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1. THE MAIN RESULT 

Let A be the generator of a strongly continuous group (T(t))tE R 

on a Banach space. It is desirable to express the spectrum o(T(t)) 

of the single operator T(t) in terms of the spectrum o(A) of the 

generator A. Formally one would expect that 

(I.|) o(T(t)) = exp to(A) (t C~) . 

For example, if H is a selfadjoint (unbounded) operator on a Hilbert 

space and T(t) = expit H (t C~) , then A = iH and (I.I) holds. 

This follows easily from the spectral theorem. More generally, the 

spectral mapping theorem (that is, formula (I.I)) holds for isometric 

groups on arbitrary Banach spaces (see [4, 2.12, Corollary I] and 

[7, 8.19]). However, it is known that (I.I) does not hold for unbound- 

ed groups even under fairly strong assumptions. In fact, there exists 

a strongly continuous group of positive operators on a Banach lattice 

(which is an intersection of weighted LP-spaces) such that (|.I) fails 

(see [23]). 

Our main result is the following spectral mapping theorem on Co(X ) 

(the space of all continuous complex valued functions on a locally 
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compact space X which vanish at infinity). Its proof will be 

established in several steps in sections 2 to 6. 

THEOREM I.I. Let (T(t))tE ~ be a strongly continuous group of 

positive operators on Co(X ) with generator A. Then 

o(T(t)) = exp t o(A) (t E ~) . 

There are several consequences of this theorem which remind one of 

the kind of conclusions the spectral theorem allows for selfadjoint 

operators. 

COROLLARY 1.2. 

assertions are equivalent: 

Under the assumptions of the theorem the following 

(i) A is bounded. 

(ii) o(A) is bounded. 

(iii) o(A) E 

(iv) The group consists of multipliers, i. e. T(t)f = mtf 

(f ECo(X)) for all t C ~, where m t Ecb(x). 

(v) A is a bounded multiplier, i. e. Af = mf for all f CCo(X) 

and some mCC~(X) . 

Here cb(x) (resp. C~(X)) denotes the space of all continuous 

complex- (resp. real-) valued bounded functions on X . 

Proof. It is evident that (i) implies (ii). Since o(A) is additive 

ly cyclic [8, 2.4], it follows that (ii) implies (iii). If (iii) holds, 

then by Theorem I.I o(T(t)) = exp t ~(A) c ~+ . So (iv) follows 

from [21, 2.1] (or [2, 3.6]). Now assume (iv). For every x EX the 

function t ~ mt(x) from R into (O,~) is continuous and satis- 

fies mt+s(X) = mt(x)ms(x). Thus there exists m(x) E ~ such that 
)-I 

mt(x) = exp tm(x) (t E ~) . Since m I and (m I = m_l are posi- 

tive, bounded and continuous, it follows that m = log m I is an 

element of C~(X) . It is evident that (v) holds. Finally, (v) 

trivially implies (i). 
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COROLLARY 1.3. Assume that A satisfies the hypotheses of the theo- 

rem. Then 

o(A) = {O} if and only if A = O. 

Another consequence that parallels the case of a selfadjoint operator 

is the following: Let A be the generator of a strongly continuous 

group (T(t))tE ~ of positive operators on Co(X). Then every iso- 

lated point of o(A) is an eigen-value of algebraic multiplicity I . 

For the proof of this result, though, we refer to section 6. 

We want to give some introductory remarks on the method of proof and 

the organization of the paper. 

In section 3 we show that the generator A of a positive group 

(T(t))tE~ on Co(X) has the following form up to similarity: 

There exists an automorphism group (To(t))tC ~ with generator A o 

hEC~(X) such that Af = Aof + hf for fCD(A) = D(Ao). and The 

automorphism group (To(t))tC R is defined by a continuous flow 

~: ~• ~ X via composition, i. e. (To(t)f)(x) = f(~(t,x)) 

(t E ~, xEX) for all f CCo(X). Moreover, T(t) is given by 

T(t)f = h t To(t)f , where (ht)tCR is a cocycle given by 

t f 
ht(x) = eXPo] h(~(s,x))ds (tEA, xEX) o 

In section 2 we determine the spectrum of the single operator T(t) 

and in sections 4 and 5 the spectrum of A by means of the properties 

of the multiplier h and the flow ~. The spectral mapping theorem 

follows then by comparing both spectra. 

The complete description of o(A) seems to be of independent inter- 

est. Whereas the spectrum of o(A o) does not give much information 

about the flow (in general one has o(A o) = i ~), the additive per- 

turbation with the multiplier M h (given by Mhf = hf) extends the 

spectrum, and our results show that the spectrum of A = A o + M h re- 

flects a good deal of the geometric behavior of the flow. 

We want to conclude this introductory section with a dual result of 

Theorem 1.1. As pointed out above Co(X) cannot be replaced by an 

arbitrary Banach lattice. However, we obtain the following result for 
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the space LI(y,~): 

COROLLARY 1.4. Let A be the generator of a strongly continuous 

L | group (T(t))tE ~ of positive operators on (Y,~). Then the 

spectral mapping theorem holds; i.e. 

o(T(t)) = exp to(A) (t E ~R) . 

Proof. Let E* = {x' EE': lim IIT(t)'x' -x'JI = O}. Since (T(t))tEIR 
t-~o 

is a group of lattice isomorphisms, E* is a closed sublattice of 

E' . Moreover, for every order unit u of E' , T(t)'u is an 

order unit (tE~) . So by [6, Theorem 3.2], there exists an order 

unit u of E' such that u E D(A') c E* . Thus E* is an AM- 

space with order unit and so E* is a space of the type C(X) , 

X compact [20, II w 7]. Let T(t)* be the restriction of T(t)' 

to E* (t E ~R) ; i. e (T(t)* �9 )t>~ ~ is the adjoint semigroup of 

(T(t))t~>o (see [15, Chapter XIV]). Denote its generator by A*. 

Then Theorem I.! together with [9, |.6] implies that 

o(T(t)) = o(T(t)*) = exp "to(A*) = exp to(A) (t E ~) . 

2. THE SPECTRUM OF A SINGLE OPERATOR 

If T is a linear operator on a (complex) Banach space E and N 

is a closed T-invariant subspace, i. e. N satisfies T(N) c N, 

then T induces in a canonical way linear operators TIN and T/N 

on the subspace N and the quotient E/N respectively. It is well 

known that the spectra of these operators satisfy 

o(T) c o(TIN) U o(T/N) and simple examples show that in general this 

inclusion is proper. However, for lattice homomorphisms on Banach 

lattices one has the follwoing result: 

300 



ARENDT and GREINER 

PROPOSITION 2.1. Suppose E is a Banach lattice, TE~(E) is a 

lattice homomorphism (i. e. T satisfies ITxl = Tlx I for all 

xEE) and I a closed ideal such that T(1) = I, then 

o(T) = o(Tll) u a(T/l). 

Proof. By [20, 11.5.5 Corollary I] the polar of I is a projection 

band in the dual space, i. e. E' = I ~ ~ I ~ The assumption 

T(1) = I implies for arbitrary x' EE': 

(2.1) T'x' E I ~ if and only if x' EI ~ . 

Thus I ~ is T'-invariant. Moreover for O ~< y' E I ~177 O ~< x' EI ~ 

z' := x' ^ T'y' one has z'E I ~ and O <~ z' ~< T'y' Since T' is 

v ! interval preserving (see [17, 1.2]) there exists Yl EE such that 

TY I , v i <~ylv , = z and O ~< y', in particular yL EI ~ By (2.1) we have 

YI' C I ~ , thus Y]' = 0 and z' = O. This shows that I ~177 is T'- 

invariant too, and it follows that o(T') = o(T'iIO) U o(T'Iio.L). 

Since the spectra of an operator and its adjoint coincide, the asser- 

tion of the proposition is a consequence of the following identifica- 

tions: (T/I)' ~ T'II o and (TII)' ~ T'/I o ~ T'IIO.L . 

In the following remark we list some consequences and extensions of 

the proposition. Since we don't need them in the sequel, the proofs 

are omitted. Moreover we show by an example that the hypotheses can- 

not be weakened. 

REMARK 2.2. (a) If T is a lattice homomorphism with T(1) = I 

and Z is in the center (i. e. Z(J) c J for every closed ideal J), 

then the statement of the proposition remains true for the operators 

T+Z, ZT and TZ. 

