a 1 o o1 a )
) X [ 1E T v® ay ax = [§ [£w) ] vy jg x % dx dy =
1, .1 1
1/{1-a) fO | f(y)| v dv. Hence E1 = L {[0,17, o vdy) and
2% (x+t)® f (x+t) if x = 1-t
Tl(t)f(x) =
0 otherwise
for all f ¢ El’ t 2z 0.
Proof of Theorem 4.1. Uniqueness follows from Theorem C5, so we

have to show the existence of the representation (4.1).
a) We assume that s{A) < 0. Using the construction 4.2 we

define S{t)f = fE T,(s)f ds € D(A;) « E for £ € E. Then S(t)

¥

is a positive operator on E and hence bounded (t z 0). It is

clear from the definition that 0 = S{0) < S({s) g S(t) fer 0 < s

< t. Moreover, let t > 0. Then for £ ¢ El¢’ A1 fg Tl(s)f ds =

T,(t)f - f£. Hence [; T,(s)f ds = R{0,A)f - R(0,A)T (t)f <
L - d. ES

R(O,Al)f. Thus,

(4.6) S{t) = R(0,A) t 2z 0).

Tn particular, sup {[|[s(t)]] : £ 2z 0} < . We now show that
S(.) : [0,e) =+ _7(E) is strongly continuous. Let £ € D(2),
g = Af. Then [S(t+h)f - gi{t)f] = |[R(0,2) (S(t+h)g - S(t)g) ] =
ls(t+h)g - S(t}gﬂl - 0 for h = 0, Here we made use cf (4,4),



tD

is strongly continuous on a dense subspace. Since

ThuS s(.}

ISL) is bounded, this implies the strong continuity on the whole
space -

gince S (.) is bounded, it follows from Proposition C3 that the
ﬂwegral in (4.1} converges in the operator norm for > 0. Let
¢ €E. Then Jg e\t gy E = /e et T,(E)E dt = R(1,A))f =
R(x,B) Thus {(4.1) holds and the proof is finished in the case
when s(2) < 0.

b) Let now s(A) be arbitrary. For w > s{(A) consider the
operator R = A - w. Then s(B) < 0, so by a), there exists a
strongly continuous increasing function Si!.) : [0,=) = J(E)+
satisfyving Si{O) = 0, such that R{u,B) = ge_“t dsi(t) for
L > 0. Hence R{},A) = R(y-w, B) = fg e At oWt dsi(t) =
[g e At ds_{t) for all > w, where S _(t) = g e"s dsi{s) {by

Proposition R4). Clearly, SV(.) is strongly continuous, in-
¢

Because of the unigueness

creasing and satisfies SW(O} = 0.

theorem (Theorem C5), it follows that Sw(t) = Sw,{t) (t =z 0)

for 211l w, w' > s{(A). This proves the theorem in the general

case. O

Let A be the generator of a strongly continuous

Example 4.5. a)

positive semigroup (T(t))+>n. Then S(t)f = E T{s)f ds for all
£f€E, £t =2 0.
b) If A is the operator in Example 3.2, then
x% fg v % f(v) dy if x £t
S(t)fix) = - _
i B v ¢ f(y) Ay if x> t
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5. ppproach via Bernstein's theorem.
. APPL

The representation of a positive resolvent by a Laplace-Stielties

tegral can alsc be obtained using Bernstein's theorem instead
of the Hille-Yosida theorem iF additional assumpticns on the
space are made. On the other hand, it is not necessary to assume

that A has dense domain.

t E is an ideal in jol if for

o

pefinition 5.1. We say th

f €

&
\Q
T
=
O
[[7a%
Q
IA
h
H.
=3
i}
H
}_l
o
n
o)
™
=

Note: Here we identify E with a subspace of E'‘' (via eval-

uation}). Then by (Al), E_'ME =F_ (i.e. E 1is an ordered

subspace of E").

Lemma 5.2. Suppose that E 1is an ideal in E''., Then the ncrm

is order continuous in the following sense. I£ (fn)pﬁﬂ’ is a
decreasing secuence in E_ , then {fj)ﬂFN converges strongly
1 i N

fand 1im £ = inf £ )

(and 1im .. £ inf ey £

Pronof £ (a2 1 0] + { = 3 < > ' 1

Proof. (cf£.042,I1 5.9J) Let FO‘¢) Lnfngm fn,¢ (¢FE+). Then

F_ oz Ei + R is additive and positive homogenecus. For YFfE' let
{(v) =7 (b Y=-F (), r W ) € B! 1 + - = vy .

F{v) oV FO(JQ) where 1,U2 E. such that Ul wz v

Then F iz well-defined (since Fo is additive), linear and posi-

tive. Thus FfE'' and 0 = F £ f for all ntM . Since E is an

ideal in E'', it follows that F € E . Moreover, by Dini's theo-

73 < £ T A dam S ©) — {4c dalley
rem lim Lo, \hn,®> = <F,¢° uniformly on U, := 4¢€E;: ”wH=¢;.
Hence lim_ N{(£f -F} = 0, where N denctes the cancnical half-ncrm



(A2) - Since fn—F z 0, N(—!fn—F}) =0 (nehly . Thus
1. pr-F“N = 0 , which implies that limn+mfn = F (byv (n4),
gince the cone E, 1is normal). [

EEEEElEE 5.3. aj) If E 1is reflexive, then E 1is trivially an
ideal in E''.

b) A Banach lattice E 1is an ideal in E'' if and only if the
norm is order continuous (in  the sense cf Lemma 5.2.)
(seel42,1I18§5]) . For example, Lp(X,u) ((X,p) & o-finite measure

A

and Cq have an order continucus norm, but

space and 1sp<«)

clo,17 has not.

ol

function f : {a,») = E 1is called completely

F
C

Definiticn 5.4.

infinitely differentiable and

=]
m

monotonic if £

[\
(@]
I-h
O
=
\}
?.—l
l-.l
>
A\
9]
=3
I
[>)
s

(5.1) (~13% ™ 5y

5 Assume that E 1s an ideal in E''.

e o

(N

Theorem

Let f : {a,») * E Dbe a completely monotonic function. Then

there exists a uniquely determined normalized increasing function

a : {0,*) » E such that

40 () (A>a) .

D

(5.2) F(A) = j:

Then X + <£(}),¢> is completely monotonic.

' theorem there exists & unigue normalized

=
I

such that

increasing function a_ : (0,*) =
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From the uniqueness theorem {(Theorem C.5}) it Ffollows that a¢(t)

is additive and positive homogeneous in ¢ for every tz0 .

