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ABSTRACT 
Linear differential equations in Banach spaces are systematically treated with 
the help of Laplace transforms. The central tool is an "integrated version" of 
Widder's theorem (characterizing Laplace transforms of bounded functions). 
It holds in any Banach space (whereas the vector-valued version of Widder's 
theorem itself holds if and only if the Banach space has the Radon-Nikod~m 
property). The Hille-Yosida theorem and other generation theorems are 
immediate consequences. The method presented here can be applied to 
operators whose domains are not dense. 

Introduction 

The theory of  linear differential equations in Banach spaces and one- 

parameter  semigroups of  operators has been st imulated to a large extent by the 

theory of  Laplace transforms. In 1934 Widder  [27] had proved the following 

characterization of  Laplace transforms of  real-valued bounded functions. 

Let r E C~(0, ~) .  There exists f E  L 3(0, oo) such that 

~ 0  ct~ r(A) = e - ~ f ( t ) d t  (A > 0) 

i f  and only if  

sup( 12"+lr(n)(2)/n!t: 2 > 0, n E N )  < oo. 

The Hil le-Yosida theorem can be reformulated by saying that  Widder 's  

theorem holds for the resolvent o f  a densely defined operator  (cf. Section 2). 
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However, Hille's as well as Yosida's proof are of operator theoretical nature 

and make no use of Widder's theorem. 

In the present paper we investigate vector-valued versions of Widder's 

theorem and their applications to linear differential equations in Banach 

spaces. 
We show that the canonical extension of Widder's theorem to Banach space 

valued functions holds if and only if the Banach space has the Radon-  

Nikod~m property. However, an "integrated version" of Widder's theorem 

always holds (Theorem 1.1). This theorem turns out to be extremely useful to 

treat linear differential equations. 

In fact, an operator A is the generator of a C0-semigroup if and only if 

( 2 - A )  -1 is the Laplace transform of a strongly continuous function 

T: [0, oo)~Za(E) (which then is the semigroup generated by A). Thus, the 

Hille-Yosida theorem can be obtained as an immediate consequence of the 

integrated version of Widder's theorem (see Section 4). 

More generally, for each n E N U {0} we consider the class of operators A for 

which (2 - A ) - 1/2" is a Laplace transform. An operator belonging to this class 

is called generator of  an n-times integrated semigroup. The Cauchy problem 
associated with such an operator admits a unique solution for each initial 

value in D(A"). 
Once integrated semigroups had been introduced in [1] in the context of  

resolvent positive operators, Neubrander [21] investigated n-times integrated 
semigroups and obtained a characterization of their generators in the case 

when the domain is dense. 
In the present paper we obtain this generation theorem as an immediate 

consequence of the integrated version of Widder's theorem. It is remarkable 
that by our approach one also obtains generation theorems for not densely 
defined operators (this seems to be new even if n = 0; i.e., when the norm 

condition for the resovent is just the Hille-Yosida condition). 

There are many examples of generators of n-times integrated semigroups. 

Every resolvent positive operator generates a twice integrated semigroup 

and a once integrated semigroup if in addition its domain is dense. 

Among the densely defined operators the class of all operators which 

generate an n-times integrated semigroup for some n ~ N U {0} coincides with 

the class of all generators of exponential distribution semigroups in the sense 
of  Lions [ 16]. But our approach seems to be technically simpler and allows a 

more detailed analysis (classifying the Cauchy problem by the parameter 

n E N U {0}). An approach due to Sova [26] is closely related: he characterizes 
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this class of operators by a notion of well-posedness of the Cauchy problem 
where the n th primitives of the solutions depend continuously on the initial 
data. 

Finally, we come back to the starting point, the Hille-Yosida theorem. It can 
now be seen as a special case of the integrated version of Widder's theorem. In 
addition, the role of the density of the domain is clarified. It is related to the 
structure of the Banach space in the following way. Suppose that a linear 
operator A satisfies the Hille-Yosida condition 

I I 2 ( 2 - A ) - I I I  =<1 ( 2 > 0 )  

(but is not densely defined, a priori). Then A is the generator of a once 
integrated semigroup, but not of a semigroup in general. However, if the 
Banach space has the Radon-Nikod~m property, then A generates a contrac- 
tion semigroup (T(t))t>o which is strongly continuous for t > 0 (but not a 
Co- semigroup in general). Finally, if E is reflexive, then A has dense demain 
and thus generates a C0-semigroup. 

1. The vector-valued version of Widder's theorem 

Let G be a Banach space and fi [0, ~)--* G be a measurable function. If  
[[ f( t)  1[ =< Me wt (t >_- O) for some w E R, M >_- O, then the Laplace transform o f f  

is given by 

f/ (1.1) r(2) = e-~tf(t)dt (2 > w), 

where the integral is understood in the sense of Bochner. Widder's classical 
theorem [28, 6.8] and [27] characterizes those real-valued functions which are 
Laplace transforms of bounded functions. On arbitrary Banach spaces the 
following "integrated version of  Widder's theorem " holds. 

THEOREM 1.1. Let r: (0, o o ) ~ G  be a function. Let M >= O. The following 
assertions are equivalent. 

(i) r is infinitely differentiable and 

sup{ [[ 2"+lr~")(2)/n! [[ :2 > 0, n = 0, 1 , . . . }  =< M. 

(ii) There exists a function F: [0,oo)--- G satisfying 

F(O)=O and [ [ F ( t + h ) - F ( t ) [ [  _-<Mh (t>=O,h >0)  

such that 
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(1.1) ~0 3C r(2) = 2e-~'F(t)dt (2 > O. 

