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ABSTRACT 

Let A be the generator of a strongly continuous semigroup on a Banach lattice F 
(satisfying some mild restrictions). It is shown that the semigroup consists of positive 
operators if and only if A satisfies an abstract version of Kato's inequality and the 
adjoint A' of A possesses a strictly positive subeigenvector. Domination of semigroups 
is also characterised by an inequality for their generators. 

Introduction 

Although the theory of positive semigroups has progressed rapidly during the last 
few years, an intrinsic characterisation of generators of positive semigroups has not so 

far been given. The problem is obvious from the general theory: since the infinitesimal 

generator determines a semigroup uniquely, one expects to find a condition on the 

generator which describes the positivity of the semigroup. From a practical point of 

view as well there seems to be a need for such a characterisation. In fact, it lies in the 

very nature of the theory that frequently the generator but not the semigroup is known 

explicitly. Since a variety of results (concerning spectral theory, asymptotics, 
perturbation theory, etc.) for positive semigroups is available today, it is important to 

find conditions on the generator which enable one to verify positivity (of the associated 

semigroup). 
Characterisations of positivity together with additional properties are known. 

Phillips [23] characterised positive contraction semigroups by dispersiveness of the 
generator. The more general notion of p-dissipativity with respect to a half-norm p was 

introduced in [51 and allows one to treat contractivity in a very general sense (see also 

Batty and Robinson [81). 
A condition of a different kind is the following abstract version of Kato's inequality: 

((sign f)Af, # > < K If I, A'#) (K) 

f E D(A), 0 < t E D(A). 

Of course, this inequality is inspired by Kato's classical inequality for the Laplacian 

([19]; see also [24,X.271). It was Nagel who conjectured that some abstract version of 

this inequality is equivalent to positivity (cf. [2 11). We confirm Nagel's conjecture in the 

following form. Let A be the generator of a semigroup on a Banach lattice E (which for 
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simplicity is supposed to satisfy some mild restrictions). Then the semigroup is positive 
if and only if A satisfies (K) and the adjoint A' of A possesses a strictly positive 

subeigenvector 4 (i.e. 4 E D(A') and A ' < AO for some A E R). It will be shown by 

examples that the two conditions in this result are independent. 

A related problem is to express in terms of the generator when one semigroup is 

dominated by another. This can be done in a similar manner by an inequality involving 

the 'signum operator'. It is remarkable that here it is not necessary to start with a 

generator. The inequality and a range condition are sufficient to obtain a semigroup. 

In the last section we investigate a special kind of domination. Disjointness 

preserving semigroups are described as those semigroups which are dominated by a 
lattice semigroup. This puts a new complexion on 'Kato's equality', which is known to 

characterise generators of lattice semigroups by a result of Nagel and Uhlig [211. 

1. The characterisation 

Let E be a a-order complete real Banach lattice [26, II.? 1]. We first describe the 

sign operator. Let fe E. There exists a unique bounded operator 'sign f' which 

satisfies 

I(sign f)gl ? IgI (geE) (1.1) 
(sign f)g 0 if fIg (1.2) 
(signff If I . (1.3) 

Here we understand by fi g that f and g are disjoint, i.e. inf lf I, Igl} =0. 

If for u e E+ the band projection onto the band uLL generated by u is denoted by 

P., then 

sign f= Pf+-Pf-. (1.4) 

Example. Let E = LP(X, ,u) (where (X, ,) is a measure space and 1 < p < oo) and f E E. 

Let m E L' be given by 

I if f(x) > 0, 

m(x)-< -1 if f(x) < 0, 

Oif f(x)=0. 

Then (sign f)g = m.g (g E E). 

Now let (7(t))t>o be a semigroup (by that we always mean a strongly continuous 

semigroup of linear operators) on E with generator A. We first consider necessary 

conditions for the positivity of the semigroup. 

Proposition 1.1. If (t) >0 (t > 0) then Kato's inequality holds in the weakform, i.e. 

( (sign f)Af, 4 > < K If I, A'I > (K) 
(fe D(A), 0 <4 E D(A')). 
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PROOF. Let fe D(A), 0 ?; 0 E D(A'). Then 

((signf) Aft > = lim Ilt < (sign f) (71t)f-f), ) > t-.0 

= rim lit < (sign f)7(t)f- If l, U > 

Slim Il/t< I 7Ttf I- If l, 0 > 

14 lim l/t < otW if I If II 0 > 

(lirm <1f/, t(7(t)jI-f),> 
t-*o 

=< ff1. A'tL>. 

Let D(A')+ = E'l ln D(A'). Consider the condition 

D(A )+ =El+ (1.5) 

(which is satisfied if the semigroup is positive). If (K) and (1.5) hold, then Kato's 

inequality holds in the strong form as well, whenever it makes sense, i.e. 

(sign f)Af < A If I (if f If I E D(A)). (1.6) 

However, it will be seen in section 3 that (K) and (1.5) are not sufficient for the positivity 
of the semigroup. So we consider another necessary condition. 

Definition 1.2. A subset M' of E' is called strictly positive if for every fE E, ( f t) 
- 0 for all 0 e M' impliesf= 0. An element $ of E' + is called strictly positive if the set 

{1} is strictly positive. 

Example 1.3. Let E = LP(X,#) (1 (<p < as), where (X,u) is a a-finite measure space. 
Then 0 c E' E L (X,) (where l/p + lIq = 1) is strictly positive if and only if r(x) > 0 
p -a.e. Note that strictly positive elements of E' always exist in this case. 

Definition 1.4. Let B be an operator on a Banach lattice F and let u E F. Then u is 

called a positive subeigenvector of B if 

(a) 0 < u E D(B) and 

(b) Bu < Au for some A E R. 