Thus for every t20 there exists a unigue ®¢{t) € (E’)i such

that <¢,a(t)> = o (t) for all ¢€E] . Let Ax > max{a,0} . Then

—)\
e "Fe (r) +

™
gl

for every o <fIA) 0> 2 f; e~ASdu¢(s) =

¢
- A —At
Aft e "Fu (s)ds 2z e "Ta (%) . Consequently, <a(t),¢> =

At
e

f{x}) , and our assumption on E

implies that a(t) € E, . It follows from {Al) that

a : {(0,x}) = E is increasing. Since the integral in ({5.2)
converges for everv A*a and ¢ € EL , we conclude from Propo-
sitien C.1 that the integral e~ do(t) converges 1in the
norm for every A>*a . Finally, (5.3) implies that <£(X),¢> =

At

(e —At e de(t),¢> for all ¢ € E; . Hence

JO\“ d<a{t}) ,¢> = <J

{5.2) holds. This proves the existence. Unigqueness follows from

Thecrem C5. 0O

Remark 5.6. a) It is not difficult to see that the converse of
Theorem 5.5 holds as well, i.e., if £ 1is representable as in
(5.2) then £ isg completely monotonic.

b) There are other results related to Theorem 5.5. Schaefer [40!
obtained a characterisation of completely monotonic sequences
with values in an ordered locally convex space as moments of an
increasing function on [0,1] (Hausdorff moment problem) .
Another vector-wvalued version of Bernstein's theorem has been

obtained by Rcchner [10I1., He defines the Stielties integral

purely in terms of the ordering (and the precise definition can



proof) . In ocur context we need that the

<
o
T
J
D
D
3
-
3
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g

Riemann—Stieltﬁes sums converade stronglv to the inteqgral.

Theorem 5.7. Suppose that E 1is an ideal in E''. Let 2 be a
Theol=:t
resclvent positive operator. Then there exists a urique streongly

continuous familv (5{t}) of operators on E such that

£20
0 = 8(0) g S(s) = S(t) (Ozsgt) and
© -t
(5.4) ROLEVE = [T e Mds ) (x>s (B))

(where the intecgral converges in the cperator norm).

Procof. Unigueness follows from Theorem C5. We show the existence
of the representation (5.4). Tet £ ¢ E, . Then P(.,A)E 1is a
completely meonotonic function from (s{A),») intc E . Bv Theorem
5.5 there exists a unique normalized increesing function

S(,,f) : (0,») -~ E such thet
(5.5) R(A,B)F = fg e™ "% das(t,f) (A>s(A)) .

From the unigueness theorem (Thecrem C.5) it follows that feor

every tz0 the mapping f - Sit,f) from E, into E, is
additive and positive homogenecus. Since E=E-F_, there
exists a unicue linear operator S(t) on 2 such that
S{t)f = £(t,f) for all £ € B .

Since £/(.)f is increasing for a1l f€E, , Sfi.) is increasinc



Moreover, S{.) is normalized {since S(Q,f) is for ail
£ € E+). Let u>s (A} . Then it follows immediatelv from the
definition that RP(p,A}S{.) and S(.)R{p,A} are also
normalized. Moreover, for all r>s (4) , f: e_;\t d{(R{p,2)s(t))

¢ © -/t N I .
= R(pu,A)R(x,A) = R{(),A)R{p,A) = fo e di{sit) (R{(3x,2)). Hence it

cllows from Theorem C.5 that

™

(5.6} S(t)R(u,n) = Rlp,R)S (%) (tz=0).
Now let £ € D{A) . Then for all x> max{s(A),0} ,
o -2t - - - = o -AT .
[0 xe™M T ates) = £ = RG,A) GE-RF) = [T ae TSt f -
o =t \ _ (e _—At £ _ (@ -2t Lo
Jo & "TAis(R)Af) = [ je dsit)f - [7 ae "TS{t)Af dt =
(2 e P asiere - [7 e M a(fFs(s)afas)
o " T o) o) R
[In order to Jjustify the last step, we first observe that
Af = 9,79, for some g,,g,€E_ . Hence t - fzs(s)Afds is of

bounded variation as the difference o¢f increasing functions.

r

Morecver, the Riemann integral | _S{s)Afds exists in the nocrm by

the remerk following (B8). Hence <S(.)2f,4> 1s Riemann- and soO

Lebesgue integrable cn every interval [0,t] {t>0) for every

¢ € E' . It fcllows frem (50,1 Thecrem 6fa] that
-\t b -3
[2 he™ Fes(tyag, goat = [0 ae”MT a(ffcs(s)Af,4>d5)  for all b>0.]

w =)t o - oo—t SR -
Thus fo e A“d(tf) = fo e Atds(t); - fo e d(f;sis)Afds) for

th

1 a»>max{0,s{(A)} . Consequently, by the uniguenesc theorem,

(5.7) tf = S(t)f - ["S(s)Afds (tz0)
This impliies that S{.)f 1is continuous for all £ € DI(A) .
NMow let g t E, 0. Then lims¢t 8{s)g =: h, and



lim_,, =: h_ exist by Temma 5.2. We have to shcw that h,=h
Let Y>s (R) . Then bv (5.6}, R(A,A)h+ = lims¢t F{),R)3(s)g =
limg . S{s)R(A,A)a = S{t)R(,,R)g (since R(),A)c € DI{A})
= lims#t S{s)R(),RA)g = R(R,A)(lims+t Sis)q) = R{},A)h_ . Since
R{},A} 1s injective, it folicws that h, = h . [

+ -

Remark 5.8 Suppese that A 1s a resclvent positive operator

such that a normezlized increasing function S ¢« [0,=) = “XE)+
exists such that (5.4) holds. Then the proof ¢f Theorem 5.7 shows
that £ 1s strongly centinucus.

Remark 5.9 Tt is not difficult +to deduce the Hille-VYesida

theorem {in the form stated in the introducticn to this chapter)

6. The integrated semigroup.

Let A be a resclvent peccsitive operator. We assume that there

L

exists a strongly continuous increasing function

S : [0,=) =~ {E) satisfying &(0} = 0 such that
5 » =)t
(6.1) R(y,2) = [T ™" as(x) (> )
o o
{in the weak operator topclogy) or some Xo 2 sfA) . By the

results of the last section such a representation cf P/}, R2)



Note that {S(t))tzo is uniguely defined, and we call !S(t))tzo
the 1integrated semigroup generated by A . (0f course, this

terminology is motivated by the case when 2 is the generator of
a strongly continuous semigroup (T(t))t>O , because then S(t) =

jg T(s) ds .)

