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Resolvent Positive Operators 
and Integrated Semigroups 

by 

Wolfgang Arendt 

The Hille-Yosida theorem yields the following characterization of 
generators of positive semigroups in terms of the resolvent. 

Theorem. Let A be a densely defined operator on an ordered 
Banach space E . Then A generates a positive strongly con-
tinuous semigroup if and only if the following two conditions are 
satisfied. 

a) There exists w e IR such that (w,°°) c: p (A) and R(X,A) : = 

(X-A)"1 is positive for all X 6 (wr (where P (A) denotes 
the resolvent set of A ) . 

b) sup { | | (X - w)n R(XrA)n| | : X > w, n € W> < 
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Given a concrete operator, condition b) is frequently difficult 
to verify since the powers of R ( X, A) are involved. So we take 
condition a) as a definition. 

Definition. An operator A on an ordered Banach space E is 
called resolvent positive if there exists w e IR such - that 
(w,») c= p (A) and R(A,A) fc 0 for all X > 0 . 

Thus, every generator of a strongly continuous positive semigroup 
is resolvent positive. The converse is not true, though. In fact, 
there exist many natural resolvent positive operators which are 
not generators. Nevertheless these operators have remarkable 
properties: 

Let A be a resolvent positive operator on an ordered Banach 
space (satisfying some additonal conditions which hold in parti-
cular for a Banach lattice and the hermitian part of a C*"-alge-
bra) . If A is densely defined or E is reflexive, then the 
resolvent of A is the Laplace-Stieltjes transform of a strongly 
continuous increasing family (S(t))t>Q of operators on E ; i.e., 

R(X,A)f = e~Xt dS(t) - X e"Xt S(t) dt 

for Rex sufficiently large. 

This result has interesting consequences. For instance, the 
"integrated semigroup" (S(t))t>^ yields a unique solution of 
the abstract Cauchy problem 
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u* (t) = Au(t) 
u(0) = f 

2 for every f 6 D(A ) . 

These facts will be explained in section 2. For their proofs we 
refer to C3 D which contains a detailed study of resolvent 
positive operators. In section 1 we state basic properties of 
resolvent operators. The purpose is to illustrate how "close" to 
generators these operators are. 

In section 3 the "integrated semigroup" (S(t))t^0 is investi-
gated. We prove a certain algebraic relation which corresponds to 
the semigroup property in the case of a generator. This result is 
a contribution to the general task in the theory of Laplace 
transforms to establish a relation between properties of the 
determining function and its Laplace (-Stielties) transform. 
Finally, in the last section, we study perturbations of the form 
Aa = A + aB where A is the generator of a positive semigroup 
and B : D (A) E is positive. One always obtains a resolvent 
positive operator for small a > 0 . However, Aa is a generator 
only in special cases. 
The representation of section 3 and 4 differs from that in C3] 
and new information is included (with proofs). 
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1. Elementary Properties. 

Throughout this paper E denotes a real ordered Banach space 
with generating and normal cone (i.e. E = E + - E + and E' = E^ 
- Ej ; where E| = {<f> 6 E' : 4, (f) > 0 for all f € E+} denotes 
the dual cone of E+ .) If E is a Banach lattice or the hermi-
tian part of a C -algebra, then E satisfies these assumptions. 

For the definition of resolvent positive operators we refer to 
the introduction. We first give an example. 

Example 1.1. Let a 6 (0,1) . Define the operator A by 

Af (x) = f1 (x) + | f (x) x 6 (0,1] 

on the space E = CQ(0,1] {f € C [0,1 ] : f(0) = 0} with 
domain D (A) = {f € C1[0,1J : f*(0) = f(0) = 0}. Then A is a 
densely defined resolvent positive operator but not a generator. 

Similar examples can be given on Lp-spaces (see section 4). 
However, there is one exceptional case, where every densely 
defined resolvent positive operator is a generator. 

Theorem 1.2 ([2],[5]). If E+ contains an interior point (e.g. 
if E = C(K), K compact), then every densely defined resolvent 
positive operator on E is a generator of a strongly continuous 
positive semigroup. 
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Let A be a resovent positive operator. We denote by 
(1.1) s (A) = sup {ReX : X e cr (A) } 

the spectral bound of A . One always has s(A) < » and 

(1.2) s(A) € a(A) whenever s(A) > . 

Moreover, 

(1.3) |<R(x, A)fr £ <R(ReX,A)f, <f,> for all f e E+r <f> E Ej. 

whenever Rex > s(A) . In particular, R(X,A) £ 0 for all X > 
s (A) . 
The resolvent is decreasing on (s (A) , ») . if D (A) is dense, 
then R(XrA) converges strongly to 0 for x + « . 

