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Most spaces of functions or measures on a locally compact group G carry two 
different orderings: a pointwise ordering and a positive-definite orderino. For 
example, on Lt(G) the pointwise ordering is defined by the cone LI(G)+ 
= {f~ LI(G) : f( t )  > 0 for almost all t ~ G} and a positive-definite ordering by the 
cone LI(G)p=Ur{f **f:f~Ll(G)}. In [1] and [2] we investigated these two 
0rderings for the Fourier algebra A (G), the Fourier-Stieltjes algebra B(G) and for 
LI(G). The principal result was that each of these biordered spaces determines the 
group up to isomorphism. 

In the present article we take up an idea of H.H. Schaefer's and discuss order 
properties of the Fourier transform ~-. If G is abelian, then ~ is a biorder 
antiisomorphism from L I(G) onto A(G) (where (~ denotes the dual group of G), i.e. 

maps positive-definite functions onto pointwise positive functions and vice 
versa. So the following question arises: Given an arbitrary locally compact group 
G, can it happen that one finds a locally compact group d and a biorder anti, 
isomorphism from LI(G) onto A(G)? By the results mentioned above, the group 
G would be uniquely determined by G, and one could consider G as the dual group 
of G. So the following result (Theorem 3.3) is not surprising. If such an order anti- 
isomorphism F exists, then the group G is abelian, d is (up to an isomorphism) the 
dual group of G and F is the Fourier transform (up to a positive multiplicative 
constant). 

Of course, one expects that a similar result holds for the Fourier-Stieltjes 
transform. And in fact, this will be proved in Sect. 6. But on the way, we (have to) 
show that M(G) too carries the structure of a biordered space which is a complete 
isomorphism invariant of G (Sect. 4). This had been left open in [2] and demands 
most of the effort in this paper. The proof is given by reduction to the L~-case. 
HOwever, we observe that on M(G) (and on LX(G)) there are two different natural 
.positive-definite orderings: one defined by the ordering inherited by the envelop- 
mg C*-algebra (that is, by the cone M(G)p=ffr{#**/~: #~ M(G)}), and one 
inherited by the left regular representation ,~ in L#(L2(G)) (that is, by the cone 
tMhh (G)z p : = {# ~ M(G) : 2(#) e ~(L2(G)) is a positive-definite operator}). We show 

at both of these positive-definite orderings lead to the desired result: the 
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biordered spaces (M(G), M(G)§ M(G)p) and (M(G), M(G)§ M(G)ap) are both 
complete isomorphism invariants. For the first case, the corresponding result for 
LI(G) proved in [2] can be used, for the second we have to reconsider LI(G) with 
the positive-definite ordering defined by the left regular representation. This is 
done in Sect. 2. 

1. Preliminaries 

A. Ordered Vector Spaces 

As a general reference we use [11, V] and [12]. Let E be a real or complex vector 
space. A subset C of E is called a cone if C + C C C and R + �9 C C C, and C is called a 
proper cone if in addition C ~ ( -  C) = {0}. A pair (E, C), where C is a proper cone in 
E, is called ordered vector space. On such a space an orderino is defined by x < y if 
and only if y -  x e C. An ordered vector space (E, C) is called a vector lattice if for all 
x, y e C -  C there exists a least upper bound (then C - C is a real vector lattice, see 
[11, II, Sect. 1]). 

If E is a Banach space, we denote the dual space by E'. The dual cone C' of a 
closed proper cone C in E is defined by 

C ' = { f ~ E ' : ( x , f ) > O  foral l  x~C} .  (1.1) 

Suppose now that E is a real Banach space and C a closed cone in E. The following 
results are consequences of the Hahn-Banach theorem: 

x e C  i f a n d o n l y i f  ( x , f ) > O  foral l  f s C ' .  (1.2) 

If C1, C2 are two closed cones in E, then 

C1C C2 if and only if C~ C C~. In particular, 
(1.3) 

C1=C2 if and only if C~=C~.  

Let D be a cone in E'. Let C = {x e E : (x, f )  > 0 for all f E  D} be the predual cone of 
D. Then 

C '=/3  ~te',E~ . (1.4) 

Let (E~, C~) and (E2, C2) be (real or complex) ordered vector spaces. A linear 
mapping T: E 1 ~ E  2 is called positive if TC~ ( C 2. T is called order isomorphism if T 
is bijective and TC~ = C2. 

B. Involutive Banach Algebras and C*-Algebras 

(See [5] as a general reference.) An involutive complex Banach algebra is defined 
according to [5, 1.2.1]. In particular, the involution is assumed to be isometric. 
Ah : = {x ~ A : x = x*} is a real Banach space with dual (Ah)'= (A')h : = {f~ A': 
(x*, f )  = (x, f )  (x e A)}. There is a canonical ordering on A defined by the cone 
Ap : = d-6 {x*x : x ~ A} ( ~  stands for closed convex'hull). Then Ap C Ah, and if A has 
an approximate identity [5, B 29], then A'. C ~ ( ')h[A 5,2 ..1 5i ]. The positive conein a 
C*-algebra 9I is always denoted by 91~ (unfortunately, an unusual notation is 
necessary, since we frequently consider two different orderings); i.e., 

91p = ~ {x*x lx  ~ 91} = ( x  ~ 91 : x = x*, ~(x) c R +  }. (1.5) 
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The enveloping C*-algebra of an involutive Banach algebra with approximate 
identity A is denoted by C*(A) [5, 2.7]. Ap is given by 

Ap=Ac~C*(A)p. (1.6) 

[Clearly, A n  C*(A)p is a closed cone in Ah and Ap C Ac~ C*(A)p. Let ~p e A~. Then it 
follows from [5, 2.7.5i] that r ) C ~,.+. So A n  C*(A)v CAp by (1.3).] We 
will frequently use the following result. 

The bidual 92" of a C*-algebra 91 is a unital C*-algebra; 

via the evaluation map one can identify 91 with a subalgebra of 92". (1.7) 

Moreover 92p = (92")9n 9/. If 92 has a unit e, then e is also the unit of 92" [ 1 4, III, Sect. 
2]. 

C. Harmonic Analysis 

(General reference: 1-5] and [6].) G1, G2 denote locally compact groups, throughout. 
We define the following function spaces: 

C(G) = { f  : G~IE : f is continuous} 

Cb(G) = { f  ~ C(G) : f is bounded} 

Co(G) = { f  ~ C(G) : f vanishes at infinity} 

Co(G) = { f e C( G) : f has compact support}. 