(b) The proposition remains true if the spectrum is replaced by the 

approximate point spectrum. However, it is false for the point 

spectrum. 

(c) As a consequence of Proposition 2.1 one obtains the following 

result: 
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If I and J are closed ideals, T is a lattice homomorphism such 

that T(I) = I and T(J) = J, then one has: 

i ) j )  �9 
If l+J = E , then o(T) = ~(T[ U o(T I , 

I 

if INJ = {0}, then o(T) = o(T/I ) U o(T/j) . 

(d) If we consider E = Co(~) (or s , I := {(~v) E: ~ = O 

for ~ ~ O} , the shift operator TE~(E) (i. e. (Tx)~ = ~-1 

for x = (~) 6E) and define S := (2-T) -|, then we have: 

T is a lattice isomorphism such that T(I) ~ I and 

we have o(T) = {z6r Izl = 1} , while 

o(Til) = o(T/I) = {z6 r Iz[ ~ I} ; 

S is a positive operator such that S(1) = I and 
l 

we have o(S) = {z6r ]z- I I = ~} , while 
l 

~(sli) =~(s/i) = {z~r Iz-l[ ~ )  

We will apply Proposition 2.| only to operators acting on the Banach 

lattice Co(X) where X is a locally compact Hausdorff space. In 

this case the closed ideals and the quotionts with respect to closed 

ideals are spaces of the same type. More precisely the following 

holds. Recall that an open or closed subset of a locally compact 

space is locally compact. 

PROPOSITION 2.3. Let X be a locally compact space, A a closed 

subset of X . Then I := {f 6Co(X): flA = O} is a closed ideal and 

every closed ideal in Co(X) has this form. Moreover one has the 

following identifications: 

(a) The restriction map f ~ fix~A is an isometric lattice isomor- 

phism of I onto Co(X~A). 

(b) The mapping (f + I) ~ flA is an isometric lattice isomorphism 

of Co(X)/I onto Co(A ) . 

Observing that Co(X) is a closed ideal in C(XU {~}), the description of 

the closed ideals follows from [20, III| Example |]. (a) is verified 

easily. It follows from Tietze's extension theorem that the map given 

in (b) is onto. 

In the rest of this section we will describe the spectrum of a 

lattice isomorphism on Co(X ) . First we recall some well-known 
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facts: Every lattice isomorphism T on Co(X) has the following 

form (compare with [20, 111.9.1]): 

(2.2) 

Tf = k f o ~ (f CCo(X)) , where ~: X ~ X is a 

homeomorphism and k: X ~ R+ is a continuous 

function such that k and k -I are bounded. 

One has T-If = (I/ko -l)f o>-I , [ITII = sup{k(x): xCX} and 

lIT-Ill -I = inf{k(x): xCX} . 

For xEX the period of x (with respect to ~) is defined by 

(2.3) v(x) := inf{nC ~: ~n(x) = x} , where inf r = ~ . 

The subset of all points with period less or equal than n is denot- 

ed by X n ; that is 

(2.4) X n := (xCX: ~(x) ~ n} (nE ~) �9 

For x E X 

(2.5) 

and 

(2.6) 

we define 

I 

kn(x) := [k(x)k(~(x))k(~2(x)) ... k(~n-l(x))]n 

k(x) := lim kn(X) whenever this limit exists. 

(n E ~q) 

In the following proposition we list some properties of these notions. 

PROPOSITION 2.4. Suppose ~ and k satisfy the assumptions of 

(2.2), then the following assertions hold: 

(a) ~(x) = ~(~(x)) = ~($-l(x)) for all xCX ; if k(x) exists 

then so do k(~(x)) and k(~-1(x)) and we have k(x) = k(~(x)) = 

= k(~-J (x)) 

(b) X n is a closed subset and ~)(X n) = X n. 

(c) If ~(x) < =o then k(x) exists and k(x) = k (x) 
-- ' ~(x) " 
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Proof. (a) Since ~ is one-to-one, the first assertion is obvious. 

We have c := inf{k(x): xEX} > O and C := sup{k(x): xEX} < ~, 

hence for xEX, nE~ we have 

I ! 
k n(x) 

.... ,I o + n '  
lkn  ( * ( x ) )  k ( , n ( x ) )  

Thus k ( x )  = k ( ~ ( x ) )  w h e n e v e r  one o f  t h e s e  q u a n t i t i e s  e x i s t s .  

A p p l y i n g  t h i s  r e s u l t  t o  y := ~ - l ( x )  , t h e n  t h e  s e c o n d  a s s e r t i o n  o f  

( a )  i s  p r o v e d .  

(b) ~(X n) = X n follows from (a). That X n is a closed subset will 

be proved by induction: X l is closed since ~ is continuous. Now 

assume that Xn_ | is closed and that x is a cluster point of X n 

(n ~ 2). If x is a cluster point of Xn_| then XEXn_ ; c_ X n . 

Otherwise there is a net (x~) converging to x such that ~(x~) =n 

for every ~. Since ~ is continuous we have ~n(x) = lim ~n(x~) = 

lim x~ = x , thus ~(x) ~ n and so xEX n. 

(c) Suppose ~ := ~(x) < ~, then we have k(~m(x)) = k(~m+V(x)) for 

every mE ~. Let ~ := k (x), then for n = m~ + r (m, r E ~, 

O ~ r < ~) we have 

1 
kn(x ) 

= (~-rk(x)k(~(x)) ... k(~r-l(x))) n ~ 1 . 

Assertion (b) of the proposition implies that the mapping v: X ~ ~, 

x ~ v(x) is lower semicontinuous. In general this mapping is not 

continuous (e. g. take X = ~, ~(x) = -x) or equivalently, the set 

of points with a fixed period is not closed. 

Before we are able to prove the main result of this section, we need 

two lenm~as. The first deals with a special case. 

LEMMA 2.5. Suppose T is a lattice isomorphism on Co(X ) , 

Tf = k f o~ (f ECo(X)) , such that v(x) = n for. every 

a fixed nE~ . Then the spectrum of T is given by 

(2.7) o(T) = k(X) F n , 

x E X and 

where F n := {zEr z n = I} denotes the group of all n-th roots of 

unity. 
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Proof. For x oEx, % C F n we define x m := ~m(x o) (mE ~), 

ao := 1 , a m := (k(xo))-m ~ k(xv) . Since for a Dirac measure 6 x 
~=O n-] 

one has T'6 x = k(x)~(x) , it is easy to see that ~ := ~ Umam6 x 
m=l~ m 

is an eigenvector of T' corresponding to the eigenvalue k(xo)% . 

Since o(T) is closed it follows that k(X) F n c o(T) . 

To prove the reverse inclusion we consider the operator T n . It is 

given by Tnf = ~nf ; hence we have o(T n) = kn(X) = (k(X)) n . If 

E~(T) , then ~nEo(T n) = (k(X)) n and so %Ck(X) F n . 

LEMMA 2.6. Let X be a locally compact space, ~: X ~ X a homeo- 

morphism, Tof := f e ~ (f CCo(X)) . Given x oEX, nE~ such 

that V(Xo) R 2n+ 1 , then for every % Cr with !h I = 1 there is 

fCCo(X) such that 

(2.8) f(Xo) = Ilfl] = 1 and IITof- ~fll ~ !. 
n 

Proof. By the assumption V(Xo) ~ 2n+ 1 there exist mutually dis- 

joint neighborhoods V m of ~m(xo) (-n ~ m ~ n) . Then 
n 

U := (~ ~-m(v m) is a neighborhood of x o satisfying ~m(u) N~s = 
m =-n 

= ~ w h e n e v e r  - n  ~ m < s ~ n . C h o o s i n g  fo  ECo( X)  s u c h  t h a t  

fo(Xo) = [Ifol[ = 1 and supp(f o) ~ U , then f := ~ x-m(l - )T~f o 
m=-n 

meets all r e q u i r e m e n t s .  

Before we give the description of the spectrum of an arbitrary lattice 

isomorphism on Co(X) we fix some notation. 

For a natural number nC ~ the group of all n-th roots of unity is 

denoted by F n while F~ denotes the whole unit circle (i. e. 