Remark 1.3. It follows from the above that a positive resolvent 
is norm bounded in a right half plane. So it follows from [15 , 
Theorem 6.1] that a densely defined resolvent positive operator 
is a generator of a distribution semigroup of exponentiel type in 
the sense of Lions [15]. However, we will not make use of this 
theory. In fact, more specific tools (such as the Laplace-
Stieltjes transform) are available in our context. 

There are some automatic norm estimates for the powers of 
positive resolvents. Let A be a resolvent positive operator. 
Then for every w > s (A) 

(1.3) sup {|| (X-w)n"1R(X,A)n|| : X>w, n^N } < . . 

-12-



78 

This is weaker than the Hille-Yosida norm condition. In fact, it 
can happen that lim^^ A||R(A,A)|| = 00 . But even if 
lim^>co || AR (A, A) || < 00 , A does not need to be a generator. For 
example, the operator A in Example 1.1 satisfies s (A) = 
and ||Ar(A,a)|| * 1/ (1-cc) for all ^ 0 . 

2. Positive Resolvent as Laplace-Stieltjes Transform. 

Sbme preliminaries concerning the vector-valued Riemann-Stieltjes 
integral are needed. Let S : Ca,b3 + £ (E) be increasing. Then 
for every f € cCa,b3 the Riemann-Stieltjes integral 
/k f(t) dS(t) exists in the following sense. 
We denote the subdivision (tQ=a - t 1 £ t 2 t^"*5) together 
with points s i € (t^^t^) by N and let | TT | = max.̂  |ti-ti-1|. 
Let 

i¥(f) - R I = 1 f(s.) (s(ti+1)-s(t.)) . 

Then limj^j^Q (f) exists in the operator norm and this limit 
is denoted by the integral 

J^ f(t) dS(t) 

In order to define the Laplace-Stieltjes transform let 
S : CO,00) + (E) be increasing. Let A € C . We say that the 
integral /q e dS (t) converges in the operator norm if 
lim^^^ /q e dSft) exists for the operator norm. In that case 
we also set e"Xt dS (t) := lim^. J^ e~Xt dS (t) . 
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Definition 2.1. We say that E is an ideal in E1' if for f € 
E , g € E'' , 0 < g < f implies g € E . 
Note: Here we identify E with a subspace of E1 1 (via eval-
uation) . Then EJ/n E = E + (i.e.r E is an ordered subspace of 
E"). 

Examples 2.2. a) If E is reflexive, then E is trivially an 
ideal in E'1. 
b) A Banach lattice E is an ideal in E' ' if and only if the 
norm is order continuous (see [20,II§5]). For example, Lp(X,ji) 
((X,u) a o-finite measure space and l^p<») and cq have an order 
continuous norm, but C[0,1] has not. 

The following is the main result. 

Theorem 2.3. Let A be a resolvent positive operator. Suppose 
that either D (A) is dense in E or that E is an ideal in 
Eir. Then there exists a unique strongly continuous family 
(S(t))t>Q of operators on E such that 

0 = S(0) £' S (s) S S (t) (0 < s £ t) and 

(2.2) R(X,A)f = Q e"At dS(t) (ReX > s(A)) 

(where the improper integral converges in the operator norm). 
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Remark 2.4. The Stieltjes integral (2.2) can be transformed into 
a Riemann integral. In fact, the following holds. 

(2.3) R (X , A) f = Xe~XtS(t)dt (ReX > max{s (A) f 0 }•) . 

Here the improper integral converges in the operator norm and 
the integral Jq e~XtS(t)dt is the limit of the Riemann sums in 
the operator norm. 

Remark 2.5. To the two different assumptions made in Theorem 2.3 
correspond two completely different proofs. In the case where 
D (A) is dense, using a construction due to P. Chernoff [9], one 
obtains that the closure of A in an enlarged space is a 
generator of a strongly continuous positive semigroup. In the 
case where E is an ideal in E" a vector-valued version of 
Bernstein's theorem can be proved. We refer to [3] for details. 

Theorem 2.3 is related to Bernstein's classical theorem [23, 
6.7]. In fact, if A is a resolvent positive operator, then for 
X > s (A) 
(2.4) (-l)n R(n)(A,A) = n! R(X,A)n+1 2; 0 

for all -n € N . Thus, for all f € E+, <f> € , the function 
X <R (X , A) f,<J>> is completely monotonic on (s (A) . 