For every complex valued function f on G we let f (x)  = f(x) ,  f (x)  = f ( x -  1), f (x)  
=f(x--x =-t-- ) (x E G). M(G) denotes the space of all bounded regular complex Borel 
measures on G. We frequently identify M(G) with the dual space of Co(G). The 
space M(G) is a unital involutive Banach algebra for convolution as multiplication 
and the involution * : p ~ t *  given by ( f ,  #*) = ( f ,  i~) ( f~  Co(G)). LI(G) is defined 
via the left Haar measure as usual. One can identify LI(G) with a closed bilateral 
ideal of M(G). The involution restricted to LI(G) is given by f * = d  -1 . f  
(f  ~ L~(G)), where A denotes the modular function of G. Since D(G) contains an 
approximate identity [5, 13.2.5], one can form the enveloping C*-algebra, which is 
denoted by C*(G). 

The pointwise ordering in M(G) is defined by the cone M(G)§ of all positive 
measures in the usual sense. Thus M(G)+ is the dual cone of Co(G)+: 
= { f  ~ Co(G ) : f ( t ) >  0 for all t e G}. The induced cone L 1 (G)+ on L 1 (G) given by 
LI(G)+ =M(G)+nLI (G)={ feLI (G) : f ( t )>O for almost all teG} defines the 
pointwise ordering on LI(G). The spaces M(G) and L~(G) are vector lattices for the 
pointwise ordering (in fact, they are complex Banach lattices [12, II, Sect. 11]). 

A positive-definite ordering on L~(G) is defined by its involutive Banach 
algebra structure. It is given by the cone 

L'(G)p=-C-d{f* * f : f ~ Ll(G)} . 

Its dual cone in L~ is 

(1.7) 

LI(G)'p = P(G) : = { f  E Cb(G) : f is positive definite}. (1.8) 
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P(G) is a closed cone in Cb(G). Its linear hull 

B(G) : = span P(G) (1.9) 

is called the Fourier-Stieltjes algebra. B(G) is the dual space of C*(G). With the 
dual norm of C*(G) it is a Banach algebra for pointwise multiplication. If G is 
abelian, then B(G)= {/i : ju e M(G)), where/ i  denotes the Fourier-Stieltjes trans- 
form o f # ~ M ( G )  and G the dual group of G. The closure of Cc(G)~B(G) in B(G) 

A(G): = Cc(G)nB(G) (I.I0) 

is a closed ideal in B(G) and called the Fourier algebra. If G is abelian, then A(G) 
={f: feD(d)} .  

The pointwise ordering on B(G) and A(G) is defined by the cones 

B(G)+={ueB(G):u(t)>O for all teG}, (1.11) 

A(G) + = A(G)c~B(G) +. (I. 12) 
Note that 

Ilull~o < Ilull (u ~ B(G)) (1.13) 

[where [I II | denotes the uniform norm on Cb(G)], so that both cones are closed. 
The positive-definite ordering on B(G) (resp., A(G)) is defined by the cone P(G) 

(resp., A(G)nP(G)). 
We will frequently call a vector space with a pointwise and a positive-definite 

cone a biordered space. Examples are: (LI(G), LI(G)+, LI(G)p), (A(G), A(G)§ 
A(G)c~P(G)), (8(G), B(G)§ P(G)). 

A biorder isomorphism is a bijective linear mapping between two such spaces 
which preserves the pointwise and positive-definite ordering, i.e. which maps the 
pointwise positive cone onto the pointwise positive cone and the positive-definite 
cone onto the positive-definite cone. A biorder anti-isomorphism is a bij ective linear 
mapping between two such spaces which reverses these two orderings (i.e. which 
maps the pointwise positive onto the positive-definite cone and the positive- 
definite onto the pointwise positive cone). 

The left-regular representation will be denoted by2; that is, 2: G~(LZ(G)) is 
given by (2,f) (s) =f ( t -  Is) (f~ L2(G)). It can be lifted to a representation of M(G) 

- which we still denote by 2 - by means of 

, t ~ ) f  = ~ * f  ( f e  L2(G)). (1.14) 

The dual space of A(G) can be identified with VN(G), the von Neumann algebra 
generated by {2t: t e G} by means of the duality 

(u, gt)=u(t) (u~A(G),t~G). (1.15) 

Another characterization of A(G) is the-following (see [6, p. 218]): 

A(G) = {f* ~:f~ L2(G), g ~ L2(G)}. (1.16) 

The duality (1.15) between A(G) and VN(G) is then given by 

< ( f ,  #-) v, T> = (Tflg) (f, 9 ~ L2(G)) (1.17) 
[6, (3.11)3. 
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The dual cone of A(G)~P(G) is 

(A(G)~P(G))'= VN(G)p(= { T~ VN(G) : (TflJ')>O for all f e L2(G)}). 
(1.18) 

2. Orderisomorphisms of Group Algebras 

It has been proven in [2] that the biordered space (LI(G), LI(G)+, LI(G)p) is a 
complete isomorphism invariant for G. Here the positive-definite ordering is 
defined by the cone L 1 (G)p : = F6 {f* * f :  f ~ L I(G)}. However, there exists another 
interesting positive-definite ordering on LI(G), which is defined by the cone 

LI(G)ap : = { f  e Ll(G) : 2( f)  e ~(LZ(G))p}. (2.1) 

Here 2(f) is the operator on LZ(G) given by 9-- ' f* 9 (9 E L2(G)). Recall: ~(LE(G))p 
= {T~ Lf(LE(G)):(Tf[f)>0 for all f ~  LZ(G)}. The purpose of this section is to 
prove that in the above statement, we can replace the cone LI(G)p by L~(G)xp; i.e. 
we will show that the biordered space (L ~ (G), L ~(G) +, L l(G)ap) is also a complete 
invariant. The precise statement is the following. 

Theorem 2.1. Let T: LX(G1)~L~(Gz) be a bijective, linear operator such that 

TL~(G1)+=L~(G2)+ and TLa(G1)ap=L~(G2)xr. 

Then there exist a topological group isomorphism or anti-isomorphism fl : G2~G1 
and a constant d > 0 such that 

( Tf) (t) = d . f (fl(t)) (t e G2,f  e L'( G O) (2.2) 

in the case that fl is an isomorphism and 

(Tf)  (t) = d. A (t)- a f (fl(t)) (t ~ G2, f ~ L'(G1)) (2.3) 

if fl is an anti-isomorphism, where A denotes the modular function of G 2. 