Proposition 1.5. If the semigroup (7(t)),0o Is positive, then there exists a strictly 
positive set M' of subeigenvectors of A' (the adjoint of the generator A). Moreover, if 
there exist strictly positive linear forms on E, then there exists a strictly positive 
subeigenvector of A'. 
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PROOF. Let A > 0 such that R(AA) = (A - A)-' exists and R(A,A) >0 . Let N' c E' + be 

strictly positive. Then M' :{R(AA)'y/: yr E N' } c D(A ') n E' +. We show that M' is 

strictly positive. Indeed, letf E E+ such that (f z > = 0 for all 0 E M'. Then K R(A,A)f, 
=0 >- for all v E N'. Hence R(A,A)f = 0 since N' is strictly positive. Consequently, 

f = 0. The set M' consists of subeigenvectors of A'. In fact, let V/ E N', 0 = R(A,A)'. 
Then A'# = AO -v < A? . 4 

The following is our characterisation. 

Theorem 1.6. The semigroup (ftt)),,, 0 is positive if and only if its generator A satisfies 
the following condition. 

There exists a strictly positive set M' of subeigenvectors of A' such that 

<(sign f) Af, > < < Ifl, A') > for allf E D(A), CE M'. (K) 

Corollary 1.7. Assume that E' contains strictly positive functionals. Then the 

semigroup is positive if and only if there exists a strictly positive subeigenvector 0 of A' 

such that 

( (sign f) Af, t > < < If I, A'#t > for allfe D(A). (K) 

Remark. 1.8. For the application of our criterion the following improvement (of one 

direction of the characterisation) is important. If the condition (K) is merely satisfied for 

allf E Do, where Do is a core of A, then the semigroup is positive. This will be obvious 

from the proofs and [5, theorem 2.3]. 

Remark 1.9. In Theorem 1.6 and Corollary 1.7 one can replace inequality (K) by the 

inequality 

((Pf+ I Af# 0 > < < f +tA') ) (1.7) 

Indeed, (1.7) for -f gives K(-Pf)A;f 0 > < (f, A') >. Adding up both inequalities 

one obtains < (signf)A;f # > K (f I , A'#) . On the other hand, if A generates a positive 

semigroup, one sees by the obvious alterations in the proof of Proposition 1.1 that ( 1.7) 

holds for all fe D(A), 0 E D(A')+. 

We conclude this section by formulating our result for a Banach lattice E which is 

not a-order complete. Then the signum operator is not defined. But the bidual El of E is 

order complete. Denote by q: E -. " the evaluation mapping. Then Theorem 1.6 holds 

if the inequality (K) is replaced by 

K (sign q(f)) (q(Af)), # > ? K If I, A'0). 

In the case E = C0(X) a more concrete version is possible which we want to state 

explicitly. 
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Let X be a locally compact space and E = CO(X) the space of all real valued 

continuous functions on X which vanish at infinity. Note that E is not a-order complete 

unless X is a-Stonian. For fe CO(X) we define the function sign f by 

J 1iff(x) > 0, 
(signf) (x) - 1 iff(x) < 0, 

0 iff(x) = 0. 

Then (sign f) is a bounded Borel function. 

If e E M(X) = CO(X)' we set 

( g,)> := Jg(x) d#(x) 

for every bounded Borel function g on X. 

Theorem 1.10. Let A be the generator of a semigroup on CO(X). The semigroup is 

positive if and only if there exists a strictly positive set M' of subeigenvectors of A' such 

that 

< (sign f)Af,u > < K IfI,A',u >for allfeD(A), peM'. (K) 

Remark. We point out that for compact X a simpler condition is equivalent to 

positivity, namely a minimum principle (see [51). In fact, the space C(X) (X compact) 

plays an exceptional role in this context since its positive cone contains interior points. 

For a comparison of Kato's inequality and the minimum principle we refer to [41. 

2. The proofs 

Our arguments are based on the results of [51 on p-contraction semigroups and p 

dissipative operators (see also [8]). 

Let F be a Banach space. A mapping p: F -+ R is called a sublinear functional if 

P(f + g) SP(f ) + p(g) (f,g E F) (2.1) 

p(Af) = Ap(f) (f e F, A E R 4 (2.2) 

We call p a hal/-norm if in addition 

p(f) + p(-f) > O for all O f E F. (2.3) 

Then Ilflp := p(f) + pA-f) defines a norm on F. (This is the motivation for the 

terminology.) 

Example 2.1. (a) p(f) = lf II defines a continuous half-norm on F. 

(b) Let E be a real Banach lattice. N(f) = If +11 defines a continuous half-norm on 

E (the canonical hal/-norm). 

(c) Let E be a real Banach lattice and 0 e E'. Let p(f =f f, 0> (f E E). Then p 

is a continuous sublinear functional. Moreover, p is a half-norm if and only if $ is 

strictly positive. 



160 Proceedings of the Royal Irish Academy 

Remark 2.2. To every continuous half-norm p on F there corresponds a closed proper 

cone F. := { fE E : p(-f ) < 0(. In Example 2.1 (a), we have Fp = {0O; in (b), Ep = E, 
and in (c), E. =E. if t is strictly positive. 

Let p be a continuous sublinear functional on F. The subdifferential dp of p is 

defined as follows. Let f E F; then 

dp(f)= {# e F' :<g,0> ?p(g) for all geF and ( ) = p(f)}. (2.4) 

It follows from the Hahn-Banach theorem that dp(f ) * 0 for all fe E. 

An operator A on F is called p-dissipative if for every f E D(A) there exists 

t E dp(f) such that ( Af] > ) 0. 

Proposition 2.3. Let A be the generator of a strongly continuous semigroup (T(t))1 > 0. 
Then the following are equivalent. 

(i) T(t) is p-contractive for all t > 0; 

i.e. p(7(t)f) < p(f) (f E E). 

(ii) A is p-dissipative. 

(iii) There exists a core Do of A such that AIDO is p-dissipative. 

Remark. Suppose that p is a continuous half-norm. If A satisfies the equivalent 

conditions of the proposition, then the semigroup is positive for the ordering induced by 

p (see Remark 2.2). 

For the proof of Proposition 2.3 see [5, theorem 4.11 or [8,2.1.11. 