Assume that (i) holds. Let x ' E  G'. By Widder's classical theorem 
satisfying 

PROOF. 
(see [28, 6.8] and [27]) there exists f ( . , x ' ) ~ L ~ [ O , ~ )  

II f ( . ,  x') II ~ = M II x' II such that 

f0 (r(2), x ' )  = e - i f ( t ,  x ' )dt  (2 > 0). 

Define F ( .  , x'): [0, oc )~  G by F(t ,  x')  = f~ f ( r ,  x ')dr.  Integrating by parts 
one obtains 

(r(2), x ' )  = 2e-~'F(t ,  x ' )dt  (2 > O) 

Since F ( . ,  x')  is continuous, by the uniqueness theorem for Laplace trans- 
forms [28, 5.7 Corollary 7.2] one obtains that F(t ,  x ')  is linear in x ' ~ G ' .  

Moreover, 

IF(t+h,x')-F(t,x')l <=MIIx')lh ( h > O , t > O , x ' ~ G ' ) .  

Consequently, for every t >_-0 there exists F ( t ) ~ G "  such that F(t ,  x ' ) =  

(F(t) ,  x ' )  for all x ' ~ G ' .  
Assertion (ii) will be proved if we show that F ( t ) E  G (we identify G with a 

closed subspace of G" via evaluation). Denote by q: G" - ,  G"/G the quotient 
mapping. Since r(2) E G we have 

0 = q(r(2)/2) = e-~'q(F(t))dt (2 > 0). 

It follows from the uniqueness theorem for Laplace transforms that q(F(t)) = 

0; i.e., F ( t ) E G  for all t >-_0. 
The converse implication is proved as easily as in the numerical case. [] 

By the same proof one obtains the following more general result: 

COROLLARY 1.2. Let  a > 0 and r: (a, oo ) --, G be an infinitely differentiable 

funct ion.  For M > O, w E (  - oo, a] the following assertions are equivalent. 

(i) [] (2 - w)"+*r(2)(")/n! II _-<M, 2 > a ,  n = 0 ,  1, 2 , . . . .  
(ii) There exists a function F: [0, oo ) --, G satisfying F(O) = 0 and 

l i m s u p ( l / h )  l lF(t  + h ) - r ( t ) l l  <-_Me w' ( t > O )  
h~O 
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such that 

(1.2) r(2) = 2e-~F(t)dt (2 > a). 

Moreover, r has an analytic extension to {2 ~C: Re 2 > w} which is given by 
(1.2) if  Re 2 > O. 

DEFINmON 1.3. Let G be a Banach space. We say, Widder's theorem holds 
in G, if every r E C~([0, ~),  G) satisfying 

sup( II 2"+~rt")(2) In! II : 2  > 0, n = 0, 1, 2 . . . .  } < oo 

can be represented in the form 

r(2) = e-f f( t)dt  (2 > 0) wheref~L~([0,  m), G). 

Here L~([0, m), G) denotes the Banach space of all classes of measurable 

functions f: [0, ~)---- G satisfying II f l l~  :=  sup,~0 II f(t)II < ~- 

Now we want to characterize those Banach spaces G in which Widder's 
theorem holds. The fact that G -- R belongs to this class is Widder's classical 
theorem. 

THEOREM 1.4. A Banach space G has the Radon -Nikodpm property if and 
only if Widder's theorem holds. 

The Radon-Nikod~,m property has been investigated extensively, and the 
results are well documented in the treatise by Diestel-Uhl [6] to which we refer 
for further information. Every reflexive space and every separable dual space 
has the Radon-Nikod~,m property. The spaces C[0, 1], L~[0, 1] and Co do not 
possess the Radon-Nikod~m property. 

REMARK. Miyadera [I 8] proved that Widder's theorem holds in reflexive 
spaces; he showed by an example that it does not hold in .~(C[0, 0o]). 

Our proof of Theorem 1.4 is based on the following characterization of the 
Radon-Nikod~m property, which is of proper interest. 

THEOREM 1.5. A Banach space G has the Radon-Nikodypm property i f  and 
only if every Lipschitz continuous map fi [0, 1] --* G is differentiable a.e. 

Before proving Theorem 1.5 we observe the following useful consequence of 
the property formulated in the theorem. 
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LEMMA 1.6. Let G be a Banach space, M >-_ 0 and fi [0, 1 ] ~ G  a function 
satisfying 

I l f ( s ) - f ( t ) l l  <-_Mls- t [  (s, tE[0,  1]). 

I f f  is differentiable a.e., then f 'EL~([O, 1], G] and 

So' (1.3) f ( t )  = f'(s)ds (t E[0,1]). 

PROOF. There exists a set N of measure zero such that f '(s) exists for all 
sE[0,  1 ] - N .  Set f ' ( s ) = 0  for s E N .  Then f '  is weakly measurable and 
[I f '(s) 1] _-< M for all s ~[0, 1]. Sincefis separably valued, alsof '  is separably 

valued. Thusf'EL~°([0, 1], G) by Pettis' theorem [6, p. 42]. Then (1.3) holds, 
since it holds weakly. [] 

PROOF OF THEOREM 1.5. If G has the Radon-Nikod~m property, then G is 
a Gelfand space [6, IV, 3 (p. 106)] and so every Lipschitz continuous function 
with values in G is differentiable almost everywhere. 

