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Introduction 

Even though the theory of positive semigroups has progressed 
rapidly during the last few years, so far an intrinsic charac-
terization of generators of positive semigroups has not been 
given. 
The problem is obvious from the general theory: Since the infi-
nitesimal generator determines a semigroup uniquely, one expects 
to find a condition on the generator which describes the posi-
tivity of the semigroup. 
From a practical point of view as well there seems to be a need 
for such a characterization. In fact, it lies in the very nature 
of the theory that frequently the generator but not the semigroup 
is known explicitly. Since a variety of results (concerning 
spectral theory, asymptotics, perturbation theory etc.) for 
positive semigroups is available today, it is important to find 
conditions on the generator which enable one to verify positivity 
fof the associated semigroup). 
Characterizations of positivity together with additional proper-
ties are known. Phillips characterized positive contraction 
semigroups by dispersiveness of the generator. The more general 
notion of p-dissipativity with respect to a half-norm p was 
introduced in _5_ and allows one to treat contractivity in a very 
general sense (see also the article by Batty and Robinson 8 ). 



A conditon of a different kind is the following abstract version 
of Kato's inequality 

(K) <(sign f)Af,^> < <]f],A'^> 
f 6 D(A), 0 ^ ^ 6 D(A'). 

Of course, this inequality is inspired by Kato's classical 
inequality for the Laplacian. It was R. Nagel who conjectured 
that some abstract version of this inequality is equivalent to 
positivity. 
We confirm Nagel's conjecture in the following form. Let A. be the 
generator of a semigroup on a Banach lattice E (which for sim-
plicity is supposed to satisfy some mild restrictions). Then the 
semigroup is positive if and only if A satisfies (K) and the 
adjoint A' of A possesses a strictly positive subeigenvector ^ 
(i.e., (() 6 D(A') and A'^ < for some x ^ tR). 

So far, the discussion has focused on finding necessary and 
sufficient conditions for the generator of a strongly continuous 
semigroup to assure the positivity of the semigroup. In Chapter' 
II, we consider things from a different point of view. 
Given an operator A (without assuming that A is a generator), 
what conclusions can be drawn from the positivity of the resol-
vent? We show that A has similar properties to a generator. In 
analogy to the classical theorem of Bernstein, the resolvent of 
A is representable as the Laplace-Stieltjes transform of an 
operator-valued increasing function. As a consequence, the. 
abstract Cauchy problem associated with A has unique solutions 



for a large class of initial values. For more information, we 
refer to the detailed introduction to Chapter II. 

It is a pleasure to express my thanks to the Functional Analysis 
group in Tubingen for its support and the lively atmosphere 
favorable to mathematical research. I would like to c o r d i a l l y 

thank Prof. T. Kato and Prof. P.P. Chernoff for their advice and. 
stimulating discussions. 



CHAPTER I 

Kato's Inequality 

A Characterization of Generators of Positive Semigroups 

This chapter is devoted to the characterization of positive 
semigroups by Kato's inequality. The main result is stated and 
explained in section 1; in section 2 we give the proofs. They are 
based on the technique developed in [5] . 
The examples in section 3 are chosen in order to demonstrate that 
the results cannot be essentially improved. But they also illus-
trate how the conditions are handled for concrete operators. 
A related problem is to express in terms of the generator when 
one semigroup is dominated by another. This can be done in a 
similar manner by an inequality involving the "signum operator". 
It is remarkable that here it is not necessary to start with a 
generator. The inequality and a range condition are sufficient to 
obtain a semigroup. 

In the last section we investigate a special kind of domination. 
Disjointness preserving semigroups are described as those semi-
groups which are dominated by a lattice semigroup. This puts a 
new complexion on "Kato's equality", which is known to charac-
terize generators of lattice semigroups by a result of Nagel and 
Uhlig [31] . 



1. The characterization. 

Let E be a c-order complete real Banach lattice [42 ,11 §11. We 
first describe the sign operator. Let f e E. There exists a 
unique bounded operator 'sign f' which satisfies 

( 1 . 1 ) 

(1.2) 
(1.3) 

Here we understand by f - g that f and g are disjoint, i.e. 
inf {[f], [g]} = 0. 
If for u e E^ the band projection onto the band, u generated by 
u is denoted bv P , then u' 

(1.4) sign f = - P^-. 

Example. Let E = L,P(X,n) (where (X,p,) is a measure space and 
1 ^ p ^ °°) and f e E. Let m e L°° be given by 

1 if f(x) > 0 
m(x) = -1 if f(x) < 0 

^ 0 if f(x) = 0 
Then (sign f)g = m*g (g e E). 

[(sign f)g] ^ [g] (g c E) 
(sign f)g = 0 if f - g 
(sign f)f = [f]. 

Now let be a semigroup (by that we always mean a 
strongly continuous semigroup of linear operators) on E with 
generator A. We first consider necessary conditions for the 
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positivity of the semigroup. 

proposition 1.1. If T(t) 5 0 (t 5 0) then Kato's inequality 
holds in the weak form , i.e. 

(K) <(sign. f) Af, <t<> g <lf[, A'<t<> 
(f e D(A), 0 g (f< e D(A')). 

Proof. Let f E D(A), 0 g <j) s D(A'). Then 
<(sign f) Af, <j)> = lim 1/t <(sign f)(T(t)f - f), 

t^O 

= lim 1/t <(sign f)T(t)f - [f[, 
t-0 

< lim 1/t <lT(t)fl - [f[, <j) > 
t^O 

< lim 1/t <T(t)[f] - If], 
t-̂ 0 

= lim <lf[, l/t(T(t)'<i) - <H> 
t^O 

= <lf], A'<j)>. n 

Let D(A')^ = E_j_ n D(A'). Consider the condition 

c(E',E) 
(1.5) D(A')̂ _ = 

(which is satisfied if the semigroup is positive). If (K) and 
(1.5) hold, then Kato's inequality holds in the strong form as 
well, whenever it makes sense, i.e. 
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(1,6) ^sign f)^f < A[f! (if f, If] s DCA)). 

However, it w i l l be seen in section 3 that (K) and (1.5) are not 
sufficient for the positivity of the semigroup. So we consider 
another necessary condition. 

Definition 1.2. A subset M' of E' is called strictly positive if 
for every f e <f, ^ 0 for all ^ e M' implies f = 0. An 
element ^ of E_j_ is called strictly positive if the set {%} is 
strictly positive. 

Example 1.3. Let E = (1 ^ p < where (X,n) is a 
o—finite measure space. Then ^ ^ E' = (where 
1/p + 1/q = 1) is strictly positive if and only if 
di(x) > 0 p-a.e. Note that strictly positive elements of E' 

always exist in this case. 

Definition 1.4. Let B be an operator on a Banach lattice F and 
let u c F. Then u is called a positive subeigenvector of B if 
a) o < u s D(B) and 
b) Bu < Xu for some A e !R 

Proposition 1.5. If the semigroup is positive, then 
there exists a strictly positive set M' of subeigenvectors of A' 
(the adjoint of the generator A) . Moreover, if there exist 
strictly positive linear forms on E, then there exists a strictly 
positive subeigenvector of A'. 



- 5 -

-1 Proof. Let A > 0 such that R(A,A) = (A - A) exists and 
R(A,A) ^ 0. Let N' (= E_j_ be strictly positive. Then 
M' {R(A,A)'^ : ̂  e N'} (= D(A') H EJ_. We show that M' is 
strictly positive. Indeed, let.f e E^ such that <f, <j)> = 0 for 
all ^ e M'. Then <R(A,A)f, = 0 for all ijj e N'. Hence 
R(A,A)f - 0 since KM is strictly positive. Consequently, f = 0. 
The set M' consists of subeigenvectors of A'. In fact, let 
^ e N', <j) = R(A,A)'^. Then A'^ = - ^ ^ D 

The following is our characterization. 

Theorem 1.6. The semigroup is positive if and only if 
its generator A satisfies the following condition. 
There exists a strictly positive set M' of subeigenvectors of A' 
such that 
(K) <(sign f) Af, < <]f[, A'^> 

for all f e D(A), <j) e M'. 

Corollary 1.7. Assume that E' contains strictly positive 
functionals. Then the semigroup is positive if and only if there 
exists a strictly positive subeigenvector ^ of A' such that 

(K) <(sign f) Af, o> ^ <[fl, A'^> for all f c D(A). 

Remark l.S. 
improvement 

For the application of our criterion the following 
(of one direction of the characterization) is 
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important. If condition (K) is merely satisfied for all f ^ D^ , 
where D^ is a core of A, then the semigroup is positive. This 
will be obvious from the proofs. 

Remark 1.9. In Theorem 1.6 and Corollary 1.7 one can replace 
inequality (K) by the inequality 

(1.7) <(P^+)Af, <j)> ̂  <f\ A'^>. 

Indeed, (1.7) for -f gives <f-P^-)Af, ^ <f", A'(j)>. Adding up 
both inequalities one obtains <(sign f)Af, ^ <!f[, A'^>. 
On the other hand, if A generates a positive semigroup, one sees 
by the obvious alterations in the proof of Proposition 1.1 that 
(1.7) holds for all f c D(A), (f> E D(A')+. 

We conclude this section by formulating our result for the space 
C^(X). If the Banach lattice E is not c-order complete there are 
some difficulties to defining the signum operator. One still can 
define sign f as an operator from E into E'' (cf. [31). Here we 
consider merely the case E = C (X) in which this can be done in a ^ o 
natural way. 
Let X be a locally compact space and E = C^(X) the space of all 
real valued continuous functions on X which vanish at infinity. 

Note that E is not c-order complete unless X is c-Stcnian. For 
f e C^(X) we define the function sign f by 

1 if f(x) > 0 
(sign f) (x) = < -1 if f(x) < 0 

0 if f(x) = 0 
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Then (sign f) is a bounded Borel function. 
If n E M(X) = Cp(X)' we set <g, n> J* g(x) d^(x) 
for every bounded Borel function g on X. 

Theorem 1.10. Let A be the generator of a semigroup on C^(X). The 
semigroup is positive if and only if there exists a strictly 
positive set M' of subeigenvectors of A' such that 

(K) <(sign f)Af, p,> < <]ft, A'p,> for all f e D(A), p, E M'. 

Remark. We point out that for compact X a simpler condition is 
equivalent to positivity, namely a minimum principle (see E51). 
For a comparison of Kato's inequality and the minimum principle 
we refer to [4]. Due to the non-empty interior of the positive 
cone the space C(X) (X compact) plays an exceptional role in 
our context (see also Chapter II, sec. 2). 

2. The proofs 

Our arguments are based on the results of T5T on p-contraction 
semigroups and p-dissipative operators (see also [8]). 
Let F be a Banach space. A mapping p : F ^ R is called a 
sublinear functional if 

p(f + g) s p(f) + p(g) ',g c F] 
p(Af) = Ap(f: (f E F, A E fR+) 
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p is called a half-norm if in addition 

(2.3) p(f) + p(-f) > 0 for all 0 ^ f E F . 

Then tt̂!!p p(f) + p("f) defines a norm on F. (This is the 
motivation for the terminology.) 

Examples 2.1. a) p(f) = ![f[! defines a continuous half-norm 
on F. 
b) Let E be a real Banach lattice. N(f) = ][f^[) defines a 
continuous half-norm on E (the canonical half-norm ). 
c) Let E be a real Banach lattice and ^ E E'. Let p(f) = 
(f E E). Then p is a continuous sublinear functional. Moreover, p 
is a half-norm if and only if ^ is s t r i c t l y positive. 

Remark 2.2. To every continuous half-norm p on F there corre-
sponds a closed proper cone F^ :- {f & E : p(-f) ^ 0}. In 
Example 2.1. a), we have F^ = {0}; in b), E^ = E^ and in c), 
Ep = if ^ is strictly positive. 

Let p be a continuous sublinear functional on F. The subdiffe-
rential dp of p is defined as follows. Let f E F; then 

(2.4) dp(f) = fp s F' : <g,(j)> ^ p(g) for all g E F and 
<f,^> = p(f)}. 

It follows from the Hahn-Banach theorem that dp(f) =j= 0 for all 
f E F. 



An operator A on F is called p-dissipative if for every f e D(A) 
there exists ^ c dp(f) such that <Af, ^ 0. 

proposition 2.3. Let A be the generator of a strongly continuous 
semigroup (T(t))^_^. Then the following are equivalent. 

(i) 

(ii) 
(iii) 

Remark. Suppose that p is a continuous half-norm. If A 
satisfies the equivalent conditions of the proposition, then the 
semigroup is positive for the ordering induced by p (see Remark 
2.2). 

For the proof of Proposition 2.3 see [5, Theorem 4.1] or 
E8, 2.1.1]. 

T(t) is p-contractive for all t ^ 0; 
i.e. pfT(t)f) ^ p(f) (f c E). 
A is p-dissipative. 
There exists a core D of A such that At- is o [D̂  
p-dissipative. 

Proposition 2.4. Let A be a densely defined operator on E and 
% 6 D(A')_̂ _ such that A'^ < 0. Denote by p the sublinear 
functional given by p(f) = <f"\(j)>. If 

(K) <(sign f) Af, < <[f!, A'(j)> (f 6 D(A)), 

then A is p-dissipative. 
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I - - P^-, 0 = + 1/2 P and ^ = Q'%. 

(2.5) ^ E dp(f) . 

Let g e E . Since 0 ^ 0 ^ I we have <g, = <Qg, <j)> ̂  
<Qg^f = = P(g)- Moreover, <f, = <Qf, = 
<P^+ f + 1/2 Pf, <{)> = = p(f^) . So (2.5) follows by the 
definition of dp(f). 
The proof will be finished when we have shown that 

(2.6) <Af, < 0 . 

One has trivially 

(2.7) <(P^+ + P^- + P) Af, p> = <f, A'(j>> . 

Addition of (2.7) and (K) gives 
<(2P^+ + P) Af, (})> < <2f^, < 0. 
Hence <Af, = <QAf, <j)> ̂  0. D 

Proof of Theorem 1.6. Proposition 1.1 and 1.5 give one 
implication. In order to show the other assume that the condition 
in Theorem 1.6 is satisfied. We have to show that T(t) ^ 0 for 
all t ^ 0 . 
Let ^ E M'. Consider the half-norm p(f) = <f)> and the 

operator B = A - A , where A s fR is such that A'^ ^ Ap . Then 
B satisfies B'd) ̂  0 and (K) as well. So it follows from Propo-

proof. Let P = 
We show that 
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sition 2.4 that B is p-dissipative. 
Since B generates the semigroup (e ^T(t))^p we obtain from 
proposition 2.3 that p(e**^T(t)f) ^ p(T(t)f) (f c E, t ^ 0). 
Hence, 

(2.8) <(T(t)f)+, ^ e ^ <f+, (f B E, t ^ 0) . 

Now let t > 0 and f ̂  0. Then f^ = 0 , so it follows from (2.8) 
that <(T(t)f)^, (j)> ̂  0 . Since % E M' is arbitrary and M' is 

+ 
strictly positive, it follows that (T(t)f) = 0 ; i.e., 
T(t)f ^ 0. This implies that T(t) ^ 0. 0 

The proof of Theorem 1.10 is identical to the proof given above 
if the symboles (sign f), Pf+r etc. are interpreted as Borel 
functions. 

Remark 2.5. a) Proposition 1.1, which gives one implication of 
Theorem 1.6, had been proved (in a different way) in [3, Re-
mark 3.9]. The other implication of Theorem 1.1 has been obtained 
independently by A.R. Schep [46] with a different method of 
proof. In particular, Schep's argument seems not to apply for the 
case where condition (K) is only known to hold on a core of A 
(cf. Remark 1.8). 
b) Using Proposition 2.4 one can show with the help of the proof 
of [5, Theorem 2.4] that a densely defined operator which satis-
fies the conditions of Theorem 1.6 is closable (cf. Theorem 4.4). 



Rema rk 2.6. The proof of Theorem 1.6 shows the following. If A 
the generator of a positive semigroup and E' contains strictly 

positive linear forms, then there exist a continuous half-norm 
p on E and w ^ [R such that A-w is p-dissipative. We stress 
that p cannot be replaced by the norm, since in general none of 
the semigroups (e**^T(t))^p (w ^ [R) is contractive for the 
norm (cf. [71 and [17]). 

3. Examples and discussion 

As a first example we consider the first derivative with boundary 
conditions on E = L^[0,1] (1 ^ p < <=°). By AC[0,1] we denote the 
space of all absolutely continuous functions on [0,1]. Let 
be given by 

= {f c AC[0,1] : f E L^[0,i]} 
A f = f (f e D(A^ )). max max 

Lemma 3.1. Let f E AC[0,1]. Then }f! E AC[0,1] and 
]fj' = (sign f).f' (a.e.) . 

This is easy to prove. 

As a consequence of the lemma, D(A ) is a sublattice of E and max 

(3.1) (sian f)A f = A jf! (f E max max' ' max 



For A > 0 one has 

Ax (3.2) ker (A - A = where e,(x) = e 

Hence is not a generator. We impose the following boundary 

conditions. 