F~ = F = {zEr Izl = l}) . For ~, k, T as described in (2.2) and 

nC~ we define I n := {f CCo(X): fix n = O} , where X n consists 

of all points with period less or equal than n. 

By Proposition 2.4 (b) we have T(In) = I n, hence T induces linear 

operators TII n on I n and T/I n on C~ According to Pro- 

position 2.3 we can identify I n with Co(X~Xn) and Co(X)/I n with 

Co(Xn) . Then T]I n is given by f ~ klf o*i (f CCo(X,Xn)) with 

k] := klX,X n ,] := ~]X~Xn Similarly T , /i n considered as oper- 

ator on Co(Xn) is given by f ~ k/f= ~/ with k/ := klXn, 

r  := ~ [ x  n �9 
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THEOREM 2.7. Let X be a locally compact space, T a lattice iso- 

morphism on Co(X) given by Tf = k f = } . Then the following hold: 

(2.10) o(T) = [ ~ k(Xn\Xn_l) P n ] U [ .~ o(T ] 
n6~ [In 

The subset R := n6~ o(T]in ) is invariant under rotation and 

IF c o(T) implies IF c R (I 6 r . 

If in addition k(x) = lim kn(x ) exists uniformly in xCX, then 
n ~ 

(2.11)  o(T) N ~R+ = k(X) and o(T) = k.J ^ xEX k(x) rv(X)  " 

Proof. We have T(I n) = I n for every nE1N,  hence o(T) = 

o(T/i n) U o(T]in) by (2.1). It follows that o(T) = 

[ k.J o(T/T ) ] u [ {-]o(T ] 
nE1q "*n nEiN I In ) " m 

By induction we show that o(T/im) = n~__ik(Xn\Xn_l ) r n . 

For m = I this follows immediately from Lemma 2.5. Now assume that 

it is true for m-I. Identifying C~ with Co(Y~m) , denoting 

, = = O }  i s  a S := T/I m 6~(Co(Xm) ) then am_ I : {fECo(Xm): flXm_ 1 

closed ideal such that S(Jm-l) = Jm-I " Moreover S/jm_ I ~ T/im_ 1 , 

and SiJm_ I satisfies the assumptions of Lemma 2.5. Thus 

o(S) = o(S/jm_ I) U o(S]jm_ I) = o(T/im_ I) U k(Xm*Xm_ I) F m . Now we 

show that R is invariant under rotation. Since R is cyclic [8, 

2.4] we have to show that O < r 6R implies rF c R . The topolog- 

ical boundary of the spectrum is always contained in the approximative 

point spectrum which is cyclic [8, 2.2, 2.7]. Therefore we can assume 

O < r 6~Ao(Tlln) . Then there exist fnEl2n (n6 ~q) such that 
I 

[Ifnl[ = I and llTfn-rfnll ~< ~. Since fn E 12n there exist 

x n g X~X2n such that Ifn(Xn ) I = II fnll = I . Given I E r , by Lermma 

2.6 there are functions gnCCo(X) such that llgn[l = gn(Xn) = I and 
l 

llgnc ~- Ignrl ~< ~. Let mE ]q . For h n := gnfn we have h nEIm for 

n i> m, llhn[l = l for all n6 l~ and 

Thn-lrh n = (Tfn-rfn)gn = ~ + rfn(gnO~-Ig n) . 

Thus the sequence (hn)n~ m is an approximative eigenvector of 
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TII m corresponding to r �9 ~ . 

The first assertion of (2.11) is proved in [2, 5.3 (b)] for compact 

X. The proof given there works in the locally compact case as well. 

To prove the second assertion of (2.11) we assume %6o(T) . If 

~F ~ o(T) , then  by (2 .10)  % 6 U k ( X n \ X n _ l )  F n ~ Q J k ( x ) F v ( x )  . 

I f  XF E o(T) = o ( T / I  n) U ~ (T l in )  ( n E ~ )  then a F c  O(Tl in)  be -  

cause xr fl a(T/in) is finite. Thus I%1Eo(Tll n) N ~+ = k(X\X n) . 

Then there exist (Xn) CX such that Ik(xn) - I%II + o and 

v(x n) ~ n for every n E ~ . It follows that %F ~k(Xn) Fv(xn ) 

and we have o(T) _c xCX ~-) k(x) Pv(x) ~ " On the other hand given xEX 

then by (2.10) k(x) Fv(x) c o(T) whenever v(x) < ~ . If v(x) = ~, 

then xEX\X n, hence k(x) Ek(XxX n) = o(rll n) N ~+ for every 

nE ~ . Thus ~(x) CR and k(x) F ~ R c o(T) since R is invariant 

under rotation. 

REMARK 2.8. (Aperiodic case). Using the argument given in the proof 

of (2.10), one can show that the whole spectrum is invariant under 

rotation whenever the non-periodic points are dense in X. 

3. CHARACTERIZATION OF ONE-PARAMETER GROUPS 

OF POSITIVE OPERATORS ON Co(X) 

In [9] the strongly continuous semigroups of lattice homomorphisms on 

C(X), X compact, are characterized as follows: 

Given (T(t))tE~+ as described above then there 

exist a continuous semi-flow ~: R+x X ~ X 

(3.|) and functions h,m E C~(X) with m >> O such that 
[ t 

T(t)f = m exp( ] h "~s ds)f "~t " 
m �9 ~t o' 

For several reasons there is no satisfactory extension of this result 

to spaces Co(X), X locally compact. However, in this section we 

will show that for strongly continuous groups of positive generators 

(which can be considered as special semigroups of lattice homomor- 

phisms) there is an extension of (3.1) to the space Co(X). 
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First we have to explain some notation: 

If X is a locally compact space, a map 4: ~• ~ X is called a 

flow on X, whenever it satisfies 

~(O,x) = x for every x6X and 
(3.2) 

~(t + s,x) = ~(t,~(s,x)) for arbitrary s,t 6JR, x6X . 

Given a flow ~ then each partial map ~t = ~(t,.) is a bijective 
-I 

transformation of X with ~t = ~-t ; in addition, t ~ ~t is a 

group homomorphism of (~,+) into Aut(X) . The flow is called 

continuous when ~ is continuous with respect to the product topo- 

logy on ~• . Given a flow ~ on X, a family (ht)t6 ~ of 

bounded scalar-valued functions is called a cocycle of ~, if the 

following conditions are fulfilled: 

h o = II (i. e. ho(X) = I for every xEX) 
(3.3) 

ht+ s = ht(h s o~t ) for arbitrary s,t 6 ~ . 

and 

-I 
It follows that every h t is non-zero and h t = h-to ~t " The co- 

cycle (h t) is called continuous when the mapping (t,x) ~ ht(x) 

is continuous with respect to the product topology on ~• . In 

this case we have h t Ecb(x) for every t 6 R . 

Given a continuous flow ~ on X and an associated continuous co- 

cycle (ht) a group of bounded linear operators on Co(X) is given 

in a natural way; namely, 

(3.4) T(t)f = h t fc q)t where fECo(X ) , tEIR . 

Obviously one has ~[T(t)f -f[l = O whenever f has compact support 

Since IIT(t)ll = llh U the following lemma and [19, III.4.5] then im- 
t 

ply that (T(t)) is a strongly continuous group. 

LEMMA 3.1. Suppose ~ is a flow and (ht)tE R is a cocycle such 

that for every xEX the mapping t ~ ht(x) is continuous. Then 

{llhtll: tEB} is bounded for every bounded subset B E ~. 

Proof. If we can show that {ht: 1 -E ~ t ~ I} is bounded for some 

> O , then using the inequality 
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Ilht+ sll = IIh t h s o ~ t l l  ~ IlhtllllhsC ~ t  u = IlhtllllhsU 

one can easily deduce the assertion of the lemma. To prove the bound- 

edness on some interval [! -e,l] one can proceed as in the proof of 

[15, ]O.2.1]. Note that the continuity assumption implies that the 

mapping t ~ llhtll = ~lht(x) l is lower semicontinuous hence 

measurable. 

The group defined by (3.4) consists of positive operators if and only 

if each function h t is positive. The following proposition shows 

that all positive groups on Co(X ) are of this type. 

PROPOSITION 3.2. Let 

positive operators on 

a continuous flow on 

such that 

(T(t))tE ~ be a strongly continuous group off 

Co(X) , X locally compact. Then there exist 

X and a continuous cocycle (ht)tE ~ of 

(3.4) T(t)f = h t fo q0 t for every fECo(X ) , tEIR. 