We will now describe the cone LI(G)xp in more detail. If we denote by 
C~(G) : = {2(f) : f ~  LI(G)}- C s162 the reduced enveloping C*-algebra of 
LI(G), then we can identify LI(G) with a subalgebra of C*(G). So we have 

LI(G)ap = C*(G)pC~D(G). (2.4) 

The dual space of C'~(G) can be identified with Ba(G), the space of all coefficient 
functions of those unitary representations of G which are weakly contained in the 
left-regular representation. Bz(G) is a closed ideal in B(G) which contains A(G) (see 
[6, 2.16]). The dual cone of C'~(G)p in B).(G) is 

C*(G); = P( G)c~Ba( G) =" P a( G) (2.5) 

(see [6, 2.6]). As a consequence of (2.5), the dual cone of La(G)ap in L~(G) is 

L ~ ( G)'ap= p a( G) . (2.6) 

Proof of (2.6). Consider the real Banach spaces C*(G)h = {x ~ C*(G):x = x*}, 
U(G)h =- LI(G)nC*(G)h, L~(G)h = {9 e L~(G) : 9 = 0} and Ba(G)h : = Ba(G) 
c~L~(G)h. Then LI(G)'h = L| and C*(G)'h=B~(G)h. Moreover, LI(G)apCLX(G)h 
and L~(G)], [ C LI(G)'p = P(G)] c L~(G).. It follows from (2.5) and (1.2) that C*(G)p 
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= {x e. C*(G):(x ,  u)>=0 for all u ~ P~(G)). Thus LJ(G)~p= C*(G)pcaLI(G) is the 
predual cone of P~(G). It follows from (1.4) that LI(G)'~p is the ~r(L~(G), LI(G))- 
closure of P~(G). But Pa(G) is a(L~176 Ll(G)h)-closed by [5, 18.3.5]. [] 

Since G is amenable ffand only ifP~(G) = P(G) ([7, p. 61], see also [5, 18.3.6]), 
we obtain as a consequence of (2.6): 

G is amenable if and only ff LI(G)~p = LI(G)p. (2.7) 

It follows from [5, 13.4.4 and 13.7.4] that for (p ~ L~(G)c~C(G) 

~p e Lt(G)~p if and only if d lj2~p ~ P(G). (2.8) 

We will need the following properties of P(G). 

The topology of compact convergence coincides with a(L~(G), Ll(G))(2.9 ) 

on uniformly bounded subsets of P(G) [5, 13.5.23. 

Moreover, P~(G) can be described as follows. Let u ~ P(G). Then 

u ~ P~(G) ff and only if there exists a net (ki) C C~(G) 
such that u = c -  lim k~ */~i, (2.10) 

where c - l i r a  is the limit for the topology of compact convergence ([5, 18.3.5] or 
[-6, 1.25]). In particular, 

For u ~ P~(G), there exists a net (ui) in A(G)nP~(G) 

such that sup Iiuill ~ = sup ui(e) < oo and 
i i 

c -  lira ui = a(L~~ L I(G)) - lim ui = u . (2.11) 
i i 

[In fact, let ui=ki*ki. Then uieA(G)nP~(G ) and u = c - l i m u v  In particular, 
i 

u(e) = lira ui(e ). So there exists i 0 such that sup 11 ui ]1 co = sup ui(e ) < co. Thus the net 
(u~)~ ~ io satisfies ( 2 . 1 1  ) . ]  i >: io i_> io 

For the proof of Theorem 2.1 we need to characterize the evaluation 
functionals 6t E Bx(G)" (t e G) defined by (u, 6t) = u(t) (u ~ Ba(G)). The following 
definitions will be convenient. 

Definition 2.2. Let ~p e B~(G)'. We call ~p p-continuous if for every net (u~) in P~(G) 
such that sup [lu~l[~o < oo and u E Px(G) a(L~176 Ll(G)) - l im u~=u implies that 
lim (ui, ~p) ~ (u, cp). i 

t 

Since spanPx(G)=Ba(G ) [6, (2.6)], it follows from (2.11) that 

if ~o E Ba(G)' is p-continuous~ then ~PlAt~ = 0 implies q~ = 0. (2.12) 

Definition 2.3. Let tp ~ Bx(G)+. Then ~p is called a p-atom if ~p is p-continuous and 
for every p-continuous ~p ~ Bx(G)+, to< ~p implies that lP = c.tp for some constant 
c~_0. 

Here we let Ba(G)+=B(G)+~Bx(G). Moreover, ~<q~ means that 
cp - u ~ B~(G)'+. 



An Order Theoretical Characterization of the Fourier Transform 337 

Lemma 2.4. Let r e Bx(G)'+. Then ~o is a p-atom if and only if  ~o = c.  6t for some 
t e G and some constant c > O. 

Proof. Let ~0 = fit- It follows from (2.9) that q~ is p-continuous. Let ~p e Ba(G)'+ be 
p-continuous such that vg < q~. Consider Wo = tPlAt~). Then it follows from [1, 4.1] 
that suppw0 C {t} (see [6, (4.5)] for the definition of the support). By [6, (4.9)], this 
implies that ~o = c .  6~la~). Hence by (2.12), ~p = c .  6~. We have shown that 6t is a 
p-atom. Conversely, assume that q~ e Ba(G)'+ is a p-atom. We show that suppq~o 
contains at most one point (where ~o o = ~0[at~)). Indeed, if this is not the case, then 
there exist tl, t2 e supp~o o such that t~ ~ t~. Let U be an open neighborhood of t2 
such that t~ r t?. There exists u ~ A(G)+, which is a linear combination of functions 
in Pa(G), such that u(tO = 1, u(t) = 0 for all t e U and u(t) < 1 for all t e G [6, (3.2)]. 
Consider v; ~ B ~ ( G)" defined by ( v, ~ ) = ( u . v, tp ) ( v e B ~ ( G) ). Since u e spanP~(G), 
it follows that v? is p-continuous [use (2.9)]. Moreover, 0<W<~o. Since ~o is a 
p-atom, there exists c > 0  such that q~=c-~. Since t2esupptr there exists 
u2 e A(G) such that u2(t) =0  for all t r  U and (u 2, ~0) ~:0 [6, (4.4)]. Then (u2, ~P) 
= (u.  u 2, ~o) = (0, ~o) =0.  Consequently, c =0. But since t t e supp ~o o and u(t~) = 1, 
it follows that ~p ~:0 [6, (4.4) (ii}], which is absurd since ~p =c.~0 =0. 