The following proposition shows that the spectral bound s(A) is

determined by the asymptotic behavicor of S(t) for t + = .

Propesition 6.1. a) For all A € U satisfying ReXx > sii} ,

where the integral converges in the operator norm.

by If s{(2) 2z 0 , then s(A) = inf {w > 0 : there exists Mz(0 such
that |ls(t)] = Me"t for a1l otz 03} .

c) If s{A) < 0 , then limt+m §{(t) = R{0,A) and s({np) =
inf {w<0 : there exists Mz0 such that IR (0,a)-s(8)] = me"t

for all +tz 0} .

Proof: Let f€E+, ¢€E; . Denote by s the abscissa of con-

vergence of the integral f; e—kt d<S(t)f,¢> . Then by [51,

ch. 5, Thecrem 10.1] € 1s a sincular point of the analytic

, o =) ) .
function A =+ fo e t d<s(t) £, ¢> (Rei>s) . By the unigueness of

analytic extensions this implies that sse (R) and
oo -\t

<R(\,A)f, o> = fo e " d<sit)f,¢> (Rer > siB)) .

From this a) follows by Propcsition C3. Assertion b) follows from

a), Propositicn C3 and the uniqueness cf analytic extensions.



show c)}. Let (A} < 0 ard w € (s{A),0) . Let

Now we
t  —-wr . ;
5, () = [~ e ds(r) . Then 1lim___ S;(t) = R(w,R) (by (6.2)).
In particular, Sl(t) < R(w,A) for tz0 . So
p’ } - = [ S S} = © WS, =W8S <) = « ws \ =
05 PIOR) - S(t) = [ ds(s) = [ ee ds(s} = [, e"" ds (s) =
lim__ ewssj(s) - eWtS1(t) - wff ewssl(s) ds
wt © WS - P © WS
= -e 8 (t) - w[ e"7s (s)és = (-w)[ S, (s) ds
=] +
< (—w)ft e"Sde P(w,n) = " R{w,2) . Thus
{ < Wt = A
[R(0,2) = s(t)| < Me for some Mz0 and all tz0
Conversely assume that w < 0 such that [[R(0,2) - s(t)] <
e (£20) . Let A > w . Let s (¢} = [s e % as(s)  (t20)
It follows from (6.2) that
(6.3) S{t) = jg ds(s) £ Ri0,A) for all +tz0 .
Let 20 . Then for all =rzt , 0 s S (r) - & (t) = [T &% as(s)

At Y =) - )
< e T asis) = e M (s(r) - sir)) £ e R(0,M) - s()) .
- _ -(A=-w)t - -
Consegquently Hul(r) -81(t)” < Me for all rzt . Thus
- -
Slft) = f; ™S ds {s) converges in the operator norm. We have

proved +that the integral (6.2) converges for all ) > w {in the
cperator norm). Ry the unigueness of analvtic extensions this

implies that s(2) £ w . This finishes the procf of c). [I

’

Remark 6.2. If A is the generator of a pcsitive strongly
continuocus semigroup, then Propositicn 6.1 implies that

-it \ . .
Fl),n) = f; e "tT(t)at , where the integral converges 1in the

operatcr ncrm, for all AfC  such that Rei > s{2} . (Here

b -Ait . . .
fo e T{t) dt 13 defined stronglv.) However, it may happen that

s{(A) < w(A) {see [227).



jow We establish the relaticns betweerr 2 and the integrated

semigroup. The operatcrse 2 and S(t) commute. In fact,
(6.4) S(t)R{x,A) = R{),A)S(t) (A>s{2),t>0)

[This i1s provec as {5.6).] As a conseqguence,

(6.5) £f € D(A) implies §S(t)f ¢ D{A) and

(6.6) fg Sis)Af ds = S{t)F - tf for all t > 0
Moreover, fg S(s)f ds € D(A) for all f ¢ D(A) and

- it e s

(6.7) Ajo S{s)f ds = S{t}f - tf .
Procf : (6.6} is shown as {(5.7) Ther {(6.7) follows since A is
closed. (0

It feollows from (6.6) that

1
( : Qi+ = £ £ ¢
(6.8) llmt»@ tS.,)f £ for all £ € D(A)

The integrated semigroup can be characterized as the sclution of

an inhomogeneous Cauchv proklem.
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proposition 6.4. Let
propostton

: a1~
a) Let vit) = s{t)f {(t z 0) Then v ig continucus L
differentiable and
v'i(t) = Avit) + f (£ = 0)

. i s Fferentiable
e —- . . 1 Lo
b) Conversely, 1if v : [0,«) - E is continuousi¥ di

R (6.9)
such that vi{+) € D(A) for all + =z 0 and such that | ’

holds, then wv(t) = S{t})f {( t =z 0).

. . So let v
Proof. a) follows immediately from (6.6) and (6.5) -
) . +y¢ . Then w
satisfy the assumption of b}. Let wi(t) = vit) - S (%)=
_ _ _ , . Ay = (t) € D{(A)
is continuously differentiable, satisfies wi{0) = 0, Wit

and w'(t) = Aw/!{t) for all +z20 .
€ p(a) . Let the

Let F = D/A} S E . Then R{A,A})F € F for all

cperator A_ on F be defined by A f = Af , D(Ao} -

2y € p (A}
{f € D{A) : Af € F} . Then it is easv to see that p (B P

and R{a,A ) = R(A,A);F for A € p{RA} . Since

()

Aw(t) = w'(t) = lim  Zlwlt+h)-w(t)) € p(a) =F + *F

that wit) ¢ D{AO) for all +20 ., Thus w 1

cf +the Cauchy problem w'it) = Acw(t)

DCAO1 is dense in F by definiticn and
) B 4 1,71 that
fby (1.3)). So it follows from [36,Chapter ~7

wit) = 0 (t =z 0Y. [J



ProEosition 6.5. Let s,t > 0 . Then

(6.10) S(s)S(t) =

In particular, S(s)S{t) = S(t)sSis) .