We call the family (S(t))t>Q in Theorem 2.3 the integrated 
semigroup generated by A . 
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Example 2.6. a) Let A be the generator of a strongly continuous 
positive semigroup (T (t) ) Q - Then S(t)f = /Jj T(s)f ds for all 
f € E, t 2s 0. 
b) If A is the operator in Example 1.1, then 

xa Jn y""0 f W dy if x S t 
S (t) f (x) = „ U

v 

X /x-t y f ( y ) d y i f x > 1 

(f € Cq(0,1], x 6 (0,1], t £ 0). 

The abstract Cauchy problem associated with a resolvent positive 
operator admits unique solutions for a large class of initial 
values. Note that D(A2) is dense whenever D(A) is dense. 

Theorem 2.7. Let A be a resolvent positive operator. Assume 
that either D(A) is dense in E or that E is an ideal in E". 
Then for every f 6 D(A2) there exists a unique continuously 
differentiable function u : [0r«) E such that 
u(t) € D (A) for all t £ 0 and 

uf (t) = Au (t) 
(2.5) 

u(0) = f . 
If f > 0 , then u (t) > 0 for all t > 0 . Moreover, the 
solutions of (2.5) depend continuously on the initial values in 
the following sense: Let f € D(A2) such that lim f = f in n n+» n 
the graph norm. Denote by Ur the solution of (2.5) for the 
initial value f . Then u (t) converges to u(t) in the norm n n 
uniformly on bounded intervals. 
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Remark. Theorem 2.7 can be proved with help of Theorem 2.3. The 
solution is given by u (t) = S(t)Af + f 
denotes the integrated semigroup generated by 

3. The Integrated Semigroup. 

In the preceding section a positive resolvent has been shown to 
be representable as a Laplace-Stieltjes transform of an in-
creasing operator valued function. We now proceed in the reverse 
direction. Given an increasing function S : C0,«) -v ̂  (E) , we 
ask which conditions on S imply that the Laplace-Stielt jes 
transform of S is the (positive) resolvent of an operator? 
This question arises naturally since the Laplace-Stieltjes 
transform uniquely determines the determining function (up to 
normalization). So one expects that there exists a property of S 
which is equivalent to the Laplace-Stieltjes transform of S 
being a pseudoresolvent. 

Let G be a Banach space and S : [0,°°) + (G) a strongly 
continuous function satisfying S(0) = 0 . Then for every b > C 
we can define the operator J^ S(t) dt € £(G) by (/̂  S(t)dt)f 

fb 
:= JQ S (t) f dt (where the last expression denotes the usual 
Riemann integral) for all f £ G . Let us assume that S is of 
exponential growth; i.e., there exist M > 0 and w € R such 
that " 
(3.1) , Us ft) |! < Mewt for all t > 0 . 

where (S(t)) 
A . 
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Then, for every X > w , we can define the operator 

R(x) = /Q Xe"Xt S(t) dt = l i m ^ Xe""XtS (t) dt. 

Theorem 3.1. The family i s a pseudoresolvent if and 
only if 

(3.2) S (s) S (t) = J®+t S (r) dr - S(r)dr S(r)dr 

for all s,t > 0 . 

Remark. a) Relation (3.2) implies that S(s) and S (t) commute 
for all s,t > 0 . 
b) Obviously, (3.2) is equivalent to 

(3.3) S(s)S(t) = (S (r+t) - S(r))dr . 

Proof of Theorem 3.1. We first observe that for f € G , 4 € G? 

(3.4) <R(x)f, <fr> = Jq xe"At<S(t)f,t> dt (X > w) . 

This allows us to carry over the usual integration rules for 
numerical valued functions to our situation. 

We show that for A r H > w 

(3.5) (R(x)-R(u))/(U-X) = JoHe"ut JoAe""Xs J* (S (t+r)-S (r)) drdsdt. 
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( R ( A ) - R ( U ) ) / ( H - M = 

H/(X(n-X)) - 1/A) R (A) - 1/(U-X) R(n) = 
H/<H-A) SI e"XrS(r) dr - u/(n-A) e~^rS (r) dr - 1/A R (A) = 
li/ (U-A) J~ e"XrS(r)(l - e"(^"X)r)dr - 1/A R (A) = 
H /Q e~XrS(r) rQ e~(u'X)t dt dr - 1/A R (A) = 
JQ e X t J~ e"XrS(r) dr dt - 1/A R (A) (by Fubini's theorem) 
= fj pe_,lt J" e'XsS(s+t) ds dt - 1/A R(A) 

= JQ n e " ^ (JQ e"XsS(s+t) ds - 1 / X R ( X ) ) dt 

= J~ ue"^ jm0 e"Xs(S(s+t)-S(s))ds dt 
= |ie~"*it Jq Ae"Xs J® (S (r+t) -S (r) ) drdsdt (by integration by 
parts). 
On the other hand, 

(3.6) R(n)R(A) = J" ne"^ /q Ae~XsS(t)S(s)ds dt . 