Let d e !R. Consider the restriction A-, of A with the domain ^ d max 

D(A 1 = {f B : f(l) = df(0)} . d max 

Then A^ is the generator of the semigroup given by 

(3.3) Tg(t)f(x) = d^ f(x+t-n) if x+t e [n, n+1) (n B th!) 

This is not difficult to prove. Actually (3.3) defines a group if 
d =)= 0 and if we let t c !R, n c Z. For d = 0 one obtains the 
nilpotent shift semigroup on E. One sees from (3.3) that the 
semigroup is positive if and only if d ^ C. 

Let us fix d < 0. Let A = A^ and T(t) = T^(t) for t ^ 0. Then 
is a semigroup which is not positive . Nevertheless its 

generator A satisfies Kato's inequality. Even the equality is 
valid; i.e. 

!3,4! <(sign f) Af, = <lf!, A'^ > 
for all f c DfA), 0 ^ ^ e D(A' 

Proof. It is not difficult to see that 



(3.5) D(A') - ^ E AC[0,1] : E L^[0,1], ^(0) 
A'p = -(t) for all ^ s D(A'). 

where 1/p + 1/q = 1. Let ^ 6 D(A') ,_. Since d < 0, it follows 
that ^(0) = ^(1) = 0. Hence for f E DfA), 

<(sign f) Af, d)> = <(sign f) f', = <jf[', 

= [f['(x) <j)(x) dx 

= - ]f(x)! ^'(x) dx 

= !f(l)]^(l) - }f(0)]^(0) + <]f!, A^> 

= <]f}, A'^> n 

Remark 3.2. The equality (3,4) does not hold for all ^ E D(A'), 
however. In fact, this would imply that jf[ 6 D(A) and 
(sign f)Af = Ajf} for all f 6 D(A). Thus by [31,3.5] for 
Corollary 5.6) the semigroup would consist of lattice homomor-
phisms. The reason why in this example the equality holds will be 
explained from a more general point of view in section 5 (see 
Proposition 5.9). 

Even though the semigroup (Tft))^^^ is not positive its generator 
A has other surprising properties besides (3.4). For instance, 
the positive cones D(A)^ D(A) P E^ and D(AM fl E_j_ 
satisfy 



(3.6) = E^ and = E^. 

Thus the question following Remark 3.10 in [3] (resp. Problem 
1.5 in [4]) has a negative answer. 

Moreover, (3.1) shows that A satisfies Kato's inequality (in the 
strong sense) formally. In order to formulate this more pre-
cisely, observe that it follows from (3.2) that ^^max^ " 

D(A) + !R*e, (where 0 < A c pfA)). Thus the extension A of A ^^ ' A ^ max 
satisfies the following. 

f3.7) A is closed, max 
(3.8) D(A ) is a sublattice of E. max 
(3.9) D(A) has codimension one in D(A ). max 
(3.10) ^sign f) Af = A If} for all f e D(A). ^ max 

It is also remarkable that there exists a dense sublattice 
D ff e D(A) : f(Ol = f(l) =0} of E which is included in D(A). o ^ ^ 
But D^ is not a core of A (this would imply the positivity of the 

semigroup by [4, Theorem 3.4] if ;d} ^ 1). 

Since (T(t))^^p is not positive but (3.4) holds, it follows from 
Theorem 1.6 that there exists no strictly positive subeigenvector 
of A'. In fact, more is true. 

f3.ll) o < ^ e D(A'), A'^ < ^^ for some ^ s fR implies ^ = 0. 
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proof- Suppose that 0 < d) E D(A') such that -rj)' = '̂(h < We 

can assume that 0 < n. Let ^(x) = ^n-x). Then ijj'(x) = -d)'(l-x) < 

= P^tx). Since T(0) = 0, we get 

^(x) = in ^y < p, /x ^y) ^y (x s [0,11). 

It follows from Gronwall's Lemma that i{j < 0. Hence ^ = ^ = 0 . Q 

In view of the preceding example one might presume that the 
existence of a strictly positive set of subeigenvectors of the 
adjoint of the generator actually implies the positivity of the 
semigroup. This is not the case. 

2 To give an example consider E = L (fR) and the operator B given by 

(3) 
Bf = f'* with domain 

D(B) = {f c : f , f ' E L^fR), f ' E AC(^), f^^ E IT(R)} 

Then B is the generator of an unitary group ^^'^tEfR" ^^ par-
ticular, B is skew-adjoint, i.e. B' = -B. 

(3.12) B' has a strictly positive subeigenvector % 

Proof. Let A > 0 and 
for x ^ 1 
-1 < x < 1 
for x ^ -1 

for all x E [-1,1] and such 

^(x) = g(x) 

where g E C"'[-l,l] such that g(x) > 0 



that P B Ĉ (fR). Moreover, choose g such that g(0) = 1 and g'(O) = 
.''(0) = 0. Since g, g^ ' E C (!R) and inf {g(x) : x E [-1,1]} > 0 

3 (3) there exists n ^ A such that -g ^ (x) ^ p, g^x) for all 
X E [-1,1]. Consequently, 

e ' ^ (x ^ 1 ) 
-(f) = ^ -g^'(x) (x s [-1,1]) ^ p, <j)fx). 

i3 Xx , T t -A e (x < -1) 

(3) Hence B'^ = -p ^ p, [] 

But the semigroup (U(t))^^p is not positive. In fact, we show 
that there exists f e D(B) such that 

(3.13) <(sign f) Bf, d)> > <!f[, B'd>. 

Proof. Let f E D(B) be such that f(x) = e ^ sin x in a 
neighborhood of 0 and f(x) > 0 for x > 0 and f(x) < 0 
for x < 0. Then 

<(sign f) Bf, = - f^^ (x)dfx) dx + f^^ (x)^(x) dx. 

Hence, 

<[f[, B'%> = (-f(x)) (-<f) ̂ ^(x)) dx + f(x) (xj) dx 

= - f ° f^' (x^(x) dx + f̂ '* (x)^(x) d̂  ^ - oo ^ ^ O 
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+ rf'-tj!^' - (since p''(0)=<p'(01=0) '-co 'O 

= <(sign f) Bf, d)> + 2f' (0)^(0) 

< <(sign f) Bf, p> 

since f"(0)p(0) = f'?(0) = -2 . D 

We now show that B satisfies Kato's inequality for positive 
elements, however; i.e. 

(3.14) P^ Bf ^ Bf for all f e D(B)_̂ _. 

In fact, more is true. B is local, i.e. 

(3.15) f ^ g implies Af - g for all f s D(B), g c L̂ *([R). 

Proof. Let A be the generator of the translation group. Then A is 3 local by [31, 3.3]. Hence B = A is local as well. D 

So this example shows that even if there exists a strictly-
positive subeigenvector of the adjoint of the generator, Kato's 
inequality for positive elements alone does not suffice for the 
positivity of the semigroup. 

Next we make some observations concerning positive 
subeigenvectors. Assume that A is the generator of a positive 
semigroup (T(t)) ^ on a Banach lattice E. Let o e D(A') and 
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^ , fR. Then 

^ (3 16) ^ A p if and only if T(t)'^ ^ e^^^ (t^O). 

proof. If T(t)'(j) ̂  e^^ ^ for all t ^ 0, then 
= o-(E',E)-lim 1/t (T(t)'% - < lim 1/t (e^^d) - - A^. 

t^O t^O 

: For the converse let f s Then 

f <f, T(t)'(j)> = <f, p> + /jr <f, T(s)'A'(j)> ds 

^ <f, d)> + A jp <f, T(s)'^> ds. 

r It follows from Gronwall's lemma that <f, T(t)'p> ^ e^^ <f, p>, Q 

Assume now that p is a subeigenvector of A'. Then it follows from 
(3.16) that the ideal J := {f c E : <lf[,d)> = 0} is invariant 
under the semigroup. From this we conclude 

Proposition 3.3. If the semigroup is irreducible (see [45]), then 
every positive subeigenvector of A' is strictly positive. 

Example. For d > 0 the semigroup considered at the 
beginning of this section is irreducible. Thus every positive 
subeigenvector of A' is strictly positive. 

The existence of positive subeigenvectors is related to the 
Krein-Rutman theorem. If A has a compact resolvent and 



(7 (A) f 0' then the Krein-Rutman theorem asserts that there exists 
a positive eigenvector of A' (and A) for the eigenvalue 
s(A) sup {ReA : A c c(A)}. 
It is easy to see that A^ has compact resolvent and ^(A^) f 0 for 
^ ^ 0. Thus A^ has a positive eigenvector if and only if d > 0. 

4. Domination 

Frequently it is useful to be able to compare two semigroups on a 
Banach lattice with respect to the ordering. 
In this section we assume that E is a c-order complete complex 
Banach lattice [42, II §11]. Let (T(t))^Q be a positive semi-
group with generator A and (S(t))^p a semigroup with generator 
B. We say, (T(t))^p dominates (S(t))^p if 

(4.1) [S(t)fl ^ T(t)[f] for all f E E, t> 0. 

We first observe that domination of the semigroup is equivalent 
to domination of the resolvents. More precisely, (4.1) holds 
if and only if 

(4.2) [R(A,B)f[ ^ R(X,A)[f[ (f s E) for large real A. 

Proof. (4.2) follows from (4.1) since the resolvent is given by 

the Laplace transform of the semigroup. Conversely, if (4.2) 
holds, then 



- 21 -

S(t)f! = 
< lim 
= T(t)]f! 

]((n/t) R(n/t,B))^f[ 
((n/t) R(n/t,A))^jf[ 

(t > 0, f E E). n 

One can describe domination by an inequality for the generators 
j_;n a manner analoguous to the characterization of positive 
semigroups in section 1, however, no positive subeigenvectors are 
needed here. 

We briefly want to explain the sign operator in a complex Banach 
lattice. Let f e E. There exists a unique operator S e ^f(E) 
satisfying 

(4.3) Sf = If} 

(4.4) [Sg[ < ]g[ (g e E) 
(4.5) Sg = 0 if g ^ f 

(see [31 ,2.1]). 

Example 4.1. Let E = L?(X,^) (1 < p < <") and f E E. Then 
" f(x)/[f(x)[ if ftx) + 0 

(sign f) (x) = 
0 otherwise 

defines a function in L°°. The operator S is given by 
Sg = (sign f).g (g c E). 

We define sign f := S e ^(E). Thus in the case E = L^ we 
identify the function sign f and the multiplication operator it 
defines. 



- 2? -

pemark 4.2. If is a positive semigroup on a a-order 
complete complex Banach lattice, ther its generator satisfies 
Kato's inequality in the form (K) if 'sign f is interpreted as 
above (see also [4]). However, for the characterization of posi-
tive semigroups one can restrict oneself to the real case by 
making use of the following observation. 

Let E be a complex Banach lattice. Denote by E^ the real Banach 
lattice associated with E. Then E = E^ + iE^; i.e. for f E E 
there exist unique elements Ref, Imf of E^ such that 
f = Ref + ilmf. Let f = Ref - ilmf. 
Let (S(t))^^Q be a semigroup on E with generator A. We say that 
(S(t))^^Q is real if S(t)E^ c= E^ for all t ^ 0. It is easy to 
describe this in terms of the generator. We say that A is real if 
f e D(A) implies f E D(A) and Af = Af. Then 

(4.6) (Sft),.^ is real if and only A is real. 

Theorem 4.3. Let be a positive semigroup 
generator A and a semigroup with generator B 
following assertions are equivalent. 

(i) [S(t)f[ < T(t)lf[ for all f E E, t > 0 
(ii) Re <(sign f) Bf, < <]fj, 

for all f e D(B), ^ e D(A')̂ _ 

The author learnt Theorem 4.3 -from T. Kato. There are similar re-
sults due to B. Simon [47], [48] and Hess, Schrader and 

with 
. The 



Uhlenbrork [241, Cur aim is to generalize Theorem 4.3 by replac-
ing the condition that B is a generator by a range condition. The 
precise formulation is the following. 

Theorem 4.4. Let (T(t))^_^ be a positive semigroup with generator 
A. Let B be a densely defined operator such that 

Re <{sign f) Bf, < <if[, A'p> 
(4.7) 

for all f c D(B), ^ e D(A')^ 

Then B is closable. Moreover, if (A - B)D(B) is dense in E for 
a 

some A > max(0, s(A)}, then B' (the closure of B) generates a 
semigroup which is dominated by 

We will use the following notion. Let A be the generator of a 
positive semigroup. The spectral bound s(A) is defined by 
s(A) := sup (ReA: A 6 cf'A)}. Note that R(A,A) ^ 0 for all 
A ̂  s(A) (see section II 1 for more details). 

Proof of Theorem 4.4. 1. We show that B is closable. 
Let D(B) u ^ 0 such that Bu ^ v. We have to show that v = 0. n n 
Considering A - )n and B - p, for some )i > instead of A 

and B we may assume that s(A) < 0, Then there exists a 

strictly positive set M' ci E' such that 

(4.8) ^ ^ D(A') and A'^ < 0 for all ^ E M' 

fsee the proof Proposition 1.5) 
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Det P ^ ^^^ P ^^ ^^^ sublinear functional given by pff) ̂  

^jf], We show that B is p-dissipative. 
Let f ^ D(B), ^ - (sign f)'^. Then it is easy to see that 

^ e dp(f) ^ ^ E' : Re<g,^> ^ p(g) (g E E) ; <f,^> - p(f)). 
Moreover, by (4.7) and (4.8) one obtains that 
Re<Bf,^> = Re<(sign f) Bf, ^ <!f[, < 0. 
Thus B is p-dissipative; i.e. 
p((X - B)f) ^ Ap(f) for all f E E, A > 0. 
By the proof of [5, Theorem 2.4] one sees that p(v) ^ 0; i.e 
<[v[,4)> ^ 0. Since ^ e M' was arbitrary we conclude that v = 0. 

2. Let A > A^ max {s(A),0}. We show that for f E D(B), 

(4.9) g = (A - B)f implies [f{ ^ R(A,A)[gj. 

Let ijj E E_j_. We have to show that <]f[,^> ^ <R(A,A)jg],^>. 
Let 6 = R(A,A)'^ e D(A')^. Then by (4.7) 

<lf[,^> = <}f}, (X - A')p> = Re<(sign f) (Af), - <{f[, 
= Re<(sign f) (A - B)f, p> + Re<(sign f)Bf,^> - <]fj,A' 
< Re<(sign f) (A - B)f, = Re<(sign f) g, 
< <[gl, <p> = <[g[, R(A,A)'^> = <R(A,A)[g[, 

# It follows from (4.9) that for A > A and f E D(B') o 

(4.10) g - (x - B*)f implies jfj S R(A,A)jgi 

In particular, (A - B^) is infective for A > A . Moreover, 
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t # ' ! t ^,11) }R(A,B^)gj ^ R(A,A)tg! for all g E E 
# whenever A^ < A E p(B ). 

Assume now that there exists jn > A^ such that - B)D(B) is 
dense in E. Then (p, - B^)D(B^) = E. (Indeed, let h E E. There 
exists f^ c D(B) such that g^ (p, - B)f^ ^ h. By '4.9) it 
follows that - < R(A,A)}g^ - Thus (f^) is a Cauchy 
sequence. Let f = lim^^^ f^. Then f e D(B^) and (p.. - B^)f = h.) 
Thus p, c ptB ). 

# Let A < A e p(B ). Then it follows from (4.11) that o 
)lR(A,B*)[[ < [}R(A,A)][ < l}R(Ap,A)[! := c. Hence, 

dist(A,a(B*)) = r(R(A,B^))"*' ^ ]]R(A,B*),'!^^ ^ ^^^ 
# This implies that [A^, <*>) c= p(B ). Moreover, it follows from 

(4.11) that 

(4.12) [R(A,B*)^f[ ^ R(A,A)^[f! (f E E, n E 

Let w > n(A) (the type of (T(t))^^p). Then it follows from 
(4.12) that 
![(A - wj^R(A,B^)^l] < [](A - wj^R(A,A)^)l for all A > w, n E 

# 
So by the Hille-Yosida theorem, B is the generator of a semi-
group (S(t)) . Finally, the domination follows from (4.11). D 

Proof of Theorem 4.3 One direction follows from Theorem 4.4. The 
other can be proved in a way similar to Proposition 1.1. Q 
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^ample^ 4.5. As an illustration o f Theorem 4.3 we consider the 
compl̂ -̂  version of the first example of section 1. 
Let E = L^[0,1]. For d E C let A^f = f with domain 
D(A^) = Lf c AC[0,1] : f(l) = df(0)}. Then A^ generates a 
semigroup Let jd] < c. Then is dominated 
by (T This can be seen by Theorem 4.3 as follows. Let f 
D(AJ, 0 < ^ e D(A'). Then ^(o) = c^(l). Hence 

Re <(sign f)A^f, = Re <(sign f)f, = <jf;', 
1 = <]f[, -<j)'> + (]f(x)}&(x))l o 

= <lf[, (Â )'(ji> + ]f(l)]p(l) - lf(0)]o(0) 
= <[f[, (A + )f(0)[^(l) (]d[ - c) 

^ <[f!' (Ac)' 

Of course, in this example domination can also be verified by 
inspection of the semigroups. 