If f € D(R) , then S(s)S(t)f ¢ D{(A) and

(6.11) AS(s)S({t)f = S{s+t)f - S(s)f - s{t)f
Proof Let s > 0, £ ¢ D(A) and vit) = fg (S(s+r)f-S(r)f)dr =

f§+t S{r)f dr - fiS{r)fdr - fgS(r)fdr (t20) . We show that

v'(t) = Avi{t} + S(s)f . Then it follows frcm Proposition 6.4.Db)
that

s+t \ - S ) _ t - - af £
(6.12) fo S{r) fdr fo S(r) fdr fos(l)fdr S(t)s(s)f

We have by Propcsition 6.4., %Es(s+r)f

and %;S(r)f = AS{r)f + £ . This implies that

avit) =[5 (as(s+r) £-as(r) ) dr = [T S(S(s+r)f-Sir)f)ar =

S{s+t)f = S(t)f - S(s)f . Hence, v'(t) = S(s+t}f - S(t)f =
Av(t)+S({s)f . Thus (6.12) is proved and so {6.10) holds on D(A).

et f € E be arbitrary. Applying (6.12) to g:= R(},A)f (where

L

A > s{A)} one obtains {using (6.5)) that

+ +
R(A,A)[fg's S(r)far - fi S(r)£ dr - [ s(r)fdrl = R(},A)S(t)S(s)f.
Since R(X,A) is injective, {6.12) follows. The remaining

assertion (6.11) is a conseguence of (6.10) and (6.7). [

Remark 6.6. a) Formula (6.10) corresponds to the semigroup



pl,operty. In fact, suppose that {T(t)}t>0 is a strongly con-
rt

tinuous family of positive operators such that Jo T(s) ds
::exists strongly. Let §&({t) := fg T(s)ds (tz0) . Then {T(t))t\O
a semigroup if and only if (S(t)),__, satisfies (6.10) (this

C >

is
ﬁs easy to show by differentiating (6.10); resp., integrating the
gemigroup formula) .

p) The preceding procedure can be reversed. One can start from an
"integrated semigroup" and obtain a resolvent positive operator.

(A:e precisely, let S : [0,x) +~;(E); be a strongly continucus

function such that

(i) S(0) = 0

wt

(i1) [ste) ]| = Me (t z 0) for some weR, M20;

[\

(iii) (6.10) holds:

(iv) for all £ ¢ E+ there exists +tz20 such that S((t)f = 0

<

Then s is increasing and there exists a {unique) resolvent

positive operatocr A such that s{A) £ w and
@ ‘-/t -
R{(x,A}) = fo e A ds{t) for all A>w .

The proof can be given by showing that the operators R(A) :=

7; xe—kt S(t)ydt (h>w) form a pseudcresolvent. We omit the

details.

7 The Abstract Cauchy Problem.

Let A be a resolvent positive operator. We assume that either

D(A) is dense or that E® 1is an ideal in E" (see section 5).



Theorem 7.1. For every f ¢ D{(A2) there exists a unigue conti-
Theorem
nucusly differentiable function u : [0,«) = E such that

u(t) € D(A) for all t 2 0 and

(7.1)

If £ 2 0 , then u(t) 2z 0 for all t 2 0 . Morecver, the

soluticn of (7.1) depends continuously on the initial wvalue in

the following sense: Let f£_ ¢ D(A2) such that lim f = f in
N n N+ 1N

the graph norm. Denote by u the sclution of (7.1) £for the

initial value fn . Then un(t) converges to u{t) in the norm

uniformly on bounded intervals.

Proof. Unigueness is prcved as in Proposition 6.4. In order to
prove existence we assume that s({A) < 0 (otherwise one con-

siders A-w instead of A for some w>s (A)). Denocte by

(S(t})tgo the integrated semigroup generated by A . Let
f € DAz} and define uf{t) = S{t)Af + £ {(tz0) . Then by
Prcposition 6.4 u'l{t) = AS(t)Af + Af = Ault) ft20) . Thus u

is a sclution of (7.1).

Now let fn € D{(A2) such that limn+wfn = f in the graph norm.
Let un(t) = S{t)Afn + fn . Since ‘S(t))tzo is strongly
continuous, it follows that un(t) converges in the norm to
u(t) uniformly on bcunded intervals. Finally, assume that
n < f € D{A2) ., Then using (6.8) and (6.11) one obtains
u(t) = S(E)AE + £ = lim__ Z(S(s)S{L)Af + S(s)f) =

llms+o é(s(s+t)f—5(t)f) . Hence ult)z20 , since S(.) is in-

creasing. [J



BEEEEEE 7.2. a)y If D{(A) is dense, then alsc D{A2) is dense.
In fact, let Jfp{B) , then T = DI(R) = (R{),A)E) = (R{i,A)D(2))
c (R{},B)D{A)) = ((R{X,A))2E) = D(R?) .

p) Irn general, there does not exist a continuvously differentiable

solution of (7.1} for every initial value in D(A) . In fact, if

D (A) is dense, this would imply that 2 1is the generator of a
strongly continuous semigroup (see [30, ch.I Thm. 2.1271 or [33]).

¢) The continuous dependence of the solutions on the initial

=

('alues ic no longer guaranteed if in Theorem 7.1 one replaces the

graph norm by the norm. In fact, if D{A) is dense, this implies

that for every t z 0 , the operator To(t) given by T {t)f

Il

tYAf + £ (from D(Az2) intec E ) has a continuous extension
T(t) on E. It is not difficult to see that then (Tft))tzo is a
strongly continuous semigroup whcse generator is 2.

d) If A is densely defined, an alternative proof of Theorem 7.1

can be given using the construction 4.2.

Under more restrictive assumptions Theorem 7.1 can be sharpened.
We need the following correspondence between the asymptotic

behavior of S{t) fcr t+0 and ARI(X,A) for A»e .,

Propcsition 7.2 Let (S(t))t>o be +the integrated semigroup

generated by A . The following are equivalent:

| < o where L >s (R) .
o
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Pproof. Tet wfR . Then cordition (i) as well as cordition ({ii)

holds for A 1if and only if it holds for 2A-w fobserve that the

integrated semigroup {Sw(t))t>0 generated by A-w is civen by
t -ws -wt (. —sw -

g (£) = f: e dsis) = e S{t) + wjo e Ci{g) deg). Thus we can

w O

assume that s({A)<0 .,

. 4 vy e s
Assume that (i) holds. Ther M := SUPn . 4o ’1/t}ﬂsnt;“ < e
<
5 w ., =Xt N =Xt ooy .
Hence ”AR(A,A)” = ”fo A2e S(t)dth < fOAZ_e L{?’hult}“dt <
R ~-At \ : .
Mjokzte dt = M for all >0 .
Ccnverselv, assume that sup1>q”XP(A,A)”<w Let t>0 Choose
1 = Jaey 2 1t . t ~liaiay <« anfE"hS.a
X o= T - Then O:Eu\t) = :Io iS{g} = eAfo e “dS(s) = era ds{s)
. . . ‘ 1 ,
£ eAR{A,2) . This implies that supt>o(:)”8{t)“ < « , The last
= C

assertion follows from (6.8). [

Remark. The argument in the prcof 1is due to G. Greiner

for

3
Q
n
t
03
it
B]
3
®
o}
t

(unpublished) whc used it tc prove a correspondi

the behavior of S{t) for to= and AP, R} for »+0 when A

is the generator of a positive semigroup (cf. [1

Example 7.2. a) The operators given in Example 3.2, 3.3 and 3.5
setisfy the equivalent conditions of Proposition 7.2. Morecver,

they all are densely defined.