Conversely, assume that this condition holds. By [6, V.3 Corollary 8 (p. 
138)] it suffices to show that G has the Radon-Nikod~m property with respect 
to the Lebesgue measure on [0, 1]. We use [6, III.1 Theorem 5 (p. 63)]. Let 
T: L~[0, 1]---G be a bounded linear operator. We have to show that there 
exists h GL~([0, 1], G) such that Tg = fl  g(t)h(t)dt for all gELl[O, 1]. For 
t G [0, 1] we denote by lt0,q the characteristic function of[0, t]. Letfi [0, 1] -~ G 
be defined byf(t)  = Tlt0,q. Then 

] l f ( t ) - f ( s ) l l  = tl Tits,till -<_ ]ITII I t - s l  for0=<s-<t=<l .  

It follows from the hypothesis that the derivativef'  o f f  exists a~e. Moreover, by 
Lemma 1.6,f'EL~°[(0, 1], G) andf( t)  = f~ f'(s)ds (t E [0, ll). This means that 

Tlt0,q = ~0 t f'(s)lto,tl(s)ds 

for all t E [0, 1 ]. Since the set { 1 [0,tl: t ~ [0, 1 ] } is total in L ~[0, 1 ], it follows that 

Tg = ~o' g(s) f'(s)ds 

for all gELS[0, 1]. [] 

PROOF OF THEOREM 1.4. Assume that G has the Radon-Nikod~m prop- 
erty. Let r~C~([0,  ~),  G) such that 
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M := sup{ II '%" + 'r(2)/n! ]l : n = 0, 1, 2 . . . .  ,2 > 0} < oo. 

By Theorem 1.1 there exists F:[0, oo)----G satisfying F ( 0 ) = 0 ,  

II F(s) - F(t) II --< M Is - t I (s, t > 0) such that 

f0 (1.4) r(2) = ~.e-~'F(t)dt (2 > 0). 

By Theorem 1.5 and Lemma 1.6 the derivative f ( s ) =  F'(s) exists a.e. and 

f~L®([O, oo), G). Integrating (1.4) by parts one obtains 

£" r(2) -- e-~tf(t)dt (2 > 0). 

This proves one implication. Assume now that Widder's theorem holds in G. 

We show that G has the Radon-Nikod~,m property. For that we make use of 

Theorem 1.5. Let F: [0,1]--- G satisfy ]]F(s) -F( t ) l ]  N M I s - t l  
(s, t6 [0 ,  1]). We have to show that F is differentiable a.e. Considering 

F - F(0) if necessary, we can assume that F(0) = 0. Extend F to F ~ or [0, oo) 

by letting F~(t) -- F(1) for t > 1. Define r E C~[(0, oo), G) by 

2 (1.5) r(2) -- 2e-~tF~(t)dt (2 > 0). 

Then II 2"+1r(")(2) In! 11 --<- M for all 2 > 0, n = 0, 1, 2 , . . . .  Since Widder's 
theorem holds in G by assumption, we find f~L~( [0 ,  oo), G) such that 

r(2) = e - f f ( t )d t  = 2e-f f(s)dsdt  (2 > 0). 

This together with (1.5) implies that F~'(t) = .f~ f(s)ds for all t >_- 0 by the 

uniqueness theorem for Laplace transforms. It follows from [6, II Theorem 9 
(p. 49)] that F is differentiable a.e. [] 

2. Resolvents as Laplace transforms 

Let E be a Banach space and R: (w, oo)---~(E) a function (where wER).  

We say that R is a Laplace tansform if there exists a strongly continuous 

function S: [0, ~ ) - - - ~ ( E )  satisfying II s(t) II =<-Me'~t (t _-__ 0) for some M > 0 
such that 

R(2) = e-~'S(t)dt (2 > w). 

(If we want to be more specific we say that R is the Laplace transform of S.) 
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Here we denote by fg  e-X'S(t)xdt (x ~E,  2 > w) the Bochner integral which 
coincides with the improoer Riemann integral. By fd ° e-atS(t)dt C.if(E) we 
understand the operator x---S~ e-atS(t)xdt. 

THEOREM 2.1. A linear operator A or E is the infinitesimal generator o f  a 
Co-semigroup if  and only i f  there exists w E R  such that (w, oo) Up(A) (the 
resolvent set of  A) and R: (w, oo)---,.-q~(E) defined by R(; t )= (2 - A )  -l is a 
Laplace transform. In that case R is the Laplace transform of  the semigroup 
generated by A. 

The proof of Theorem 2.1 is based on the fact that the semigroup properly 
corresponds precisely to the resolvent equation via Laplace transformation. 

PROPOSITION 2.2. Let T: [0, oo)---._q'(E) be strongly continuous such that 
I I T(t) II --< Me w, ( t > O) for some M, w E R. Let R (2) = fd ~ e - ~' T( t)dt (2 > w). 

Then (R(2))x>~ is a pseudoresolvent if  and only if  

(2.1) T(s)T(t) = T(s + t) 

PROOF. Let 2, g > w. Then 

( R ( 2  ) - R ( U ) ) / U  - 

= 5o~eta-u)tR(2)dt- 5o ~° 

(s, t >= 0). 

1/~ - 2)e (a-u)te-zT(t)dt 

= fo e- r(s)dsdt- fo'e- r(s)dsdt 

£ f/ = e(~-~)t  e-Z~T(s)dsdt 

= f o~ e-Ut f ~ e-~O-')T(s)dsdt 

= fo~e-u'  f o~e - "T ( s  + t)dsdt. 

On the other hand, 

So" f/ R~)R(2)  -- e -~" e- 'r(s)r(t)dsdt. 