We have proved that supp q~o contains at most one point. This implies that 
~0 = c '  fit for some c>0 ,  t e  G by [6, (4.9) and (4.6)]. From (2.12) it follows, that 
~0=c. ~. [] 

Proof of Theorem 2.1. Let T:LJ(G1)~L~(G2) be bijective and linear such that 
TLI(GI)+ = LI(G2)+ and TL~(G1)av = Ll(G2)zv. Then Tis continuous [12, II, 5.3]. 
It follows from (2.6) that T'Pa(G2)=P~(G~), hence T'B~(G2)=Ba(G~). Let 
S:Ba(Gz)~Ba(G~) be the restriction of T'. Then S is continuous for the uniform 
topology and satisfies SPz(Gz)= Pa(G~). This implies that S' maps p-continuous 
functionals onto p-continuous functionals. Moreover, since TL ~(G1) + = L~(G2) +, 
it follows that SBx(Gz)+ = B~(G1)+ and consequently, S r is an order isomorphism 
for the pointwise ordering (i.e. S'Ba(G~)~ =B~(G2)'+). It follows that S' maps 
p-atoms onto p-atoms. Consequently, by Lemma 2.4, for every t e G~ there exist 
ct(t) e G2 and c(t) > 0 such that S'6 t = c ( t ) t ~ { t ) .  Thus S : Ba(G2)~Ba(G1) is given by 
(Su) (t) = c(t)u(a(t)) for all t e G1, u e Bx(G2). We show that at is continuous. If this is 
not the case, there exist t o ~ G 1, a neighborhood U of ~(to) and a net (ti) in G~ 
converging to to such that ~(t~) ~ U for all i. Choose u e Bx(G2) such that u(~(to)) = 1 
and u(~t(ti)) = 0 for all i [6, (3.2)]. Then (Su) (ti) = 0 for all i, but (Su) (to) = 1. This is 
a contradiction, since Su is continuous. By the same arguments, S-  ~ is given by 
(S- iv) (s) = k(s)v([3(s)) (v ~ Bx(G), s e G2) for some k" G2---~(0, ~) and some 
continuous function ~ : G2 ~ G1. One sees easily that fl is the inverse of a, so that e is 
actually a homeomorphism. This implies that functions with compact support are 
mapped by S onto functions with compact support. Moreover, since SPa(Gz) 
=P~(GO, it follows that S is continuous (see e.g. [1,3.1]). Hence, SA(G2) 
"~ S(Ba(G2) N Co(G2) ) C S( Ba( G2)r Cc(G2)) C Bx (G1) :~ C,( GO = A(G1). Applying the 
same argument to S -  1, we see that S restricted to A(G2) is a biorder isomorphism 
from A(G1) onto A(G2). We conclude from [I, 4.3] that c ( t ) - cons t  and 0t is a 
topological group isomorphism or anti-isomorphism. Using the fact that S is the 
restriction of T', one obtains as in [2, 6.2] that T has the desired form. [] 
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Remark 2.5. We proved Theorem 2.1 by a reduction to the corresponding result for 
A(G) [1, 4.3], whereas in the case where the positive-definite ordering is defined by 
the cone Lt(G)~ [2, 6.2] the proof was a simple deduction from the analogous 
result for B(G) [2, 5.3]. Here we cannot take this path since we do not know 
whether (Bx(G), B~(G) +, Px(G)) is a complete invariant. The techniques used in [2, 
Sects. 4 and 5] for B(G) cannot be applied to Ba(G), it seems. 

3. A Characterization of the Fourier Transform 

In this section we characterize the Fourier transform for a locally compact abelian 
group G as an order anti-isomorphism from Lt(G) onto A(G). 

Proposition 3.1. Let G be an abelian locally compact group with dual group G. 
Denote by ~ : LI(G)~A(G) the Fourier transform. Then 

~-LI (G)+ = A(G)nP(0 ) ,  (3.1) 

::LI(G)p=A(G)+ . (3.2) 

Proof. (3.1) is an immediate consequence of Bochner's theorem. In order to prove 
(3.2), consider the real Banach spaces Lt(G)h= { f ~ L l ( G ) : f = f  *) and A(G)~ 
= {u ~ A(G): u(t) ~ R, for all t ~ G). Then ,~L t (G)h = A(G)= (since : ( f * )  = ( : f ) -  
for all f ~  LI(G)). The set .~'Lt(G)p is a closed cone in A(G)R. Since : ( f * f * )  
= l~ f ]  2 for all f ~  LI(G), it follows that ~,~LI(G)p = {[ul 2 : u ~ A(G)) C A(G)+. In 
order to prove the converse inclusion, by (1.3) it is enough to show that ( :LI(G)f f  
C A (G)+. Let q~ ~ (r t (G)p)', i.e. 9 ~ A((~)' and cp o .~ ~ L 1 (G)~. Then by (1.8), there 
exists q~P(G) such that ( ~ - f , ~ o ) = ( f ,  t p o ~ - ) = ( f , ~ 0 )  for all f~LI(G) .By 
Bochner's theorem there exists t~eM(d)+  such that q=/i .  Let u~A(G)+, 
f = ~ ' -  tu. Then (u, tp) = (~-f,  (p) = ( f , / i )  = I~ f ( t)  (7, t)dl~(7)dt = S f(y)dp(7) 
= Su(y)dl@)>O. Thus ~oeA(d)+. [] 

Next we characterize the commutativity of G by a property of the positive- 
definite ordering on A(G). 

Proposition 3.2. Let G be a locally compact group. The following are equivalent. 
(i) G is abelian. 

(ii) (A(G), A(G)nP(G)) is a vector lattice. 

Proof. If G is abelian, then by (3.1) #- is an order isomorphism from (L~(d), 
L~(d)+) onto (A(G), A(G)nP(G)). Since (L~(d), L~(d)+) is a vector lattice, (ii) 
follows. 