Moreover there are real constants M ~ | , m ~ 0 such that 

(3.5) (M e~lt]) -I ~ ht(x ) ~ M e mltl for every t r xr X. 

Proof. Since T(t) and T(t) -I = T(-t) are positive operators, 

T(t) is actually a lattice isomorphism. Then by (2.2) there exist a 

homeomorphism ~t: X ~ X and a positive function h t E cb(x) such 

that T(t)f = htfo ~t for every f ECo(X) . The group property of 

(T(t)) then implies that ~(t,x) := ~t(x) defines a flow ~ on X 

and that (ht)tEIq is a cocycle of ~. 

It is well-known that there exist constants M ~ l , m > O such that 

lIT(t)II ~ Me ~Itl for every t E ~ hence 0 < ht(x ) ~ llh t , II = 

11T(t)ll ~ M e mltl, , Moreover (ht(x)) -l h_t(~t(x)) ~ llh_tll �9 = = 

IIT(-t)[l ~ M e mlt( Thus (3.5) holds and it remains to show that flow 

and cocycle are continuous. First we consider the flow. Since we 

have ~t+s = ~t o U s and every ~t is a homeomorphism on X , it is 

enough to establish continuity of ~ at points (O,Xo) E I~• . Given 

a compact neighborhood V of x o = ~(O,xo) , there exists a con- 

tinuous function f: X ~ [O,1] with f(Xo) = I and supp(f) ~ V . 
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We have lim T(t)f = f; hence there exists t o > O such that 
t~~ l 

]IT(t)f - fll < ~ for Itl ~ t o . If we define W := {x C X: If(x) l > ~}, 
! 

then for Itl ~ to, xEW we have: lht(x)f(~(t,x) ) - f(x) I <~ and 
! 

If(x) I > ~. Hence f(~(t,x)) > O wihch implies ~(t,x) EV. To prove 

the continuity of the cocycle we first remark that by strong continuity 

of (T(t)) for every fixed fECo(X) the mapping (t,x) ~ (T(t)f)(x) 

is continuous on R• Given compact subsets A c R, B c X, the 

set C := ~(A• is compact, hence there exists fECo(X) such that 

fIc = 1. For (t,x) CA• we have ht(x) = ht(x)f(~(t,x)) = 

(T(t)f)(x), thus (t,x) ~ ht(x) is continuous on A• Since con- 

tinuity is a local property the eocycle (ht) is continuous. 

REMARK 3.3. Using Proposition 3.2 one can show that separate 

continuity of a flow ~ and separate continuity of a cocycle (ht) 

are sufficient for the continuity of ~ and (ht). Indeed the contin- 

uity of x ~ ht(x ) and x ~ ~(t,x) for fixed t E ~ implies that 

T(t) given by (3.4) is a bounded linear operator on Co(X ) . The con- 

tinuity of the partial maps t ~ ht(x) and t ~ ~(t,x) implies that 

~(T(t)f)(x) = f(x) for every xCX. By Lemma 3.1, the set {tlhtII: 

Itl ~ I} is bounded, hence we can apply Lebesgue's dominated conver- 

gence theorem and obtain that (T(t)) is weakly continuous at t = O. 

Then (T(t)) is strongly continuous by [7, 1.23] and Proposition 3.2 

implies that ~ and (h t) are continuous. 

EXAMPLE 3.4. Suppose that ~ is a continuous flow on X . 

(a) If m is a positive continuous function on X such that m and 
-I 

m are bounded, then 

m 
(3.6) m := - -  (t E~) 

t m~ t 

defines a continuous cocycle (mt)tE ~ of qO and m t > 0 . 

(b) For hEcb(x) we define 

(3.7) ht(x) := exp( h(~0(s,x))ds) (xEX, tE~) . 
O 

Then (ht)tE ~ is a continuous cocycle of ~ consisting of positive 

functions. 
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Cocycles as defined in (3.6) are always globally bounded. In general 

this is false for cocycles of the second type. On the other hand co- 

cycles as described in (3.7) are differentiable with respect to t . 

This is not satisfied by cocycles of the first type in general. Thus 

neither (3.6) nor (3.7) gives a description of arbitrary cocycles. 

However, every positive cocycle is a product of cocycles of the form 

(3.6) and (3.7). More precisely we have: 

LEMMA 3.5. Suppose ~ is a continuous flow on X and (kt)tE ~ is 

a continuous cocycle of ~ consisting of positive functions. Then 

there exist hCC~(X) and a positive continuous function m: X ~ 

with O < inf{m(x): xCX} ~ sup{m(x): xEX} < ~ such that 

m(x) I t 
(3.8) kt(x) m(~(t,x)) exp( ~ h(~(s,x))ds) (xCX, t CR) . 

Proof. In view of (3.5) there exist constants M, ~ | such that 

(M e(U-l)Itl) -]' ' ~ kt(x) ~ M e (u-|)Itl' ' for every xEX, t E R. We 

define m and h as follows: 

m(x) := ks(x)ds , h(x) := u m(x) (xEX) . 
O' 

Then  m i s  a c o n t i n u o u s  f u n c t i o n  and we h a v e  

(M(2u - 1 ) )  -1 = I e-US(M e ( U - I ) s ) - l d s  ~ m(x)  
o 

I e-USM e(U-l)Sds = M for every xEX . 
o 

I n  p a r t i c u l a r  i t  f o l l o w s  t h a t  h E c b ( x )  . F o r  x E X ,  t C N  we h a v e  

kt(x)m(~(t,x)) = f e -us kt+s(X)ds = eut ~e -us ks(X)ds. 
o t 

Now we f i x  x E X  and  d e f i n e  f :  N ~ N a s  f o l l o w s :  

kt(x)m(~(t,x)) eUt fo= 
= e -us ks(x)d s . 

f(t) := m(x) m(x) t 

f i s  d i f f e r e n t i a b l e  and  s a t i s f i e s  t h e  f o l l o w i n g  d i f f e r e n t i a l  e q u a -  

k t ( x )  
tion: f'(t) = uf(t) m(x) h(~(t,x))f(t) . Moreover f(O) = I , 

t 
hence f(t) = exp( [ h(~(s,x))ds for every tC ~ . Thus we obtain 

O" 
(3.8). 
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In the following theorem we describe the one-parameter groups of 

positive operators on Co(X ) and characterize their generators as 

special perturbations of generators of automorphism groups. We use 

the term "automorphism" with respect to the C*-structure of Co(X ) , 

i. e. an invertible operator T o 6~(Co(X)) is called automorphism 

if To(fg) = To(f)To(g) and To(T) = To(f) for f,g6Co(X) . Since 

automorphisms are lattice isomorphisms (compare with [20, III. 9.1]), 

an automorphism group is governed by a flow and an associated cocycle. 

It is easy to see that the cocycle has to be trivial, i. e. ht(x) = 1 

for every t 6~, x6X . Moreover, the generator A o of an auto- 

morphism group is a derivation, that is 

(3.9) 
D(Ao) is a subalgebra and A o satisfies 

Ao(fg ) = f(Aog ) + (Aof)g for all f,g6D(A o) . 

THEOREM 3.6. 

tinuous group (T(t))t61R 

ing assertions are equivalent: 

(i) (T(t)) is a group of positive operators (equivalently of 

lattice isomorpbisms). 

(ii) There exist h6cb(x) , a continuous function m: X ~ 

with O < inf{m(x)} ~ sup{m(x)} < ~ and a continuous flow 
x6X x6X 

sueh that for every f 6 Co(X), xs 

m(%o(t,x))m(x) I t (T(t)f)(x) exp( ~ h(%o(s,x))ds)f(%o(t,x)) . 

(iii) 

Let X be a locally compact space. For a strongly con- 

o nn Co(X) with generator A the follow- 

%o 

There is a generator 

group and functions 

Af = m(Ao(~)) + h f 

A o 

h, m 

for 

of a strongly continuous automorphism 

as in (ii) such that 

fED(A) = {mg: gED(Ao)} o 

Proof. (i) ~ (ii) follows from Proposition 3.2 and Lemma 3.5. 

(ii) ~ (iii): Define A o to be the generator of the group (To(t)) 

given by T~ = f Q %ot (t 6~, fECo(X)) . 