Proposition 2.4. Let A be a densely defined operator on E and 0 E D(A )+ such that 

A ' (0. Denote by p the sublinear functional given by pf ) = < f +, 0 >. If 

((sign f ) Af] > < (If i, A 't > (f E D(A)), (K) 

then A is p-dissipative. 

PROOF. Letf E D(A). Let P = 
I-Pf -PPf-, Q = Pf+ + 1/2 P andw= Q't. We show 

that 

V e dp(f). (2.5) 

Let gEE. Since 0<Q<I we have Kg, y>=(Qg, ><(Qgt><)?gt>)=p(g). 
Moreover, (fJ y> = (Qf, t) = <Pf+ f + 1/2Pf, t> =< f +, > = p(f +). So (2.5) follows 

by the defimntion of dp(f). 
The proof will be finished when we have shown that 

<A],'> w 0. (2.6) 

One has trivially 

<(Pf+ + Pf- + P) Af, > = <f A't). (2.7) 
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Addition of (2.7) and (K) gives 

< (2Pf , + P) Af, 0 > A I 
0 > A'#) 0. 

Hence (AfJ w) = <QAfJ ) 0.< El 

PROOF OF THEOREM 1.6. Propositions 1.1 and 1.5 give one implication. In order to 

show the other, assume that the condition in Theorem 1.6 is satisfied. We have to show 

that Tht) > 0 for all t > 0. 

Let 0 E M'. Consider the half-norm p(f) = (f+ t> and the operator B = A -A, 

where A E R is such that A't <A#. Then B satisfies B't < 0 and (K) as well. So it 

follows from Proposition 2.4 that B is p-dissipative. Since B generates the semigroup 
(e-At 7t))t, , we obtain from Proposition 2.3 that pXe4t7t)f) < p(7(t)f), (f E E, t > 0). 

Hence, 

((7Tt)f)+ t)> (eAt <f+, > (f E E, t > 0). (2.8) 

Now let t > 0 andf < 0. Then f+ =0, so it follows from (2.8) that <((7t)f)+, 0 > < 0. 

Since * E M' is arbitrary and M' is strictly positive, it follows that (lt)f)+ = 0; i.e. 
7Tt)f( 0. This implies that 7(t) > 0. [] 

The proof of Theorem 1.10 is identical to the proof given above if the symbols 

(signf), Pf+, etc., are interpreted as Borel functions. 

Remark 2.5. 

(a) Proposition 1.1, which gives one implication of Theorem 1.6, had been proved (in a 

different way) in [3, remark 3.91. The other implication of Theorem 1.6 has been 

obtained independently by Schep [301 with a different method of proof. In 

particular, Schep's argument seems not to apply for the case where condition (K) is 

only known to hold on a core of A (cf. Remark 1.8). 

(b) Using Proposition 2.4 one can show with the help of the proof of 15, theorem 2.4] 

that a densely defined operator which satisfies the conditions of Theorem 1.6 is 

closable (cf. Theorem 4.4). 

Remark 2.6. The proof of Theorem 1.6 shows the following. If A is the generator of a 

positive semigroup and E' contains strictly positive linear forms, then there exists a 

continuous half-norm p on E and w E R such that A--w isp-dissipative. We stress that p 
cannot be replaced by the norm, since in general none of the semigroups (e-w'7(t))t,> 
(w E R) is contractive for the norm (cf. [71 and [121). 

3. Examples and discussion 

The examples in this section are chosen in order to show that the two ingredients of 
our characterisation in Theorem 1.6 (namely, Kato's inequality and the existence of a 

strictly positive set of subeigenfunctionals of A') are independent conditions. But these 

examples also illustrate how our criterion is handled for concrete operators. 
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As & first example we consider the first derivative with boundary conditions on E 

LP[0, II (1 <p < oo). By AC0, 1] we denote the space of all absolutely continuous 

functions on [0, 1]. Let A max be given by 

D(Amax) =V fE AC[O, 11: f' E LP[O, 111 

Amaxf = f' (f E D(Amax)). 

Lemma 3.1. Letf e AC0, 1]. Then If e E AGOC, 11 and 

If '= (signf)f' (a.e.). 

This is easy to prove. As a consequence of the lemma, D(A max) is a sublattice of E and 

(sign f)Amaxf Ama If I (f E D(Amax)). (3.1) 

For A > 0 one has 

ker (A - Amax) = R eA where eA(x) = e (3.2) 

Hence Amn is not a generator. We impose the following boundary conditions. 
Let d EIR. Consider the restriction Ad of Am. with the domain 

D(Ad) = {f E D(Amax): f(1) = df(O)}. 

Then Ad is the generator of the semigroup (Td(t)),>o given by 

Td(t)f(x) = dnf(x + t - n) if x + t E [n, n + 1) (n E N). (3.3) 

This is not difficult to prove. Actually (3.3) defines a group if d : 0 and if we let t E R, 
n E Z. For d = 0 one obtains the nilpotent shift semigroup on E. One sees from (3.3) 
that the semigroup (Td(t)),;o is positive if and only if d> 0. 

Let us fix d < 0. Let A = Ad and ftt) = T(t) for t > 0. Then 
(At)),>0 

is a semigroup 
which is not positive. Nevertheless its generator A satisfies Kato's inequality. Even the 
equality is valid; i.e. 

<(signf)Af, )>= < If, A'4> for allfe D(A), 0<4 e D(A'). (3.4) 

PROOF. It is not difficult to see that 

D(A') = {4 E AC[O, 11: 4' E LQ[O, 1], 4(0) = d4(1)} (3.5) 
A'4 = - 4' for all 4 E D(Af) 

where I/p + 1/q = 1. Let 4 E D(A')+. Since d < 0, it follows that 4(O) = 4(1) 0. Hence 

for f E D(A), 

((signf) Af4> = ((signf)f', 4> = (IfI', 4> 

Ifl '(x)4(x) dx 

I f I 0 
1 
-X If (x) I 0 (x) dx 

= If(1) 4 o(1)-If(0) j 4(0) + K If , A'4> 
< If I,A' 4>. O 
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Remark 3.2. The equality (3.4) does not hold for all 0 e D(A'), however. In fact, this 

would imply that If I e D(A) and (signf) Af= A If I for allfe D(A). Thus by [21, 3.51 
(or Corollary 5.6) the semigroup would consist of lattice homomorphisms. The reason 

why in this example the equality holds will be explained from a more general point of 

view in section 5 (see Proposition 5.9). 