We show the converse. Consider the real Banach space A(G)h={u cA(G): 
u=a}.  Since u--.ti is an involution on A(G) [6, (3.8) and (2.6)], the dual space of 
A(G)h is VN(G)h : = {T~ VN(G) : (a, T)  = (u, T)  for all u ~ A(G)} 
= {T~ VN(G) : T* = T} (use (1.18) for the last equality). It follows from [6, (3.15)] 
that A(G)h= (A(G)nP(G))-(A(G)nP(G)). So (A(G)h, A(G)c~P(G)) is a vector 
lattice. Since the dual cone of A(G)n P(G) is VN(G)v (1.18), it follows from [ 12, II, 
4.2 and II, 4.2, Corollary 2] that (VN(G)h, VN(G)p) is a vector lattice. This implies 
that VN(G) is a commutative C*-algebra {see [13] or [3, Example 4.2.6]). 
In particular, 2~ = 2~. 2~ = & .  2~ = ;t~ and hence st = ts for all s, t e G. Thus G is 
abelian. [] 
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Theorem 3.3. Let G1, G 2 
bijective, linear mapping such that 

FLI(G1)+ = A(G2)nP(G2) 

holds. Suppose in addition that one of the following two conditions 

ELl(G1), = A(G2) + 

FLI(GI)xv = A(GE) + 

is satisfied. 
Then G 1 and G2 are abelian and there exists a topological group isomorphism 

a: Gz~G1 and a constant c > 0  such that 

(Ff) (t) = c. f(~(t)) (t ~ G2) (3.6) 

for all f ~ LI(G1), where f denotes the Fourier transformation of f. 

Proof. Since L~(G~) is a vector lattice for the pointwise ordering, it follows from 
(3.3) that A(G2) is a vector lattice for the positive-definite ordering. Hence G2 is 
abelian by Proposition 3.2. Denote by : 2  : L~(GE)~A(G2) the Fourier transform. 
It follows from Proposition3.1 and the hypotheses that : 2 1  oF is a biorder 
isomorphism from LI(G1) onto LI(G2), where the positive-definite ordering is 
defined by the cone LI(G)v when (3.4) holds, and by the cone Ll(G)xp if(3.5) holds. 
Thus it follows from [2, 6.2] in the first case and from Theorem 2.1 in the second 
that G1 is isomorphic to G:. Hence G1 is abelian as well. Let ~-1 :LZ(GI)~A(G1) 
denote the Fourier transform. Then F o ~-i- 1 is a biorder isomorphism from A(G~) 
onto A(G2). Thus by [1, 4.3] there exist a topological group isomorphism a : G2 
-~ d l and a constant c > 0 such that (F o : ~- 1)u = c. u o a for all u ~ A(G~). Hence F 
is given by (3.6). [] 

be locally compact groups and F:LI(GI)~A(G2) a 

(3.3) 

(3.4) 

(3.5) 

4. Order Isomorphisms of Measure Algebras 

The purpose of this section is to show that also M(G) can be considered as a 
biordered vector space which is a complete isomorphism invariant. The proof will 
be given by reduction to the corresponding results ([-2, 6.2] and Theorem 2.1) for 
LX(G). 

There are two canonical positive-definite orderings on M(G). The correspond- 
ing cones are given by 

M(G)v = b-6 {#* * p : p ~ M(G)} (4.1) 
and 

M(G)~ v = {p e M(G): 2(/2) ~ .Lp(L2(G))v}. (4.2) 

Here 2(/~)~ Sf(L2(G)) is the operator defined by 2 ( # ) f =  # * f  ( f ~  L2(G)). Hence 
# ~ M(G)x v if and only if 2(#) is a positive definite operator (that is (2(#)f[f)_-> 0 for 
all f E  L2(G); this again means that ( f , f ,  #)_-> 0 for all f ~  Co(G) [5, 13.7.4]). 

Both cones are proper and closed, and clearly 

M(G)v~_Mxv(G ) . (4.3) 
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The induced cones on LI(G) are 

M(G),~LI(G) = LI(G)p, (4.4) 

M ( G)a, nL  '( G) = L l( G)zp . (4.5) 

[(4.5) follows immediately from the definitions. To see (4.4), observe that 
C: =M(G)pnLI(G)is a closed cone in LI(G). Clearly, LI(G)rCC. To see the 
converse, let ~0 ~ L ~(G); = P(G). Then by [5, 13.4.4 (ii)], q~ ~ C'. Hence L l(G)~ C C'. 
Applying (1.3) to the real Banach space LI(G)h with dual space L~~ 
= { f e  LI(G):f  = f }  one obtains CCLI(G)p.] 

The cones M(G)p and M(G)xp are different if G is non-amenable (since LI(G)p 
+LI(G)ap in that case [by (2.7).)] But in contrast to the situation for LI(G), one 
also has M(G)p+ M(G)~p if G is abelian and non-discrete (see: Remark 6.2). 

Now we formulate the main result of this section. Let e:GI--,G2 be a 
topological group isomorphism or anti-isomorphism. Denote by V,: C0(G2) 
--.Co(G1) the mapping f ~ f o  ~, and by (V~)': M(GO~M(G2) its adjoint. Then it is 
easy to see that V~M(G1)+=M(G2)+, V~M(Gt)p=M(G2)p and V~M(G~)~p 
= M(G2)xp. Consequently, the biordered vector spaces (M(G), M(G) +, M(G)p) as 
well as (M(G), M(G)+, M(G)ap) are isomorphism invariants. Our theorem says 
that they both are complete. 

Theorem 4.1. Let T: M(G1)--*M(G2) be a bijective linear mapping such that 

TM(G~)+ = M(G2)+ . (4.6) 

Moreover, assume that one of the following two conditions 

TM(G1)p = M(G2)p (4.7) 

holds. TM ( G~)~p ~ M(G2)xp (4.8) 

Then there exist a topological group isomorphism or anti-isomorphism e : G~ 
--*G2 and a constant c > 0  such that T=cV~,. 

For the proof of this theorem we need several intermediate results. First we 
show how LI(G) can be abstractly defined in the ordered Banach algebra (M(G), 
M(G) +, *). Recall that a subspace J of M(G) is called a lattice ideal, if for/l ~ J and 
v ~ M(G), Iv[ < I~1 implies that v ~ J. The space LI(G) is a closed lattice and algebra 
ideal in M(G). 

Proposition 4.2. L~(G) is the smallest non-zero closed lattice and algebra ideal in 
M(G). 