Example 4.6, Let be a positive semigroup with 
generator A. Let M e Z(E) (the center of E (see [53 , chapter 
20]). For example, if E = L^(X,pJ (where (X,n) is a ^-finite 
measure space and 1 < p < °o) then M is the multiplication 
operator defined by a function in L°°(X,p,). 
Let B = A + M. Then B generates a semigroup (S(t))^^p. 
Assume that ReM < 0. Let f r D(B) and ^ c D(A')^. Then 

Re<(sign f) Bf, = Re<(sign f) Af, + Re<(sign f)M.f, 
^ Re<(sign f) Af, + Re<M!fl, 
^ <!f!, A'p> . 



Thus, by Theorem 4.3, is dominated by (T(t))^^. 

Domination and positivity are characterized simultaneously as 

follows. 

Proposition 4.7. Let E be a a-order complete real Banach lattice. 
Let be a positive semigroup with generator A and 

let be a semigroup with generator B. The following-
are equivalent. 

(i) 0 ^ S(t) < T(t) for all t ^ 0 , 
(ii) < Bf, (&> ^ <f\ A'p> for all f s D(B), ^ s D(A') + 
(iii) <P^+ Bf, < <f^, A'a> for all f s D^, ^ e P(A')^, 

where D is a core of B , o 

Remark 4.8. Condition (ii) implies f4.7) (cf. Remark 1.9) 

Proof. One proves as in Proposition 1.1 that (i) implies (ii). 
It is trivial that (ii) implies (iii). Assume that (iii) holds. 
Let A > ^ = max {s(A),s(B),0}. In a similar way as (4.10) one 
shows that for ail f s D o 

(4.13) xf - Bf = g implies f^ < R(x,A)g^. 

Since D is a core it follows that (4.13) also holds for all o 
f E D(B). This implies that (R(x,B)g)^ < R(A,A)g^ for all 
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. Consecruentlv, 0 ^ R(A,B) ^ R(A,A) for all 
g E S, ^ ^ 'c 

A ^ . Hence (i) holds. D 

FinallY' it is known that the semigroup also is 

p o s i t i v e , domination can be characterized as follows. 

imposition 4.9. Let E be a real Banach lattice, a 
positive semigroup with generator A and a positive 
semigroup with generator B. Consider the following conditions. 

(i) S(t) ^ T(t) ft ^ 0). 

(ii) <Bf,^> ^ <f,A'd)> for all f E D(B)^, ^ e D(A')^ . 
(iii) Bf ^ Af for 0 ^ f E D(A) H D(B). 

Then (i) and (ii) are equivalent and imply (iii). 
Moreover, if D(A) D(B) or D(B) D(A), then (iii) implies (i). 

Proof. Assume that (i) holds. Then for f E D(B)_̂ _, <p E D(A')^_, 
<Bf,<j)> = li^t-o <S(t)f - f, (j)> ̂  1/t <T(t)f - f, 

= <f, A'd)>. 
So (ii) holds, (iii) is proved similarly. 
Now assume (ii). Let A > max (s(A), s(B)}. Let g E E^, ^ E E_[. 
Then <R(A,B)g - R(A,A)g, -
<R(A,A)g, AR(A,B)'^ - - <AR(A,A)g - g, R(A,B)'ijj> = 
<f, B'^> - <Af, ^ 0 where f = R(A,A)g E D(A)_̂ _ and 
^ = R(A,B)'tjj E D(B')^. Hence R(A,B) < R(A,A) and (i) follows. 
Finally, we prove that (iii) implies (i) if D(B) D(A), say. 

Let A > max (s(A), s(B)}. Then (A - B)R(A,B) is a positive 



operator. Hence R(X,A) - RfA.B) - R(A,A)(A - P)R(A,P) ^ 0. This 

implies (i). Q 

E x a m p l e 4.10. Let B be the generator of a positive semigroup 
(S(t))t>0' ^ ^ bounded positive operator. Then A = B + C with 
D(A) DfB) is the generator of a semigroup It can be 

seen from the product formula (see e.g. [13]) that (T(t))^^^ is 
positive. Since Bf ^ Af for all f e D(B)_̂ _, it follows from Propo-
sition 4.9 that S(t) ^ T(t) for all t ^ 0. 

The preceding results can be applied to the perturbation by 
multiplication operators* Let (X,n) be a o-finite measure space 
and E = L^(X^i) (1 ^ p Consider a positive semigroup 
(T't))^^^ with generator A. Let m : X ^ fR be a measurable 
function such that m(x) ^ 0 for all x s X. Let 
D(m) = (f e E : f*m e E}. Define the operator B with domain 
D(B) = D(A) n D(m) by Bf - Af + m-f (f E D(B)). 

Theorem 4.11. If there exists a ouasi-interior subeigenvector u 
of A such that u e D(m), then B is closable and the closure B^ of 
B is the generator of a positive semigroup which is 

dominated by (T(t); p. 

For the proof of the theorem we need the following lemma. 
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Lemma 4.12. Let A and B be generators of positive semigroups 
(resp., S(th^). If 'T^t))^ dominates (S(t)h^, 

then sfB) ^ s(A). 

Proof of Lemma 4.12. Let A > s(A). Then for all p, ̂  max iA^s(B)} 
!-l ^ one has 0 ^ R(p,,B) ^ R(A,A), and so dist(^,a(B)) ^ }R(n,B) 

jjR(A,A)[[ This implies that EA,^) c: p(B). Q 

Proof of Theorem 4.11. There exists > 0 such that Au ^ ^u. 

Let A > max (s(A), n). Then AR(A,A)u = AR(A,A)u+u ^ nR(A,A)u + u. 
Hence R(A,A)u ^ c u where c > 0 . It follows that R(A,AlE (= u 
E^ n D(A) c: D(B) . Hence D(B) is dense. 
Let f e D(B), s D(A')^. Then. 

(4.14) <P^+ Bf, (h> ^ A'^> 

In fact, Bf, <f>> = ^ + ^^f^ m'f' 
= Af, + <m*f^, 
^ Af, r 
^ <f^, fby (1.7)). 

But (4.14) implies (4.7). So it follows from Theorem 4.4 that B 
# 

3-p closable. Moreover, if we can show that (A - B')D(B ) is 
aense in E , it follows that B' is the generator of a semigroup 
(Sft))^^^ . in that case (4.14) implies by Proposition 4.7 that 
(Sft))^^^ is dominated by 
We show now that (A - B^)D(B^) is dense in E . Let m = sup (m, -nl^} (n c N) and B = A + m . Then B is n ^ X n n n 
the generator of a positive semigroup and it follows from 



proposition 4.9 that 0 < R(A,B^) ^ R(A,B^) < R(A,A) for 
TT ^ ^ ĵ, A > s(A) . (Note that s ?B ) ^ s(A) by Lemma 4.12). all A* ̂  n 

I^t o g f c ^ . Let g^ ^ R(A,B^)f . Then g = inf^^ = 
i,- q exists. Moreover g E D(B) and lim (A - B)g = 

f + l i m ^ (B^ - B)g^ = f, since ] (B^ - B)g^i < (m^ - m)]g^! 
^ (m - m)[R(A,B^)fj < (m^ - m)R(A,A)[f[ < c' (m^ - m)u . But ^ # 

(m - m)u = 0 since u c D(m) . Thus g e D(B ) and # # # 
^ _ = f . we have shown that E^ <= (x - B^)D(B^) . Hence 

- B^)D(B^) is dense in E. D 

Example 4.13. If D(A) c: L°°(X,p,) and m LP(X,uJ , then the 
hypotheses of Theorem 4.11 are satisfied. 

5i. Semigroups of disjointness preserving operators 

In this section we consider a special case of domination. Let E 
be a complex Banach lattice. A bounded operator S on E is called 
disjointness preserving if 

(5.1) f - g implies Sf - Sg (f,g e E). 

Note that an operator S is a lattice homomorphism [42 , II 
2*4] if and only if S is positive and disjointness preserving. 

IR the following we will consider disjointness preserving semi-
(by this we mean semigroups of disjointness preserving 



An example is the semigroup defined in 

Remark 5.1. In [2] we called order bounded disjointness preserv-
ing operators Lamperti operators, and it was shown that on a 
c-order complete Banach lattice every disjointness preserving 
operator is automatically order bounded. More recently Abramovich 
[1] showed that the assumption of c-order continuity can be 
omitted and de Pagter [351 gave a simplified proof of this fact. 

operators). 

section 3. 

If S E iE) is disjointness preserving, then the modulus of S 
exists. !s! is a lattice homorphism and is related to S by 

(5.2) Isf! = !s! ]f I ff e E). 

Proposition 5.2. Let (S(t))^Q be a disjointness preserving 
semigroup. Let T(t) = ]s(t) j (t > 0) , Then (T^t))^^ is a 
strongly continuous semigroup. 

Proof. Let 0 < s,t and f B E^. Then by (5.2), 

T(s)T(t)f = T(s)!s(t)fj = !s(s)s(t)fj - }s(s+t)f[ = T(s+t)f. 
Since span = E, it follows that is a semigroup, 
Moreover, for f r E . lim^ T(t)f - lirn̂  js(t)fi = !f[ = f. 4- ̂  t^O t^O 
This implies that is strongly continuous. H 

R^ark. P. Derndinger [161 investigates the modulus of a 

semigroup in other cases. 



T^(t) be given by H.3). Then 

proposition 5.4. Let B be the generator of a disjointness pre-
serving semigroup on a Banaoh lattice E. Then B is 
local; i.e. 

(5,3) Bf - g if f c D(B), g E E such that f - g. 

The proof of [31, 3.31 can be adapted in an obvious way. 

3. Let d e C and Sit) -

T(t) = Tf^i (t) (t ^ 0). 

We new describe the relation between the generator of a 
disjointness preserving semigroup and the generator of the 
modulus semigroup. 

Theorem 5.5. Assume that E is a complex Banach lattice with 
order continuous norm. Let (S(t))^^^ be a semigroup with 
generator B . The following assertions are equivalent. 

(i) (Sft))^^^ is disjointness preserving. 
(ii) There exists a semigroup (T(t))^^^ with generator A 

such that 
(5.4) f ^ DfB) implies !f! c D(A) and Re ((sign fl Bf) = Ajf! 

Moreover, if these equivalent conditions are satisfied, then 

T(t) = !s(t)! (t 5 0). 
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Remark. The relation (5.4) is equivalent to 

(sign f)Bf),p > = ff 6 D(B), <f> f D(A')). 

Tn the case where A generates a positive semigroup, this is 
c o n d i t i o n (4.7) in Theorem 4.4 with the inequality replaced by 
the equality. It is remarkable that , in contrast to the 
s i t u a t i o n considered in Theorem 4.4, here condition (ii) implies 
the positivity of 'T-t^o . 

Proof. This is an adaption of the proof of [31, Theorem 3.4] 
given by Nagel and Uhlig. Assume that (i) holds. Let f ^ D(B). 
Then S(t)f is differentiable in t. By the chain rule [31 ,3.1] 
T(t)[fl = !s(t)f[ is also differentiable and d/dtj^Q T(t)!f[ 
= Re (sign f)Bf (by [31 ,2.2] and Proposition 5.4). Hence }f! 6 
D(A) and A[f[ = Re (sign f)Bf. Conversely, assume that (ii) 
holds. Let s > 0, f ( E . We show that ]s(s)f! = T(t)[f[. This 
implies that S(s) is disjointness preserving and [s(s)j = T(s) 
(by [2,Theorem 2.4]), Since D(B) is dense we can assume that f 
^ D(B). Let ^(t) = T(s-t)!s(t)f[ (t ^ [0,s]) . Then using 
again [31 , 3.1], [31 ,2.2] and Proposition 5.4 one obtains 
d/dt Eft) = -AT(s-t)!s(t)f! + T(s-t) (Re (sign S(t)f)BS(t)f) = 0 by 
the assumption (ii). Hence q(0) - ^(s) , i.e. 
Is(s)f] = T(s)!f!. n 

For the case where S(t) = T(t) (t^O) we obtain 

Corollary 5. 6 (Nagel, Uhlig [31 ,3.4]). Let be a 
semigroup with generator A . The following assertions are 

eauivalent. 
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T^t) is a lattice homomorphism for all t ^ 0. (i) ^ 
f 6 D(A) implies jfj 6 D(A) and Pefi'sign f)Af) - A]f 

Example 5.7. Let E = (where (X,p.) is a o-finite measure 

space and 1 = p < and A^ be the generator of a semigroup of 
lattice homomorphisms. Let h E L and B = A^ + h (i.e. B is given 

Bf = A f + h*f for f c D(B) = D(A )). Let A - A + Reh . Dy ^^ o o o 
Since generates a semigroup of lattice homomorphisms, we have 
If I e P^A ) whenever f s D(A ) and Re ((sign f)A f) = A If I. Hence t ' * o o - o o 
Re ((sign f)Bf) - Re ((sign f)A^f) + (Reh)*[f!) = + (Reh)!fj 
=A[f[ for all f e D(B). Thus it follows from Theorem 5.5 that B 
generates a disjointness preserving semigroup whose modulus 
semigroup is generated by A. 

Next we describe in terms of the domain ot the generator when a 
disjointness preserving semigroup is positive. 

Proposition 5.8. Let E be a complex Banach lattice with order 
continuous norm and B be the generator of a disjointness 
preserving semigroup . The semigroup is positive if 
and only if B is real and span D(B)^ = D(B). 

I^^of. The conditions are clearly necessary. In order to prove 
sufficiency, we can assume that E is real. Denote by A the 
generator of where T(t) - ]s(t)!. Let f e D(B)_̂ _. Since 
B is local we have Bf = P^ Bf = (sign f) Bf - A[f! = Af, By 
assumption, span D(B)_̂ _ - D'B). Thus it follows that B A. This 
implies that B - A since p(B) H p(A) ^ 0. [] 



Finally, we show that tor generators ot dis-crntness preserving 
semigroups Kato's inequality holds in the reverse sense. 

^ ° s i t i o n 5.9. Let B be the generator of a disjointness pre-
serving semigroup fs (t))^ on a real Banaoh lattice E with 
order continuous norm, Then 

(5.5) <(sign f)Bf, ^ <jf), 

for all f e D(B), ^ e D(B')^. 

PlRcf. Let T(t) = )s(t)[ and denote by A the generator of 
(T(t))^^ . Let f e D (B), ^ e D(B')^ . Then <'sign f)Bf, d> = 
<Ajf),^> = lim^^ (1/t) <T(t)[f} -jfj, ^ > 
lim^^ 1/t <S(t)[f] - [f[, ^ =<]f[, 0 



Chapter II 

Resolvent Positive Operators 

The Hille-Yosida theorem yields the following characterization of 
generators of positive semigroups in terms of the resolvent. 

Theorem. Let A be a densely defined operator on an ordered 
Banach space E , Then A generates a positive strongly con-
tinuous semigroup if and only if the following two conditions are 
satisfied. 
a) There exists w e [R such that (w,°°) <= p{A) and R(A,A.) : = 

(A-A)"^ ^ 0 for all A e (w, <") (where p(A) denotes the 
resolvent set of A )* 

b) sup fj[ (A - w)^ R(A,A)^[[: A > w, n E < 

Given a concrete operator, condition b) is frequently difficult 
to verify since the powers of R(A.A) are involved. So we fake 
condition a) as a definition. 

inition. An operator A on an ordered Banach space E is 
called resolvent positive if there exists w E fR such that 
(w,co) ̂  p(^) ^^^ P(A,A) ^ 0 for all )< > 0 . 



rp̂ e purpose of this chapter is to investigate svs^ematicallv 
r e s o l v e n t p o s i t i v e operators. We first show that in some 
exceptional cases (for example, if E ^ C(K) , K compact) a 
resolvent positive operator is automatically a generator. On 
^P-spaces and C^'X) (X locally compact) this is not true, how-
ever. In fact, there are many natural examples of such operators 
which are not generators. Nevertheless these operators have 
r e m a r k a b l e properties. W e will prove that if A is a resolvent 
positive operator and if either the domain D(A) of R is dense 
or E is reflexive, then the Cauchy problem 

u'(t) = Au(t^ 
u(0) = f 

i 
has a unique solution u e C^([C,^),E) for every initial value 
f s D(A^). 

But resolvent positive operators are also interesting from a 
structural point of view. In fact, it is natural and corresponds 
to the historical development to consider semigroups from the 
point of view of Laplace transforms. Then the Hille-Yosida 
theorem characterizes those operators whose resolvent is a 
Laplace transformation. The corresponding classical theorem is 
the following. 



Theorem [51, 6.81. Let w e [R, M > 0 and g c There 
exists a measurable function f on [C,^) satisfying !f(t)' ^ Me^^ 
(t > 0) such that 

g(A) = e ^ ^(t) dt ( w) 

if and only if 
[A^^^ g^^ (A)/n!j ^ M f/, > w, n = 0,1 

To see the analogy, observe that the derivatives of the resolvent 
of an operator A are given by 

p/^' (A,A)/ni = (n c fr,'). 