Thus, if (S(t))t^0 ' satisfies (3.3), then (R(A)-R (n))/(n~A) = 
R(H)R(A) by (3.5) and (3.6) . 
Conversely, if (R(A)x>w is a pseudoresolvent, then the identity 
of the integrals in (3.5) and (3.6) for all A, p. > w implies (3.3) 
by the uniqueness theorem for Laplace transforms [23, "7.2] . • 

Corollary 3.2. Let T : (0,«) ^ (G) be strongly continuous 
such that the Riemann integral JJ T(s)f ds exists for all f 6 G. 
Assume that there exist M > 0, w € IR such that ||T(t)|| £ M e ^ 
for all t £ 0 . Let R(A) = J" e~XtT(t) dt (A>w) . 
Then (R(A))^>w is a pseudoresolvent if and only if (T (t) ) t>Q 
is a semigroup; i.e. T(s+t) = T(s)T(t) for all s,t £ 0 . 
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Definition 3.3. A strongly continuous function 
S : CO,-) + &o(G) is called an integrated semigroup if S(0) = 0 
and (3.2) holds for all s,t > 0 . S is called non-degenerate if 
for every f€G, f + 0 there exists t > 0 such that S(t)f i 0. 

Proposition 3.4. Let S : [0,») jP (G) be an integrated 
semigroup of exponential growth. Then R(X) = J" Xe~AtS(t) dt 
(X large) is the resolvent of an operator A if and only if S 
is non-degenerate. In that case A is densely defined if and 
only if G q : = S(t)G is dense. 

Proof. There exists w € R such that (3.1) holds. (R(X)), is a A > W 

resolvent if and only if R(X)f = 0 for all X > w implies that 
f = 0 .By the uniqueness theorem for Laplace transforms, R(X)f 
= 0 for all A>w is equivalent to S(t)f = 0 for all t>0 . 
This proves the first assertion. 
In order to show the second observe that D(A) = R(A)G (A>w) is 
not dense in G if and only if there exists $ € Gf , $ 0 
such that <R (X) f, = 0 for all f € G and X > w . By the 
uniqueness theorem again, this is equivalent to <S(t)fr4>> = 0 
for all t > 0 , f £ G . 
Thus D(A) is not dense if and only if there exists $ € G? , 
• I 0 which vanishes on G ; i.e., if and only if G is not o J o 
dense. • 

Remark. Let (T(t))fc>0 be a strongly continuous semigroup (we 
do not assume anything about t=0) . Suppose that the Riemann 
integral /?: T(s)f ds exists for every f 6G . Then there exist 
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MsO , W6R such ||T (t) || < Mewt for all t>l [12,(10.2.2)]. 
Let R (X) = /q e~XtT(t) dt (X>w) . It follows from Corollary 
3.2 that * A > w a pseudoresolvent; and if the semigroup 
is non-degenerate (i.e., if (J Tfs)f ds = 0 for all t>0 
implies f=0 ), then "*~s reso^-vent a n 

operator A . One can consider A as the "generator" of 
(T(t))t>0 . Note that nearly all of the basic classes of semi-
groups considered by Hille and Phillips [12 ,10.6] satisfy our 
requirements. Thus Theorem 3.1 is also of interest for the 
treatment of one-parameter semigroups which are not continuous at 
the origin. We do not elaborate this idea. 

Let (S(t))t>Q be a non-degenerate integrated semigroup on a 
Banach space G . Assume that M, w £ 0 such that |[S(t)|| < Mewt 

for all t > 0 . 
Let A be the operator on G whose resolvent is given by 

R (X rA) - J* \e~XtS(t) dt (X > w) 

(see Proposition 3.4). We call A the generator of (S(t))t>0 . 
In the following proposition relations between the integrated 
semigroup and its generator are established. 

Proposition 3.5. a) If f 6 D(A) then S(t)f € D(A) and 
AS(t)f = S(t)Af for all t > 0 . 

b) Jq S(s)f ds € D (A) for all f 6 E, t > 0 and 

(3.7) Ajjj S (s) f ds = S (t) f - tf . 
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c) S(t)S(s)f € D (A) for all f € E, s,t > 0 and 
AS (t) S (s) f = S (t+s) f - S ft) f - S (s) f . 

Note: We do not assume that D(A) is dense. 

Proof. 1. Let f e E and n € p(A). Then for all X > w, 

J2 Ae"~XtR(u,A)S(t) f dt = P i\i, A) R (X f A) f = R (X , A) R i\i, A) f = 
fto —X t 
Jo Xe S(t)R(ji,A)f dt . By the uniqueness theorem for Laplace 
transforms it follows that 

(3.8) S(t)R(n,A)f = R(nrA)S(t)f ( t > 0 ) . 