Proof. Let J be a non-zero closed lattice and algebra ideal in M(G). We have to 
show that L~(G)cJ. 

a) Let to ~ G. Then there exists f e J ~  Cb(G) such that f (to) 4= 0. [Indeed, if this 
is not true, then f(to) = 0 for all f ~  Cb(G)c~J. Since J is an algebra ideal, it follows 
that 

f(e)=(6,o*f)(to)=O for all f~Cb(G)c~J. (4.9) 

Let # ~ J be non-zero. Given q ~ C,(G), let f = # * q. Then f ~  J c~Cb(G). Hence 
( q, t0  = 1~ * ~l(e) = f ( e) = 0 [by (4.9)]. Since q e Cr G) is arbitrary, this implies that 
/~ =0, contradiction.] 
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b) Since span J + = J,  it follows from a) that for all t e G there exists a pointwise 
positive f e  JnCb(G) such that f ( t )>0.  Consequently, for every compact set K 

(G,  there exists f e  Cb(G)c~J+ such that i n f f ( t )>0 .  Since J is a lattice ideal in 
t~K 

M(G), this implies that Cc(G)CJ. It follows that LI(G)cJ, since J is dosed. [] 

If A 1, A2 are algebras, a bijective, linear mapping T: At ~A2 is called Jordan- 
isomorphism if T{x, y) = { Tx, Ty} for all x, y ~ A ~, where (x, y} = xy + yx. 

Corollary 4.3. Let T:M(G1)--*M(Gz) be a Jordan isomorphism such that 
TM(G1) + =M(G2) +. Then TLI(G1)=LI(G2). 

Proof Let J~ be a non-zero closed lattice and algebra ideal in M(G O. Since Tis an 
order isomorphism for the pointwise ordering, J 2 : =  T Jl is a lattice ideal in 
M(G2). By [12, II, 5.3] T -  1 is continuous, and so J2 is closed. Since T is a Jordan 
isomorphism, it follows that J2 is a Jordan ideal, i.e. {#,v}~J2, whenever 
/~ �9 M(G2), v ~ J2- Now let p e M(G2) +, v ~ (J2) +- Then 0 </x * v < {/z, v} e J2 and 
0 < v * p < {#, v} �9 J2- Since J2 is a lattice ideal, it follows that v * #, ~ * v �9 J2. Since 
spanM(G2) + = M(G2) and span(J2) § = J2, it follows that J2 is actually an algebra 
ideal. We have shown that T maps non-zero closed lattice and algebra ideals onto 
non-zero closed lattice and algebra ideals. The same is true for T -  1. Thus it follows 
from Proposition 4.2 that TLI(Gt)=LI(G2). [] 

Proposition 4.4. Let Tj : M ( G I ) ~ M ( G 2) (j = 1,2) be Jordan isomorphisms such that 
TiLl(G1) =LI(G2). I f  T l f  = T2f for all f � 9  LI(G1), then 711 = T2. 

Proof. Let # E M(G1), vj= Tfl~ (j = 1,2). Let g ~ LI(G2). Then 

{g, vl} = (g, v2} (4.10) 

[for let f = T 1-10 = T2 lg �9 LI(G1); then {0, vl} = TI {f,/~} --- T2{f,/.t} = {g, V2} since 
{f, #} e LI(G1)]. But for v ~ M(G2), g �9 Co(G2), v * g and g * v are continuous 
functions and v * ~(e) = (g, v) and (~ * v) (e) = (g, A - iv),  where A denotes the 
modular function of G2. Hence (4.10) implies that (g , ( lq-A- t )v l~  
= (g, (1 + A- ~)v2) for all g �9 C~(G2). This implies that v 1 = v2. [] 

An order isomorphism between unital C*-algebras which maps the identity 
onto the identity is a Jordan isomorphism 13, 3.2.3]. We will extend this result to 
certain ordered algebras. Let A be an involutive algebra and A v a cone in A. We say 
that (A, Av) is C*-ordered if A is a dense involutive subalgebra of a C*-algebra 9/ 
such that A v = 9/vnA, where 9/v denotes the usual positive cone in 9.1 (see 1 B). For  
example, 

(M(G), M(G)v) and (M(G), M(G)~v) are C*-ordered algebras. (4.11) 

[By (1.6), one can take for 9 / the  enveloping C*-algebra of M(G) in the first case, 
and by definition 9 /=  Le(L2(G)) in the second.] 

Proposition 4.5. Let (A s, A jr ) be C*-ordered algebras with identity ej (j = 1,2). I f  
T:AI~A2 is an order isomorphism such that Tel=e 2, then T is a Jordan 
isomorphism. 

For the proof we need the following result, which is a special case of [4, I, 
Sect. 6, Theorem 1]. 
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Lemma 4.6. Let E be a real ordered vector space with positive cone E+ and F a 
subspace of E. I f  for every x ~ E there exists y ~ F such that x <_<_ y then every positive 
linear form on F has a positive extension on E. 

Proof of Proposition 4.5. There exist C*-algebras 93i (J = 1,2) such that Aj is a 
dense involutive subalgebra of 93j and Ajp = 93~pC~Aj (j = 1, 2). Since e 1 ~ A 1 +, the 
hypotheses of Lemma4.6 are satisfied for E=931h, E+ =gJlp and F=Alh. Let 
f e  932r Then go : =f[a2 ~ T is a positive functional on A1. By 4.6, go has a unique 
positive extension g e 93~p. The mapping f ~ g  from 93~ into 93~p is clearly positive 
homogeneous and additive. So its linear extension defines a positive linear 

" / - - - i .  / mapping S : 932 931. In particular, S is continuous (see e.g. [1, 3.1]). Applying the 
same argument to S-  1, we see that S is an order isomorphism. Hence S': 93~--, 93~ 
an order isomorphism as well. It is easy to see that 

Tx=S'x for x~A1.  (4.12) 

In particular, S'e2 = el. By [3, 3.2.3], S'is a Jordan isomorphism. So it follows from 
(4.12) that T is a Jordan isomorphism as well. [] 

Let us call a positive measure/l e M(G) an atom, if # = c6t for some c > 0, t ~ G 
(where 6t denotes the Dirac measure in t). Then for/~ e M(G)+, it is easy to see that 

# is an atom if and only if 0 < v </1 implies v = c# 
(4.13) 

for some c > 0  for all veM(G) .  