k) Cecnsider the operator -2 , where A 1is defined as in Exampl
2.8. on E_ <= L iF}y . Tet (g8(t)), .. be the integrated semigroup
O C=uU -
. (e . e i
generated by -2 . Then Sit)f(lx) = jozgx—s)gs = jv_+f(y)dv We



N|
o0

]
show +that lim_ %hS't)H =~ . Let t_ =2 and
= oh _ Hell = el = -
fn = Z 1[__,2 no g4 Then ity = thl = 1 . Moreover,
0 for x £ =2 0
- n -
S(tn)r(x) = 27x + 1 for -2"% < x < 0
1 - 2% for 0 < x g 277
-n
0 for 2 < X .
57N
. 3,n+1
{ y = (2 £ (1) =
Hence p_ ,(S{t )f) (5) [ s(t ) f(x)dx
-n-1
2
3, n+l, -n I . ' -1
) (1/8y2"". Hence, “(1/tn;s(tn)L >t P (S{t ) =
1,2,n+1
= g(?)l - for Naow o [
Lemma 7.4. Suppose that 2 1is denselv defined and
sup [AR(x,2)] < « where AC>S(A) . Let (S(t))+\0 be the
; Cz

TAzA

integrated semigroup generated by A . Let £f€E and t>0 . Then

Si{t)f € D{A} if and only if S{.)f 1is differentiable in + . TIn

that case,

(7.3) g S(s)f = AS(£)F + £ .

’ dsis=t

Proof. By Proposition 6.5 . we have S(s)S8(t)yf ¢ DA} and

1o iy \ = 1., | = 1,4 . , .

;AS(S,S(t,J + =S{s)f = :(u{t+5)f-5(t);; {g>0) . Since bv (7.2)
, 1., . ,

lim_ o :S(s}q = g for all gfE , the asserticn follows because

A 1s closed.

Proposition 7.5. Suppcose that E is reflexive,

" N .
3R (a,8)]] <« « for some . > s{A) then DI(A) is

£

£ sup,
-

n/
-
@]

o

ense.
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procf. Let ftE . Since norm hcunded sets in E are relativelw

weakly ccmpact, there exists a limit point g cf AR{A,A)f for

A - ® . Since by (1.5) limkém‘AR(A,A)R(u,A}f = R(u,A)f {where
g > s(R) is fixed), it follows that R{u,A)f = Ri{pp,A)g . Hence
g = ¥ . Conseguently, limk+w AR(X,A)f = f weakly. Hence
fepm®EET _piny g

Let I(A) := {g€E: xgzf for some fFD(A)+} . Since D{a) =

-
mn
it
oy
O]

D{a), - D(a) one has D(A} < I(A) {in fact, I{a)

+

Thecrem 7.6. Assume that E 1s reflexive and

unigue differentiable function u : [0,«) + E satisfving

u{t) ¢ D(a) for a11 +t20 such that

u' 'ty = Rul(t)
(7.4)
u{oy = £ .,

Proof. Uniqueness i:s shown as in the proof of Proposition 6.4.
We show the existence. It follows from Proposition 7.5 that D I(A)

is dense.

Q)
(t
n
o+
Q
™
I
o=
3
jop
0]
=
o
®
b
|_l.
(6]
ot
n

a) Let gfI(r), t>0 . We claim th

(S{t+s)~-S(t))h for 0<s=1 . Hence also

sup {”%(Sft+s)—5(t))gﬂ : 0<sZl: < = ., Usirc (6.11) ard (7.2) we



conclude that sup {”iAS(S)S(t)g” : 0<s<l} < » . It follows from
(6.10) that limS+O éS(s)S(t) = S (t) strcengly. Let kl,kzéE be
weak limit points of ~§AS(S)S(t)g for s-»0 . Let u>s(A) be
cixed. Then R(u,A)k; = lim__, 5(s)S(£)AR(k,A)g = R(u,A)k,

Consequently, k1=k2 . Since norm-bounded sets in E are weakly
relatively compact, éAS(s)S{t)g has exactly one limit point for

the weak topology; hence éAS(s)S(t)g converges weakly for s»0

since lim_ %S(S)S(t)g = S(t)g and A is closed, it follows

that S{t)g ¢ D{(A) .

b) Let £ € D(2) such that Af ¢ I(A) . Let wul(t) = S(t)Af + £ .
Then by a) S({t)Af ¢ D(A) for all +t20 . It follows from Lemma
7.4 that u 1is differentiable and u'(t) = AS(t)Af + Af = Au(t)
(£t20) . O

Remark 7.7 The solutions depend continuously on the initial

values in the same sense as stated in Theorem 7.1.

8 Kato's Inequality and the existence of a positive resolvent.

Up to this point we assumed that a resolvent positive operator

was given. Now we find conditions on A which imply that A 1is

resolvent positive.

Throughout this section we assume that E 1is a Banach lattice

with order continuous norm and that there exists a strictly

positive linear form ¢ on E . Then “Fﬁm :=<!f!, 4> defines a




ncrm on E . We denote Dby {(E, 0} the ccmple+ticn of E with
respect to this norm. (E,¢) is an AlL-space (and sc¢ iscomorphic

-

1 - - .
+to a space of type L [42,I1T Theorem 8.57). Moreover, E 1is an

| |
|

ideal in (F,¢) ; that is, 1f £f,g9 ¢ (E,¢), !gi £ £ and f£f¢€E ,
then also (gfE {(see [42, IV 9.31). For example, let E = Lpix,u)
{lsp<>} , where (X, u) is a o-finite measure space. Let

= 1) and ¢ {x)>0 L—a.e. Then

Theorem 8.1. Let 2 Dbhe a densely defined operator on E such

that the following two assertions hold.