Even though the semigroup (7Tt))%o is not positive its generator A has other 
surprising properties besides (3.4). For instance, the positive cones D(A) + 
D(A) nE+ and D(A ')+ := D(A ') r E+ satisfy 

D(A)= E, and D(A') (E, E)_ E$. (3.6) 

Thus the question following remark 3.10 in [3] (resp. problem 1.5 in [41) has a negative 

answer. 
Moreover, (3.1) shows that A satisfies Kato's inequality (in the strong sense) 

formally. In order to formulate this more precisely, observe that it follows from (3.2) 

that D(Ama) = D(A) + R eA (where 0c< Ac p(A)). Thus the extension A max of A 

satisfies the following. 

A mn is closed. (3.7) 

D(A mn) is a sublattice of E. (3.8) 

D(A) has codimension one in D(A max). (3.9) 

(sign f) Af = A max If I for all f E D(A). (3.10) 

It is also remarkable that there exists a dense sublattice Do :{ f c D(A):f (0) =f (1) = 

0} of E which is included in D(A). But D. is not a core of A (this would imply the 

positivity of the semigroup by [4, theorem 3.41 if I d I < 1). 

Since (7t))t1>o is not positive but (3.4) holds, it follows from Theorem 1.6 that there 
exists no strictly positive subeigenvector of A'. In fact, more is true. 

0 <, E D(A'), A'# to p0 for some u E R implies t=0. (3.11) 

PROOF. Suppose that 0 S e E D(A ',) such that - O' =A A'o < 1u. We can assume that 
0 < p. Let W(x) = 9$(1 -x). Then w'(x) -t'(1 -x) (pto(1 -x) =pyV(x). Since 

vO) = 0, we get 

x x 

vx) V'(y) dy <?p #' y)dy (xc [0,1]). 

It follows from Gronwall's lemma that yr 0. Hence 0 = 0 =. LI 

In view of the preceding example one might presume that the existence of a strictly 

positive set of subeigenvectors of the adjoint of the generator actually implies the 

positivity of the semigroup. This is not the case. To give an example consider E = L2(R) 
and the operator B given by 

Bf f=3) with domain 

D(B) = {f e C(R) :f', fw e L2(R),J' fe AC(R),f() E L2(R)). 
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Then B is the generator of a unitary group (U(t))m=-R. In particular, B is skew-adjoint, 

i.e. B' =-B. We claim that 

B' has a strictly positive subeigenvector 0. (3.12) 

PROOF. Let A > 0 and 

e-rAx for x > 1, 

0 (x) = ^ Wx - I < x < 1, 

eAX for x <-1, 

where g E C3[- 1, 11 such that g(x) > 0 for all x e [- 1, 11 and such that 
0 E C3(R). 

Moreover, choose g such that g(O) = 1 and gl(O) = g"(0) = 0. Since g, g(3) E C(R) and 

inf {g(x): x E [- 1, 11 > 0 there exists u > A3 such that - g(3)(x) < pg(x) for all x e 

1-1, 1]. Consequently, 

A3e- (x > 1) 

f(3)(x) = -g(3)(X) (X E 1- 1, (X) 

-3elx (X <-1) 

Hence B' 0 - 3# <SO. E? 

But the semigroup (U(t)),>O is not positive. In fact, we show that there existsf E D(B) 

such that 

<(signf) Bf, > > <(f 1 B't>. (3.13) 

PROOF. Let f e D(B) be such that f(x) = eX sin x in a neighbourhood of 0 and 

f(x)> 0 for x >0 and f(x) <0 for x <0. Then 

o 00 

((signf) Bf, > =- 1r3)(x)s(x) dx + Jf'3)(x) t(x) dx. 

Hence, 

< If I, B' #)= (-f(x)) (- 0(31x)) dx + f (x) (_ #13)(x)) dx 

o~~~~~~~~ o x0 

= - 3)(X) 0 (X) dX + J / X) (X)) dX 
00 0 

+ [w1" #1i -[Jw' o lj' (since "(0) = '(0) = (O)) 
= <(signf) BEf > + 2fw(O) (0) 
< <(signf ) Bf, 4; > 

since f "(O) (0) = f"(O) = - 2. E 

We now show, however, that B satisfies Kato's inequality for positive elements, i.e. 

Pf Bf < Bf for a Ife D(B)+. (3.14) 

In fact, more is true. B is local, i.e. 

f l g implies Bf ? g for all f E D(B), g E L2(R). (3.15) 
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PROOF. Let A be the generator of the translation group. Then A is local by [21, 3.31. 

Hence- B = A3 is local as well. LI 

So this example shows that even if there exists a strictly positive subeigenvector of the 
adjoint of the generator, Kato's inequality for positive elements alone does not suffice 
for the positivity of the semigroup. 

Next we make some observations concerning positive subeigenvectors. Assume that 
A is the generator of a positive semigroup (7Tt)),.0 on a Banach lattice E. Let 

0 e D(A')+ and A E R. Then 

A't < AO if and only if 7Tt)'t < eAl (t > 0). (3.16) 

PROOF. If 71t)'# < e' 
A 

for all t > 0, then 

A'O = o(E', E) - lim 1/t (71t)' 
- ) < lim l/t (eAl - 

=) AO. 

For the converse let feE .E+ Then 

f, T(t)' )= (f, > + (f,T 7s)YA 'I# ) ds 

I 

<1 <f, 0 ) + < f, 7Ts)' 0 ) ds. 

It follows from Gronwall's lemma that (f, 71t)' t) < eA' (f 0>. H 

Assume now that 0 is a subeigenvector of A'. Then it follows from (3.16) that the 

ideal J := ef E (: < =fl, = 01 is invariant under the semigroup. From this we 

conclude the following. 