Proof of Theorem 4.1. T is an order isomorphism for the pointwise ordering. So it 
follows from (4.13) that T maps atoms onto atoms. In particular, T6~= c. 6, for 
some t e G2, c > 0. Since 6~ E M(G1)p C M(GI)~p, it follows from assumption (4.7), 
resp. (4.8), that c-~5~ e M(G2)a~. Since 2t = 2(fit) is unitary, this implies that t = e. 
Considering c- ~ T instead of T, we can a~sume that c = 1. Then it follows from 
(4.11) and Proposition 4.5 that T is a Jordan isomorphism. From Corollary 4.3 we 
obtain that TLI(G2)=LI(G2). We can now apply [2, 6.2] [in the case of (4.7)], 
resp., Theorem 2.1 [in the case of (4.8)] to the restriction To of T to LI(GI) and 
conclude that To is given by (2.2) or (2.3). Let ~ : G1 ~ G2 be the inverse of ~ (in the 
notation of Theorem2.1). Then it is easy to see that To=c �9 V~qL~t6~ for some 
constant c > 0. Thus it follows from Proposition 4.4 that T =  c. V~'. [] 

5. A Second Look a t  B(G) 

In considering the Fourier-Stieltjes transform in the next section we will be 
concerned with a second "pointwise" cone in B(G), namely 

n(a)o = ~ { l u l  2 : u ~ B ( G ) } .  

This is the positive cone defined by the involution u ~ a  on B(G). Clearly, 

B(~),~ cB(G)+. (5.1) 

But we will see that the inclusion is proper in general. The question arises whether 
the results of [2, Sect. 5] remain true if the cone B(G)§ is replaced by B(G)~, in 
particular if the biordered vector space (B(G), B(G)~, P(G)) is a complete 
invariant. And indeed, we will prove the following. 
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Theorem 5.1. Let T:B(G1)--*B(G2) be a bijective linear mapping such that 
TB(GI)e = B(G2)e. Then TB(G1) + = B(G2) +. 

As a consequence, one obtains the following result with the help of i-2, 5.3]: 

Corollary 5.2. Let T:B(GI)~B(G2) be bijective, linear such that TB(G1), 
= B(G2)e and TP(G1)= P(Gz). Then there exists a topological group isomorphism 
or anti-isomorphism ot : G2~G ~ and a constant c > 0  such that 

Tu=c.uoo~ for all ueB(Gl) .  

Let us now show that the two "pointwise" cones are different in general. 

Proposition 5.3. I f  G is abelian and non-compact, then B(G)| 4 = B(G)+. 

Proof. Let A denote the space of all multiplicative continuous linear forms on B(G) 
and Ah = {cO e A : cO(a) = cO(u)). Then we have 

Ah= Ac~B(G)'~ (cf. 1 B). (5.2) 

By evaluation, one can identify G with a subset of A h. We show that 

G = Ahc~B(G)'+ ( = A riB(G)'+). (5.3) 

It is obvious that GC AhnB(G)'+. To see the reverse inclusion, denote by B the 
uniform closure of B(G) in Cb(G). B is a commutative C*-algebra. The space of all 
continuous multiplicative linear functionals on B can be identified with 
A~ = {cO e A : l (u ,  cON _-< Ilull ~ (u e B(G))}. A ~ is obviously a closed subset of A and 
GCA~. We can identify/3 with C(A| Since B(G) is dense in B, it follows that 

G= A ~.  (5.4) 

Moreover, 

B(G)+ c~A C A ~ . (5.5) 

In fact, let cO e B(G)'+ c~A. If u e B(G) is real valued, then 

- I l u l l ~ l - _ < u <  Ilull~l �9 

Consequently, 

hence 

- I lu l l  oo -_< (u ,  co)__< Ilull ~o; 

I(u, co)l_- < Ilull~ �9 

For arbitrary u e B(G) we obtain, 

](u, CO)] = }(Reu, ~p) + i ( Imu,  CO)[ < 2 [lull ~o. 

Thus CO is uniformly continuous. So it can be extended to a continuous 
multiplicative linear form on/~. Hence the extension has norm smaller or equal 1 
[5,83], which implies CO eA~. 

From (5.4) and (5.5) we obtain (5.3). 
We now prove the proposition. 
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By [9, Theorem 3] there exists ~0 o e A h such that q0 o ~ (~. So we conclude from 
(5.2) and (5.3) that B(G)'~ ~ B(G)'+. This implies by (1.3) (applied to the real Banach 
space B(G)l~= {ulu=a}) that B(G)+ +-B(G)o. [] 

Remark 5.4. For the Fourier algebra the situation is different. In fact, one can show 
that A(G)+ = ~-6 {lul 2 : u ~ A(G)} = A(G)c~B(G) e for every locally compact group. 
We omit the proof, since this will not be needed here. 

Concerning the proof of Theorem 5.1, the same technique as in [2, Sects. 4, 5] 
can be used. So we will not give all the details. However, a more general approach 
seems appropriate and of independent interest. 

We consider a commutative Banach algebra A with identity e. Let Ah 
= {q~ ~ A': ~o(x. y) = ~p (x) q~(y) and ~o(x) = ~o(x*) for all x, y ~ A). We assume that A h 
separates points, i.e. 

q~(x)=0 for all q~eA h implies x = 0 .  (5.6) 

We define the cone Ap =~-6{x* �9 x : x e A} (cf. 1 B). The ordered vector space (A, Ap) 
has been investigated by Kelley and Vaught [I0], and we shall use their results. It 
follows from (5.6) that the cone Ap is proper. For x ~ Ah we have 

Ilx-etl__<l implies x~Ap (5.7) 

(see [10, Sect. 2]), and consequently 

(11 x II e -  x) e Ap (x e A,). (5.8) 

(This follows from [10,1.3a)] and (1.2), since for all leA'p,  ( l [x l [e -x , f }  
= Ilxl[ I [ f t l - - ( x , f ) > O . )  

We conclude that Ap is generating, i.e., 

Ap --'Ap = A h . (5.9) 

[In fact, let x ~ Ah. Then by (5.8), (llxll e+  x) e Ap. Consequently, x = �89 + Ilxll e) 
- �89 Ii e - x )  e A p -  Ap.] 

For a e A denote by M a e s176 the multiplier given by Max = ax (x e A). The 
multiplier algebra J t (A) : = {M, : a e A} is a closed subalgebra of LP(A) and is 
isometrically isomorphic to A. 