So the claim follows from the uniqueness theorem for Laplace transforms. [] 

PROOF OF THEOREM 2.1. Suppose that R(2)--(2 - A )  -~ (2 > w) is the 
Laplace transform of T: [0, ~ ) ~ ( E ) .  Then T(s + t) = r(s)r(t) (s, t o) 
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by Proposition 2.2. Consequently, T(0) is a projection. If T(O)x = 0, then 

T(t)x = T(t)T(O)x = 0 for all t > 0 and so R(2)x = 0 (it > w). This implies 

x = 0. Hence T ( 0 ) = I .  We have shown that (T(t))t~o is a C0-semigroup. 

Denote by B its generator. Then 

(2 - B )  - l  = e - ~ ' r ( t ) d t  - -  (2 - A )  -~ (~ > w).  

Hence A -- B. This proves one implication. The other is well known. [] 

The Hille-Yosida theorem (or more precisely its extension due to Feller [9], 

Miyadera [ 17] and Phillips [23]) asserts that a densely defined operator A is the 

generator o fa  C0-semigroup if and only if(w, ~ )  c p(A) for some w E R  and 

(2.2) [I (2 - w)"+tg(2 ,  A)t")/m! II --< M 

for all 2 > w ,  m = 0 , 1 , . . ,  and some M>_-0. (Observe that 

R(2,A)t")/m! = ( -  1)mR(2,A)"+l.) So in view of Theorem 2.1, the Hille- 

Yosida theorem can be reformulated by saying that Widder's theorem holds 

for resolvents of densely defined linear operators. This is surprising, since 

Widder's theorem does not hold for arbitrary functions in general as we saw. 

The reason why it holds for resolvents will be made clear in the following 

(where a proof of the Hille-Yosida theorem based on the integrated version of 

Widder's theorem (Theorem I. 1) is given (see Theorem 4.2)). 

3. Integrated semigroups and their generators 

The main reason why generators of Co-semigroups are of great interest is 

that the associated Cauchy problem admits a unique solution for a large set of 
initial values. For that, however, it is not essential that R(2, A) is a Laplace 
transform; we will consider the weaker condition that R(2, A )/2" is a Laplace 
transform for some n -- 0, l, 2 . . . . .  At first we analyze this condition and give 
some consequences. In Section 4, as an extension of the Hille-Yosida theorem, 

a characterization of those operators verifying the condition is given as an 

immediate consequence of Theorem 1. l (the integrated version of Widder's 

theorem). The Cauchy problem is considered in Section 5. 

Let ( T( t))t ~ 0 by a Co- semigroup with generator A. There exist M, w E R such 

that II T(t) I[ <= MeWt (t > 0). For n ~ N  let 

(3 .1 )  S " ( t )  = (t - s ) " - ' / ( n  - 1 ) !T(s )ds  (t >= 0). 



336 w. ARENDT Isr. J. Math. 

S( t )S ( s )= l / (n -1 ) !  [ f f  +' 

(3.4) 

Then for 2 > w, 

f; (3.2) R(2, A)/2 n = e-~tS"(t)dt (2 > max(w, 0}). 

[In fact, R(2, A) -- J~ e-a'T(t)dt (2 > w). Integrating by parts n-times yields 

(3.2).1 
We are going to consider the class of operators for which 2 ~ R (2, A)/2 n is a 

Laplace transform of some function S: [0, ~)---  ~ (E ) .  Similar to Proposition 
2.7 one expects that the resolvent equation corresponds to some functional 

equation for S. 

THEOREM 3.1. Let S: [0, ~ ) ~ ¢ ( E )  be strongly continuous such that 
II s(t) II --< MeWt (t > O) for some M, w ~R. Let n ~ N  and 

f; (3.3) R(2) = 2"e-~tS(t)dt (2 > w). 

Then (R(2, A))~>w is a pseudoresolvent if and only if 

fo' ] (s + t - r)"-~S(r)dr - (s + t - r) ~- ~S(r)ds 

PROOF. Let 2,/z > w, 2 ~ / t .  Since 

R(2)12"R~)/lzn= f f f  e-at f f f  

it suffices to prove that 

(s, t _-> 0). 

e-~S(t)S(s)dsdt, 

1/~ - 2)2-"#-"(R(2)  - R ~ ) )  

__ ~tt s + t (3.5) = f0  f f  e- l/(n 1)! ( s+t - r )" - 'S ( r )ardsd t  

- £®e-~t fo~e-U~l/(n -1) ,  fo'(S + t-r)"-lS(r)drdsdt.  

Then the claim follows from the uniqueness theorem for Laplace transforms. 

But 

(/t - 2 ) -  '2-"/~-"(R (2) - R(~)) = / ~ - " ~  - 2 ) -  '(R (2)/2" - R(l-t)/lt") 

(3.6) + (u  - 2 ) - ' ~ - "  - 2-")R (#)//~". 

Replacing R (2) by R (2)/2" in the proof  of Proposition 2.2 one obtains that 
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- 2 ) - ' (R(2) /2"  - R~) / / I " )  = r |~e_Zt r |~Oe_~S(t + s )dsdt. 
dO d O  

Integrating n times by parts one obtains 

/1-"(~ - 2) -"(R(2) /2"  - R ( # ) / l t " )  

=fo~e-' f f  e-~ fo'l/(n-1),(s--r)"-IS(r + t ) d r d s d t  

= e -~'  e -u~ 1 / (n  - 1)!(s + t - r ) " - l S ( r ) d r d s d t .  

This is the first term on the right side of(3.5). It remains to compute the second 

term in (3.6). 