(iii) ~ (i): The automorphism group (To(t)) generated by A o is 

governed by a flow %O, i.e. To(t)f = f oc~ . Then 

Tl(t)f := m f c %ot (fECo(X)) defines a positive group with 
m o %ot 

generator A l given by Alf = m(Ao(~)) , D(AI) = m D(A o) . It 
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follows from the Trotter product formula that the sum of a generator 

of a positive semigroup and a bounded positive operator generates a 

positive semigroup. Moreover B generates a positive semigroup if 

and only if B-r Id (r 6 R) does. Thus A = A I + M h = 

(A I + M(h+Uhll) ) -llhllld generates a positive semigroup. By the same 

argument -A generates a positive semigroup as well, i. e. A is 

the generator of a positive group. 

The function m of assertion (ii) does not have any influence on the 

spectral properties of A or T(t) . This is a consequence of the 

following corollary. 

COROLLARY 3.7. 

operators on 

Every strongly continuous group (T(t)) of positive 

Co(X) is similar to a group of the following type: 

t 

(3.10) S(t)f = eXP(ol h~s ds) f =~t ' 

where ~ is a continuous flow on X and hEC~(X). That is, for 

all t s R and a fixed invertible operator M E~I~(Co(X)) we have 

-I 
(3.11) S(t) = M T(t)M . 

Proof. Choose ~, h, m according to assertion (ii) of the theorem 

and define Mf := m'f (f 6Co(X)) . 

We conclude this section with an analog of Proposition 2.1, which can 

be formulated for arbitrary Banach lattices. 

PROPOSITION 3.8. Suppose (T(t))t6 ~ is a strongly continuous group 

of positive operators on a Banach lattice E , I a closed ideal such 

that T(t)l c I for every t 6 R . Then we have 

(3.12) o(A) = o(All) U o(A/I) . 

Here All (resp., A/I) denotes the generator of the positive group 

on I (resp., E/I) which is induced by (T(t)) in the natural way 

(compare [8, 1.8, 1.9]). 

313 



ARENDT and GREINER 

Proof. Each T(t) is a lattice isomorphism and since T(t)l S I , 

T(-t)l ~ I we have actually T(t)l = I for every t E ~ . As in the 

proof of Proposition 2.1 it follows that both, I ~ and I ~177 are 

T(t)'-invariant projection bands in E' . Thus the corresponding band 

projections commute with every operator T(t)'. Considering the sub- 

space E* of E' on which (T(t)') is strongly continuous (see [15, 

, = E* n I ~ Chapter XIV]) this implies that E* = Jl ~ J2 where Jl 

and J2 = E* n I ~177 and both, Jl and J2 are invariant under 

T(t)* . Identifying I* with J2' (E/I)* with Jl and using [15, 

14.3.3] we obtain o(A) = a(A*) = o(A*Lj 2), U o(A*Ij I)~ = 

o((AII)*) U o((A/I)*) = o(AII) U o(A/i) . 

4. THE PERIODIC CASE 

Let ~: R• ~ X be a continuous flow. The period of a point xCX 

is defined by 

T(x) = inf{t > O: ~(t,x) = x} 

where as usual the greatest lower bound of the empty set is defined to 

be ~. It is easy to see that 

(4.1) T(x) = 0 iff ~(t,x) = x for all t E ~, 

and in the case 0 < T(x) < =, 

(4.2) ~(t,x) = x iff t = n. r(x) for some nE2Z . 

In general, the mapping x ~ T(x) is not continuous (we give an ex- 

ample below); however, it is semicontinuous~ More precisely, the set 

X T := {x X: T(x) ~ T} is closed for every T ~ O . (This is obvious 

for r = O or T = ~.) If O < x < ~, then for every xEX T 

there exists a ~(x) such that T/2 ~ ~(x) ~ T and ~(~(x),x) = x . 

Now given x oEX and an ultrafilter ~ converging to x o , 

T o := lim ~(x) exists and satisfies 0 < x/2 ~ T o ~ T . Since ~p is 
l& 

jointly continuous, we have ~(To,Xo) = l~(T(x),x) = limyt x = x o . 

This implies that T(x o) = 0 or T o = nT(xo) for some nE ~ (by 
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(4.2)). In both cases we have ~(x o) ~ T, 

i0 
EXAMPLE 4.1. Let X= {r �9 e : O ~ r ~ I, 

governed by the differential equation 

we obtain 

= r(l-r) 

~(0) = o 

T(z) = ~ if 

T(Z) = 2~ if 

0 < lz l  < t 

I z l = l .  

i.e. x o E (X T) . 

0 C ~}cr . For the flow 

and 

EXAMPLE 4.2. Let X be the quotient of the rectangle [O,2~] x [-I,|] 

obtained by identifying the points (O,x2) and (2~,-x2) 

(x 2E [-I,I]) (that is, X is the MSbius strip). Then for the flow 

governed by the differential equation 

�89 = 1 

~2 = 0 

we obtain for x = (Xl,X2) EX: 

T(x) = 2~ if x 2 = 0 

r(x) = 4~ if x 2 # 0 . 

For 
h 

hEC~(X) we define 

h(x) := lim i 
t~oot 

olth(~(s,x))ds 

for those xEX for which the limit exists. In general h is defined 

on a subset of X which is possibly empty. However, if xEX such 

that T(x) < ~, then h(x) is defined and 

h(x) = h(x) if (x) = 0 

h(x) = I [T(X)h(~(s,x))d s if (x) > 0 . 

(~) oJ 
defined on the subsets X T (0 ~ �9 < ~), and it is easy 

is continuous on each X T (in fact, the limit 

h(~(s,x))ds exists uniformly in xEX T) . 

Thus h is 

to see that 
t 

liml I 
t-,oo t 

o 
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We now consider the one-parameter group (To(t))tE ~ on Co(X ) 

associated with the flow; i. e. To(t) is defined by 

(4.3) (To(t)f)(x) = f(q0(t,x)) (tE]R, xs 

for all fs (see section 3). 

The generator of this group is denoted by A o with domain D(Ao). 

Let hEcb(x) . By M h we denote the multiplier on Co(X) defined 

by h ; i. e. 

(4.4) Mhf = h �9 f (f ECo(X)) . 

Let A = A o + M h with domain D(A) = D(Ao) . Then A generates the 

group (T(t))tE ~ on Co(X ) given by 

(4.5) (r(t)f)(x) = ht(x) f(~(t,x)) (t C~, xEX) 

(see Theorem 3.6). We will keep this notation throughout the paper. 

We now describe the spectrum of A in terms of the flow and the 

multiplier for the periodic case. 

THEOREM 4.3. Suppose that T(x) ~ T for all xCX and some T > 0 . 

Then 

(4.6) o(A) = [h(X o) U ~(x)>o~--~ h(x) + i T__~ ~2~ ]-. 

Moreover, for %s and f 6Co(X) the resolvent is given by 

~(x) 

}~[1-exp[T(x)(h(x)-X)]]-lo-[e-XtT(t)f(x)dt 
(4.7) (R(l,A)f)(x) = i if T(x) > 0 and 

(%-h(x))-]f(x) if T(x) = O (x6X) . 

REMARK. For the spectral mapping theorem we will only need that the 

set on the right-hand side of (4.6) is included in the spectrum of A. 

This is the easier part of the proof and will be given first. 
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Proof. Let x6X . Denote by ~x die Dirac-measure at x . If 

T(x) = 0 , then 

(4.8) 6 x6D(A') and A'8 x = h(x)~ x . 

Hence h(x) 6Po(A') c a(A). 
x 

If T(x) > 0 , for X6~ let ~x6Co(X)' be given by 

~(x) 
<f,~x> := e-Xt(T(t)f)(x)dt 

O-- 

T(X) 

= [ e -xt ht(x) f(~(t,x))dt 
O ~ 

Using Tietze's extension theorem, one finds f 6Co(X) 
X x 

<f,~x> # 0 , hence ~X # 0 . Moreover, 

~(x) 

(f 6Co(X)). 

such that 

e xt T(t)(X-A)f dt = f -e -xT(x) T(T(x))f 

O' 

for all f 6D(A) (see [12, 1.8]). Evaluating at x one sees that 

X v X 
(4.9) ~x6D(A') and (l-A) ~ = (1-exp[~(x)(~a(x)-X)])~ x . 