There is also a classical theorem characterizing those functions 
which are Laplace-Stieltjes transforms of increasing functions, 
namely, 

Theorem (Bernstein) [51, 6.7]. Let a E !R and g & C (a,°°) . 
There exists an increasing function a : [0,°°) ^ R such that 

g(-M = /Ij e"^^ da(t) (A > a) 
if and only if g is completely monotonic; i.e., 

(-1)^ g^' (A) ^ 0 for all A > a, n = 0,1,2,... 

Now let A be a resolvent positive operator. Then 

(-1)^ R^'(A,A) = ni ^ 0 

for all n ^ ̂  and all sufficiently large A . Thus RfA.A) is 
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P(A,A) - Jp e dS(t) (A large] 

for 3 strongly continuous increasing family of 

positive operators. This theorem will be proved by two different 
approaches, One uses the Hilie-Yosida theorem and can be applied 
when A is densely defined. The second approach is based on a 
vector-valued version of Bernstein's theorem which we prove in 
section 5, Here we have to r e s t r i c t the class of spaces (allowing 
reflexive spaces, L^-spaces for l<p<^ and c^ ) , but it is no 
longer necessary to assume that A is densely defined. 

The relations between the operators (S(t))^Q and A are 
similar to those of a semigroup to its generator. For instance, 
the operators induce the solutions of the Cauchy 
problem mentioned above, 

In the last section we give a characterization of resolvent 

positive operators by means of Kato's inequality. 

General assumption. Throughout this chapter E denotes an ordered 
Banach space with generating and normal positive cone 
Moreover, we assume that the norm !! H on E is chosen in such a 
way that 

± ^ < c implies H f H < '!gl! (f,g e E) 

ompl^tely ^onotonic. In ^act, we will show that 



(which can always be done). For further properties of E which 
frequently be used we refer to Appendix A. 

1. Basic Properties. 

Even though in the definition of resolvent positive operators it 
is merely required that a half-line lies in the resolvent set we 
show that this entails much stronger consequences. 

Definition 1,1. Let A be a resolvent positive operator (see the 
introduction to this chapter for the definition). Then 

s(A) = inf (wsR : (w,<x>) p(A) and R(A,A) > 0 for all A > w } 

is called the spectral bound of A. 

We will eventually show that s(A) ^ sup (ReX : X E a (A)} (Theo-
rem 1.4), which justifies the terminology. 



^ i 7. Let A be an operator on E and A e ir fl p(A) such rhat ĵ ein̂  o 

if A^ < A^ such that A^ E p(A) and P(A^,A) > 0, then 
^ ] (= p(A) and 0 < R(A ,A) < R(A,A) < R(A,,A) for all 

L A ^ ^ O O 1 

A E E^i' 

(ii) If s inf (A^ E p(A) : R(A^,A) > 0]- > then 

s E c(A). 

Proof. a) Let A, n E p(A) ,1 fR, A < n, R(A,A) > 0, R(p,,A) ^ 0. 
Then R(A,A) ^ R(p,,A). In fact by the resolvent equation, R(A,A) 
- R(n,A.) = (p, - A)R(A,A)R(n,A) > 0, 
b) If A E o(A) and R(A,A) ^ 0, then there exists e > 0 such that 
(A-E, A] p(A) and R(n,A) > 0 for all n E (A-E,Al. 
In fact, let e > 0 such that ju. - A} < E implies 
p, E p(A). Then for n E (A-E,A], 

P-(}J,,A) = r^Q > 0. 

This proves b). Moreover, b) implies (ii). [In fact, if s ^ -°o, 
then there exist s < A^ E p(A) fnffbl such that R(A^,A) ^ 0 and 
lim A = s . Hence if s^p(A), then R(s,A) - lim R(A ,A) > 0 n-̂ co n ' n̂ co n 
and b) leads to a contradiction to the definition of s.j 
We prove (i). Let s = inf (r E fR' : r ^ A^, fr,A^l c: o(A) and 
R(A,A) > 0 for ail A E (r, ^̂ Jj*- ^ have to show that s = A^. 
It follows from b) that s A . Assume that s > A.. Then it o i 
follows from b) that s r c(A) (cf. the proof of (ii) above). For 
A s (s,A^l, P(A,A) < R(A^,A) by a). Hence M sup (!!R(A,A)'! 
: A r (s,A^]} < Consequently, for A E (s, 
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Remark 1.3. By Lemma 1.2, an operator A is resolvent positive 
whenever there exists a sequence î-JnefH ^ p(^) ^ such 

lim ^ = ^ and R(A ,A) ^ 0 for all n e N. tnaL -L- ^ . ̂  

Theorem 1.4. Let A be a resolvent positive operator. Then for 
ReA > s(A) we have A c p(A) and 

(1.1) !<R(A,A)f, ^ <R(ReA,A)f, for all f E E^, <b e E_j_. 

Moreover, if s(A) > then s(A) E a (A). 

Proof. Let H = (A E C : ReA > s(A)} and denote by K the con-
nected component in H P; p(A) containing (sfA), We claim 
that (1.1) holds for every A E K. In fact, let f s E^, ^ s E_j_. 
Then the function A ^ <R(A,A)f,^> (A e (s(A),°°)) is com-
pletelv monotonic (see the introduction to this chapter). Hence 
by Bernstein's theorem, there exists an increasing function 
a : (0,co) ^ R such that 

-At <R(A,A)f, = J^ e ^ da(t) (A > s(A)). 

The functions A ^ e"^^ da(t) and A - <RfA,A)f,^> are o 
both holomorphic on K and coincide on (0,^). So they are identi-
cal. Hence for A e K, !<P-fA,A)f,o>! = ^ e""'̂  da(t) ! ̂  
J e * da(t) = <P. (ReA,A)f,(p>. This proves the claim. 

= !!R'A,A)[' ^ ^ M ^ > 0, contradicting s s c?^). 

Ttiis proves that s - A^. C 
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v > -̂(A) let K = f/, e K : Re.-' ^ rl. Then for A c F , For r r *r' 
= <R(ReA,A)f,^> ^ <Rfr,A)f,p> (by Lemma 1.2). 

Hence sup {!!P(*,A)]l' : ^ s K^} < Since dist(A,afA)) > 
it follows that K^ - (A e C : ReA > r). Since 

r > s(A) was arbitrary, we conclude that H cr p(A) and (1.1) 
holds for all A e H. Finally, it follows from Lemma 1.2 that 
s(A) ^ cr(A), whenever s(A) > Q 

Now let A be a resolvent positive operator. Then by Lemma 1.2, 

(1.2) R(n,A) ^ R(A,A) ^ 0 whenever s(A) < p, ̂  A 

In particular, for every A > s(A), 

(1.3) sup (}}R(A,A)II : A ^ A^} 

If A is densely defined, then 

(1.4) li^A^M R(A,A)f = 0 for all f s E and 

(1 = 5) lim AR(A,A)f = f for all f e DfA). 

Proof, a) Let f c D(^). Let n > s(A) and g - (p-A)f. Then 
R(A,A)f = P(A,A)R(p,,A)g - 1/(A-^) (R(.u,,,A)g - R(A,A)g) ^ 0 for 
A ^ co (because of (1.3)). 
b) (1,4) follows from a) and (1.3) by a 3c-argument since D ^ ) is 
dense. 
c) Let f r D(A), Let g = (^-A)f where }J. > s(A). Then 



,, A)^ = AP(A,A)P(n,A)g = fP(n,A)g - R(X,A)g) 
, = f for A ̂  <* (by (1.4)). This proves (1.5). D 

Remark. Note that in general lirn^^ l)AR(A,A)!; = ^ even if A 
is densely defined (see Example 7.3 b)). 

We w ill use the following definitions. 

(1.6) D(A)^ = E^ H D(A) and D(A')_̂ _ = E_j_ H D(A^) 

(where we assume A to be d e n s e l y defined in the second defini-
tion). Since D(A) = R.(A,A)E and D(A') = R(A,A)'E' and 
R(A,A) ^ 0 for A > s(A) one obtains 

(1.7) D(A) = D(A)^ - D(A)^ and D(A') = D(A')_̂ _ - D(A')^. 

In particular, D(A) is an ordered Banach space with respect to 
the graph norm and the positive cone D(A)^. However, this cone is 
not normal in general. 

Remark. Operators with positive resolvent have been considered 
by Kato [29] and Nussbaum [341. Theorem 1.4 is proved by Nussbaum 
(I.e.) by reduction to the corresponding result for bounded 
positive operators [41, App. 2.2]. 



? Resolvent Positive Cr-erpto-^ ^ , .—. — i i — w n i o n are Autom̂ -f-̂ r-niî  
Generators. 

Resolvent positive operators admit norm estimates for the 
resolvent. On C(K) (K compact), they are sufficient to y^eld the 
norm condition required by the Hille-Yosida theorem. In other 
special cases, an additional mild norm condition or order 
condition suffices to obtain a semigroup. 

Lemma 2.1. Let A be a resolvent positive operator such that 
s(A) < 0. Then 

( 2 . 1 ) P. ( 0 , A ) = R ( A , A ) + A R ( X , A ) 2 + A ^ ' P ( A , A ) ^ + . . . + 

+ A^R(A,A)^R(C,A) 
for all n E A 5 C. Consequently, 
(2.2) sup ([{x" R(X,A)" R(0,A)}j : n e A & 0} < 

Proof. By the resolvent equation, 

R(0,A) = PfA,A) + AR(A,?)R(0,A) 

^ ' ^ ' This is (2.1) for n = 1. Iterating this equation yields 
(2.1) for all n e n 

2.2. Relation (2.1) implies that R(A,A)^ < P'0,A) 

for all A^O. Hence sup : ^ Q, ns^} < 

On the other hand, if A is densely defined, then A generates 
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b o u n d e d strongly continuous semigroup it and only if 
{ : A ^ 0, n E < 

Tt cnb<=et C of E, is called cofinal in E, if for every f E E A ^^ *r -r " + 
there exists g E C such that f ^ g . 

If (Tft))^^^ is a positive strongly continuous semigroup with 
generator B, then the type (or growth bound) aj(B) is defined by 

M(B) = irf {w E [R : there exists M ^ 1 such that j[T(t)}! < M e ^ 
for all t ^ 0}. 

One always has s(B) < aj(B) < but it can happen that 
s(B) =}= (jj(B) even if B generates a positive group ([23] and 
[521). 

Theorem 2.3. Let A be a densely defined resolvent positive 
operator. If D(A)^ is cofinal in or if D(A')_̂ _ is cofinal in 
E_j_, then A is the generator of a strongly continuous positive 
semigroup. Moreover, s(A) = oi(A). 

Proof, a) Assume that s(A) < 0. We claim that A generates a 
bounded strongly continuous semigroup, if one of the conditions 
in the theorem is satisfied. 

We first assume that D^A) is cofinal. Let f E E,. Then there 
exists a ( D(A) such that f ^ a . Let h = -Acr and k E E, such 
that h ^ k. Then f ^ g - R(0,A)h < P(0,A)k. It follows from 
(2.1) that ^ Â P. fA,A)^R(0,A)k < R(0,A)k. Hence 



: ^ = 0, n e M } < Since E = E, - E , -it gup t!!^ ' '' ' + 
follows that (A^R (A.A)^ : A ^ 0, n e N } is strongly bounded; 
thus it is norm-bounded by the uniform boundedness principle. The 
Hille-Yosida theorem implies that A generates a strongly contin-
uous bounded semigroup. 
If D(A')_j_ is cofinal in E_j_ consider f e <j) c Then there 
exists ^ ^ E+ such that ^ ^ R(0,A)-^. Hence by (2.1), 
<A^R(A,A)^f, <j)> ^ <A^R(A,A)^f, R.(0,A)^> = <A^R(A,A)^R(0,A)f, 
< <R(0,A)f, Since E^ and E_; are generating this implies that 
(A^R(A,A)^ : A n e M} is weakly bounded, and so norm-bounded. 
Again the Hille-Yosida theorem implies the claim. 
b) If s(A) is arbitrary consider B = A - w for some w > s(A). 
Then s(B? < 0, and so by a), B is the generator of a bounded 
semigroup Hence A generates the semigroup 
(e^T(t))^.^. Moreover m(A) ^ w* D 

Corollary 2.4. Assume that int ^ 0 . If A is a d e n s e l y 

defined resolvent positive operator, then A is the generator of a 
strongly continuous positive semigroup and s(A) = m(^) . 

Proof. Since int =p 0 and D(A) is dense, there exists 
u E int E^ n D(A). The set (u) is clearly cofinal in E^. Q 

Corollary 2.5. Let A be a densely defined operator with positive 
resolvent on L^(X,p.) (where (X,n) is a c-finite measure space). 
If there exists d) E D(A') H L-°°(X,n) such that dux) ^ c > 0 
for almost all x E X, then A is the generator of a strongly 
continuous positive semigroup. 



Remark. Corollary 2.4 has been proved in [5] and Corollary 2.5 
]3y Batty and Robinson [81 with a different approach using 
^alf-norms. 

Theorem 2.6. Let A be a densely defined resolvent positive 
operator. If there exist A^ > s(A) and c > 0 such that 

(2.4) ]jR(A rA)f[! ^ c l]fll (f e E j , \ ! ) Q ! . < ) . , 

then A is the generator of a strongly continuous semigroup and 

s(A) = uj(A). 

Proof. Let s(A) < w < A . Let B = A - w, Then s(B) < 0. Since o 
R(0,B) = R(w,A) ^ R(A^,A) (by (1.2)), it follows from (2.4) 
that []R(0,B)f]l > []R(A^,A)f][ > c !]fl[ for all f e Using 
(2.2) one obtains a constant M>0 such that ][(AP(A,B))^f][ ^ 
c"^[lp.(0,B) (AR(A,B))^fj] < M )}fj[ for all f c A ^ 0, n c 
Since E = - E^ it follows that the set (A^R(A,B)^ : n E fh!, 
A ^ 0} is strongly bounded and so norm-bounded. Thus by the 
Hille-Yosida theorem, B = A - w generates a bounded strongly 
continuous positive semigroup. Hence A is a generator and 
a) (A) < w„ Q 

Remark. Theorem 2.6 (except the assertion concerning the spec-
tral bound) is due to Batty and Robinson [8] (with a different 
proof) who analyse condition (2,4) in more detail. 



Theorem 2.7. Suppose that the norm is additive on the positive 

cone, i.e. )jf+g}i - }[f[! + ][gf) for all f,g 6 E^ (e.g. E = 
^^t A be a densely defined operator. Then the follow-

ing assertions are equivalent. 

(i) A generates a strongly continuous positive group. 

(ii) A and -A are resolvent positive and there exist 
A > max (s(A), s(-A)} and c > 0 such that 

(2.5) l!R(A,±A)fjl ^ c j)fl[ for all f e 

Proof. Assume that A generates a positive group (T(t))^^p,. Then 
there exist w > 0, M ^ 1 such that !!(T(-t)l! ^ M e^^ for all t 
^ 0. This implies that l]T(t)f[! ^ M**̂  e"^}lf}i (f c E). 
Hence for A > oi(A), f c }]R(A,A)f{] = )} e"^^ T(t)f dt [I 
= f e " ^ !)T(t)f[] dt ^ f e " ^ e^[]f[! dt = J Q ' < < ' J O 
((A+w)M)"^ Similarly for R(A,-^) where A > m(-A). Thus 
(ii) holds. The converse follows from Theorem 2.6. Q 

Remark. Condition ((2.4) does not hold for generators of posi-
tive groups on every Banach lattice. For example, it fails for 
the generator of the rotation group on C(T), where T is the 
1-dimensional torus [8, Example 2.2.131. 