Proposition 3.3. If the semigroup is irreducible (see [291), then evern positive 
subeigenvector of A' is strictly positive. 

Example. For d > 0 the semigroup (Td(t)),z, considered at the beginning of this 

section is irreducible. Thus every positive subeigenvector of A' is strictly positive. 

The existence of positive subeigenvectors is related to the Krein-Rutman theorem. If 

A has a compact resolvent and o(A) ? 0, then the Krein-Rutman theorem asserts that 

there exists a positive eigenvector of A' (and A) for the eigenvalue s(A):= 

sup iRe A: A E a(A)}. It is easy to see that A d has compact resolvent and a(A d) :t 0 

for d t 0. Thus A, has a positive eigenvector if and only if d > 0. 

4. Domination 

Frequently it is useful to be able to compare two semigroups on a Banach lattice with 

respect to the ordering. In this section we assume that E is a a-order complete complex 
Banach lattice [26, II. ? 111. Let (7Mt)),;;W be a positive semigroup with generator A and 

(S(t)),>o a semigroup with generator B. We say (7Tt)),t dominates (S(t)),?o if 

I S(t)fj I< gt) IfI for allfe E, t > 0. (4.1) 
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We first observe that domination of the semigroup is equivalent to domination of the 

resolvents. More precisely, (4.1) holds if and only if 

I R(, R)f I < R(A, A) If I (f E E) for large real A. (4.2) 

PROOF. (4.2) follows from (4.1) since the resolvent is given by the Laplace transform 
of the semigroup. Conversely, if (4.2) holds, then 

S(t)f I = lim I ((nit) R(n/t, B))Mf 1 n -oo 

< lim ((nit) R(n/t, A)y if 1 
n -oo 

-Tt)jfj (t>Ofe F). O 

One can describe domination by an inequality for the generators in a manner 

analogous to the characterisation of positive semigroups in section 1; however, no 

positive subeigenvectors are needed here. 
We briefly want to explain the sign operator in a complex Banach lattice. Letf e E. 

There exists a unique operator S E Y9(E) satisfying 

Sf=IfI (4.3) 
Sg<(jgI (gE E) (4.4) 
Sg 0 ifg lf (4.5) 

(see [21, 2.11). 

Example 4.1. Let E - LP(X, p) (1 < p < oo) and fe E. Then 

(signf) (x) = 4f(x/If(x)I iff(x) # 0 

O otherwise 

defines a function in L. The operator S is given by 

Sg (signf) g (g E E). 

We define signf := S E 5(E). Thus in the case E = LP we identify the function (signf) 

and the multiplication operator it defines. 

Remark 4.2. If (T(t))\zo is a positive semigroup on a e-order complete complex 

Banach lattice, then its generator satisfies Kato's inequality in the form (K) if 'signf' is 

interpreted as above. This can be proved as Proposition 1.1. However, for the 

characterisation of positive semigroups one can restrict oneself to the real case by 

making use of the following observation. 
Let E be a complex Banach lattice. Denote by ER the real Banach lattice associated 

with E. Then E = ER + iER; i.e. forf E E there exist unique elements Ref, Imf of ER 
such that f =Ref + i ImfJ Let f=Ref -i Imf 

Let (S(t)),>0 be a semigroup on E with generator A. We say that (S(t))t,o is real if 

S(t)ER C ER for all t > 0. It is easy to describe this in terms of the generator. We say 

that A is real if f E D(A) implies f E D(A) and AJ= Af Then 

(8(t)),_0 is real if and only if A is real. (4.6) 
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Theorem 4.3. Let (Mt)),>o be a positive semigroup with generator A and (S(t)),>0 a 

semigroup with generator B. The following assertions are equivalent. 

(i) I S(t)fJ < 7(t) fj for allf e E, t > 0. 

(ii) Re ((signf) Bf, 0) < K I f 1A' I>for allfe D(B), 0 D(AE ) 

The author learnt Theorem 4.3 from T. Kato. There are similar results due to Simon 

[311, [321, and Hess, Schrader and Uhlenbrock [161. Our aim is to generalise Theorem 

4.3 by replacing the condition that B is a generator by a range condition. The precise 

formulation is the following. 

Theorem 4.4. Let (7t)),>o be a positive semigroup with generator A. Let B be a 

densely defined operator such that 

Re ((signf ) Bf, #) ? < jIf j, A' 0 > for allf e D(B), 0 E D(A9). (4.7) 

Then B is closable. Moreover, if (A - B)D(B) is dense in Efor some A > max 10, s(A)}, 

then B* (the closure of B) generates a semigroup which is dominated by (7(t)),>3. 

We will use the following notion. Let A be the generator of a positive semigroup. 

The spectral bound s(A) is defined by s(A) := sup {Re A: A E a(A)}. Note that 

R(A,A)>O for all A > s(A). 

PROOF OF THEOREM 4.4. 1. We show that B is closable. Let un E D(B) such that 

Un 0 and Bu. -. v. We have to show that v =0. Considering A -,u and B - p for 

some p > s(A) instead of A and B we may assume that s(A) < 0. Then there exists a 
strictly positive set M' c E' such that 

4 E D(A') and A'# < 0 for all 0 E M' (4.8) 

(see the proof of Proposition 1.5). 

Let 0 E MI and p be the sublinear functional given by p(f) = (If 1, 0 ). We show that 

B is p-dissipative. Let fe D(B), yv = 
(signf)'O. Then it is easy to see that 

y/ e dp(f) := {y/e E : Re g, y/>v< p(g) (g e E); <f, V> = p(fA. 

Moreover, by (4.7) and (4.8) one obtains that 

Re <Bf, V>)- Re ((sign f) Bf, q> < (If l, A' )> < 0. 

Thus B is p-dissipative; i.e. 

p((A - B)f) > Apff) for all fe EF, > 0. 

By the proof of 15, theorem 2.4] one sees that p(v) = 0; i.e. K J v 1, >= 0. Since 0 E M' 

was arbitrary we conclude that v= 0. 