2w 
Hence X6Po(A') c o(A) whenever X6h(x) + i ~ ZZ o 

We have proved that the right-hand side of (4.7) is included in o(A). 

In order to prove the reverse inclusion assume that 

X~ (h(X o) U ~_~ h(x) + i 2~ - 
~(x)>o ~ ~ ) 

We define an operator R on Co(X) . Let fECo(X) . 

set 

(Rf)(x) = 

(X - h(x)) -| 

(| -exp[T(x)(h(x) -X)]) -I 

For x 6 X we 

if T(x) = 0 
T(x) 

[ e-XtT(t)f(x)dt if T(x) > O. 
O- 

Although the mapping x ~ T(x) is not continuous, one can show that 

Rf is a continuous function. (For the proof let~be an ultrafilter on X 

convergent to x o. Then the following three cases can occur: 

(a) lim ~(x) = r(x o) 
xE0l 

(b) lim T(x) > r(x o) = 0 
xEUt 
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(c) lim T(X) = n. r(x o) > O for some natural number n ~ 2 . 
xE~ 

The cases (b) and (c) require lengthy computations which we omit.) 

It is easy to see that R is a bounded operator on Co(X) commuting 

with T(t) (t ff~) . This implies 

(4.10) RD(A) c D(A) and RAf = ARf (fED(A)) . 

We show that 

(4.11) R(%-A)f = f (fED(A)) . 

Let xEX. If T(x) = O , then R'~ x = (% -h(x))-l~ x, and so 

(R(%-A)f)(x) = f(x) (fED(A)) . If T(x) > O , then 

R'~ x = (I - exp[T(x)(h(x) -%)])-I ~ , and so it follows from (4.9) 

that R(%-A)f(x) = f(x) (fED(A)) . 

This proves (4.11). Since A is closed, it follows from (4.10) and 

(4.11) that %E0(A) and R = R(~,A) . 

Now we are able to prove the spectral mapping theorem in a particular 

case. 

THEOREM 4.4. Assume that T(x) ~ T for all xEX and some 

0 < T < ~ . Then 

.. 2~t 
(4.12) ~(T(t)) = [exp(th(Xo)) U ~_J exp(th(x)).exp(l--~)]- 

T(x)>o 

for all t E ~ . In particular, 

(4.1 3) o(T(t)) = exp t o(A) (t EIR) . 

i 
t 

Proof. Let tE~, k = h t (i. e. k(x) = exp h(k0(s,x))ds), 
O-- 

~ = ~ t "  T h e n  T ( t ) f  = k f o ~  . M o r e o v e r ,  f o r  n E ~ I ,  k n :=  
t ~  

= 1 [ h ( k 0 ( s , x ) ) d s  ] H e n c e  (k.ko~ �9 ... �9 k0~n-l) I/n exp [ t t �9 n 

O" 

( k )  c o n v e r g e s  u n i f o r m l y  t o  e x p  t h  . So b y  T h e o r e m  2 . 7  
n 
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o(T(t)) = (~xCX exp(t �9 h(x)) �9 rv(x))- 

On the other hand, by Theorem 4.3, 

2~t - 
exp(t o(A)) = (exp(t .h(Xo)) U ~_~ exp(th(x)) �9 exp(i --~-~m) 

~(x)>o 
t 

Now ~(x) = ~ iff r(x) is irrational. In that case, 

2~t 
exp(i T--~) = F~ . And if ~(x) < ~, then it is easy to see that 

2~t ~) 
exp(i ~ = F (x) . This proves (4.13). 

REMARK 4.5. In (4.13) the bar cannot be omitted. To give an example, 

let X S I (= {z Er [z I I}) and ~(t,z) e 2~it . . . .  z (t E ~ , 

zE S I) . Let T~ = fr (f EC(X)) . Then O(Ao) = 2~i~ . 

Let t C R be irrational. Then o(T(t)) = F~ . But exp(t o (Ao)) = 

exp(i2~t �9 ~) # F~ (see [12, 1.9]). 

5. THE APERIODIC CASE 

We keep the notation of the preceding sections. 

LEMMA 5.1. Let x o EX, nf~ and T(Xo) > 2n+ I. Then for every 

E > O there exists a neighborhood U __~ x o such that 

(5.1) {~(t,Xo): O ~ t ~ I-e} c U 

(5.2) ~_n(U) ..... ~_I(U),U,~I(U) ..... ~n(U) are pairwise 

disjoint. 

Proof. First we show the following. Let mE~ and Yo CX such th~ 

T(y o) > m+ I. Then there exists a neighborhood V of Yo such that 

(5.3) K := {~(t,Yo): O ~ t ~ I-c} c V and 

(5.4) V , ~l(V) ..... ~m(V) are pairwise disjoint. 

If m = O , one can take V = X . Assume that the assertion holds 

for mE ~ . We show that it holds for m+ I . So by assumption 
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T(yo) > m+ 2. By hypothesis, we find an open neighborhood V of 

Yo such that (5.3) and (5.4) hold. Since T(yo) > m+ 2 it follows 

that K A q0m+1(K) = ~. So there exist open sets 0 1 , 0 2 such that 

O 1A 0 2 = ~ , K c 01 and ~m+l(K) c 0 2 . Let O I := ~_m_|(O2) . 

Then K c 01 n O; and ~m+l(Ol flOi) A (01 no I) = ~ . Let V' := 

v V N O 1 n O 1 . Then V' is an open neighborhood of Yo such that 

K c V' and V',~I(V') ..... ~m+l(V') are pairwise disjoint. In order 

to prove the lemma let now Yo = ~-n(Xo ) " Then T(yo) > 2n + I . So 

we find a neighborhood V of Yo such that (5.3) and (5.4) hold for 

m = 2n. Set U = ~n(V) . Then U is a neighborhood of x ~ satis- 

fying (5.1) and (5.2). 

LEMMA 5.2. Let n E~ and x oEX such that T(Xo) > 2n+ ]. Let 

IC~. Then given g > 0 there exists gED(A o) such that 

l ~ llgll ~ Ig(Xo) l ~ | -E and 

(5.5) ll(i%-Ao)gll < I/n. 

Proof. Let U be an open neighborhood of x o satisfying (5.1) and 

(5.2). By Proposition 2.3 (b), there exists goCCo(X) such that 

11goll = | and go(~(t,Xo)) = exp(i%t) for 0 ~ t ~ 1 . Choose 

q: X ~ [O,I] such that q(x) = 0 for x~U and q(~(t,Xo)) = 1 

for tE [O,l-e] . Let fo = q " go E Co(X) . Then f satisfies: 

(5.6) II foIIoo = 1 

(5.7) fo(k0(t,Xo))exp(-i%t) = I (0 <~ t <~ l-E) 

(5.8) fo(X) = 0 for x~U . 

Let ~ = exp(il) and define f ECo(X) by 

n-1 n-1 k I -k 
(5.9) f(y) = --( ~ ~ (n-k)fo(k~, (y)) + ~ ~ (n-k)fo(q0_k(y))) �9 

n k = o  ~: k = l  

Then IIfll = [fo(Xo) l = 1 and 

1 
( 5 . 1 0 )  I I T o ( 1 ) f - ~ f U  = IIf  ok01 - c~ f l l  ~< --n " 
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Let g = 

Moreover, 

I f 

o] exp(-i%t)To(t)f dt . Then gED(A) and Ilgll ~ 1 i 

1-~ 

Ig(Xo ) ] >I I lexp(-iXt)f(~o(t,Xo)) dt] -I flf(~o(t,Xo)) dt] 

o 1-c 
1-~ 

>I [ lexp(-iXt)fo(~0(t,Xo))dtl -c 
o 

(by (5.9) and (5.8)) 

= I -~ -e = I- 2E (by (5.7)) . 

-i% 
Finally, -(i%-Ao)g = e To(1)f-f (by [12, 1.8]). 

Hence, li(i%-Ao)gll = llTo(1)f-ei%fll ~ I/n (by (5.10)) . 

PROPOSITION 5.3. Let ~Cr Assume that there exists ~ >O such that 

for every e>O, nC~ there exists f ED(A) such that il(~-A)fll <c, 

IIfll = I and If(Xo) I ~ ~ for some x oEX with T(Xo) > n. Then 

~+il~ c o(A) . 