Example 2.8. We show by an example that condition (2.5) cannot 
be omitted in Theorem 2.7. 
Let B be the generator of the group (T(t))^^p on L̂ (iR) given by 
T(t)f(x) - f(x+t). Then D(B) - (fEACfP) : f G and 



- 51 -

-X —I.,, R(A,B)f(x) = e ^ e ^ fly) dy and -P(-A,B)f(x) - R(A,-B)f(x) 

-n+1 
n P^(f) = (3/2) ̂  ; !f(x)l dx 

-n 

and E^ = (f E LT(R) : Pn'^^ ^ ^ ^ ^ "o ^^ ^ Banach 
lattice with the norm [jfj)^ : = j!f]j^ + ^n'"^* ^^ course, 
E is isomorphic to L̂ (fF:,p.) for a suitable measure )JL. We show o 
that R(A,B)E^ c E^ for all A E fR \ {0}. In fact, let A > 0, f E 
E . Then o 

^-n+1 
p (R(A,B)f) < (3/2)^ j ^Ax ^ g-Ay ^ < 

-n+l 2"*̂  2 ^ * 

![f!!l f3/2)^ } dx = (3/4)^! Hence p^fp(x,B)f) < 

Similarly for A < 0. Let A be the operator on E defined on A. Q D(A) = {f e E H D(B) : Bf e E } by Af = Bf. Then it is easy to o o 
see that R \ (0) (= p(A) and R(A,A) = R(A,B)i^ for A E fR \ 
{0}. Hence R(A,A) > 0 and R(A,-A) = -R(-A,A) > 0 for A > 0. 
We show that D(^) is dense in E. Let f E E . For n E ^ o le^ f — -n Then f-f - f.l -n Henr^ ^ n ^ 2 ^^^ ^ "n [0,2 
I If - f !!- ^ 0 for n ^ co. Moreover, p (f-f ) ^ 0 for m ^ n n '1 ^m n 
and p (f-f ) = p (f) for m > n. Hence . p (f-f ) ^ 
) p (f) 0 for n ^ co. we have shown that 
E (f E E : there exists E > 0 such that f'rn -i = is OO O ![0,EJ 
dense in E . Now let f E E . Then there exists E > 0 such that o co 
fl^- ^ - C. It is easy to see that there exists a sequence ff ) ! [ 0, r ] ^ ^ n' 
cr ACfiR) such that f c ir([R), f - 0 and 



- f !L 0 for n - Then f D(A). Since !! ' ̂  [[-'- n 1 n 1 
[! j!^ are equivalent norms on ^ L"(fR) : f(x) = 

n for x ^ a.e.} ^ B , it follows that lim f ^ f in U LOJ. ̂  ' o n 
E Finally, we show that A is not a generator. In fact, assume o* 
that there exists a semigroup on E^, which is strongly 

r oo -^t 
continuous for t > 0, such that R(A,A)f = e T^(t)f dt for 
large A > 0, For f c E^, T(t)f is continuous in t for the norm 
'! I! and R(X,A)f ^ e*'"̂  T(t)f dt. So it follows from the ' ' - o o unigueness theorem for Laplace transforms, that T^(t)f = T(t)f 

(t>0) for all f e E . Let t > 1 and f - 2^ Ir.^^-n ,,^-n+l-i. ^ ^ OO Lt + Z , t-r̂  J 
Then Ijfl! = H f l L = 1- But T (t)f = 2 lr^-n ^-n+l-i. Hence ' ' O ' ' i O L ̂  , ̂  J 
llT ft)f'j ^ p fT (t)f) = (3/2)^. Thus T (t) is not continuous ' ' o ' o n ' o o 
for t > 1. Q 

Remark. -A is not a generator either (see Example 7,3). 

3. Perturbation and. Examples. 

In this section we present two kinds of perturbations which 
demonstrate that there exist many natural resolvent positive 
operators which are not generators. 

Theorem 3.1. Let A be a resolvent positive operator and 
B : D(A) - E a positive operator. If r(BR(A,A)) < 1 for some 
A > s(A), then A + B with domain DCA! is a resolvent positive 
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operator and s(A+B) < A. 

Moreover, if sup tjjiiR(p,,A)[] : p, > A} < °° (e.g., if A is the 
generator of a strongly continuous semigroup), then 
sup {[[nP(n,A+B)j[ : p, > A} <oi . 

Note: By assumption, BR(A,A) is a positive, hence bounded 

operator on E; we denote by r(BR(A,A)) its spectral radius. 

proof. Let f 6 D(A). Then (A - (A+B))f = (1 - BR (A,A)) (A - A)f. 
Let S^ a - BR(A,A))"^ = (BR(A,A))^ ^ 0. Then 
R(A,A)S^(A - (A+B))f = f for all ^ ^ D(^) and 
(A - (A+B))R(A,A)S^g = g for all g ( E. Hence A 6 p(A+B) and 
R(A,A+B) = R(A,A)S^ ^ 0. If p, > A, then BR(n,A) < BR (A,A) by 
(1.2), and so r(BR(p,,A)) ^ r(BR(A,A)) < 1. Hence also p 6 
p(A+B) and R(p,A+B) ^ 0. Moreover, S^ < S^ and R(n,A) < 
R(A,A) so that pP(p,A+B) = p.R(n,A)S ^ p.Rfn,A)S,. Hence sup P A 

{[[pRfp,,A+B)jj : p ^ A} ^ sup {j!n,R(p,,A))[ : n ^ A ] < - if 
the additional assumption is satisfied. jj 

The following examples show that even in rather simple and 
natural cases perturbations as in Theorem 3.1 may yield resolvent 
positive operators which are not generators. 

Example 3.2. Let a 6 (0,1) * Define the operator A by 

Af(x) = f'fx) + ^ f(x) x ^ (0,1] 

on the space E = C^(0,1] : - (f 6 C[0,1] : f(0) = 0} with 
domain D(A) = { f f C^[0,1] : f'(0) - f(0) = 0}. Then A is 



r e s o l v e n t positive but rot a generator, 

Moreover, s(A) = -- and sup fjjnR(n,A)[} : p, > 0} < l/(l-a). 

proof. Let A^f = - f with domain D(A^) = D(A). Then A^ is the 
generator of the strongly continuous semigroup given 

by 

f^x-t) x > t 
T(t)f(x) -

0 otherwise 

Moreover, ^(A^) = 0 and R(A,A^)f(x) = e ê '̂  f(y) dy 
(A C f ^ E). Let B : D(A ) ^ E be criver by \ * o 
Bf(x) = a fix)/x fx > 0), Bf(0) = 0. Let f 6 E and 
g = R(0,A)f. Then }Bg(x)l = [a/x f'̂  f(y) dy' < a tjfjĵ . Thus 
[]BR('0,Â )[[ ^ a < 1. So Theorem 3.1 implies that A = A^ + B is 
resolvent positive and s(A) < 0. Moreover, for a. ̂  0 one has 
pR.(p,,A) = ^ , where S^ = (I -
Since [hiRf̂ .Â )}} < 1 and ^ l/(l-a) it follows that 
sup (j[jj,R(n,Al[' : ^ > 0} <; l/(l-a). 
It remains to show that A is not a generator. One can easily 
check that for all ^ ^ C one has A ^ p(A) and P. (A,A)f(x) -
^-Ax a fx -a , n rx a, , , -At ^ r e x Jp y e - fly) dy = x (x-r) f^x-t)e dt tf ^ E). 
Suppose that there exists a semigroup which is 
strongly continuous for t > 0 such that R(A,A)f = 

e*^" T<;t)f dt for all f ^ E and all sufficiently large 
real A, Then by the uniqueness theorem for Laplace transforms 
(Theorem C5), for 0 < t < 1, one would have T(t)f(x) -

f(x-t) for x ^ t ard T(t)f(x) - 0 otherwise. This 
does nor define a bounded operator on C 



— _ 

T it fellows trorn a result of Benyamini T9j that C (0,1^ g^gr*- o 
^orphic as a Banaoh space to a space C(K) (K compact). Thus 

1 2 yields an operator B on C(K) such that c(B) = 0 and 
the resolvent satisfies sup {[[Â *"̂ R(A,B)̂ [} : A ^ 0, n ^ < ^ ; 
gup {j]̂ F.(A,B)j[ : A ^ 0} < °° . But B is not a generator. Of 
course, B is not resolvent positive by Corollary 2.4. 

Example 3.3. Let E = Lp[0,lj, where 1 < p < °o. Choose 
a 6 (0, (p-l)/p). Define the operator A by 

Af(x) - -f'(x) + (a/x)f(x) 
with domain D(A) = {f f AC[0,11 : f f L^TO,!], f(0) = 0}. 
Then A is resolvent positive, Moreover, sfA) < 0 and 
sup {[!AR(A,A)[j : A ^ 0) < But A is not a generator. 

Proof. Let A f = - f with domain D(A ) = D(A). Then. A o o o 
generates the semigroup (T^(t))^^^ on E given by T^(t)f(x)= 
f(x-t) for x ^ t and T ft)f(x) = 0 otherwise. Moreover, o 
s(A ) = and R(0,A )f(x) = f^ f(v) dv. Let B : D(A) ^ E be o* o ^ 
defined by Bf(x) = (a/x)f(x). Then by [11, Lemma i i 

BR(0,A^) f _ '(E) and j[BR(o,Â )}[ = ap/'p-l). Hence Theorem 3.1 
implies the first assertions stated above. It remains to show 
that A is not a generator. It is not difficult to check that the 
resolvent of A is given by R.'A,A)f(x) = x^ e ^^ e^^ y ^f(y)dy 
- f̂  x°'(x-t)"^f(x-i-)e'"'^dt (A > o). Let E = ff ( E : there 0 ' o ' 
exists 5 > 0 such that f(x) = 0 for almost all x 6 [0,6)}. 
Define Tft) : E - E by T(t) = 0 if t ^ 1 and c 

x^ fx-t)"^ f^x-t) if X ^ t 
T't)f(x) ^ 

0 otherwise 
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n < t < I. Then T(.)f is continuous from [0,^) into E and 

rwi A)f T(t)f dt for all A ^ 0 if f 6 E . Thus if 
there exists a semigroup which is strongly con-

,oo -At 
tinuous for t > 0 and such that R(A,A)f = t̂  e ' T^(t)f dt 
(f 6 E) for large A, it follows from the uniqueness theorem for 
Laplace transforms that T^(t)f - T(t)f for all f ^ E^, t^ 0. 
But for t ^ (0,1) the mapping T(t) is not continuous (from E^ 
with the induced norm into E). In fact, let P > 0 such that 
1-ap < Pp < 1 , and for n 6 f*N , let = Ip^/^ ii^^J x 
Theri f^ ^ E^ and sup tH^!!^ * " ^ ̂ ^ ^ ^ ^ 
[[T(t)f = {1 f lx-t)P dx ^ t"P f (v)P/y3P dy = " n"p t n u n 
t^P f^l^ ^ ^ ^ ^ jr^r n ^ - since (a+6)p > 1. 0 

Proposition 3.4. Let (X,n) be a c-finite measure space and E 
= Lp'(X,n) (1 ^ p < [resp., X locally compact and E -
C^(X)J. Let A be a resolvent positive operator. Suppose that m : 
X ^ E0,°o) is measurable (resp., continuous) such that 
m(x) > 0 a.e. (resp., m(x) > 0 for all x f X) and (l/m)f ^ E 
for all f ^ D(A). 
Let D(A^) = {g 6 E : m-g 6 D(A), (l/m)A(m-g) 6 E) and 
A^g = (l/m)A(m-g). Then A^ is a resolvent positive operator and 
s(A^) ^ s(A). 

Proof. For A > s(A) let R*(A)f = (l/m)R(A,A)(m.f) (f ^ E). # 
Then R'(A) is a positive, hence bounded operator. It is easy to 
show that R^(A) - (A-Â )""̂ , E 
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Example 3.5. Let E = L^rO,!], 1 < p < and A be given by Af 
= f with D(A) = (f ^ AC[0,1] : f e L^[0,1], ffl) = 0}. Then 
^ is the generator of the semigroup given by T(t)f(x) 

= ffx+t) if x+t < 1 and Tft)f(x) = 0 if x+t > 1. Moreover, 
s(A) = — and R(A,A)f(x) = e ^ /I f(y) dy (f ^ E). 
Let a ^ (0,1/p) and m(x) = x^. Then 1/m ^ L?[0,1] and since 
D(A) ^ C[0,1] it follows that (l/m)f ^ LP[0,11 for all f ^ 
D(A). By Proposition 3.4 the operator A^ is resolvent posi-
tive, where D(A^) = {f ^ E : m-f ^ D(A), (l/m)A(m-f) ^ E] 
and A*f = (l/m)A(m*f) = = f' + (a/x)f. 
D(A^) is dense in L^ro,!!. In fact, D(A) H { f ^ L,P[0,1] : 
f]^^ ^ = 0 for some e > 0} <= D(A ) . But D(A) is dense in !L0,6J 
L^[0,1], and it is easy to see that every f ^ D(A) = 
(g ^ AC[0,1] : g' ^ L^[0,1], g(l) = 0} can be approximated by-
functions in D(A) which vanish in a neighborhood of 0. 
A is not the generator of a semigroup. In fact, assume that 
there exists a semigroup (T(t)) ^ which is strongly continuous 
for t > 0 such that R(A,A^)f = e"^^ T(t)f dt for sufficient-
ly large A. It is not difficult to see that 
n/, i Ax fl "Ay a -, R(A,A^)t(x) - x e J^ e ^ f(y! y dy 

= ^-At ^-a f(x+t) (x+t)^ dt. Similarly as in 

Example 3.3 one shows that for 0 < t < 1, T(t) is given by 
T(t)f(x) = x"^ (x+t)^ f(x+t) for x+t ^ 1. This does not define 
a bounded operator or L^ro,!], 
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For p > 1, R(A,A^) is the adjoint of R(A,A) in Examole Note* 
^ 3 on L^(Ofi) 'with 1/p + 1/q - 1). Thus AP(A,A^) is 
porm-bound^d for A ^ This is also the case for p = 1. One 
^ argue as follows. ][AP(A,A*)[} = [lAP(A,A*)'[] = [jAp. = 
sup ^Y^ x**̂  e^x ^x : y f [0,1]} = j[AR(A)[[, where R(A) 
gemotes the resolvent of the operator A on C^(0,lJ in Example 
3.2. Hence ]}AR(A,Â )jj ^ I/(l-ot) (A ^ 0). D 

Remark. In the literature, the first example of a resolvent 
positive operator which is not a generator was given by Batty and 
Davies on Ĉ (!*R). A similar example on L^(^) appears in [8, 
Example 2.2,111. I n d e p e n d e n t l y . H.P. Lotz constructed an example 
by a renorming procedure similar to Example 2.8 (unpublished). 

4. Positive Resolvent as Laplace-Stieltjes Transform 

For definition and properties of the vector-valued Riemann-
Stieltjes integral and the Laplace-Stieltjes transform we refer 
to Appendix B and C. 

Let A be a densely defined resolvent positive operator. 



- 59 -

(4.1) R(A,A) = /p e ^ dS(t) (A > s(A)) 

(where the integral converges in the operator norm). 

For the proof of the theorem we use the following construction 
which is due to P.R. Chernoff (unpublished). 

Theorem 4.1. There exists a unique strongly continuous family 
(S(t))t>0 positive operators satisfying S(0) = 0 and S(s) ^ 
g(t) foir 0 ^ s ^ t such that 

Construction 4.2. Let A be a resolvent positive operator 
satisfying s(A) < 0. Then for A. > 0 one obtains from the 
resolvent equation 

(4.2) R(0,A)ARfA,A) = R(0,A) - R.(A,A) ^ R(0,A). 

Let )[fj[, : = inf ([[R(0,A)g[[ : ±f ^ g) (= jjR(0,A)!f!j[ if E is a 
Banach lattice). Denote by E^ the completion of E with respect to 
this norm. For f ^ E, A > 0 one has 

)[AR(A,A)f)!^ = inf {!!R(c,A)g[! : ± AR(A,A)f ^ g} 

^ inf {[]R(0,A)AR(A,A)h)j : ± f < h) 

^ inf f}jR(0,A)h{[ : ± f ^ h} (by (4.2)) 
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rp̂ uS R(A,A) has a unicue continuous extension P. (A) cn Ê  which 
satisfies 

(4.3) S 1 fA > 0). 

It is obvious that (R.^fA))^^^ is a pseudoresolvent. Since 
D(A) ^ R^(A)E^ (A > 0), it has a dense image, and so it is the 
resolvent of a densely defined operator A^ on Ê  [15, Theo-
rem 2.6 1. It follows from the Hille-Yosida theorem, that A^ is 
the generator of a strongly continuous contraction semigroup 

on E^. 

Observation 4.3. The operator R(0,A) satisfies 

(4.4) [[R(C,A)f[} < (f f E). 

(In fact, let f ( E and ±f ^ g. Then ±P(0,A)f ^ R(0,A)g. 
Hence [}R(0,A)f[[ ^ [}R(0,A.)g[j. Thus }}RfO,A)f[[ ^ inf {[}R(0,A)g[[ : 
± f ^ g} = t!f!!i-) Consequently, the extension R^(C) of R(0,A) 
onto Ê  maos E- into E. Moreover, fR.(A)).^. (A = 0 included) 1 ^ i l A^O 
is a pseudoresolvent too. Thus R.(0) = R(0,A^). This implies that 

(4.5) D(A^) = R(0,A^)E, (= E. 

The closure of is a cone in Ê  which is invariant under 
R(A,A.) for A ^ 0. This cone is proper [in fact, let f ^ E. + 
n f-E. ); then R(0,A. )f ^ E, H (-EJ, hence R(0,Ajf - and 1 + i + + i 
so f = 0]. Thus (E., ,E-,) is an ordered Ban.ach soace and the j. it-
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semigroup ^ positive. (If E is a Banach lattice, 

then E^ is a Banach lattice as well.) 