2. Let A > A0 := max {s(A), 0)}. We show that for f e D(B), 

g (A - B)f implies IfI < R(A, A) I g I (4.9) 

Let Yv E Et. We have to show that < If I, V> < (R(A, A) I g I, 
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Let =: R(A, A)'V e D(A')+. Then by (4.7) 

K If l, V> = K If I, (A-A ')>- Re ((sign f) (Af), #) - If I, A'#> 
= Re ((sign f)(A - B)f, #> + Re ((signf) Bf3 #> - K IfI, A'#> 

? Re <(sign f) - B)f, > = Re ((signf) g, #> 

Kig1, # >= (Igj ,R(A, A) y> = (R(A, A) Igi V>. 

It follows from (4.9) that for A > A. and f e D(Bt) 

g = (A - B *)f implies If I < R(A, A) gl. (4.10) 

In particular, (A - B#) is injective for A > A0. Moreover, 

IR(A,B*)gl (R(A,A)g Ifor alige E (4.11) 
whenever A0 < A e p(B4). 

Assume now that there exists p > A0 such that (a - B) D(B) is dense in E. Then 
(- B*) D(B*) = E. (Indeed, let h e E. There exists f, e D(B) such that gn := 

(u - B)fn -. h. By (4.9) it follows that I fn-fm I < R(A, A) I g, - 
gm 1. Thus (fn) is a 

Cauchy sequence. Let f = 
lim,,, fn. Then f e D(B*) and (p - B*)f= h.) Thus 

P Ep(B%). 
Let A0 < A e p(B1). Then it follows from (4.11) that II R(A, BO) < 11 R(Q., A) <I C 

R(A0, A) 11:=c. Hence, dist (A, a(B*)) = r(R(A, B 1))-' 11 R(A, BO)11-' ) 1/c. This 

implies that [A0, cx) c p(B1). Moreover, it follows from (4.11) that 

I R(A, B*)nf l < R(A, A)y If I (f e E, n e N). (4.12) 

Let w > co(A) (the type of (n(t)),>0). Then it follows from (4.12) that 

1 (A - w)'R(A, B1)f 1 SI (A - w)nR(A, A)n 11 for all A > w, n e N. 

So by the Hille-Yosida theorem, B* is the generator of a semigroup (S(t)),>O. Finally, 

the domination follows from (4.11). [l 

PROOF OF THEOREM 4.3. One direction follows from Theorem 4.4. The other can be 

proved in a way similar to Proposition 1.1. LI 

Example 4.5. As an illustration of Theorem 4.3 we consider the complex version of 

the first example of section 1. 
Let E = LP[O, 11. For d e C letAd f=f' with domain D(Ad) = {f E ACO 1] 

f' e LP[0, 11L f (1) =-d/(0)}. Then Ad generates a semigroup (Td(t)),>O. Let I d< Cc. 
Then (Td(t)),>o is dominated by (Tj(t)),>O. This can be seen by Teorem 4.3 as follows. 
Let f e D(Ad), 0 S 0 E D(A '). Then #(0) = c#(l). Hence 

Re <(sign f)Adf 0) 
= Re ((signf )f', ) >= <If It )> 

= <IfI, -' + (If(x) I # (x)) j 

= (IfIl (Ac)'#> + If(1) I # (1)- lAO) I # (O) 
C<Ifh 1(As)' > + If(')I.(1)(IdI-c) 

( If 1, (A c)' >. 
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Of course, in this example domination can also be verified by inspection of the 

semigroups. 

Example 4.6. Let (7At)),;>0 be a positive semigroup with generator A. Let M E Z(E) 

(the centre of E (see [33, chapter 201). For example, if E = LP(X, ,u) (where (X, u) is a a 

finite measure space and I < p < oo) then M is the multiplication operator defined by a 

function in L(X,,p). 
Let B = A + M. Then B generates a semigroup (S(t)),>O. Assume that Re M < 0. 

Letf E D(B) and 9 E D(A')+. Then 

Re ((signf) Bf, 9 > Re ((signf) Af, 9 > + Re <(signf) Mf 9 > 

Re ((signf)Af, 9> + Re (M If j, 9> 

< (If1, A' 9$>. 

Thus, by Theorem 4.3, (S(t)),>0 is dominated by (7t)),>O. 

Domination and positivity are characterised simultaneously as follows. 

Proposition 4.7. Let E be a a-order complete real Banach lattice. Let (7t)),>0 be a 

positive semigroup with generator A and let (S(t)),>O be a semigroup with generator B. 

The following are equivalent. 

(i) 0 < S(t) < A1t) for all t > 0. 

(ii) (Pf+ Bf, 9> < (ft+ A'+> for allf D D(B), 9 E D(A')+. 

(iii) (Pf+ EBf, >< (<f+ A'+$>for allf E Do0 9$E D(A'),, where Do is a core of B. 

Remark 4.8. Condition (ii) implies (4.7) (cf. Remark 1.9). 

PROOF. One proves as in Proposition 1. 1 that (i) implies (ii). It is trivial that (ii) implies 

(iii). Assume that (iii) holds. Let A > AO = max {s(A), s(B), 0). In a similar way as (4.10) 

one shows that for all fEi Do 

Af]- Bf= g impliesf+ < R(A, A)g+. (4.13) 

Since Do is a core it follows that (4.13) also holds for all fe D(B). This implies that 

(R(A, B)g)' < R(A, A)g+ for all g E E, A > Ao Consequently, 0 < R(A, B) < R(A, A) for 

all A > AO. Hence (i) holds. -I 

Finally, if it is known that the semigroup (S(t)),>O also is positive, domination can be 

characterised as follows. 

Proposition 4.9. Let E be a real Banach lattice, (A(t)),>, a positive semigroup with 

generator A and (S(t)),>o a positive semigroup with generator B. Consider the following 
conditions. 

(i) S(t -< TRt) (t > C)). 

(ii) (Bf] 9 > < (f A'$> for allf E D(B), 9 E D(A')+. 