(.u - 2 ) -  l[/t -" - 2 - " ] R ~ ) / # "  

= - ~ R(U)/U" 
k 0 

n - 1 p ~  

= -  Y~ 2 - ~ k + ~ ) 3 o  ~ k - " e - ~ S ( s ) d s  
k=O 

= - ~ 2 - (k+ '  e - ~  (s  - - r ) " - k - l / ( n  - k -  1 ) ! S ( r ) d r d s  
k=O 

~-~o ~ 50 ~ fo ~ = - Y, e - ~ t t k / k ! d t  e - ~  (s - r ) " - k - l / ( n  - -  k - 1 ) ! S ( r ) d r d s  
k=O 

This is the second term on the right side of  (3.5). 

Note that condition (3.4) implies 

(3.7) S ( t ) S ( s )  = S ( s ) S ( t )  

and 

( 3 . 8 )  

DEFINITION 3.2. 

f: f: .(n l) e -~' e - ~  l / ( n  - 1)! Y~ (s - r ) " - k - l t k S ( r ) d r d s d t  
k=O k 

fo ~ 5o ~ fo" e -~t e - ~ l / ( n  - 1)! ( t  + s - r ) " - l S ( r ) d r d s d t .  

[] 

(s, t _>- 0) 

S ( t ) S ( O )  = 0 (t  >-_ 0). 

Let n E N .  A strongly continuous family (S( t ) ) ,~oc  
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~ ( E )  is called n-times integrated semigroup if (3.4) is satisfied and S(0) -- 0. 

M o r e o v e r ,  (S(t))t~. o is called non-degenerate i fS ( t )x  = 0 for all t > 0 implies 

x = 0. Finally, (S(t))t~.o is called exponentially bounded if there exist M, w E R  

such that II s(t) II =< M e "  for all t > 0. 

For convenience we call a C0-semigroup also O-times integrated semigroup. 

Let (S(t)),,=o be an n-times integrated semigroup, where n ~N.  Assume in 

addition that (S(t))~ _>__ 0 is exponentially bounded. Define R (2) by (3.3) (2 > w). 

Then ker R(2) is independent of 2 > w (by the resolvent equation). Hence by 

the uniqueness theorem R(2) is injective if and only if (S(t)),>=o is non- 

degenerate. In that case there exists a unique operator A satisfying (w, o~) c 

p(A) such that R ( 2 ) = ( 2  - A )  -~ for all 2 > w. This operator is called the 

generator of  (S(t)), >=o. 
Usually, the given object is the operator. Thus for n E N  tO (0}, an operator 

A is the generator of an n-times integrated semigroup if and only if (a, ~ )  c 

p(A ) for some a E R and the function 2 --- (2 - A ) - 1/2" is a Laplace transform. 

By the result of  Section 2, for the case n = 0 this is consistent with the 

definition of  the generator of  a Co- semigroup. 

PI~OPOSmON 3.3. Let A be the generator of an n-times integrated semi- 
group (S(t)),eo (where n E N  U {0}). Then for all x ~ D ( A ) ,  t > O, 

(3.9) S ( t ) x ~ D ( A )  and AS(t)x = S(t)Ax 

and 

~0 t (3.10) S(t)x = (t"/n!)x + S(s)Axds. 

Moreover, f~ S(s)xds ED(A)  for all x ~ E ,  t >= 0 and 

f' (3.11) A S(s)xds = S(t)x - (t"/n!)x. 
0 

PROOF. There exist w, M >= 0 such that ]1 S(t) Jl <-- Me~' (t ->_ 0) and 

R(2, A) = fg  2"e-~tS(t)dt (2 > w). Fix ~ Ep(A). Then 

f f  - ~'S(t)R (~, .4 )x dt = 2 - "R (2, A )R ~ ,  A )x e 

= 2 - " R ~ , A I R ( 2 , A ) x  

2 = e-~'R(,u,A)S(t)xdt foral l2  > w, x ~ E .  
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By the uniqueness theorem it follows that 

(3.12) R ~ , A ) S ( t ) =  S( t )R(I t ,A)  ~ Up(A), t >-_0). 

This implies (3.9). Let x ED(A).  Then for all 2 > w, 

f o  °~ 2" + ~e-~tt"/n !x dt = X 

= 2R(2, A)x - R ( 2 , A ) A x  

J £ -- ~" ~ 2" ÷ le-~'S(t)x dt - 2"e-~'S(t)Ax dt 
o 

yo = 1" + le-atS(t)x dt 

- fo'S(s)Axdsdt. 

Thus (3.10) follows from the uniqueness theorem. 
In order to prove (3.11) let x E E ,  t >-_ O, 2 > w. Then by (3.9), (3.10) and 

(3.12), 

fot S ( s )xds = 2R ( 2 , A ) f o' S ( s )x ds - f o' S ( s )4R ( 2 , 4 )x ds 

fOt -- 2R(2, A) S(s )xds  - S(t)R(2,  A)x  + (tn/n!)R(2, A)x.  

Hence J~ S(s)xds ~D(A)  and 

(1 - A) f o ' S ( s ) x  ds = 2 f o ' S ( s ) x  ds - S( t )x  + (t"/n!)x. 

This implies (3.11).  []  

COROLLARY 3.4. For all x E E one has S( t )x E D(A ) ( t >= 0). Moreover, let 

x E E .  Then S ( .  )x is right-sided differentiable in t > 0 i f  and only i f S ( t ) x  E 
D(A ). In that case 

JAS(t)x  + (t"-l/(r/ - -  1)!)x i fn  > O, 
(3. 1 3) (d/dsl, | 

tAS( t )x  i fn  = O. 