=t

a strictly positive ¢ ¢ D{A') and

P.
!
oy
0]
]
1)
(D
™
I_.J
n
i+

3 1 -3 .
A, € R such that A'¢ = i ¢ and

o C

<{sign £)Af,¢> < <|f|,B'¢> (f € D(A)) (Kato's inequality).
{ii) (uO—A)D(A} = E for some Bo>Ag {range condition).

Then A is resolvent positive and s({A) = hy -

Moreover A ieg closable in (E,¢) and its closure ig the
generator of a positive strongly continuous semigroup on (E,¢) .
Remark. The theorem is in some aspects similar to the

Lumer-Phillips theorem [15,Theorem 2.24]. The condition that A

replaced by Kato's inecquality and the existence

1
1]

be dissipative
of a strictly positive subeigenvector of A" . In contrast to
dissipativity, this condition is non-metric; in particular, it is

t holds for A+w (wfR) . The

‘.).

satisfied by A if and only if
conclusion is weaker than that of the Lumer-Phillips theorem, but

~

sufficient to vield sclutions of the abstract Cauchy problem for



all initial wvalues in Di{AZ2) (cf. section 7).

Proof. Considering (A—Ao) instead of A we can assume +that
xozo . Denote by N the canonical half-norm on (E,¢) . Then
+ . . .

N(f) = <f ,¢> for all f¢E . By Proposition I.2.4 it follows

from Kato's inequality that A is N-dissipative. Since D(A)

is dense in E , it 1is also dense in (E,9%) . Thus it follows
from [5,Thecrem 2.4] that 2 1s closable in (E, d) and the
" losure Al of A 1is N-dissipative. Since E = (uO—A)D(A) c

(uo—Al)DiAl) ; uO—Al zlso has dense range. So it follows from

(5 ,Remark 4.2] (see alsoc [29])that A, generates an N-contrac-

tion semigrou i.e. a positive contraction semigroup on (E,¢) .
7 E 14

In particular, 2y has a positive resolvent and s{A,) £ 0 . It
follows frcem (ii) that uoép!A} and R(uO,AJ = R(uo,Al)!E
Moreover,

{feD (A

(8.1) Af = A.f and D{R) YNE - ATfGE} .

1

Let p 2 be - Then for fEE+ by (1.2}, R(u,Al)f < R(uO,Al)f € E.

Since E is an ideal in {(E,¢), it follows that R(u,Al)E c E for

all uzuo . This together with (8.1) implies that pf€p(2) and

R(u,A)=R(u,Al)[E for all uZuo . Thus A is resolvent positive and
( <

s{r) = be - O

Remark 8.2. Also a converse version of Theorem 8.1 holds. In

fact, assume that A is a denselv defined resolvent positive

operator. It is obvious Zfrem the procf of Propositon I.1.5 that



fcr every ir»s(A) there exists a strictly pcsitive ¢¢€D(A') such

that A'¢s<r¢ . Moreover, assume that

{8.2) SupAQA@”AR(A'A)H <o
where AO>S(A) . Then
{8.3) <(sign £)Af,y> = <}f{,A'w>

heolds for all £ € D(A), ¥ € D(A’)+ .
The proof can be done in the same way as that of Proposition

I.1.1 if ™{t) is replaced by (1-t2) "% (£>0 small), because

Y

(1-tA) 1€ for all f€D(A) .

o
Al

(8.2) implies that Af =

| £=0

Remark 8.3. Let A Dbe a dencely defined operator on E . Suppose
that there exists 0 £ A € p(A) such that R(A,A} 2 0. Then by
the proof of Proposition I.1.5 there exists a strictly positive
subeigenvector of A'. Thus it follows from Theorem 8.1 that A is
resolvent positive (in the sense of our definition) if in addi-
tion Kato's inequality holds. Example [23,3.101 shows that this

last condition cannot be omitted.



Appendix 2 Crdered Ranach Spaces

A general reference is chapter V in Schaefer's moncgraph [417; we
alsc refer to the article by Batty and Pobinson [8]. We confine
ourselves to list some notions and results which are used in the

text.

Let E ke a Banach space. A subset C of E 1is called a cone
if Kk,.CcC and C+ Cc C . The cone C 1is called proper if
Cn (=C) = {0} . An ordered BRanach space 1s a Banach space E

together with a closed proper cone E_ . The ordering in E is

[\%
[

then defined bv setting £ £ g 1if and only if g-=£

Let E be an ordered Banach space with positive cone E,Z . 2
linear form ¢ on E is called positive if <f,4> 2z 0 for all
£ € E. . We denote the dual space of E by E' ané by E; the

dual cone, i.e. the set of all positive continuous linear forms

on E . Then (E',E;) is also an ordered Banach space. Note that

(A1) E, = {ffE : <£,4>20 for all GEE T .
The cone E, 1is called generating if E _-E, = E . It E_ is

cenerating, then there exists a constant ¢ > 0 such that every
£ € E can be written as f = f£.-f, where Fﬂ,fﬁFE+ such that

3.5 Coreollary] and [8,1.1.

Hh
A
Q
Hh
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@
=y
QU
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it
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As a conseguence one cbtains thet everv positive linear form on

E is continucus [41,Chapter V, 5.5 Thecrem! (see zlso



[12, Thecrem A21). Using this we obtain the following result on

~ 7

automatic continuity of positive linear mappings {which we could

not find in the literature in this generality).

Theorem 2Al. LLet E,F be ordered Banach spaces with positive
cones E, , resp., F, . Assume that E+ is generating. Let

T : E~> F be a positive linear mapping {(i.e. T is linear and

satisfies TE+ c E, ). Then T 1s continuous.

Proof. a} If g € F <such that <g,¢> = 0 for all ¢€Fi , then

g =0 . In fact, since F_Nn(-F ) = {0} it follows from
1
[41,Chapter IV, 1.5 Corollary] that (F;—F;) o(F',TF)
= {F+ﬂ(—F¢))o = F'. So the assumption implies that <g,9> =0

for all ¢ € F' . Bence g = 0 .

b) We show that T has a closed graph {(which implies conti-
nuity) . Let fn - £ 1in E and Tfn + g 1in F . We have to show
that Tf = g . Let ¢ ¢ F; . Then ¢ := ¢ T 1is a positive linear
form on E . Thus U is continuous. Conseguently, <g, > =

lim <Tf ,6> = 1lim <f ,y> = <f,y> = <Tf,¢> . It follows

n-—-w n n-+-o n

from a} that g = Tf . 0O

Let E be an ordered Banach space with positive ccne E_ . The
notion of a half-norm (see also Chapter I) was intrecduced in [51];
for further information see also [81. We denote by N the

canonical half-norm on E ; i.e. N : E - R is given by

(A2) N(f) = dist(-£,B,) = inf {[f+g]| : g€E }



£
. - . , . 1 T
If E 1is a BRanach lattice then N{f) = | £ f .
. ~ . i {
The cancnical half-ncrm defines a norm | “N cn E Dby
(A3) HfHN = N(f) + N(-f) .
The cone E_ is called normal if there exists an egquivalent
monotone norm on E {that 1is, a norm ” ”o which satisfies

0 £ £ £ g implies ”f”o = ”g“c ).