This implies assertion a). 

2. Let f € D(A). Then for all X > w, 
r \2e~xt j* S (s) Afds dt = J°° Xe~XtS(t)Af dt = R (X , A) Af = J o ' o ' o 
XR(X,A)f - f = X2e~AtS(t)f dt - X2e~At tf dt . Hence 
ro e"Xt /q S (s) Afds dt = e"XtS(t)f dt - e"Xt tf dt 
for all x > w . By the uniqueness theorem this implies 

(3.9) S (s) Afds = S(t)f - tf (t > 0) . 

Now let f 6 E be arbitrary. Let u 6 p(A) and t > 0 . Then by 
(3.9) , 

S (s)R(n,A) fds - S (s) fds = S (s) AP (fi, A) fds = 
S(t)R(n,A)f - tR(u,A)f . Hence r 
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S (s) fds = R(n,A)tiJ^ S (s) fds - R(n,A)S(t)f + tR(u,A)f € D (A) . 
Now it follows from (3.9) that 
R(H,A) A S (s) fds = S(s)AR(nrA) fds = S(t)R(n,A)f - tR(n,A)f 
= R(u,A)(S(t)f - tf) . This implies (3.7) since R(^,A) is 
injective. Thus b) is proved. 
Finally, c) follows from b) and (3.2). • 

We return now to positive resolvents. First we determine the 
abscissa of convergence of the Laplace-Stieltjes transform. 

Proposition 3.6. Let S : Co,00) + £ (E) be increasing and 
satisfy S (0) = 0 . Let w € IR . Consider the following 
assertions. 

(i) J^ e~wt d<S(t)f,<fr> converges for every f € E+, <f» € Ej 
and X > w. 

(ii) For every X > w there exists M £ 0 such that 
||s (t) || * MeXt for all t ^ 0 . 

(iii) Jq e dS (t) converges in the operator norm for Re* > w. 

Then (i) implies (iii) . Moreover, if w = 0 , then (i) implies 
(ii), and (ii) implies (iii). Finally, if (i) holds, then 

ro e"XtdS(t) = J" *e~XtdS(t) (ReA > max(0,w>) . 

Consequence. Let s := inf (w€lR : J e dS (t) converges in 
the operator norm) . Then the integral J q e X t dS (t) converges 
in the operator norm whenever Re^ > w , but it does not converge 
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for any A < w . Thus s is the abscissa of convergence for the 

weakr strong and uniform topology. If (S(t))t> Q is the 

integrated semigroup generated by a resolvent positive operator 

A according to Theorem 2.3, then s = s(A) . Moreover, 

Proposition 3.6 shows that (S(t))t^Q is of Exponential growth. 

Theorem 3.7. Let (S(t))t^0 be a non-degenerate integrated 
semigroup of exponential growth. If S (t) £ 0 for all t£0 , 
then S is increasing and there exists a unique resolvent 
positive operator A such that 

R(A,A) = JJJ e~ X t dS (t) (ReA > s (A) ) . 

Proof. Let R (A) = A e~ X t S(t)dt (A>w) , where w€lR is such 
that |s(t)[| £ Me W t (t£0) for some M£0 . It follows from 
Theorem 3.1 and Proposition 3.4 that s r e s o^- v e n t 

of a unique operator A . Let f £ E + , <f> £ . Since R(A,A) £ 
0 for A >w , it follows that <R(A,A)fr 4>> is a completely 
monotonic function in A on Cw,00) ~ (see section 2). Since 
<R(A,A)f, <f» = J™ e"Xt d< S (t) f ,<f>> (PeA > s (A) ) , it follows 
from Bernstein's theorem C23,6.71 and the uniqueness theorem that 
<S(t)f,<|>> is increasing in t . • 

It is well known that a semigroup is automatically of exponential 
growth. We show that the same is true for integrated semigroups 
under some additional assumption. 
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Proposition 3.8. Assume that E is a Banach lattice or the 
hermitian part of a C*~-algebra. 
Let (S (t))t>Q be an integrated semigroup. If (S(t))t>Q is 
increasing and there exists r > 0 such that ||S (r) |) < 1 , then 
(S(t))t^Q is of exponential growth. 