Illustration 4.4. In order to illustrate the construction 4.2, 
# 1 

consider the operator A' on L [0,11 given in Example 3.5. Then 
X(0,A^)f(x) = x ^ ^ f(y) y^ dy. Thus }{f[[̂  = }{P.(0,Â )lfl[[ = 
^ X-" }f(y)< y^ dy dx = ^ lf(y)j y^ jY x ^ dx dy = 
l/(l-a) /p }f(y)[ y <3y. Hence E^ = L^([0,1], y-L- ydy) and 

T^(t)f(x) = 

-a 
x"^ (x+t)^ f(x+t) if x < 1-1 
0 otherwise 

for all f 6 E^, t ^ 0. 

Proof of Theorem 4.1. Uniqueness follows from Theorem C5, so we 
have to show the existence of the representation (4,1). 
a) We assume that s(A) < 0. Using the construction 4.2 we 
define S(t)f = T^(s)f ds 6 D(A^) c= E for f 6 E. Then S(t) 
is a positive operator on E and hence bounded (t ^ 0) . It is 
clear from the definition that 0 = S(0) < S(s) < S(t) for 0 < s 
< t. Moreover, let t > 0. Then for f 6 A. T^(s)f ds = 
T,(t)f - f. Hence f̂  T. (s)f ds = B(0,Ajf - R(0,AJT, (t)f < * u ± J. j. i 
R(0,A^)f. Thus, 

(4.6) S(t) < R(0,A) (t ^ 0). 

In particular, sup {[[s(t)jj : t ^ 0} < We now show that 
S(.) : E0,<x>) ^ "(E) is strongly continuous. Let f ^ D(A), 
g - Af. Then }!s(t+h)f - S(t)f[j = [jPfO,A) (S(t+h)g - S(t)g)!! < 
[!s(t+h)g - S(t)g!j ^ 0 for h - 0. Here we made use of f4,4), 
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q' 1 is stronqly continuous on a dense subsuace. Since 

/ i is bounded, this implies the strong continuity on the whole St* J 
space. 
Since S(.) is bounded, it follows from Proposition C3 that the 
integral in (4.1) converges in the operator norm for A > 0. Let 

. ̂  e E. Then f^ e " ^ dS(t)f = e " ^ T^(t)f dt = R(A,A^)f = 
p(^,A)f . Thus (4.1) holds and the proof is finished in the case 
when s(A) ^ 0. 
b) Let now s(A) be arbitrary. For w > s(A) consider the 
operator B = A - w. Then s(B) < 0, so by a), there exists a 
stronaly continuous increasing function S"f.) : [0,oo) ^ (E), w + 
satisfying S*(C) = 0, such that P.f[̂ ,B) = dS^ft) for W (J w 
H > 0. Hence R(x,A) = R(A-w, B) = e " ^ e ^ dS*(t) = 

e"^^ dS (t) for all A > w, where S (t) = e ^ dS^(s) (by 
Proposition B4). Clearly, is strongly continuous, in-
creasing and satisfies " Because of the uniqueness 
theorem (Theorem C5), it follows that S (t) = S .(t) (t > 0) w w 
for all w, w* > s(A). This proves the theorem in the general 
case. n 

Example 4.5. a) Let A be the generator of a s t r o n g l y continuous 
positive semigroup (T(t))^^^. Then S(t)f = T(s)f ds for all 
f ^ E, t > 0. 
b) If A is the operator in Example 3.2, then 

x^ v ^ f(v) dy if x < t 
S(t)ffx) = - ^^ 

x^ V ^ f(v) dy if X > t 

^ C^(0,lj, x " (0,1 J, t > 0). 



The representation of a positive resolvent by a Laplace-Stielties 
integral can also be obtained using Bernstein's theorem instead 
of the Hille-Yosida theorem if additional assumptions on the 
space are made. On the ether hand, it is not necessary to assume 
that A has dense domain. 

Definition 5.1. We say that E is an ideal in E*' if for 
f ( E , g ^ E'' , 0 ^ g ^ f implies g ^ E . 
Note: Here we identify E with a sub-space of E*' (via eval-
uation). Then bv (Al), Ej'fl E = E. (i.e. E is an ordered 
subsuace of E"). 

Lemma 5.2. Suppose that E is an ideal in E''. Then the norm 
is order continuous in the following sense, if is a 

, , then (f ) + ' n nt^' 

'n'n.^-

decreasing sequence in E , then (f ) rfu converges strongly 
(and lim f = inf ^^ f ). 

Proof. (cf.L 42,11 5.9 J) Let F^(^) - inf <f (^E'). Then. ' 0 nt"'' n + 

F^ * E_j_ ̂  fR is additive and positive homogeneous. For ^^EM let 
F(^) = where ^ such that ^ ^ * 
Then F is well-defined (since F^ is additive), linear and posi-
tive. Thus F^E'' and 0 ^ F ^ f for all . Since E is an n 
ideal in E'', it follows that F 6 E . Moreover, by Dini's theo-
rem lim <f = uniformlv on ^eE]: 
Hence lim N(f -F) = 0, where N denotes the canonical half-norm n 

^ Approach via Bernstein's theorem. 
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Examples 5.3. a) If E is reflexive, then E is trivially an 

ideal in E". 
b) A Banach lattice E is an ideal in E'' if and Gnly if the 
norm is order continuous (in the sense of Lemma 5.2.) 

y (see[42,II§5]). For example, ((X,p) a c-finite measure 
space and l̂ p<°°) and c^ have an order continuous norm, but 
CfO,lJ has not. 

Definition 5.4. A function f : (a,°°) ̂  E is called completely 
monotonic if f is infinitely differentiable and 

(5.1) (-l)^f^(A) ^ 0 for all A>a , n = 0,1,2,... 

^2). Since f^-F ^ 0 , Nl-'f^-F)) = 0 (nrfhJ) . Thus 
lim̂ ĉo " ^ ' ^ich implies that lim^^^f^ = F (by(A4), 
since the cone is normal). 0 

Theorem 5.5. Assume that E is an ideal in E''. 
Let f : (a,°o) ̂  E be a completely monotonic function. Then 
there exists a uniquely determined normalized increasing function 
a : (0,°°) ^ E such that 

(5.2) f(A) - e ^^da(t) (A>a) . 

Proof. Let , Then A ^ <f(A),^> is completely monotonic. 
So by Bernstein's theorem there exists a unique normalized 
increasing function a : (0,^) ^ ^ such that 
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.00 -At 
(5.3) <f{A),^> = e (A>a). 

From the uniqueness theorem (Theorem C.5) it follows that a^(t) 
is additive and positive homogeneous in for every t^O 
Thus for every t=0 there exists a unioue a^(t) ^ (E')J_ such 
that <^,a(t)> = ^^(t) for all . Let A > max(a,0) . Then 
for every ^ € Ej_ , <f(A),^> ^ - + 
Aj^ ^ eT^^a^(t) . Consequently, <o,(t),P> ^ 
<ê "f(A),(j)> . Hence a,(t) ^ e^^f(A) , and our assumption on. E 
implies that aft) 6 . It follows from (Al) that 
a : (0,°°) ^ is increasing. Since the integral in (5.3) 
converges for every A>a and ^ 6 E_j_ , we conclude from Propo-

. CO -At 
sition C.l that the integral e dct(t) converges m the 
norm for every A>a . Finally, (5.3) implies that <f(A),p> = 

^-At = e"^^ daft),(j)> for all (j> 6 E_j_ . Hence 

(5.2) holds. This proves the existence. Uniqueness follows from 

Theorem C5. 0 

Remark 5.6. a) It is not difficult to see that the converse of 
Theorem 5.5 holds as well, i.e., if f is representable as in 
(5.2) then f is completely monotonic. 
b) There are other results related to Theorem 5.5. Schaefer ^401 
obtained a characterisation of completely monotonic sequences 
with values in an ordered locally convex space as moments of an 
increasing function on E0,1] (Hausdorff moment problem). 
Another vector-valued version of Bernstein's theorem has been 
obtained by Bcchner [10 J. He defines the Stieltjes integral 
purely in terms of the ordering (and the precise definition can 
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P̂ ly be seen in the proof). In our context we need that the 
Riemann-Stieltjes sums converge strongly to the integral. 

Theorem 5.7, Suppose that E is an ideal in E''. Let A be a 
resolvent positive operator. Then there exists a unique strongly 
continuous family ^S(t))^^ of operators on E such that 

0 = S(0) < S(s) < S(t) (0<s<t) and 

(5.4) P. (A,A)f = e"^" dS(t) (A>s(A)) 

(where the integral converges in the operator norm). 

Proof. Uniqueness follows from Theorem C5. We show the existence 
of the representation (5.4). Let f ^ E, . Then P(.,A)f is a -r 
completely monotonic function from (s(A.),co) into E . By Theorem 
5.5 there exists a unique normalized increasing function 
S(.,f) : (0,^) ^ E such that 

(5.5) R(A,A)f = dS(t,f) (A>s(A)). 

From the uniqueness theorem (Theorem C.5) it follows that for 
every t^O the mapping f ^ S-'t,f) from into is 
additive and positive homogeneous, Since E = E^-E^ , there 
exists a unioue linear operator S(t) on E such that 
S(t)f - S(t,f) for all f ^ . 
Since S^.)f is increasing for all f^E^ , S?.) is increasinc 
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Moreover, S(.) is normalized (since S(.,f) is for all 
f (f Let ji>s(A) . Then it follows immediately from the 
definition that R(n,A)S(.) and S(.)P.fp.,A) are also 
normalized. Moreover, for all A>s(A) , e d(R([i,A)S(t)) 
= R(p.,A)R(A,A) = P. (A,A)P(n,A) - e"'^ d(Sft)(R(A,A)). Hence it 
follows from Theorem C.5 that 

(5.6) S(t)R(n,A) = R(n,A)S(t) (t^O). 

Now let f f D(A) . Then for all A > max{s(A),0} , 
Ae*^ d(tf) = f = R(A,A)(Af-Af) = Ae"^dS(t)f -

^ e"^d!S(t)Af) = xe'^t g_s't)f - xe"^S(t)Af dt = 
f" xe"^' dS(t)f - f" Ae"^" d(f^S(s)Afds). ^ o ^ o ^ o 
[In order to justify the last step, we first observe that 
Af = g.-cr̂  for some g., . Hence t ^ f^S(s)Afds is of 
bounded variation as the difference of increasing functions. 

r t 
Moreover, the Riemann integral J^S(s)Afds exists in the norm by 
the remark following (B8). Hence <S(.)Af,^> is Riemann- and so 
Lebesque integrable on every interval [0,t] (t>0) for every 
(j) 6 Ej_ . It follows from [50,1 Theorem 6a] that 

Ae"^^<S(t)Af,(t)>dt = dfj^<S(s)Af,^>ds) for all b>0.] ^ o ^ o o 
Thus e^^d(tf) = e"^dS(t)f - e*^d(^S(s)Afds) for ^o ^o *o ^o 
all x>m.ax{0,s(A)} . Consequently, by the uniqueness theorem, 

(5.7) tf - S(t)f - f's(s)Afds (t>0). ' o ' 

This implies that S(.)f is continuous for all f ^ DfA) 
Now let g ^ E^ , t>0. Ther lirn^^ S(s)g h^ and 
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lim^^- exist by L^mma 5.2. We have to show that h,-h 
Let ?>s(A) . Then by (5.6), R(A,A)h^_ = lirn̂ ^ R(A,A)S(s)g = 
li^s^t S(s)P(A,,R)g = S(t)R(A,A)g (since R(A,A)c D(A)) 
= lim^^^ S(s)R(A,A)g = R(A,A) (lim S(s)g) = R(A,A)h_ . Since 
R ( A , A ) is injective, it follows that = h_ . 0 

Remark 5.8 Suppose that A is a resolvent positive operator 
such that a normalized increasing function S : [0,°°) - - (E) 
exists such that (5.4) holds. Then the proof of Theorem 5<" shows 
that S is strongly continuous. 

Remark 5.9 It is not difficult to deduce the Hille-Yosida 
theorem (in the form stated in the introduction to this chapter) 
from Theorem 5.7 . 

6. The integrated semigroup. 

Let A be a resolvent positive operator. We assume that there 
exists a strongly continuous increasing function 
S : [0,^) - (E) satisfying S(0) - 0 such that 

(6.1) R(A,A) - f" e"^^ dS(t) (A > A ) ' ^o ' o 

(in the weak operator t o p c l o a v ) for some A ^ s<A) . B v the o 
results of the last section such a representation of 
exists when either A is densely defined or E is an ideal in E" . 
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Note that (S(t))^_^ is uniquely defined, and we call 
the integrated semigroup generated by A . (Of course, this 
terminology is motivated by the case when A is the generator of 
a strongly continuous semigroup , because then S(t) = 
ft T(s) ds .) J o 

The following proposition shows that the spectral bound s(A) is 
determined by the asymptotic behavior of S(t) for t ^ ^ . 

Proposition 6.1. a) For all A 6 C satisfying ReA > s(A) , 

(6.2) R(A,A) = T e'^t ds(t) 

where the integral converges in the operator norm. 
b) If s(A) ^ 0 , then s(A) = inf {.w > 0 : there exists M>0 such 

that )js(t)jj < Me^t for all t ^ 0} . 

c) If s(A) < 0 , then lim^^^ S{t) = P(0,A) and s(A) = 
inf {w<0 : there exists M^O such that }[R(0,A)-S(t)j[ ^ M e ^ 
for all t^ 0} . 

Proof: Let f^E^, . Denote by s the abscissa of con-
vergence of the integral e ^^ d<S(t)f,^> . Then by [51, 
ch. 5, Theorem 10.1] s is a singular point of the analytic 
function A ̂  e ^^ d<S(t)f,^> (ReA>s) . By the uniqueness of 
analytic extensions this implies that s^s(A) and 
<R(A,A)f,(j)> = e"^^ d<S(t)f,d<> (ReA > s(A)) . 
From this a) follows by Proposition C3. Assertion b) follows from 
a), Proposition C3 and the uniqueness of analytic extensions. 
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Now we show c). Let s(A) < 0 and w f .'s(A),0) . Let 
g (t) = e"^' dS(r) . Then lim^^^ S, (t) = R(w,A) (by (6.2)). 
In particular, S^(t) g P(w,A) for t&0 . So 
0 g R^0,A) - S(t) = j^dS(s) = f^ e ^ e " ^ dS(s) = ^ e ^ dS^(s) = 
lim^co e^S^(s) - e^S,(t) - wf^ e^S^(s) ds 
= -e^S^(t) - w^e^S^s)ds < e ^ S ^ s ) ds 
< (-w)/^ e^^ds P(w,A) = e^R(w,A) . Thus 
[[R(0,A) - S(t)][ g Me^t for some M&0 and all t&0 . 
Conversely assume that w < 0 such that jjR(0,A) - S(t)ji < 
Me^^ (t30) . Let A > w . Let S^(t) = e"^^ dS(s) (t50) . 
It follows from (6.2) that 

(6.3) S(t) = dS(s) g R(0,A) for all t^O . 

Let t50 . Then for all r>t , 0 g S^(r) - S^(t) = e"^^ dS(s) 
g dS(s) = e"^^(S(r) - S(t)) < e"^^(P.(0,A) - S(t)) . 
Consequently ]{ŝ (r) -S^(t)[[ g Me'^'^'" for all r^t . Thus 

—AS 
- J^ e dS(s) converges in the operator norm. We have 

proved that the integral (6.2) converges for all A > w (in the 
operator norm). By the uniqueness of analytic extensions this 
implies that s(A) ^ w . This finishes the proof of c). H 

Remark 6.2. If A is the generator of a positive strongly 

continuous semigroup, then Proposition 6.1 implies that 
RfA,A) = e "'"T(t)dt , where the integral converges in the 
operator norm, for all A^C such that ReA > s(A) . (Here 

e '^Tft) dt is defined stronglv.) However, it may happen that 
s(A) < oj(A) (see [22]). 



we establish the relations between A and the integra.t 
semigroup. The operators R and S(t) commute. In fact, 

(6.4) S(t)R(A,A) = R(A,A)S(t) (A>s(A),t>0) . 

[This is proved as (5.6).] As a consequence, 

(6.5) f ^ D(A) implies S(t)f 6 D(A) and 
AS(t)f = S(t)Af (t ^ 0). 

proposition 6.3. Let t > 0 . If f 6 D(A) , then 

(6.6) f̂  S(s)Af ds = S(t)f - tf for all t > 0 . ^ o 

Moreover, S(s)f ds 6 D(A) for all f D(Af and 

(6.7) Aft S(s)f ds = S(t)f - tf . ^ o 

Proof : (6.6) is shown as (5.7). Then (6.7) follows since A is 
closed. 0 

It follows from (6.6) that 

(6.8) li^t^O = f for all f 6 D(A) . 

The integrated semigroup can be characterized as the solution o 
an inhomogeneous Cauchy problem. 



proposition 6.4. Let f ^ D(A) . 

a) Let W t ) = S(t)f (t ^ 0} . Then v is contiguously 

differentiable and 

v'(t) = Av(t) + f ft & 0) 
(6.9) 

v(0) = 0 . 

t ^ - - ^ - . . differentiable b) Conversely, ir v : L0,°°) ^ E is continuously u-̂ --
such that vft) ^ D(A) for all t S 0 and such that ',6.9) 

holds, then v(t) = S(t)f ( t 5 0). 