(iii) Bf < Af for 0 < f e D(A) n D(B). 
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Then (i) and (ii) are equivalent and imply (iii). Moreover, if D(A) c D(B) or 

D(B) c D(A), then (iii) implies (i). 

PROOF. Assume that (i) holds. Then for fe D(B)+, 0 E D(A')+, 

(Bf; 0 = lim l/t (S(t)f-f 0 > r lim I/t (T(t)f-f 0)> 
t-0 ti- 0 

= <f,A' 0. 

So (ii) holds; (iii) is proved similarly. 

Now assume (ii). Let A > max {s(A), s(B)}. Let g E E+, ig e EE. Then KR(A, B)g - 

R(A, A)g, ys> = (R(A, A)g, AR(A, B)fl - >- AR(A, A)g - g, R(A, B)')> = <f, B'1> - 

(Af, > < 0 wheref = R(A, A)g e D(A)+ and - = R(A, B)'y/ E D(B'),. Hence R(G, B) < 

R(A, A) and (i) follows. 

Finally, we prove that (iii) implies (i) if D(B) C D(A), say. Let 

A > max {s(A), s(B)}. Then (A - B)R(A, B) is a positive operator. Hence R(i, A) - 

R(k, B) = R(A, A) (A - B)R(A, B) > 0. This implies (i). Li 

Example 4. 10. Let B be the generator of a positive semigroup S(t))t>O, C a bounded 

positive operator. Then A = B + C with D(A) = D(B) is the generator of a semigroup 

(Mt)),>o. It can be seen from the product formula (see e.g. [91) that (lTt)),;,3 is positive. 
Since Bf < Af for all f E D(B)+, it follows from Proposition 4.9 that S(t) < at) for all 

t>0. 

The preceding results can be applied to the perturbation by multiplication operators. 

Let (X, ,u) be a a-finite measure space and E = LP(X, p) (1 S p < oo). Consider a positive 

semigroup (T(t))t,0 with generator A. Let m :X-- R be a measurable function such that 

m(x) ? 0 for all x E X. Let D(m) = { f E E: F m E E}. Define the operator B with 

domain D(B) = D(A) n D(m) by Bf= Af + mf (fE D(B)). 

Theorem 4.11. If there exists a quasi-interior subeigenvector u of A such that 
u E D(m), then B is closable and the closure B* of B is the generator of a positive 

semigroup (S(t)),>0 which is dominated by (7t)),>0. 

For the proof of the theorem we need the following lemma. 

Lemma 4.12. Let A and B be generators of positive semigroups (lt)),>0 (resp., 

S(t)t,>O). If (7t)),>0 dominates (S(t)),O, then s(B) S s(A). 

PROOF OF LEMMA 4.12. Let A > s(A). Then for all jp S max {A, s(B)} one has 
0 < R(u, B) < R(A, A), and so dist (a, a(B))) R(u, B) I fl R(A, A) ('-'. This implies 

that [A, oc) c p(B). LI 

PROOF OF THEOREM 4.1 1. There exists p > 0 such that Au p,u. Let A > max {s(A), 

p}. Then AR(A, A)u = AR(A, A)u + u < pR(A, A)u + u. Hence R(A, A)u S cu where c > 

0. It follows that R(A, A)E, c E, n) D(A) c D(B). Hence D(B) is dense. 

Letf E D(B), 0 E D(A'),. Then 

(Pf+ Bf 0)> ( (f+, A'0) (4.14) 
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In fact, <Pf+ BJ; > = Pf+ Af, 0 > + <Pf+ m f, O> 

=KPf+Af,#> + (mf+, #> 

? (Pf,+ Af, #> 

< <f+, A')> (by (1.7)). 

But (4.14) implies (4.7). So it follows from Theorem 4.4 that B is closable. Moreover, if 

we can show that (A - B4) D(B#) is dense in E, it follows that B4 is the generator of a 
semigroup (S(t)),>O. In that case (4.14) implies by Proposition 4.7 that (S(t)),> 1is 
dominated by (Tt))t,o 

We show now that (A - B4) D(B4) is dense in E. Let mn = sup {m, - nlxl (n E N) 
and Bn = A + mn. Then B. is the generator of a positive semigroup and it follows from 

Proposition 4.9 that 0 < R(A, Bn1) ? R(A. B,) ? R(A., A) for all n E N, A > s(A). (Note 
that s(Bn) < s(A) by Lemma 4.12.) Let 0 (f E E, Let gn = R(A, Bjf Then g = infflEN 

gn = limn-co gn exists. Moreover gn E D(B) and lim,, (A - B)g =f + limn, (B, - 

B)g& =f since I (B, 
- B)g I < (mn 

- m) I g = (mn 
- m) I R(A, Bn)f I S (mn 

- M) 

R(A, A) If < c (mn 
- m)u. But lim," (m, 

- m)u =0 since u E D(m). Thus g E D(B*) 
and (A - B4)g =f We have shown that Eu c (A - B#)D(B*). Hence (A - B*) D(B4) is 

dense in E. Li 

Example 4.13. If D(A) c L'(X, p) and m E LP(X, ,u), then the hypotheses of 

Theorem 4.11 are satisfied. 

5. Semigroups of disjointness-preserving operators 

In this section we consider a special case of domination. Let E be a complex Banach 

lattice. A bounded operator S on E is called disjointness-preserving if 

flgimpliesSflSg(fgeE) (5.1) 

Note that an operator S is a lattice homomorphism [26, II. 2.4] if and only if S is 

positive and disjointness-preserving. 
In the following we will consider disjointness-preserving semigroups (by this we mean 

semigroups of disjointness-preserving operators). An example is the semigroup 
(Td(t)),o defined in section 3. 

Remark 5.1. In [21 we called order bounded disjointness-preserving operators 
Lamperti operators, and it was shown that on a a-order complete Banach lattice every 

disjointness-preserving operator is automatically order bounded. More recently 
Abramovich [11 showed that the assumption of a-order continuity can be omitted and 

de Pagter 1221 gave a simplified proof of this fact. 