Remark 3.9. Concerning the additional assumption in Proposition 
3.8 the following is to say. There exists a densely defined 
resolvent positive operator A such that for the integrated 
semigroup (S (t)) generated by A one has |S (t) || - 1 for 
all t>0 . 
For the resolvent this implies that inf^g^Aj JR(X,A)|| > 0 (Note 
however that R(X,A) tends to 0 strongly for A+«) . 
Nevertheless the assumption in Proposition 3.8 is not a too 
severe restriction. In fact, for an integrated semigroup 
(S(t))t^g generated by a resolvent positive operator A one has 
iimt^0 l/t||S(t)|| < ® if and only if l i m ^ ||XR(X,A)|j < - . We 
will see in section 4 (Remark 4.2) that there are many resolvent 
positive operators which satisfy this (even more restrictive) 
condition. 
b) The assumption on the space is made in order to be able to 
conclude that 0 < S £ T implies that ||s|| £ ||t|| for all S,T 
€ £ (E) . The assumption on E can be omitted if limt_^o ||S (t) || 
= 0 . This will be seen in the proof. 

For the proof of Proposition 3.8 we need the following Lemma. 

-12-



91 

Lemma 3.10. Let a n inte9ratec^ semigroup and 
w e !R . Let 

(3.10) Sw(t) = e"SW dS (s) (t£0) . 

Then (S (t) ) is also an integrated semigroup. 

We omit the proof of the Lemma. 

Remark. Let A be a densely defined resolvent positive operator 
which generates the integrated semigroup (S(t))t>Q . Let weR . 
Then A-w is resolvent positive and generates the integrated 
semigroup 9 i v e n bY (3.10). 

Proof of Proposition 3.8. a) We assume that ||S (1) J < 1 . 
Let t > 0 . We show that 

(3.11) S (t) < S(t)S(l) + S(l) . 

S(t) ^ S (s) ds 
= S (s) ds - S(s)ds - /J S(s)ds + /J S (s) ds 
= S (t) S (1) + /J S (s) ds 
< S (t) S (1) + S (1) . 

Iterating (3.11) yields 

(3.12) S(t) < S (t) S (1)n + S(l)k (n ai) . 
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Since ||s(l)|j < 1 this implies that S (t) £ S(l)k . 

Consequently (S (t) ) Q is norm bounded. 

b) Let ||S (r) || < 1 , where 0 < r < 1 . Choose w > 0 such 

that e~wr ||S (l) |i + (1 - e"wr) ||S (r) || < 1 . 
Let ^ w ^ ^ t ^ integrated semigroup given by (3.10). 
Then integrating (3.10) by parts yields 

S (1) = e"WS(l) + w J 1 e~WSS (s) ds w o 
S e"WS(l) + w J1 e"wsds S(l) + w Jr e~wsds S(r) r ' o 
= e"wr S(l) + (1 - e~~wr) S (r) . 

Hence ||Sw(l)|| < 1 . 

Bv a) we get that supt^Q ||Sw'(t) || < » . But 
S(t) = Si e s w dSw(s) = eWtSw(t) - w e 5 W Sw(s) ds S ewtSw(t) 
for all t * 0 . Consequently, ||s(t)|| £ Me W t for all t fc 0 and 
some M > 0 . • 

4. Perturbation. 

The following result allows one to perturbate generators of 

positive semigroups so that resolvent positive operators are 

obtained. This method yields natural examples of densely defined 

operators which are resolvent positive but not generators of a 

semigroup, in general. 
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Theorem 4.1. Let A be a resolvent positive operator and 
B : D (A) E a positive operator (i.e., Bf £ 0 for all f € 
D (A) n E+) . 
For a £ 0 , consider the operator A^ = A + aB with domain 
D(Aa) = D (A) . 
Then there exists y € (0,»] such that for 0 £ a € IR , A is a 

resolvent positive if and only if a < y . 
Moreover, s(A^) is an increasing function of a € C0,y) . 

Proof. 1. Since E + is generating and normal, there exists a 
constant c > 0 such that for all S,T € (E) , 0 s S £ T 
implies ||s|| < C||T|| . Thus by the spectral radius formula we 
obtain that 

(4.1) 0 £ S £ T implies r (S) <; r (T) . 

2. Let X > s(A) . Then (X - A ) = tl - aBR(X,A)](X-A) . Thus a 
for 0 < a < r (BR (X ,A) ) ) one has X € CJ (A ) and a 

(4.2) R(X,Aa) = R (X , A) (aBR(X,A)))n > 0 . 

Since BR(n,A) is a decreasing function of ^ € (s (A) , it 
follows by (4.1) that A is resolvent positive and s(A ) £ X . ot a 
We have proved that 

(4.3) 0 < y := sup{a £ 0 : Afi is resolvent positive for all 
8 € [0,a) } . 
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3. Let 0 ^ a £ B . Suppose that X € p (Aa) N p (Afi) such that 

R(A,A ) £ 0 and R(X,ao) £ 0 . We claim that Ot D 

(4.4) R(*,Aa) £ R(X,Afl) • 

For f € E + we have 

R(X,Afi)f - R(A,Aa)f = R(A,Afi)C (Ag-A) + (X-AJ ]R (X ,Aa) f = 
R(X,Afi) (B - a)BR(X,Aa)f £ 0 . 