{(p4) The following aszertions are equivalent [41,v.3.57,

(i) E is normal.
(i) “ kN is an ecuivalent norm.
(iii) E' = Ei - E; .

In Chapter II we assume throughout that the ccne E, is

generating and normal. We now state some conseguences of this

general assumption.

Choosing a suitable ecuivalent norm on E we can assume that

(A5) *f £ g implies [£] = [qf .

[In fact, ”f”o = max{N(f),N(-£) 1} {(f€E) defines a norm doing
this. To see this let *# < k then N(f) = |[f + (x-6)] = [xl and
N(-£) s [-£ + (g2 = Ix| . Hence [fl_ = maxiw(f),m(-£)} = [kl .
Let now *f £ g. Then g 2z 0. Hence ”g”o = N(g) = inf {”k” . kzgl.

-

Since *f £ k for all kzg, we conclude that ”f”o < ”g“o.?



th

there exists £¢E such that

0

ol

A set M is called crder bounded i

f1 where the orcder interval is defined by

[-f,f] = {gfE : -£ 2 g £ £} . Thus by (A5} order bounded sets are
norm becunded. Ancther consecuence of the general assumption that

E be generating and normal is the following.

(A6) Let L < (E) be a set of bounded operators. ITf sup

{lepf 6> ¢ T € L} < » for all fE€E ¢€E!, then

+I

|
sup [T : TeL} < = .
This follows from the uniform boundedness principle since E_
and E! are generating.

(A7) Let S,T be linear operatcors on E and T be positive.

If ;<SF,¢>] < <Tf,¢> for all f€E+, ¢FE; .Then ”S” < ”T” .

[In fact, the assumption implies that *Sf < Tf for all fEE+ .
Then by (A5), ”Sf“ < HTEH .

Occasionally, the complexification Eg of E is considered without

further comments. For example, if A is an operator on E, then for

P

5 ., \ . -1 .

A f opyqpy N F ,bv definition, R(A,R) := {i-A) is an operator
on Ep .

(A8) Similar to (A5), we have for £ € E_, g € Ep,

l<g,¢>! £ <£,4> for all ¢ ¢ E; implies ”g” = c”f“, where ¢ > 0

is a fixed constant.

Note that every Banach lattice and the hermitian part of a

-algebra have z generating and normal positive cone.



Appendix B The Vector-valued Stieltjes Integral

Here we collect definition and properties of the vector-valued
Stieltijes integral. We follow [25,Chapter III] closely, but

emphasize the integral of increasing functions.

Let G,H be Banach spaces and E Dbe an ordered Banach space

with generating and normal cone.

Definition Bl [25, Definition 3.2.4]. A function f:[a,bl+E is

of bounded variation 1f sup ”z [f(t, )-f(s ]N < ®  ovVer every
choice of a finite number of non-overlapping intervals (54’ti)

in [a,bl

Proposition B2.a) Let f : [a,b] » E be increasing. Then £ 1is

of bounded variation.

b) Let S : [a,b]l ».7(E) be increasing. Then S is of bounded
variation.

Proof. Let (si,ti) < [a,b] (i=1,....,n) be a finite number
of non-overlapping intervals. Then 0 = Zi (f{ti)—f(si)) <
£(b)-f(a) . This implies [], -£(s )| = l£m)-£(a)| . Thus

A

a) holds. Similarly, 0 s Zi(S(ti)—S(si)) S(a)-S(b) and b)

follows from (A7).

et f : [a,b] + G and u : [a,b]l -+ K . We denote the subdi-

vision (to=a s t; sty 5....8 tn=b) together with points



s; ¢ (t,_;,t) Dby = and let inl=max, [t,-t, ] . Let
(B1) (F,u) = 70 0 f(s.) (u(t, ) -ult.))
Lo o Li=1 i “i+l

T~ . . . . . .
iﬂ(f,u) exists in a given topology =t , this limit

0

is denoted by the integral

If lim,nb

(B2) [25 () du (t)

and we sav that the integral exists in the topclogy 7t . Let

(B3) o (£,u) = [U_ ) uls ) (£(t, 1) -F(t,))

If lim!nfao gﬂ(f,ﬂ) exists in a given topeology Tt , then this

limit is denoted Lky the integral

(B4) [Pu(e)as ()

and we say the integral exis

it

s in the topology 1 .

Ptoposition B3 [25 ,Theorem 3.3.1 and Theorem 3.3.23. Suppose

that either (1) f:[a,b]+G 1is strongly continuous and u:la,bl-R
is of bounded wvariation or (2) f is of bounded variation and u
is continuous. Then the integrals (B2Z) and (B4) exist in the norm

topology and



Further, if A 1is a closed operator from D{(2) « G into H and
if f£(t) € D(A) , and if (Af) (.) 1is strongly continuous in the
case (1) or of Dbounded variation in the case (2) then

fPutra(t) € D) anda [Pr(t)au(t) € D) and

(B6) afPf (t)au(e) = [Par(e)au(e) and

Il
—
v o
o
=
Q
B
Fh
o~

(B7) Afgu(t)df(t)

Applying Proposition B3 for G=.(E) we obtain in particular the
following. Let S : [a,b]l+_7(E) be increasing and u € Cl[a,b] .
Then the integrals fgu(t)ds(t) and fgs(t)du(t) exist in the

operator norm and

(B8) fPsterance) = swue) |2 - [Puwrase)

Choosing wu{t}) = t one obtains that the Riemann-integral
fﬁs(t)dt exists in the operator norm.
Let f€E,¢€E' . Then (B7) applied twice (for A:_.7(E) - E given
by T » Tf and then A=¢ ) gives

b £ b . e :
<(fa u(t) ds(t))f, ¢> = fau(t) d<s(t)f,¢> . This and the Hahn-
Banach theorem allow us to carry over the rules for the classical
Riemann-Stieltjes integral to the vector-valued case. For exam-

ple, the following corresponds to [50,Chapter I, Theorem 6b].