/r c Q let V Proof. a) follows immediately from (6.6) and \o-3'* 
. r- i -t cfri" . Then w satisfy the assumption of b). Let w(t) = v(t) " ̂ ^ 

is continuously differentiable, satisfies w(0) 0, w(t,' D\A) 
and w'(t) = Aw(t) for all t^O . 
Let F = D^A) E . Then R(A,A)F - F for a ii i 6 p(A) . Let the 

operator A^ on F be defined by A^f = Af , 
(f ^ D(A) : Af ^ F} . Then it is easy to see that P(A) ^ P(A^) 

and R(A,A^) = R(A,A);^ for A ^ p(A) . Since 
1 T-, -it follows Aw(t) - w'(t) = ^fw?t+h)-w(t)) ^ D(A) = F ' 

that w(t) ^ D (A ) for all t^O . Thus w is ^ solution m F o 
wf0)-0 . But of the Cauchy problem w'(t) = A w(t) (t^O), 
tj-pfA ^ < c° is dense in F by definition and ''o ' 
4 1.2*! that 

fbv (1.3)). So it follows from [36,Chapter 
wf't) = 0 (t & 0). C 



proposition 6.5. Let s,t > 0 . Then 

(6.10) S(s)S(t) = g(rj(3r- - s(r)dr - s(^)dr . 

In particular, S(s)S(t) = S(t)S(s) . 

If f 6 51X7 , then S(s)S(t)f 6 D(A) and 

(6.11) AS(s)S(t)f = S(s+t)f - S(s)f - S(t)f . 

Proof Let s > 0, f 6 D(A) and v(t) = (S(s+r)f-S(r)f)dr == 
fS+t s(rjf dr - f^Sfrjfdr - f^S(r)fdr (t^O) . We show that o ^ c O ' 
v'(t) = Avft) + S(s)f . Then it follows frc-m Proposition 6.4.b) 
that 

(6.12) S(r)fdr - J*̂  s(r)fdr - f^s(r)fdr = S(t)S(s)f 

We have by Proposition 6.4., j^S(s+r)f = AS(s+r)f + f 
and ^L-S(r)f = AS(r)f + f . This implies that 
Av(t) = f^ (AS(s+r)f-AS(r)f) dr = f' §-(S(s+r)f-S(r)f)dr = o o dr 
S(s+t)f - S(t)f - S(s)f . Hence, v'(t) = S(s+t)f - S(t)f = 
Av(t)+S(s)f . Thus (6.12) is proved and so (6,10) holds on D(A). 
Let f 6 E be arbitrary. Applying (6.12) to g:= R(A,A)f (where 
A > s(A)) one obtains (using (6.5)) that 

S(r)fdr - s(r)f dr - j^s(r)fdrl = R(A,A)S(t)S(s)f. 
Since R(A,A) is infective, (6.12) follows. The remaining 
assertion (6.11) is a consequence of (6.10) and (6.7). D 

Remark 6.6. a) Formula (6.10) corresponds to the semigroup 
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property. In fact, suppose that (T(t))^^ is a strongly con-
tinuous family of positive operators such that T(s) ds 
exists strongly. Let S(t) := T(s)ds (t>0) . Then ^(t))^.^^ 
ig a semigroup if and only if satisfies (6.10) (this 
is easy to show by differentiating (6.10); resp., integrating the 
semigroup formula). 
b) The preceding procedure can be reversed. One can start from an 
"integrated semigroup" and obtain a resolvent positive operator. 
(J re precisely, let S : [0,^) ^ r'(E)̂ _ be a strongly continuous 
function such that 
(i) S(0) = 0 : 
(ii) [[S(t)fj ^ M e ^ (t > 0) for some w6fR, M^O? 
(iii) (6.10) holds; 
(iv) for all f 6 there exists t^0 such that S(t)f == 0 . 
Then S is increasina and there exists a (unique) resolvent 
positive operator A such that s(A) ^ w and 
p_(X,A) = e"^^ dS(t) for ail A>w . 
^The proof can be given by showing that the operators R(x) : = 

Xe"^^ S(t)dt (X>w) form a pseudoresolvent. We omit the 

details. 

The Abstract Cauchy Problem. 

Let A be a resolvent positive operator. We assume that either 
D(A) is dense or that E is an ideal irt E" (see section 5). 



Theorem 7.1. F o r every f f there exists a unicrue conti-
n u o u s l y differentiable function u : [0,^) ^ E such that 
u(t) 6 D ( A ) for all t > 0 and 

u'(t) - Au(t) 
(7.1) 

u(0) = f . 
If f > 0 , then u(t) ^ 0 for all t > 0 . Moreover, the 
solution of (7.1) depends continuously on the initial value in 
the following sense: Let f 6 D(A-) such that lim f = f in n n-̂ co n 
the crraph norm. Denote by u the solution of (7.1) for the L - n 
initial value f . Then u (t) converges to u(t) in the norm n n 
uniformly on bounded intervals. 

Proof. Uniqueness is proved as in Proposition 6.4* In order to 
prove existence v/e assume that s(A) < 0 (otherwise one con-
siders A-w instead of A for some w>s(A)). Denote by 

the integrated semigroup generated by A . Let 
f 6 D(A.2) and define u(t) = S(t)Af -r f (t>0) . Then by 
Proposition 6.4 u'(t) = AS(t)Af + Af = Au(t) (t>0) . Thus u 
is a solution of (7.1). 
Now let f ^ DfA2) such that lim f ^ f in the graph norm, n ' n 
Let u (t) = S(t)Af + f . Since ^S(t)),^^ is strongly n n n t^O 
continuous, it follows that converges in the norm to 
u(t) uniformly on bounded intervals. Finally, assume that 
n < f 6 D(A2) . Then using (6.8) and (6.11) one obtains 
u(t) = S(t)Af + f = lim^^o §(^(s)S(t)Af + S(s)f) = 
lim ^ -fS(s+t)f-S(t)f) . Hence u(t)^0 , since S(.) is in-S-^u S 
creasing. Q 
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Remarks 7.2. a) if D(A) is dense, then also D(A^) is dense. 
Tn fact, let Afp(A) , then E - D(A) - (R(A,A)E) - (R(A,A)r(A)) 
^ (R(A,A)D(A)T= ((R(A,A))2Ef"= DlA^) . 

b) In general, there does not exist a continuously differentiable 
solution of (7.1) for every initial value in D(A) . In fact, if 
D(A) is dense, this would imply that A is the generator of a 
strongly continuous semigroup (see [30, ch.I Thm. 2.121 or [33]). 
o) The continuous dependence of the solutions on the initial 

(̂  alues is no longer guaranteed if in Theorem 7.1 one replaces the 
graph norm by the norm. In fact, if D(A) is dense, this implies 
that for every t ^ 0 , the operator T^(t) given by T^(t)f = 
S(t)Af + f (from D(A^) into E ) has a continuous extension 
T(t) on E. It is not difficult to see that then is a 
strongly continuous semigroup whose generator is A. 
d) If A is densely defined, an alternative proof of Theorem 7.1 
can be given using the construction 4,2. 

.Under more restrictive assumptions Theorem 7.1 can be sharpened. 
Ŵe need the following correspondence between the asymptotic 
behavior of S(t) for t^O and AR(A,A) for A^^ . 

Proposition 7.2 Let (S(t))_^p be the integrated semigroup 
generated by A . The following are equivalent: 

sup^^^ -jr!;s(t)i! < ^ . 

(ii) sup. jjxp. (A,A)jj < °° where X >s(A) . 



Moreover, if ^(A) is dense and (ii) holds, then 

(7.2) ^S(t)f = f for all f^E . 

Proof. Let ŵ fR . Then condition (i) as well as condition (ii) 
holds for A if and only if it holds for A-w (observe that the 
integrated semigroup ^^'t^t^O generated by A-w is civen by 
S (t) = f^ = e"^S(t) + ds). Thus we can w ' o ' o 
assume that s(A)<0 , 
Assume that fi) holds, Then M := sup^^^^^ (l/t)]!s(t)j! < ^ . 
Hence t{AR(A,A)[} = [[^ A2e"^Sft)dt[! ^ ^A^te"**^(^)!}s(t)j!dt ^ 

= M for all A>0 . ^ o 
Conversely, assume that sup,^.^[[AR(A,A)}[<^ . Let t>0 . Choose 
A = I . Then O^S(t) = ^S(s) = eA}^ e"^dS(s) ^ 
^ eAR(A,A) . This implies that sup̂ _̂ Qfy)[]s(t)[} < <x> , The last 
assertion follows from (6,8). D 

Remark. The argument in the proof is due to G. Greiner 
(unpublished) who used it to prove a corresponding statement for 
the behavior of ^S(t) for t^^ and APfA.A) for A^O when A 
is the generator of a positive semigroup (cf. [19,2.10.c) iJ). 

Example 7.3. a) The operators given in Example 3.2, 3.3 and 3.5 
satisfy the equivalent conditions of Proposition 7.2. Moreover, 
they ail are densely defined. 
b) Consider the operator -A , where A is defined as in Example 
2.8. on E ^ . Let be the integrated semigroup o t = u 
generated by -A , Then S(t)f:'x) ^ j'"ffx-s)ds ^ , We 
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show that lim, ^ -jjsft)}} = ^ . Let t - 2 ^ and 1 —u t'' " n 
f^ = . Then j}f}{̂  = }[f[j'̂  = 1 . Moreover, 

0 for x < -2*^ 
S(t )f(x) = 2^x + 1 for -2*^ < x g 0 n 

1 - 2^x for 0 < y < 2 ^ 
0 for 2"^ < x . 

^-n 
Hence p ^(S(t )f) - f S(t ).f(x)dx = ' n 2 n 

Hence, [;(l/t )Sft )[' > . if) = 
2 " n n '' - n n̂-t-1 n' 
= — ^ oo for n-̂co . [] 

Lemma 7.4. Suppose that A is densely defined and 
sup^^ jlxR(A,A)][ < oo where A^>s(A) . Let (S(t))^ . be the 

A = A ' O t > U 

integrated semigroup generated by A . Let f6E and t>0 . Then 
S(t)f ( D(A) if and only if Sf.)f is differentiable in t . In 
that case. 

(7.3) ) ^ S(s)f = AS(t)f + f cts!s=t 

Proof. By Proposition 6.5 we have S(s)Sft)f ^ D(A) and 
lAS(s)S(t)f + ^S(s)f - ^(S(t+s)f-S(t)f) (s>0) . Since by (7.2) 
lim ^ —S(s)g = a for all g^E , the assertion follows because 
A is closed. 

Proposition 7.5. Suppose that E is reflexive. 
If sup* [!AP(A,A)j! < co for some X > s(A) then D(A) is A^A O 
dense. 



- Q _ 

proof* Let f^E . Since norm bounded pets in E are relativelv 
weakly compact, there exists a limit point g of AR(A,A)f for 
X ̂  c . Since by (1.5) lim^^^AR(A,A)R(^,A)f = R(n,A)f (where 
jj, > s(A) is fixed), it follows that R(n,A)f - R(;i,A)g . Hence 
g = f . Consequently, lirn̂ ^̂  AR(X,A)f - f weakly. Hence 
f 6 = D?A) . 0 

Let 1(A) (g6E: ±g^f for some f^D(A)^} . Since D(A) = 
D(A)^ - D(A)^ , one has D(A) o= IfA) (in fact, 1(A) is the 
ideal generated by D(A) ). 

Theorem 7.6. Assume that E is reflexive and 
sup^^^ jjAR(A,A)[l < c° (where A^>s(A)). 
Then for every f 6 D(A) such that Af ^ 1(A) there exists a 
unique differentiable function u : E0,°°) ^ E satisfying 
u(t) 6 D(A) for all t^O such that 

u'<t) = Au(t) 
u(0) - f . 

Proof. Uniqueness is shown as in the proof of Proposition 6.4. 
We show the existence. It follows from Proposition 7.5 that D(A) 
is dense. 
a) Let g^I(A), t>0 . We claim that S^t)g ^ D(A) . There exists 
h^DfA)^ such that ±g^h , Since Sf.)h is differentiable, 
one has sup {[}^-fS(tts)-S^t))h!{ : 0<s^l} < ^ , But 
i i ±^(S(tts)-S(t))g ^ ̂ (S(t + s)-S(t))h for 0<s^l . Hence also 

sup f;;-̂ (S-:t + s)-S(t'i)gj! : 0<s^li < ^ . Using f6.11) and (7.2) we 
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conclude that sup {j[^AS(s)S(t)g[j : 0<s<l} < ^ . It follows from 
(6.10) that li^g^o ^S(s)S(t) = S(t) strongly. Let be 
weak limit points of ^-AS(s)S(t)g for s^O . Let p,>s(A) be 
fixed. Then R(p,,A)k^ = li^^^o ^S(s)S(t)AR(n,A)g = R(n,A)k2 . 
Consequently, . Since norm-bounded sets in E are weakly 
relatively compact, ^AS(s)S(t)g has exactly one limit point for 
the weak topology; hence ^AS(s)S(t)g converges weakly for s^O . 
Since lim - —S(s)S(t)a - S(t)q and A is closed, it follows S-+-0 s 
that S(t)g 6 D(A) . 
b) Let f 6 D(A) such that Af 6 1(A) . Let u(t) = S(t)Af + f . 
Then by a) S(t)Af 6 D(A) for all t>0 . It follows from Lemma 
7.4 that u is differentiable and u'(t) = AS(t)Af + Af = Au(t) 
(t>0) . Q 

Remark 7.7 The solutions depend continuously on the initial 
values in the same sense as stated in Theorem 7.1. 

8 Kato's Inequality and the existence of a positive resolvent. 

Up to this point we assumed that a resolvent positive operator 
was given. Now we find conditions on A which imply that A is 
resolvent positive. 

Throughout this section we assume that E is a Banach lattice 
with order continuous norm and that there exists a. strictly 
positive linear form ^ on E . Then jjf[j :=<!f!,^> defines a 
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norm on E . We denote by (E,<p) the completion of E with 
respect to this norm. (E,^) is an AL-space (and so isomorphic 
to a space of type L^ [42,11 Theorem 8.5]). Moreover, E is an 
ideal in (E,d>) ; that is, if f,g 6 (E,^), !g! ^ f and ffE , 
then also gfE (see [42, IV 9,3]). For example, let E = I,P(X,jn.) 
(l̂ p<c°) , where (X,jn) is a c-finite. measure space. Let 

,-r 1 1 % f L^(X,p) (where - + - - 1) and d)(x)>0 p.-a.e. Then P 9 
(E,^) = . 

Theorem 8.1. Let A be a densely defined operator on E such 
that the following two assertions hold. 
(i) There exist a strictly positive ^ f D(A') and 

A 6 R such that A'6 ^ X & and o ' o^ 
<(sign f)Af,d)> ^ <[fj,A'^> (f f D(A)) (Kato's inequality). 

(ii) (n^-A)D(A) = E for some (range condition). 

Then A is resolvent positive and s(A) < . 
Moreover A is closable in (E,^) and its closure is the 
generator of a positive strongly continuous semigroup on (E,d)) . 

Remark. The theorem is in some aspects similar to the 
Lumer-Phillips theorem [15,Theorem 2.24]. The condition that A 
be dissipative is replaced by Kato's inequality and the existence 
of a strictly positive subeigenvector of A' . In contrast to 
dissipativity, this condition is non-metric; in particular, it is 
satisfied by A if and only if it holds for A+w (w6fR) . The 
conclusion is weaker than that of the Lumer-Phillips theorem, but 
sufficient to yield solutions of the abstract Cauchy problem for 



all initial values in D(A^) ^cf. section 7). 

Proof. Considering (A-A ) instead of A we can assume that - o 
A =0 . Denote bv N the canonical half-norm on (E,^) . Then o 

N(f) = for all f6E . By Proposition 1.2.4 it follows 
from Kato's inequality that A is N-dissipative. Since D(A) 
is dense in E , it is also dense in (E,^) . Thus it follows 
from L5,Theorem 2.41 that A is closable in (E,<j)) and the 
losure A^ of A is N-dissipative. Since E = (p^-A)D(A) c= 
(Li -A-,)D(A^) , p, -Ai also has dense range. So it follows from '^o 1 1 o 1 ^ 

L5 ,Remark 4.21 (see also [39l)that A^ generates an N-contrac-
tion semigroup, i.e. a positive contraction semigroup on (E,<j>) . 
In particular, A- has a positive resolvent and s(A^) ^ 0 . It 
follows from (ii) that p. 6p(A) and R(p,^,A) = R(p, ,A ), . O O O 1 } .a 
Moreover, 

(8.1) Af = A^f and DfA) = {f6D(A^)flE : A^ffE} . 