If S E Y(E) is disjointness-preserving, then the modulus I S I of S exists. j S I is a 

lattice homomorphism and is related to S by 

ISf IS: IfI (f E). (5.2) 

Proposition 5.2. Let (S(t)),o be a disjointness-preserving semigroup. Let T(t) = I S(t) I 
(t > 0). Then (7Tt))t>, is a strongly continuous semigroup. 
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PROOF. Let 0 < s, t and f e E+. Then by (5.2), 

7Ts)7Tt)f = 7Ts) j S(t)f = I S(s)S(t)f I = I S(s + t)f I = 7(s + t)f. 

Since span E+ = E, it follows that (7t))1zo is a semigroup. Moreover, forf E E+, lim,0 

lt)f = lim,O I S(t)f I = If I = f. This implies that (7At)), is strongly continuous. El 

Remark. Derndinger [111 investigates the modulus of a semigroup in other cases. 

Example 5.3. Let d E C and S(t) Td(t) be given by (3.3). Then A(t) = TldI(t) (t > 0). 

Proposition 5.4. Let B be the generator of a disjointness-preserving semigroup 
(S(r))0. Then B is local; i.e. 

Bf I g iff E D(B), g e E such thatf I g. (5.3) 

The proof of [21, 3.3] can be adapted in an obvious way. 

We now describe the relation between the generator of a disjointness-preserving 
semigroup and the generator of the modulus semigroup. 

Theorem 5.5 Assume that E is a complex Banach lattice with order continuous norm. 
Let (S(t)),>0 be a semigroup with generator B. The following assertions are equivalent. 

(i) (S(t))t,0 is disjointness-preserving. 
(ii) There exists a semigroup (7(t))t>0 with local generator A such that 

f E D(B) implies If I E D(A) and Re ((sign f) Bf)A I= f Ij (5.4) 

Moreover, if these equivalent conditions are satisfied, then 7t) I S(t) I (t >0 ). 

Remark. The relation (5.4) is equivalent to 

<Re ((sign f) Bf ), # > = (If, A ' > (f E D(B), # e D(A ')). 

In the case when A generates a positive semigroup, this is condition (4.7) in Theorem 
4.4 with the inequality replaced by the equality. It is remarkable that, in contrast to the 

situation considered in Theorem 4.4, here condition (ii) implies the positivity of (7(t)),>O. 

PROOF. This is an adaptation of the proof of [21, theorem 3.41 given by Nagel and 

Uhlig. Assume that (i) holds. Letf E D(B). Then S(t)f is differentiable in t. By the chain 

rule 121, 3.11 (t) If I= I S(t)f is also differentiable and d/dt1 ,0 7(t) If I = Re(sign 
f)Bf (by [21, 2.21 and Proposition 5.4). Hence If I e D(A) and Alf = Re(signf)Bf. 
Conversely, assume that (ii) holds. Let s > O,f e E. We show that I S(s)f I = 7(t) If 1. 
This implies that S(s) is disjointness-preserving and I S(s) I = 71s) (by [2, theorem 2.4]). 
Since D(B) is dense we can assume thatf E D(B). Let at) = As - t) I S(t)f j (t E 10, s]). 

Then using again 121, 3.11, 121, 2.21 and that A is local one obtains d/dt at) = - 

A Ts - t) I S(t)f + Ts - t) Re((sign S(t)f ) BS(t)f) = 0 by the assumption (ii). Hence 

40) = as), i.e. I S(s)fI = 7(s) If El ? 

For the case when S(t) = 7t) (t >0 ) we obtain the following. 
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Corollary 5.6. (Nagel and Uhlig 121, 3.41). Let (At))tzo be a semigroup with generator 
A. The following assertions are equivalent. 

(i) At) is a lattice homomorphism for all t > 0. 

(ii) f E D(A) implies Re f, If I E D(A) and Re((sign fAf) = AIfI. 

Example 5.7. Let E = LP(X, u) (where (X, u) is a c-finite measure space and I 

<p < mo) and A. be the generator of a semigroup of lattice homomorphisms. Let 
h e LX and B = A( + h (i.e. B is given by Bf=Aof + h fforf E D(B) = D(A s)). Let A 

Ao + Re h. Since Ao generates a semigroup of lattice homomorphisms, we have 

if j E D(AO) whenever f E D(AO) and Re((sign f)Af) = AolfIf. Hence Re((sign f)Bf) 
= Re((signf)A0f) + ((Re h) I fI) = AOIfI + (Re h)If I = A (f( for all f E D(B). 
Thus it follows from Theorem 5.5 that B generates a disjointness-preserving semigroup 
whose modulus semigroup is generated by A. 

Next we describe in terms of the domain of the generator when a disjointness 

preserving semigroup is positive. 

Proposition 3.8. Let E be a complex Banach lattice with order continuous norm and B 
be the generator of a disjointness-preserving semigroup (S(t)),O. The semigroup is 
positive if and only if B is real and span D(B)+ = D(B). 

PROOF. The conditions are clearly necessary. In order to prove sufficiency, we can 

assume that E is real. Denote by A the generator of (At))t1O, where 7(t) = I S(t) J. Let 

fe D(B),. Since B is local we have Bf= Pf Bf= (signf) Bf= AIfI = Af. By 
assumption, span D(B)+ = D(B). Thus it follows that B c A. This implies that B = A 

since p(B) f p(A) # 0. El 

Finally, we show that for generators of disjointness-preserving semigroups Kato's 
inequality holds in the reverse sense. 

Proposition 5.9. Let B be the generator of a disjointness-preserving semigroup 

((t)),zo on a real Banach lattice E with order continuous norm. Then 

<(signf)Bf, #) > < If It B'# > for allf E D(B), 6 E D(B')+. (5.5) 

PROOF. Let 7At) = I S(t) I and denote by A the generator of (T(t)),>O. Letf E D(B), 
? E D(B'),. Then <(signf)Bf 6> = (<AIfI, ?> = lim,0 (lIt) <l7t) IfI - Ifl, ?> > lim,.0 
lit (S(t) IfI - If!', s> =< If l, B'6>. LI 
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