Propcsition R4. Let S : la.bl+ [E} be increasing and

v € Cla,b] such that v(t) 2z 0 for all +tfla,b!’

Then Sl(t) = f; v{s) ds{t) 1is increasing ancd
b b
9 f Y7 ! S = [ c_(+
(B9) J u(t)w({t) as(t) 17 u(t) d 1(H\

for all u ¢ Cla,bl

Appendix C The vector-valued Laplace-Stieltjes transform

Iet E be an ordered Banach space with generating and normal
. In the fecllowing we discuss properties of the

Laplace-Stieltjes transform with values in E or .- (E) .

We need the notion of the improper Riemann-Stieltijes integral.

Let G be a Banach space, a € R and £ : [a,®) > G, u : [a,») » R
Agsume that either (1) £ is strongly continuous and u is of
bounded wvariation or (2) f is of bounded variation and u is
continuous. Then by Propositon B3 the integral IZ ult) df(t)

exists in the norm for all b 2 a.
Let T be a topology on G. We cav that the integral f: u(t) éf(t)

converges in the topology 1 if limb_}00 f? u(t) df(t) exists for

the topelogy 1. In that case we define f; ult) 4af(t) :=

lim fS u(t) df(t}) . The definition is analoguous for

ition shows that for the Laplace-Stieltjes

e
D
Hh
O
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Q
2
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3
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strong and weak convergence are essentially equivalent.

Proposition CI1. Let a = [0,x) - E+ be an increasing function

such that a(0) = 0 and let w ¢ R . Consider the following

assertions.

(1) f; e_Wtd<u(t),¢> converges for all ¢ ¢ Ei.
(11) For all A>w there exists Mz20 such that

[att)] = Me*®  for all tzo0 .
(iidi) fz e—ktda(t) converges in the norm whenever Rel > w .
Then (i) implies (iii). Moreover, if w 2 0, then (i) implies
(ii), and (ii) implies (iii). Finally, if (i) holds, then

© =)t (= -2t
(C1) fo e "tda(t) = fo re Mo (t)dt (Rex > max {0,w}) .

Procof. a) We consider the case when w 2z 0. Assume (i). We show

(ii). Let >w . Then for ¢€E], 20 one has:

05 e "teaqe), o> = e M), o> + Afg e "®<a(s),s>ds =
fg o8 d<a{s), o> £ fZe—SA d<a (s),¢> . Hence
-2t . .
SUP, ., © <af{t),0> < o . Since E;—Ei = E' , it follows that
—-A . - .
(e ta(t)),TZO is weakly bounded, hence norm bounded. This proves
{ii). Now assume (ii). Let Red>w . We first consider the case

when A is real. Choose u € (w,X) . Then there exists M20 such

that [a(t)] = Mt (tzo) . Let rztzo . Then ”fi e_xsdu(s)u =
le™ e (x) - e Fatt) + 2[T e u(s)as| s

M e—(l—u)r + M e_(A—u)t + AM T%ﬁ (e—(x_u)t - e—(k_u)r) <
2Me—(ﬂA—u)t + M T%Ee_{A—u}t ~ 0 for t-= . Hence

. t -\< . . . L. . ,
lim C e Aa {s) exists in +he norm. This proves (iii) in the
t+o P



}
¥e)
"

i

case when A 1s real. In the case when ) 1s arbitrary let

. ~Re)s , .
Jt e do {s). So {(iii) follows

rztzo. Then F[i e *Sda(s) ] <
from the real case by (A8).

b) We consider the case when w 1is arbitrary. Assume that (i)

holds. We show (iii). Let B8(t) = fg e "Sda(s) . Then by hypothe-
sis, the integral fz d<B (t) ,9> = fz e~VS d<a{s) ,¢> converges for

every ¢€E_ . Hence by a) (for w=0 ), f; e_ktdB(t) converges in

the norm for all A>0 . Using Proposition B4 we obtain that for
u>w , the integral f; e_utda(t) = f; e—(n_w)te—Wtda{t) =

o - —w) 1 . .
fo e (n Witag (t) converges in the norm.
c) Finally, we prove the last assertion. Assume that (i) holds.

Then by b) also (ii) and (iii) are satisfied for Rei > max {0,w}.

Hence, lim___ e *tu(t) = 0 . Thus by Proposition B4,
o -t L b -t o -b

fo e da(t) = llmb+mfo e de(t) = lim __ e a(b) +
. b -Ait T T

llmb+mjo re o f{t)dt = fo re al(t)dt . [

Remark C2. Assume that in Proposition C1l assertion (i) holds.
Then g{i) = f; e—ktdu(t) defines an analytic function on

H := {x€C : Rex>w} . In fact, it follows from the corresponding
classical result that g is weakly analytic, hence g 1is strongly

analytic.

To Proposition Cl1 corresponds &a result for operator-valued

functions. The proof is the same apart from mincr modifications.



Propositicn C3. Let S : [0,«) = (E) be irncreasing satisfying
s{0) = 0 and let wfR . Consider the fcllowing assertions.
(1) jze—Wt d<s(t)£,¢> converges for every £€E_ , ¢€E! and
A>wW.,
(ii) For every i>w there exists Mz0 such that
Isce)| = me® for all tz0 .
(1ii) f;e_kt dS(t) converges in the operator norm for Rel > w.

Then (i} dimplies fiii}. Moreover, if w z 0, then (i) implies

{ii), and (ii} implies (iii). Finally, if (i) holds, then
© =) o =it .
(C2) foe Masie) = foke “as (t) (Rex > max{0,w}) .

Next we reformulate the unigueness theorem in the vector-valued

case.,

Definition C4. a) Let a : [0,%»} » R be increasing. Then o 1is

said to be normalized if «{0}=0 and for every t>0

b) An increasing function o : [0,») + E is normalized if for

everv o € EL +he numerical function t > <aft), o> is nor-
malized.
¢} An increasing function S : [0,») =+ . (E) is normalized if for

ever feE the function + =+ S/t}f 1is ncocrmalized in the sense



Now the classical unigueness thecrem [51, 7.21 gives
following.

Theorem C5 (unigqueness theorem). Let «a : [0,«) » F (where

F =R, E or . (E) }) be an increasing normalized function.

Let ax_€R . If
O

A>A

}_l

e do(t) =0 for al
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