Lemma 5.5. Let M : A ~ A be a linear mapping. Then M ~ Jr ( A) if and only if for all 
x ~ A and all rp ~ A h 

q)(x)=O implies q~(Mx)=0. (5.10) 

Lemma 5.6. Let M : A--* A be a positive linear mapping. Then M is a multiplier if 
and only if there exists a constant c > 0 such that 

M x < c x  ( x s a p ) .  (5.11) 

The proofs of these two lemmas are exactly the same as of [2, 4.1]; resp., 
[2, 4.2] if the elements of Ah take the place of the point evaluations. 

Now let A1 and A 2 be two commutative involutive Banach algebras with 
identity which satisfy the hypothesis (5.6). 
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Theorem 5.7. Let T: A 1 ~ A 2. Then T is an order isomorphism if and only if there 
exist a *-algebra isomorphism V: A i ~ A 2 and an invertible element a e A zp such that 

T = M y .  (5.12) 

Proof. Assume that Tis given by (5.12). Then rp(a- 1) = rp(a)- 1 > 0 for all cO e Ah. Let 
f e  A~p, [If I[ = 1. Then f e  ~Ah .  (This follows from E10, 2.1-1 by the Krein-Milman 
theorem.) Hence f ( a - 1 ) >  0 for all f e  A~p. This implies that a-1 ~ A2 p [by (1.2)]. 
Hence Ma is an order isomorphism. It follows immediately from the definition of 
the ordering that V is an order isomorphism. So T = M V  is an order isomorphism 
as well. The converse can be proved with help of Lemmas 5.5 and 5.6 as in [2, 
Theorem 5.2]. [] 

Remark. One might compare Theorem 5.7 with Proposition 4.5. Even though they 
have a common special case (namely if Te = e in Theorem 5.7) none of the proofs 
can be applied to the other case, it seems. 

It is clear that B(G) satisfies the assumptions made above. In fact, {rt: t e G} 
CAh (where 6,(u)=u(t) (u E B(G)) so that (5.6) holds. Hence Theorem 5.1 follows 
from Theorem 5.7 and [2, 5.1]. 

6. A Characterization of the Fourier-Stieltjes Transform 

Now we give the characterization of the Fourier-Stieltjes transform which is 
analogous to Proposition 2.1 and Theorem 2,3 for the Fourier transform. The 
proofs are based on the results of Sects. 4 and 5. 

Proposition 6.1. Let G be an locally compact abeIian group with dual (~. Denote by 
~ : M ( G ) ~ B ( d )  the Fourier-Stieltjes transform. Then ~ is bijective, linear and 
satisfies 

~ M ( G )  + = P(G), (6.1) 

~ M ( G ) p = B ( O ) , ,  (6.2) 

~M(G)~v=B(d)+  . (6.3) 

Proof of Proposition 6.1. (6.1) is Bochner's theorem. Since ~ ( p * * t 0 = l ~ l  2 

(/~ e M(G)), it follows immediately from the definitions of the cones that (6.2) holds. 
Finally, denote by R : L2(G)--}L2(G) the Plancherel transform. Then for/t e M(G), 
the operator T u = R2(#) l l -  1 on L2(G) iS given by T~f = ~ ( # )  - f  ( f e  L2(d)). This 
implies (6.3). [] 

Remark 6.2. It follows from (6.2), (6.3) and Proposition 5.3 that M(G) v 4 = M(G)ap 
for every locally compact non-discrete abelian group G. 

Proposition 6.1 shows that the Fourier-Stieltjes transform is a biorder anti- 
isomorphism from M(G) onto B(G), where one has two choices for the positive- 
definite ordering in M(G) and the corresponding pointwise ordering in B(G). The 
next theorem shows that the Fourier transform is characterized by these 
properties. Before that we need a description ofcommutativity which is analogous 
to Proposition 2.2. 
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Proposition 6.3. Let G be a locally compact group. The following are equivalent: 
(i) G is abelian 

(ii) (B(G), P(G)) is a vector lattice. 

Proof. Since the Fourier-Stieltjes transform is an order isomorphism from the 
vector lattice (M(t~), M(G) +) onto(B(G),P(G)), (i) implies (ii). Assume now that (ii) 
holds. Then B(G) '= C*(G)" is a lattice for the usual ordering of the C*-algebra 
C*(G)". It follows from I-3, Example 4.2.6] that C*(G)" is commutative. Hence 
C*(G) and consequently Li(G) are commutative as well. This implies that G is 
abelian by [-8, (20.24)]. [] 

Theorem 6.4. Let G 1, G2 be locally compact #roups. Let F : M(G1)~B(GE) be a 
bijective linear mapping such that 

FM(GI)+ =P(G2) (6.4) 

holds. Suppose, moreover, that one of the two conditions 

FM(GI) v = B(G2) ~ (6.5) 

FM(G~)xv = B(G2) + (6.6) 

is satisfied. 
Then G i and G 2 are abelian and there exists a topoto#ical #roup isomorphism 

~ : G2~Crl and a constant c > 0  such that 

F~t = c./2 o ~ (6.7) 

for all # ~ M(G1), where ft is the Fourier-Stieltjes transformation of #. 

Proof. Since (M(G1), M(GI)+) is a lattice, it follows from (6.4) that (B(G2), P(G2)) 
is a lattice. Hence G2 is abelian by Proposition 6.3. Let ~2 : M(d2)~B(G:)  denote 
the Fourier-Stieltjes transform. Then F -~o  ~-~z is a biorder isomorphism from 
M(G2) onto M(G1) where the positive-definite ordering is given by the cone M(G)p 
if (6.5) holds and by the cone M(G)av if (6.6) holds. In both cases it follows from 
Theorem 4.1 that GI and G2 are isomorphic. Hence G1 is abelian as well. Finally, 
consider the operator F o ~ I : B ( d l ) o B ( G 2 ) .  Then F o ~  -1 is a biorder 
isomorphism where the pointwise ordering is defined by the cone B(G)~ if (6.5) 
holds and by B(G)+ if(6.6) holds. It follows from Corollary 5.2 in the first case and 
from [2, 5.3] in the second that there exist a topological group isomorphism ct: G2 

d l  and a constant c > 0 such that ( F o ~ [ 1) u = c . u o ~ ( u e B ( G I ) ). Thus (6.7) is 
satisfied. [] 
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