PROOF. For all x E E, t _-> 0 one has 
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~t t +h S(t )x  = lim ( l /h)  S(s)xds ~D(A)  
hIO 

(by Proposition 3.3). The second assertion directly follows from (3.11) since A 
is closed. [] 

4. Characterization of generators of integrated semigroups 

The following theorem immediately follows from Corollary 1.2. 

THEORV.M 4.1. Let n ~ N  U {0}, w ~ R, M > O. A linear operator A is the 

generator o f  an (n + 1)-times integrated semigroup (S(t )), ~,o satisfying 

(4.1) lim sup = ( l /h)  II S(t + h) - S(t)II ---< MeW' (t > O) 
hi0 

i f  and only i f  there exists a > max{w, 0} such that (a ,~ )  c p(A) and 

II (,l - w) IIR(#]., a ) ) / ; t" ]  II --< M 

(4.2) for all 2 > a, k = O, 1, 2, . . . . 

Now let the equivalent conditions (4.1) and (4.2) be satisfied. Because of 

(4.1), the set Fm of all x ~ E such that S( .  )x E C ~ [(0, ~) ,  E) is a closed subspace 
of E. It follows from Proposition 3.3 that F : = D ( A ) c F ~ .  For x E F  let 
T(x)x  :=  d/dt S( t )x  (t > 0). Then T(t)x E F  (as a consequence of Corollary 
3.4). Thus we obtain a strongly continuous family ( T ( t ) )  t >_o of linear operators 
on F. It follows from (4.1) that II T(t) II --< Me~t (t > 0). LetAebe the part of A 
in F (i.e., Aex = A x  for x E D ( A F ) : =  { x E D ( A ) : A x ~ F } ) .  Then (a, ~ )  C 
p(AF) and R(2, A) w (2 > a). Moreover, 

f0 f0 R(2,AF)x = 2"+~e-a'S(t)xdt = 2"e-~'T(t)xdt  (2 > a , x E F ) .  

We have proved the following. 

COROLLARY 4.2. I f  A satisfies the equivalent conditions o f  Theorem 4.1, 

then the part of  A in D(A ) is the generator of  an n-times integrated semigroup. 

In the case when D(A) is dense, we obtain the following characterization. 

THEOREM 4.3. Let A be a densely defined operator such that (a, oo) c p(A) 
for some a >0.  Let n E N  U {0}, M > O ,  w E ( - ~ , a l .  The following as- 

sertions are equivalent. 
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(i) A generates an n-times integrated semigroup (T(t))t>=o satisfying 
II T(t) II =< MeWt (t > 0). 

(ii) II (& - w)k+l[R(2,A)/2"] (k)/k! II <=Mforall2 >a ,  k = 0 ,  1, 2 . . . . .  

REMARK. The case n = 0 in Theorem 4.3 is the HiUe-Yosida theorem. 

COROLLARY 4.4. I f  a densely defined operator A generates an n-time 
integrated semigroup, then its adjoint A' generates an (n + l )-times integrated 
semigroup. 

PROOF. This follows immediately from Theorems 4.1 and 4.3 since 
R(2 ,A) '=  R(2,A'). [] 

REMARK. Theorem 4.3 has been obtained by Neubrander [21] by a differ- 
ent proof (namely by extending Kisyfiski's proof  of the Hille-Yosida theorem 
[13, p. 358] to the case n > 0 (see also the proof  of [7, Theorem 2.l.l]))'. 

REMARKS. (a) Relation to distribution semigroups. Densely defined opera- 
tors satisfying condition (ii) of Theorem 4.3 have also been considered by Sova 
[26]. In particular, it follows from [26, Theorem 3.2] that a densely d~fined 
operator A is the generator of an exponential distribution semigroup (in the 
sense of Lions [ 16]) if and only ifA generates an n-times integrated semigroup 
(S(t))t>=o for some n E N  U {0}. One can show that in that case the distribution 
semigroup T is given by 

T(q~) = ( - 1)" f o  ® 4~(")(t)S(t)dt for all b E  ~(0, ~) .  

(b) Complex characterization. It follows from Lions [16, Th6or~me 6.1] 
that a densely defined operator A is the generator of an n-times integrated 
semigroup for some n E N  U {0} if and only if there exist w > 0, m EN,  M > 0 
such that {2: Re 2 > w } c p(A) and II R (2, A) II ---< M(I + I ~- I m) whenever 
R e 2 > w .  

(c) Examples. Besides the examples for exponential distribution semi- 
groups given in the literature (see Fattorini [7] and Krein-Khazan [14] for 
further references) interesting new examples have recently been given by 

Kellermann [ 12] using explicitly the integrated semigroup for the construction. 
For example, the operator iA (where A denotes the Laplace operator) with 
maximal (distributional) domain generates a 3-times integrated semigroup on 
the spaces LP(R N) (1 < p < ~) ,  Cb(R N) and C0(R N) if N < 3 and a once 
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integrated semigroup if N = 1. However, it is well known that iA does not 

generate a C0-semigroup on any of these spaces other than L~(RN). 

Further examples are given by Neubrander [21]. For every n E N he 

constructs an operator A which generates an n-times integrated semigroup but 

not an (n - 1)-times integrated semigroup. 

We conclude this section by considering resolvent positive operators 

(cf. [ 1]). 