-I 
Proof. Let %ER, g > O , n > c Choose f ED(A) as in the 

hypothesis. By Lemma 5.2 there exists gED(A o) such that 
I -I 

~ I g(Xo ) I ~Ligll ~ I and IL(i%-Ao)gll < n Let fl = f " g " Then 

I ~ liflll ~ ~ > 0 . Moreover, since A o is a derivation (see (3.9)), 

it follows that fl ED(A o) = D(A) and 

II(~ + i%)f I - Aflll 

= il~f.g + i%f.g - (Aof)g - (Aog)f - h.f.gll 

II(uf - Af)gll + II (i%g - Aog) fn 

il~f -Afll + lli%g -Aogll ~ E + ! < 2~ . 
n 

This shows that U +i% E Ao(A) . 

We now determine the spectrum of A and prove the spectral mapping 

theorem in the aperiodic case. Note, in contrast to the periodic case 

(cf. Remark 4.5), here the set exp(to(A)) is automatically closed 

(see (5.12)). 

THEOREM 5.4. If the flow ~ is aperiodic (that is, if for every 

open subset O of X and every nE~ there exists xEO such that 

T(x) > n) , then 
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(5.11) o(A) = o(A) + i R 

Moreover, 

(5.12) o(T(t)) = exp(t o (A)) (t C ~) 

Proof. Let ~Eo(A) . If % +i ~ ~ o(A) , we find BCA such that 

+iB is in the boundary of o(A) , hence in the approximative poir~ 

spectrum Ao(A) . It follows from Proposition 5.3 that % +i~co(A), 

a contradiction. (5.12) then follows from o(T(t)) D exp(t o (A) 

(which holds in general [7, 2.16]) and the real spectral mapping theo- 

rem o(T(t)) n ~+ = exp(t o (A) N ~) (see [3, 5.7]). 

6. THE GENERAL CASE AND FURTHER CONSEQUENCES 

We consider now the case where ~ is an arbitrary flow. Using the 

notation of section 4 we denote by 

JT = {f ECo(X): f(x) = 0 for all xCX T} for T > O . 

Recall that Co(X)/J T is isomorphic to Co(XT) (by Proposition 2.3). 

Moreover, since X T is invariant under the flow, the ideal JT is 

invariant under the group (T(t)) . 

THEOREM 6.1. The spectrum of A is given by 

(6.1) o(A) = (h(X o) U o<T(x)<~-~ h(x) + i T__~ )2~ - 

where R = ~a(AIJT) " T > o  Moreover, 

(6.2) R + i ~ = R and 

U R 

(6.3) % + i R c o(A) implies %CR . 

REMARK. (6.2) and (6.3) say that R is exactly that part of o(A) 

which is invariant under imaginary translations. 
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Proof. It follows from Theorem 4.3 that for T > O , 

2~ ~) 
o(A/J T) = (h(X o) U ~_~ h(x) + i 

o<~( •  ~(x) 

So (6.1) follows from a(A) = o(A/j T) U o(AIj T) for all 

(3.12)). In order to prove (6.2) recall that for T > O, 

additively cyclic [8, 2.4]. 

T > 0 (see 

o(AIjT) is 

Moreover, o(AIjT)r> ~ is decreasing. Thus, if (6.2) is false, there 

exist p 6R and t o > 0 such that p +i A ~ o(AIJTo ) and O is a 

boundary point of o(AIjT) for all T ~ z o . Consequently 

0 6Ao(AIj T) for all T ~ T O . Let nE ~, r > 0 . There exists 

f 6 J with T > n such that II(0 -A)f[l < ~ and llfH = I . Since 
T 

I 
f6 Jr ' there exists x o {X T such that If(Xo) I ~ ~. Applying 

Proposition 5.3 to A IJT ~ we conclude that O + i ~ c o(AiJTo ) . 

This is a contradiction. 

Finally we prove (6.3). By Theorem 4.3 we have o(A/jT) n {X6r 

0 < }Im k I < 2~/T} = r and o(A!j ) is additively cyclic by 
T 

[8, 2.4]. Therefore, from X+i A ~ o(A) = o(A/j ) U o(Aij T) it 

follows that X+i ~ E o(AIjT). 

This finishes the proof. 

We now prove the spectral mapping theorem. 

Proof of Theorem I.I. By Corollary 3.7 we can assume that (T(t)) is 

given by (3.10). Let t6~\(0} , %Eo(T(t)) . We have to show that 

XEexp(t o (A)) . For T > 0 we have by Proposition 2.1, o(T(t)) = 

o(T(t) IJT)I U o(T(t)/j T) . If X 6o(T(t)/j T) for some T > O , we 

are finished by Theorem 4.4. So we can assume that % ~o(T(t)/j ) 

for all T > 0 . This implies %E ~o(T(t) ) . Consequentl~ 
T>o IJT 

I~I ~ ~o(T(t) ) (by [20, V 4.4]) 
r>o IJT " " 

By the real spectral mapping theorem [3, 5.7], this implies that 

-llog Ij T p := t I%1 6o(A ) for all T > 0 . So by Theorem 6.1, 

0 +i R c o(A) . In particular, %s {exp t(9 +is): s6 R}cexp(to(A)). 

The following consequence of Theorem 6.1 was mentioned in Section I. 
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THEOREM 6.2. Let A be the generator of a positive group on Co(X) . 

If %o is an isolated point in o(A) , then %o i__ss a pole of order 

l of the resolvent. In particular, every isolated point in o(A) is 

an eigenvalue. 

Proof. Again, by Corollary 3.7 we can assume that A generates a 

group of the form (3.10). Let %o be an isolated point in o(A) . It 

follows from Theorem 6.1 that %o~~ for some ~ > O . Thus 

R(%,A) Ij T is holomorphic in %o ' and by [12, 1.2 (c)] it is enough 

= to show that %o is a pole of order I of R(%,A)/j T Let A 2 : 
f 

I 
](%- %o) R(%,A) d%, where c is a circumference of sufficient- 

2~i c 

ly small radius�9 We have to show that A 2/j T = 0 (cf. [24, VIII. 8]). 

For that, it is enough to show that (A_2f)(x) = O for all f ECo(X) 

and all xEX T . Let f ECo(X) , xEX T . By [12, 1.8], 
~(x) 
of. exp(-%t) T(t)f dt = R(%,A)f - exp(-%T(x)) T(T(x))R(%,A)f 

(%E0(A)) . Evaluating at x we obtain: 

R(%,A)f(x) = (l -exp[T(x)(h(x) - %)])-I f e-%t T(t)f(x) dt 
~ ( x )  o 

(%Ep(A)) . The function % o[~ exp(-%t) T(t)f(x) dt is holomor- 

phic at %o and the function % ~ (1 -exp[r(x)(h(x) -%)])-I has a 

pole of order at most I at %o. This implies that 

' f  2Tri ( X - X o ) R ( % , A ) f ( x )  d% = 0 . H e n c e  ( A _ 2 f ) ( x )  = O . 
C 

As in the discrete case (see (2.11)), the real part of o(A) can be 

described more precisely if the Ces~ro-means of h converge uniform- 

ly on X . We use the same notation as in the preceding sections, 

i.e. ~: ~xx ~ X is a continuous flow, the group (To(t))tE ~ is 

given by To(t)f = f o~t (fECo(X) and its generator is denoted by 
I_ 

A o . We let hEC~(X) , and the operator A on Co(X) with domain 

D(A) = D(A o) is given by Af = Aof + h �9 f (fCD(A)) . Moreover, we 

denote the Ces~ro-means of h by 

llt 
h(~0(s,x)) ds (6.4) Ct(h)(x) := ~- o 

We first determine the real spectrum of A 

(t > O) . 

by means of the range of 

Ct(h) (t > O) . 
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PROPOSITION 6.3. The real spectrum of A is given by the following 

expressions. 

(6.5) o(A) N ~ = {r 6 ~ : VE > O B(tn) c (O, ~) lim t_= 

such that (r-s , r+e) n Ctn(h)(X) # ~ Vn6~}  . 

(6.6) o(A) n R = ~ Ct(h)(X) for all t o > O . 
t>t o 

Proof. Recall that, if (S(t))tE ~ is a positive strongly continu- 

ous group on Co(X) with generator B , then 

(6.7) -m(-B) ~ % ~ m(B) for all %6a(B) N ~ . 