4. Let B > 0 such that Ag is resolvent positive. We have to 
show that B < y . Assume that, on the contrary, B £ y . 

Then by 3. we have 0 £ R(X,AQ) £ R(X,Afi) for all X > 
max {s(Aa) ,s(Afi) } . Since l i m ^ (A) ||R(AfAa)|| = - (by (1.2)), 
it follows that s(A ) ^ s(AQ) . U D 
Let w > s(Afi) . Then for X £ w and 0 £ a < y one has 

0 £ BR(XrAa) S BR (X,Ag) ^ BR(w,Afi) . Consequently, 

M := sup {||BR(X,Aa) || : 0 ^ a < y , X £ w } < ® . L e t \ }> w a n d 

a € CO,y) such that Y-a < 1/M . Then (X-Ay) = 
(X - (A+«B)) - (Y-a)B = Cl - ( Y-A) BR ( X, AQ) 1 ( X - Aa) . Thus X 6 

P (A ) and R(X,A ) = R(X,A0) C (Y -o ) BR (X , Aa ) ] n £ 0 . This 
implies that A^ is resolvent positive and (4.3) applied to 
A^ instead of A yields a contradiction. 

Remark 4.2. It can be seen from (4.2) in the proof that for 
small a > 0 one has 

lim^^ ||XR(X,Aa)|| < * if l i m ^ ||XR(XrA)|j < « (which is satis-

fied if A is a generator of a strongly continuous semigroup). 
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Even in rather simple and natural cases perturbations as in 
Theorem 4.1 may yield resolvent positive operators which are not 
generators of a semigroup. One is given in Example 1.1. Another 
is the following. 

Example 4.3. Let E = LP[0,1], where 1 < p < Choose 
a € (0, (p-1)/p). Define the operator A by 

Af fx) = -f' (x) + (o/x)f (x) 

with domain D (A) = {f € AC[0,1] : ff € Lp[0rl]f f(0) = 0}. 
Then A is densely defined and resolvent positive. Moreover, 
s (A) < 0 and sup {|| AR (A ,A) || X 2; 0} < ». But A is not a 
generator of a semigroup. 
This can be proved via Theorem 4.1 by perturbating the generator 
A qiven by A f = -f' with domain D (A ) := D (A) by the o o o 
operator B : D(Aq) + E given by Bf (x) = af(x)/x (x € (0,1]) . 

Starting from a generator (by which we always mean the generator 
of a strongly continuous semigroup in the following), the pertur-
bation in Theorem 4.1 yields a generator again in two special 
cases. The first is based on a result by Desch and Schappacher 
[10,Theorem 1] and the automatic continuity of positive mappings 
which we prove in the appendix. The second concerns generators of 
holomorphic semigroups. We start with a preliminary result. 

-12-



96 

Proposition 4.4. Let A be the generator of a strongly contin-
uous positive semigroup and B : D (A) E a positive operator. 
Let 
(4.5) n = sup {a s 0 : Afi is a generator for all B £ [0,a)> . 

Let Y be as in Theorem 4.1. Then TI £ y ; i.e., the semigroup 
generated by Ag is positive for all 6 < n . 
Moreover, if fl £ 0 is such that A^ generates a positive 
semigroup, then B £ n . 

Proof. Assume that, in contrast to the first assertion of the 
theorem, TI > Y • Then A^ is a generator. We show that A^ is 
resolvent positive, which contradicts Theorem 4.1. 
Since A^ is a generator, there exists w 6 IR such that [w,«) 
a p (A^) . I f S is a bounded operator from G into H we 
denote by ||s||̂  its norm (G , H being Banach spaces) . Consider 
D (A) as a Banach space with the graph norm. Since 
SupAJ>w <ll*R<*rAY)|| < - , we have M := sup^ w ||R (A, A^) (|® (A) < - . 
The operator B is positive and so continuous from D (A) into 
E (see Appendix). Consequently, N := sup^>w ||BR(X,A ) || < 

I | B | ! E ( A ) « < - . 