COROLLARY 4.5. Let E be an ordered Banach space with normal and 

generating cone (in particular, E may be a Banach lattice or a C*-algebra ). Let 

A be an operator on E such that (a, oo) c p (A) for some a E R and R (2, A ) _-> 0 

for all 2 > a. 
Then A is the generator o f  a twice integrated semigroup. I f  D(A) is dense, 

then A generates a once integrated semigroup. 

The proof is based on the following lemma. 

LEMMA 4.6. Let A be an operator and2 Ep(A). Then for all m EN ,  

(4.3) ( - 1)"2 "+ l[R(2, A)/)t](")/m! = ~ ,~kR(/t, A) k+l. 
k=0 

PROOF. This is immediate by developing [R(2,A)/2,A)/2] (") and using 
that ( - 1)kR (2, A )(k)/k! = R (2, A )k + 1 [] 

PROOF OF COROLLARY 4.5. Considering A - a  instead of A if necessary, 
we may assume that [0, oo) C p(A) and R(2, A) >_- 0 for all 2 >_- 0. Then for all 

m E N ,  

(4.4) ~ 2kR(2, A) k+t = R(0, A) - 2"R(2, A)"R(O, A) 
k=0 

as one easily deduces from the resolvent equation by induction. Consequently, 

0 =< Z~'=02kR(2, R)k+l<= R(O,A). We obtain by (4.3) that condition (4.2) is 

satisfied for n = 1 and w = 0. So the claim follows from Theorems 4.1 and 4.2. 
[] 

Using a vetor-valued version of Bernstein's theorem, it had been shown in 
[ 1] that a resolvent positive operator (i.e., an operator satisfying the hypoth- 

eses of Corollary 4.5) on certain spaces generates a once integrated semigroup 

even if its domain is not dense. The class of spaces in question includes all 
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Banach lattices with order continuous norm but not the space C(K)  

(K compact). This is shown by the following example which we owe to H. 

Kellermann. 

EXAMPLE 4.7. Let E - - C [ - 1 , 0 ] X R  and A be given by D ( A ) =  

C1[ - 1, 0] × { 0} and A(  f ,  O)= ( f ' , -  f(0)). Then p (A) = C and R (2, A)(f, c ) =  
(g, 0)with g(x )  = eaX[f ° e-aYf(y)dy + c] (2 E R). Hence A is resolvent positive. 
Let ea E C[ - 1, 0] be given by ea(x) = e zx (2 > 0, x E [ - 1, 0]). Then (ea, 0) = 

R(A,A)(0, 1). One has e~ = f ~  22e-~tktdt where k t E C  [ - 1, 0] is given by 

kt(x)  = 0 i fx  + t < 0 and k,(x)  = x + t otherwise. IfA were the generator of  a 

once integrated semigroup, than ez/2 would be a Laplace transform. Hence 

k: [0, ~ ) ~ C [ -  1, 0] would be differentiable. But (d /d t )k t (x )  is not con- 

tinuous in x if t ~ ( - 1, 0). 

5. The Cauchy problem 

Let A be an operator on E, u o ~ E ,  f E C ( [ O , b ] , E )  (where b >0) .  By a 

solution of 

P(uo, J)  
u'(t) = Au( t )  + f ( t )  

u(O) = Uo 

(t E [0, bl) 

we understand a function u E CI([0, b], E) satisfying u ( t ) ~ D ( A )  (t ~[0,  b]) 

such that the equations in P(uo, J') hold. 

Assume now that A is the generator of  an n-times integrated semigroup 
(S(t))t~=o, where n ~ N  U (0}. We first show that there exists at most one 

solution of P(uo, f) .  Consider the function v ~ C([0, b], E) given by 

jo' (5.1) v(t) = S(t)Uo + S ( s ) f ( t  - s)ds.  

PROPOSITION 5.1. I f  there exists a solution u o f  P(uo, f ) ,  then v ~  

C"+~[(0, b ], E )  and u = v {nl. 

PROOF. Let 0 < t =< b. For s E [0, t] let w(s)  = S( t  - s)u(s) .  Since u ( s ) E  

D(A) by hypothesis, we obtain from (3.10) that 

w'(s) = - (t - s)" - ' / (n  - 1)!u(s) - S( t  - s )Au(s )  + S( t  - s )u ' ( s )  

= - ( t - s ) " - ' / ( n  - 1 ) ! u ( s ) + S ( t  - s ) f ( s )  (sE[O,t]) .  

Hence 



344 w. ARENDT Isr. J. Math. 

S(t)Uo = w(O) - w( t )  

= - fo'  w'(s)ds 

= : o ' ( t - s ) " - ' / ( n  - l ) , u ( s )ds -  f o ' S ( t - s ) f ( s ) d s  

2 g = (t - s )"-~/(n  - 1)!u(s)ds - S ( s ) f ( t  - s)ds 

Consequently, 

2 v(t) = (t - s )"-~/ (n  - l ) !u(s)ds  

(t ~ [0, b]). 

(t ~ [0, b]). [] 

In order to show that a solution exists one merely has to verify that 
vEC"+l[0,  b]. 

THEOREM 5.2. I f  v EC"+~[0, b], then u :=  v C") is a solution o f  P(uo, f ) .  

REMARK. We do not require that u o E D ( A ) .  This follows automatically 
from the hypothesis. 

The proof of Theorem 5.2 is based on the following lemma. 

LEMMA 5.3. For every t >= 0 one has f~ v(s)ds E D ( A )  and  

2 :o (5.2) A v(s)ds = v ( t ) -  ( t " l n ! ) u o -  (t - r y t n ! f ( r ) d r  it  E[0, b]). 