Let p, ̂  . Then for f6E^ by (1.2), R(n,A^)f ^ R(n^,A^)f 6 E. 
Since E is an ideal in (E,^), it follows that R(n,A^)E <r E for 
all ^ = * This together with (8.1) implies that p^p(A) and 
R(^,A)=R(}i,A, for all . Thus A is resolvent positive and 1 ;E o 
sfA) ^ . n 

Remark 8.2. Also a converse version of Theorem 8.1 holds. In 
fact, assume that A is a densely defined resolvent positive 
operator. It is obvious from the proof of Propositon 1.1.5 that 
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for every A > s ( A ) there exists a strictly positive such 
that . Moreover, assume that 

(8.2) s u p ^ ^ )[AR(A,A)j{ 

where A >s(A) . Then o 

(8.3) 

holds for all f 6 D(A), ^ 6 D(A')^_ . 
The proof can be done in the same way as that of Proposition 
1.1.1 if T(t) is replaced by (1-tA)̂ **" (t>0 small), because 
(8.2) implies that Af = §tlt=0 ^"^Al'^f for all f^D(A) . 

Remark 8.3. Let A be a densely defined operator on E . Suppose 
that there exists 0 ^ A f p(A) such that R(A,A) ^ 0. Then by 
the proof of Proposition 1.1.5 there exists a strictly positive 
subeigenvector of A'. Thus it follows from Theorem 8.1 that A is 
resolvent positive (in the sense of our definition) if in addi-
tion Kato's inequality holds. Example [23,3.10] shows that this 
last condition cannot be omitted. 

<(sign f)Af,^> ^ <}f},A'^> 
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Appendix A Ordered Banach Spaces 

A general reference is chapter V in Schaefer's monograph [41]; we 
also refer to the article by Batty and Robinson [8]. We confine 
ourselves to list some notions and results which are used in the 
text. 
Let E be a Banach space. A subset C of E is called a cone 
if c= C and C + C ci c . The cone C is called proper if 
C n (-C) - {0} . An ordered Banach space is a Banach space E 
together with a closed proper cone . The ordering in E is 
then defined by setting f < g if and only if g-f > 0 . 

Let E be an ordered Banach space with positive cone E^ . A 
linear form p on E is called positive if <f,p> > 0 for all 
f 6 E^ . We denote the dual space of E by E' and by E_j_ the 
dual cone, i.e. the set of all positive continuous linear forms 
on E . Then (E',E^) is also an ordered Banach space. Note that 

(Al) E, - (f^E : <f,d)>̂ 0 for all o^E'i . + ' -i-

The cone is called generating if ^ ^ . If E^ is 
generating, then there exists a constant c > 0 such that every 
f 6 E can be written as f = f\-fn where f ^ f ^ E such that 1 .1 -L ^ + 

{jfJHjfJ! ^ c!!f![ [41, Chapter V, 3.5 Corollary] and [8,1.1.2]. 
As a consecuence one obtains that every positive linear form on 
E is continuous [41,Chapter V, 5.5 Theorem] (see also 
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[12, Theorem A2]). Using this we obtain the following result on 
automatic continuity of positive linear mappings (which we could 
not find in the literature in this generality). 

Theorem Al. Let E,F be ordered Banach spaces with positive 
cones , resp., . Assume that is generating. Let 
T : E ^ F be a positive linear mapping (i.e. T is linear and 
satisfies TE_̂  c: E^ ). Then T is continuous. 

Proof. a) If g 6 F such that = 0 for all , then 
g = 0 . In fact, since F_̂ fl(-F_̂ _) = {0} it follows from 
[41,Chapter IV, 1.5 Corollary] that (F_j_-F_j_) ^ 
= (F_̂ fl(-F_J)° = F'. So the assumption implies that <g,^> = 0 
for all 6 6 F' . Hence g = 0 . 
b) We show that T has a closed graph (which implies conti-
nuity). Let f^ - f in E and Tf^ ^ g in F . We have to show-
that Tf = g . Let (j) ^ FJ_ . Then ^ := ^ T is a positive linear 
form on E * Thus ^ is continuous. Consequently, = 
lim <Tf ,a> = lim <f ^ ^ <Tf,^> . It follows n n 
from a) that g = Tf . 0 

Let E be an ordered Banach space with positive cone . The 
notion of a half-norm (see also Chapter I) was introduced in [5]; 
for further information see also [8]. We denote by the 
canonical half-norm on E ; i.e. N : E - !R is given by 

(A2) N(f) = dist(-f,E^) = inf {ijf+g!! ; 
= sup {<f,(i)> : p^E' 
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If E is a Banach lattice then N(f) = !!f )! . 
The canonical half-norm defines a norm j! on E by 

(A3) [jf^ = N(f) + N(-f) 

The cone E, is called normal if there exists an equivalent + 
monotone norm on E (that is? a norm j[ which satisfies 
0 ^ f ^ g implies ][f}}̂  ̂  [}g[[̂  ). 

(A4) The following assertions are equivalent [41,V.3.51, 
[8,1.2.1J. 
(i) is normal. 
(ii) [j [î  is an equivalent norm. 
(iii) E' = Ej - EM . 

In Chapter II we assume throughout that the cone E^ is 
generating and normal. We now state some consequences of this 
general assumption. 

Choosing a suitable equivalent norm on E we can assume that 

(A5) ±f ^ g implies [)f]{ ̂  f[g[[ . 

[In fact, )]f[!̂  max(N(f),N(-f)} (f6E) defines a norm doing 
this. To see this let ±f ^ k then N(f) ^ ][f + (k-f)!! = [{k[[ and 
N(-f) < }!-f + (f-t-k)[[ = [[kij . Hence jjfj}̂  = max(N(f),N(-f)} ^ [[k[[. 
Let now ±f ^ g. Then g ^ 0. Hence Hgj'!̂  = N(g) = inf f̂[k[[ : k^g). 
Since -f ^ k for all k^g, we conclude that !jf][ - !!g[] 
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A set M is called order bounded if there exists f^E such that 
M - [-f,f! where the order interval is defined by 
[-f,f] = {gfE : -f s g < f} . Thus by (A5) order bounded sets are 
norm bounded. Another consequence of the general assumption that 
E be generating and. normal is the following. 

(A.6) Let L ^ (E) be a set of bounded operators- If sup 
(!<Tf,d)>! : T L) < °° for ail f^E^, then 
sup (jjTjj : T^L} < ^ < 

This follows from the uniform boundedness principle since 
and E! are generating* 

(A7) Let S,T be linear operators on E and T be positive. 
If [<Sf, ^ <Tf,^> for all .Then )[s[[ < }jT,![ . 
[In fact, the assumption implies that ±Sf ^ Tf for all f^E^ . 
Then by (A5), [jsfjj ̂  j[Tfj[ .] 

Occasionally, the complexification E^ of E is considered without 
further comments. For example, if A is an operator on E, then for 
A ^ P(A) \ ^ ,by definition, R(A,A) :- (X-A) is an operator 
on E^ . 

(A8) Similar to (A5), we have for f ^ E^, g ^ E^, 
[<g,d)>! ^ <f,^> for all 4) c E_j_ implies [[gt! ̂  c!!f[[, where c > 0 

is a fixed constant. 

Note that every Banach lattice and the hermitian part of a 
C*-aigebra have a generating and normal positive cone. 
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Appendix B The Vector-valued Stieltjes Integral 

Here we collect definition and properties of the vector-valued 
Stieltjes integral. We follow [25,Chapter III] closely, but 
emphasize the integral of increasing functions. 

Let G,H be Banach spaces and E be an ordered Banach space 
with generating and normal cone. 

Definition B1 [25, Definition 3.2.4]. A function f:[a,b]^E is 
of bounded variation if sup [[̂  Lf(t^)-f(s^)]j[ < °° over every 
choice of a finite number of non-overlapping intervals 
in [a,b] . 

Proposition B2.a) Let f : [a,b] ^ E be increasing. Then f is 
of bounded variation. 
b) Let S : [a,b] -^^(E) be increasing. Then S is of bounded 
variation. 

Proof. Let <= [a,b] (i=l,....,n) be a finite number 
of non-overlapping intervals. Then 0 ^ (f(t^)-f(s^)) ^ 
f(b)-f(a) . This implies [)^(f(t^)-f(s^))[[ ^ [jf(b)-f(a)[[ . Thus 
a) holds. Similarly, 0 < ^(S(t^)-S(s^)) ^ S(a)-S(b) and b) 
follows from (A7). 

Let f : [a,b] G and u : [a,b] - K . We denote the subdi-
vision (t =a ^ t̂  ^ t^ t =b) together with points 
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s. ^ ft, i,t.) by 7T and let iir = max. jt.-t. . Lei i l-l i ^ - l l 1-1' 

(Bl) L ^ ' U ) = = i f(s.)(u(t.^^)-u(t.)) . 

If lim; ] ̂  7 (f,u) exists in a given topology T , this limit 
is denoted by the integral 

(B2) ^f(t)duft) 

and we say that the integral exists in the topology T . Let 

(B3) c (f,u) = u(s^)(f(t. ,^)-f(t.)) 7T 1 = 1 1 1—1 1 

If limj^j Q o^^ffU) exists in a given topology T , then this 
limit is denoted by the integral 

(B4) }^u(t)df(t) , 

and we say the integral exists in the topology i . 

Proposition B3 [25 ,Theorem 3.3.1 and Theorem 3.3.21. Suppose 
that either (1) f:[a,b]^G is strongly continuous and u:[a,b]^P! 
is of bounded variation or (2) f is of bounded variation and u 
is continuous. Then the integrals (B2) and (B4) exist in the norm 
topology and 

(B5) j^ut't)df(t) = u(t)f(t)!^ - /^fft)du(t) . 
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Further, if A is a closed operator from D(A) c G into H and 
if f(t) 6 D(A) , and if (Af) (.) is strongly continuous in the 
case (1) or of bounded variation in the case (2) then 
j^u(t)df(t) 6 D(A) and j*^f(t)du(t) 6 D(A) and 

(B6) Aj*^f(t)du(t) = f^Af(t)du(t) and ^ a ^ a 

(B7) A^u(t)dfft) = j^u(t)d(Af(t)) . 

Applying Proposition B3 for G=^(E) we obtain in particular the 
following. Let S : [a,b]-^-^(E) be increasing and u ^ C[a,b] . 
Then the integrals j^u(t)dS(t.) and /^S(t)du(t) exist in the 
operator norm and 

(B8) J*^S(t)du(t) = S(t)u(t)}^ - j^u(t)dS(t) . 

Choosing u(t) = t one obtains that the Riemann-integral 
j^S(t)dt exists in the operator norm. 
Let f€E,p6E' . Then (B7) applied twice (for A:^.(E) ^ E given 
by T ^ Tf and then A=<j) ) gives 

u(t) dS(t))f, <f)> = i^u(t) d<S(t)f,^> . This and the Hahn-
Banach theorem allow us to carry over the rules for the classical 
Riemann-Stieltjes integral to the vector-valued case. For exam-
ple, the following corresponds to [50,Chapter I, Theorem 6b]. 
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Proposition B4. Let S : [a.bl^ Ê) be increasing and 
v 6 C[a,bl such that v(t) ^ 0 for all tf[a,bJ , 
Then S^(t) = v(s) dS(t) is increasing and 

(B9) ^ u(t)v(t) dS(t) = f^ u(t) dS^(t) 

for all u 6 C[a,bl . 

Appendix C The vector-valued Laplace-Stieltjes transform 

Let E be an ordered Banach space with generating and normal 
cone . In the following we discuss properties of the 
Laplace-Stieltjes transform with values in E or ."(E) . 

We need the notion of the improper Riemann-Stieltjes integral. 
Let G be a Banach space, a 6 IR and f : La,°°) ^ G, u : [a,°°) ^ R -
Assume that either (1) f is strongly continuous and u is of 
bounded variation or (2) f is of bounded variation and u is 
continuous. Then by Propositon B3 the integral u(t) df(t) 
exists in the norm for all b = a. 
Let T be a topology on G. We say that the integral u(t) df(t) 
converges in the topology T if lim^^ u(t) df(t) exists for 

the topology T. In that case we define u(t) df(t) : = 
lim.T_ f̂  u(t) df(t) . The definition is analoguous for 
f" f(t) du(t). * a 

The following proposition shows that for the Laplace-Stieltjes 
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strong and weak convergence are essentially equivalent. 

Proposition CI. Let a : [0,co) ^ E^ be an increasing function 
such that a(0) = 0 and let w 6 [R . Consider the following 
assertions. 
(i) e ^d<a(t),<})> converges for all ^ 6 E_j_. 
(ii) For all A>w there exists M>0 such that 

At a (t) < Me^' for all t>0 . 
(iii) f°° e ^^da(t) converges in the norm whenever ReA > w . ^ o 

Then (i) implies (iii). Moreover, if w ^ 0, then fi) implies 
(ii), and (ii) implies (iii). Finally, if (i) holds, then 

(CI) e"^^da(t) = Ae"^'a(t)dt (ReA > max {0,w}) . 

Proof, a) We consider the case when w ^ 0. Assume (i). We show 
(ii). Let A>w . Then for t^O one has: 

e"^^ d<a(s),d)> ^ f°°e ^^ d<a(s),&> . Hence ^ o ' ^ o 
sup-t̂ ci e'̂ <̂aft),(j)> < <" . Since = E' ' it follows that 
(e**̂ â(t.)),̂  is weakly bounded, hence norm bounded. This proves 
(ii). Now assume (ii). Let ReA>w . We first consider the case 
when A is real. Choose u 6 (w,A) . Then there exists M^O such 
that ][a(t)[[ ^ Me^^ (t^o) . Let r^t^o . Then e"^^da(s)]j = 
][e"^a(r) - e"^a(t) + ^jr e"^a(s)ds}[ < 
M + M ^^ -1- ( e ^ ' ^ ^ _ ^-(X-u)r , A-u 
-n, -(A-u)t , A -'A-u)t ^ . Tj 2Me + M i e ^ 0 for t^^ . Hence A-u 
lim; f^ e***̂ "da(s) exists in the norm. This proves (iii) in the 



case when \ is real. In the case when A is arbitrary let 
r^t^o. Then e""^da(s)i ^ e ^^^dctfs). So (iii) follows 
from the real case by (A8). 
b) We consider the case when w is arbitrary. Assume, that (i) 
holds. We show (iii). Let 6(t) = e^'^da(s) . Then by hypothe-
sis, the integral d<g(t),^> ^ J*̂  e ^^ d<a(s),^> converges for 
every . Hence by a) (for w=0 ), e ^^dS(t) converges in 
the norm for all A>0 . Using Proposition B4 we obtain that for 

- ^ i "̂ t-, -(n-w)t^-wt, , ^ H>w , the integral J^ e ^ da(t) = J^ e e da(t) = 
converges in the norm. 

c) Finally, we prove the last assertion. Assume that (i) holds. 
Then by b) also (ii) and (iii) are satisfied for ReX > max {0,w}. 
Hence, limL = 0 . Thus by Proposition B4, t-̂ co 

f°° e"^da(t) = e'^da(t) = ^^^ e'^ct(b) + Jo b-?-°°-'0 D-rCO 
lim. f^ Xe"^a(t)dt = r Ae"^a(t)dt . D b-nxtJo ^o 

Remark C2. Assume that in Proposition CI assertion (i) holds. 
Then g(X) = e**'^da(t) defines an analytic function on 
H := : ReX>w} . In fact, it follows from the corresponding 
classical result that g is weakly analytic, hence g is strongly 
analytic. 

To Proposition CI corresponds a result for o p e r a t o r - v a l u e d 

functions. The proof is the same apart from minor modifications. 
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preposition C3. Let S : [0,^) ^ (E) be increasing satisfying 
S(0) = 0 and let w6'!R' . Consider the following assertions. 

(i) ^ e " ^ d<S(t)f,^> converges for every f^E^, and 
A>w. 

(ii) For every A>w there exists M^O such that 
}[s(t)j[ ^ Me^^ for ail t^O . 

(iii) f^e ^^ dS(t) converges in the operator norm for ReA > w. 

Then (i) implies (iii). Moreover, if w ^ 0, then (i) implies 
(ii), and (ii) implies (iii). Finally, if (i) holds, then 

(C2) re"^^dS(t) = f°°Ae"*^dS(t) (ReA > max{0,w}) . o ^ o 

Next we reformulate the uniqueness theorem in the vector-valued 

case, 

Definition C4. a) Let a : [0,°°) ^ R be increasing. Then a is 
said to be normalized if a(0)=0 and for every t>0 

a(t) = I(a(t+)+a(t-)) 

b) An increasing function a : [0,°°) ^ E is normalized if for 
every 0 6 E^ the numerical function t ^ <a(t),^> is nor-
malized. 
c) An increasing function S : [0,°°) ^ (E) is normalized if for 
every f6E^ the function t ^ S't)f is normalized in the sense 
of b). 
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Now the classical uniqueness theorem [51, gives the 
following. 

Theorem C5 (uniqueness theorem). Let a : [0,°°) ^ F (where 
F = !R, E or ^f(E) ) be an increasing normalized function. 
Let A . If o 

= 0 for all ^ o o 

then a(t) = 0 for all t^O . 
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