Let a € [0,Y) such that (y-a)N < 1 . Let A > w . Then 
(A - A ) = (A-A ) - (q-Y)B = (I - (a-Y)BR(A,A ) ) (A - A ) . a y Y Y 
So it follows that A € p(A ) . ot 
Consequently, = w f°r a > Y ~ N ^ -
Let A £ w . Then (A - Aq) is a bounded invertible operator, in 
^•(D(A),E) for all a > y - N _ 1 and (A - A ) is an in-
vertible operator in ci?(D(A),E) . Moreover, lim (A-A ) = 
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(X - A ) in £S£(E,D(A)) . This implies that lim (A-A )~1 = y a^Y a 
(X - A )"1 in <^,(E,D(A)) . Since (X-A £ 0 , it follows 

Y A 
that (A - A ) ^ £ 0 . Thus A^ is resolvent positive. 
We prove the last assertion. Assume that B £ 0 such that A0 D 
generates a positive semigroup. Then B < Y bY Theorem 4.1 . Let 
a € [0,B] . Then s( A

a) - s T h e o r e m 4.1. There exists 
w > s (Ag) such that sup { || (A-w) nR (A ,Ag) n|[ : A fc w, n € N} < » . 
Since by (4.4) 0 < R (A,A ) < R(A,AD), it follows that R (A f A ) n a r> a 
£ R (A r Ag) n for all n € N, A £ w . Hence sup { |f (A-w) nR (A ,Aq) n|| 
: A 2; w, n € N} < «» . By the Hille-Yosida. theorem A is a a 
generator. Consequently, 0 £ Y -D 

Theorem 4.5. Let A be the generator of a strongly continuous 
semigroup and B a positive operator from D (A) into D (A) . 
Then A + B with domain D (A+B) = D (A) is a generator of a 
strongly continuous semigroup. 

Proof. Considering the graph norm on D (A) and the cone D(A) 
: = D (A) n E+ , D (A) is an ordered Banach space with generating 
cone (which is in general not normal, though). 
Since B : D (A) + D(A) is positive, it follows from the theorem 
in the appendix, that B is continuous. Thus by [10 , Theorem 
1], A + B with domain D (A) is the generator of a strongly 
continuous semigroup. It follows from Proposition 4.4 that the 
semigroup is positive. • 

In Theorem 4.5 we made a special assumption on B (namely that 
B maps into D(A)). In the next result an additional assumption 
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on A implies that A + aB is a generator for small a > 0 . 

Theorem 4.6. Let A be the generator of a positive holomorphic 
semigroup and B : D (A) E a positive operator. Let 

i := {B £ 0 : A+aB generates a holomorphic semigroup 
for all o f [0,6)} . 

Then i > 0 and the semigroup generated by A + aB is positive 
for all a € [0fi) . 

Proof. Since B is positive , B is continous when D (A) is 
considered with the graph norm? i.e., B is relatively 
A-bounded. 
It follows from [13 , IX Theorem 2.4] that i > 0 . Proposition 
4.4 yields the last assertion* 0 

Question. In the situation of Theorem 4.6 we have three con-
stants; namely, n (given by (4.4)) and y (according to 
Thorem 4.1) , which satisfy 0 < i < n £ y . Can it happen that 
these constants are different? 
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Appendix (Automatic Coninuity of Positive Linear Mappings). 

Theorem. Let E, F be Banach spaces and E + (resp., F+) a 
closed cone in E (resp. , F) . Assume that E+ is generating 
(i.e., E = E. - E, ) and F, is proper (i.e., F D (-F ) = + *+• T T T 
(0>). If T : E F is a linear positive mapping (i.e., 
TE+ c= F+) , then T is continuous. 

Proof. a) If g 6 F such that <g,<f>> = 0 for all <KF| , then 
g = 0 .In fact, since F+n(-F+) = {0} it follows from 
[19,Chapter IV, 1.5 Corollary] that (F|^F|f a ( F' , F ) 

= (F n(-F ))° = F'. So the assumption implies that <g,<J>> = 0 
for all <f> € F' . Hence g = 0 . 
b) We show that T has a closed graph (which implies conti-
nuity) . Let f + f in E and Tf -»• g in F . We have to show 

J n n 3 

that Tf = g . Let <f> £ F_J_ . Then ij; := ^oT is a positive linear 
form on E . Thus is continuous [19, Ch.V, 5.5], [8, A2] . 
Consequently, <g,$> = lim w <Tfn,<|>> = lim ^ <f

nf^> = = 
<Tf,<{>> . It follows from a) that g = Tf . • 

Remark. The theorem is false if E+ is merely total (i.e., 
(E -E ) = E) but not generating and F ^ (0) . 
In fact, then there exists a subspace M of E such that 
dim E/M = 1 and E+ - E + a M . There exixts a linear form <f> on 
E such that M = ker <f> . Hence <J> is positive. But $ is not 
continuous (since otherwise E = E+ - E+ <= ker<(>) . Let T = (J) x f 
for some f € F, f + 0 • Then Tg = 0 for all g 6 E c M . 
Hence T is positive but not continuous. • 
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