Here m(B) denotes the type of ((S(t))t>o , that is, 

re(B) = lim ! logllS(t)II 
t~oot 

For fEcbl~(X) we let s(f) := sup f(x) and i(f) :: inf f(x) . 
xs xEX 

Now A generates the group (T(t))ts biven by 

T(t)f(x) = exp(t.Ct(h)(x)) �9 f(q0(t,x)) (see (3.]])) . 

Hence, 

(6.8) m(A) =~moos(Ct(h)) 

Indeed, 

Similarly, 

~(A) = lim ! logIIT(t)ll 
t -~00 t 

= lim ! log(sup exp(t-Ct(h)(x)) ) 
t -~oo t x6X 

= limoos(Ct(h)) �9 

(6.9) -m(-A) = lim i(Ct(h)) . 

Now let r61~, t o > 0 such that r~Cto(h)(X) . Then there exists 

e > 0 such that (r-g, r+e) N Cto(h)(X) = 4 �9 Let 

X I = {xEX: Cto(h)(x) < r} and X 2 = {xEX: Cto(h)(x) > r} . Thert 

X I NX 2 = ~ , X| UX 2 = X and X| , X 2 are both open and closed: in 

particular, X| , X 2 are invariant under the flow. Let (Tj(t))t6 ~ 
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be the restriction of the group to Co(X j) (j = I , 2) . Then 

I logJlT|(to)ll = s(Cto(h) ixj) < r . Hence exp(tor) > r(T1(to)) . 
t o 

Similarly, exp(tor) < r(T2(-to)) -I Hence exp(tor) ~ o(T|(to)) U 

o(T2(to) ) = ~(T(to)) . Consequently, r ~o(A) . We have thus proved 

that ~(A) N ~ c ~ C (h)(X) . Moreover, it is trivial that 
t>o t 

(~ C (h)(X) is included in the set on the right-hand side of (6.4). 
t>to t 

So it remains to show that this set is included in o(A) N �9 . 

Let r E ~ and assume that r~o(A) . By [3, 5.2] and [3, 6.4], 

there exists an open and closed subset X l of X, such that 

) , where J. denotes the band J. = {f CCo(X): ~(A]JI) < r < -~(-AIj 2 3 J 

f(x) = O for all x~Xj} (j = I , 2) where X 2 = X\ E l . (Note: 

every projection band B in Co(X) can be identified with Co(U) 

for some open and closed subset U of X) . So it follows from 

(6.8) and (6.9) that 

(6.10) ~m s(Ct(h) Ixl) < r < ~mr ix2) . 

Thus for a suitable e > 0 there exists t o > O such that 

Ct(h)X n (r-e , r+s) = ~ for all t > t o ; that is, r is not an 

element of the set on the right-hand side of (6.4). 

REMARK. The analog of Proposition 6.3 for a single operator appears 

in [2, 5.1]. 

COROLLARY 6.4. If Ct(h) converges uniformly to h (t ~ ~) , then 

o(A) O ~ = (h(X))-- 

COROLLARY 6.5. Let r E~ . The following are equivalent. 

(i) a(A) n R = {r) 

(ii) ~mooCt(h) = r -ql uniformly (where ll(x) = I for allxCX). 

The flow ~ is called uniquely ergodic, if for every gECo(X) the 

net (Ct(g))t> ~ converges uniformly to a constant (t~) . (In the 

case that X is compact, one has the following characterization: ~ is 

uniquely ergodic if and only if there exists exactly one probability 
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measure which is invariant under ~). We obtain the following 

characterization from Corollary 6.5. 

COROLLARY 6.6. The following are equivalent. 

(i) ~ is uniquely ergodic. 

(ii) o(Ao+Mg) n R contains a single point for every 

g E Co(X). 

THEOREM 6.7. Assume that (Ct(h))t> ~ converges uniformly to 

(t ~ ~) . Then 

( 6 . 1 1 )  
2~ ~ )  

o(A) = [h(Xo) U ~ ([(x) + i U ~/(h(x) + i R)]- 
o<r(x)<~ ~(x) T(x)= 

Proof. Let R = ~o(A . ) . It follows from Corollary 6.4 applied 
T>O JT 

t o  A I j  x t h a t  g ( A I j T )  N ~ = h ( X  ~ X T) (~ > O) . So we c o n c l u d e  

from Theorem 6.1 that the set 

2~ ~) M := (h(Xo) U ~J (~(x)+i U kJ(~(x)+i~)) 
o<r(x)<~ ~(x) ~(x)= 

is included in o(A) . In order to show the reverse inclusion let 

r ERN ~ . We have to show that r +i R c M . If r Ch(X=o) (where 

Xoo = X~ ~7 X~) this is evident. So assume that r ~h(Xoo) . Since 
T>O 

r CRN~ = ~-~ h(X~ X T) , there exists a sequence (x n) in X such 
T>O 

that n < TCx n)__ < ~ and lim h(x~) = r . This implies 

2~m 
r + i ~ c {h(Xn) +i T,Xn,~) : n,m C ~} c M . 

In order to apply Theorem 6.7, it is useful to know conditions under 

which Ct(h) converges uniformly. The following is a consequence of 

Proposition 6.3. 

PROPOSITION 6.8. If o(A) N 

converges uniformly (t ~ ~) . 

is totally disconnected, then Ct(h ) 

Proof. Let c > O . Since o(A) N ~ is completely disconnected, 

there exist real numbers r o < r I < ... < r n such that r i -ri_ I < r 
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n 

o(A) N IRc ~ (ri_l, ri) . 
i=l 

( i  = I . . . . .  n )  a n d  

w h i c h  i m p l i e s  ( 6 . 1 0 ) ,  we  o b t a i n  a p a r t i t i o n  X 1 . . . .  ,X n o f  

sisting of open and closed subsets and t o > 0 such that 

Ct(h)(Xi) c (ri_l , ri) for i = I ..... n and all t > t o . 

plies that IICtl(h) - Ct2(h)]I < e for all tl,t 2 > t o . 

proved that Ct(h) is a Cauchy-net for the uniform norm. 

Using the argument 

X con- 

This im- 

We have 

REMARK 6.9. The preceding result can be applied if A o has compact 

resolvent. In fact, in that case A has compact resolvent as well 

(see [I0, VIII, 3.17]). So o(A) n ~ is finite. Hence Proposition 

6.8 implies that Ct(h ) converges uniformly (t ~). 

On the other hand A o rarely has compact resolvent. The following 

is essentially the only example: 

Let X = S 1 (= {z6r Izl = I}) and T > 0 . Let TT(t)f(z) = 

2vit/~) S 1 f(z �9 e (zs , t 6~, fEC(X)) and A T be the generator 

of the strongly continuous group (T~(t))t6 ~ . Then A T has compact 

resolvent. (This is easy to show.) 

Conversely, assume that A o has compact resolvent. We show that X 

is the disjoint union of compact sets Xo,XI,...,X n such that X o 

is finite, and T~ ) I  = I (t 6B) and for i = 1 ..... n, 

the space X i is isomorphic to S l and To(t) Ic(xi) = TTi(t) for 

all t 6 N and one T. > 0 . 
i 

Indeed, since A o has compact resolvent, o(A o) consists only of 

isolated points. So it follows from (6.1) that T(x) < m for all 

xCX . We denote by o(x) := {~(t,x) : 0 ~ t ~ T(X)} the orbit of 

xEX . We claim that there exist only finitely many orbits. In fact, 

let F x := R(I , Ao)'8 x where ~x is the Dirac measure in 

Then Fx = ~x if r(x) = 0 and 

xEX . 

T(x) 

= [I -exp(-T(x))] -! [ f(~(s,x))e -s ds Fx(f) 
O J 

if T(x) > O �9 Thus, if o(x) ~ o(y) , then [IF x-Fy[1 ~ I . Since 

R(I , Ao)' is compact, it follows that {Fx: xEX} is finite. So 

there exists only a finite number of distinct orbits. Define 

X o := {xffX: T(X) = O} and let X 1 ..... X n he the non-trivial orbits. 
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Generators of positive groups with compact resolvent on arbitrary 

Banach lattices have been characterized by Uhlig [22] (see also Ill]). 
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