PROOF. By Fubini's theorem we have 

~ '  ~ ' S ( s ) f ( r  s)dsdr 2 '  £ '  - = S ( s ) f ( r  - s)drds 

f o '  i " ' - ' S (  ) f (  )drds S r 
, ~ o  

22 
The integrand is in D ( A )  by Proposition 3.3, and using (3.11) one obtains 

2 2 A v(s)ds = S(t)uo - (t"/n!)uo + [S(t - r ) f ( r )  - (t - r ) " / n ! f ( r ) l d r .  [] 

PROOF OF THEOREM 5.2. Assume that v ~ C" + ~. Since A is closed, we may 
differentiate (5.2) (n + l)-times and obtain 
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AVk)(t) = Vk+l)(t) -- t" -k-~/ (n  - k - 1)!u0 

(5.3) 
- f j  (t - r ) " - k - V ( n  -- k - 1)! f (r)dr  

for k = 0 ,  1 , . . . ,  n - 1 and V") ( t )ED(A)  and 

(5.4) Avt"~(t) = v ~ " + ~ ( t ) - f ( t )  (t ~[0,  b]). 

Relation (5.4) shows that u :=  v t") satisfies the differential equation. Moreover, 

i fn  = 0, then S(0) = l a n d  so u(0) = v(0) = u0. If n >  0, then S(0) = 0 and so 

v(0) = 0. It follows from (5.3) that Vk)(O) = 0 for k < n, and for k = n - 1 one 

obtains V")(O) = Uo + Av (" -l)(O) = Uo. So u(0) = u0 in any case. [] 

Now we obtain the following sufficient condition o n f a n d  u0 for the existence 

of  a solution of  P(uo, f ) .  

PROPOSITION 5.4. l f  fEC"+~([O, b], E )  and uoED(A) ,  ut :=Au0 + f ( 0 ) ~  

D(A) ,  u2"=AUl + f ' ( O ) E D ( A ) , . . . ,  uk+l = A u k  + f ~ ) ( 0 ) E D ( A )  . . . . .  u, = 

Au,_  ~ + f~")(O)ED(A), then P(uo, f )  has a unique solution. 

PROOF. By (3.10) we obtain that v E C  t and 

L' 
v'(t) = t " - V ( n  - 1)!Uo + S(t)Auo + S ( t ) f (O)  + S ( s ) f ' ( t  - s)ds.  

Using the hypothesis A u o + f ( O ) ~ D ( A )  we obtain by (3.10) that v E C  2. 

Repeating the argument we finally obtain that v G C" +t[0, b] and the claim 

follows from Theorem 5.2. [] 

REMARK. If n > 0, merely a regularity assumption o n f i s  not sufficient to 

obtain solutions even ifuo = 0. For example, assume that n = 1 butA is not the 

generator of  a Co- semigroup. Then there exists x ~ E such that S( .  )x is not 

continuously differentiable. Let u0 = 0 and f ( t )  = x (t E[0, b]). Then v(t) = 

S6 S ( s )xds  (t ~ [0, hi). But u(t)  = v'(t) = S ( t ) x  is not continuously differenti- 
able. 

If  A is an operator satisfying condition (4.1), then A generates an 

(n + 1)-times integrated semigroup on E and an n-times integrated semigroup 

on F = D(A)  So if F ÷ E one may improve Proposition 5.4. We merely 

consider the case n = 0. 

PROPOSITION 5.5. Let  A be a linear operator such that (w, oo) C p(A)  for  

some w E R and 
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(5.5) sup{ l l [ (w-2 )R(A ,h ) ] " l l :A>O,n=O,  1 ,2 , . . . }<oo .  

Let fEC2[O, b]. I f  uoED(A) and 

(5.6) Auo + f(O)EO(A), 

then the problem P(uo, f )  has a unique solution. 

We have to show that v E C 2, where v is given by (6.1). By (3.10) we PROOF. 

have 

~0 t v'(t) = S(t)Auo + Uo + S(t)f(O) + S(s)f'(t - s)ds. 

Since A generates a Co-semigroup on D(A), S( .  )(Auo + f(0)) is continuously 

differentiable. Consequently, v' E C 1. [] 

REMARK. (a) If u is a solution of P(uo, f), then 

Auo + f ( 0 )  = u'(O) = lim t-l(u(t) - u(O))~D(A). 
t*O 

So condition (5.6) is also necessary. 
(b) Proposition 5.5 has been proved by Da Prato-Sinestrari [5] with 

different methods. 
(c) If A is an operator satisfying p(A)4: ~ such that the homogeneous 

probem has a unique solution for every uoED(A) (and not only those 

uoED(A) satisfying AuoED(A)), then D(A) is dense (see [20, A-II, 

Corollary 1.2]). 

6. The Hille-Yosida theorem on spaces with Radon-Nikodym property 

Let A be a not densely defined operator satisfying the Hille-Yosida con- 

dition 

(6.1) II (2R(A,A)) m II < M  (2 > a , m  = 0 ,  1 ,2 , . . . )  

where we assume that 0 < a, (a, ~ ) c p ( A ) .  Then by Theorem 4.1 A is the 

generator of  a once integrated semigroup (S(t))t~o. The part AF of A in 
F :  -- D(A ) is the generator of  a C0-semigroup (T(t))t ~ o on F. For x E F we have 

S(t)x = $6 T(s)xds (t >= 0). However, for x E E  \ F  the function S( .  )x is not 
differentiable at 0 [in fact, if (d/dt)tt_ o S(t)x exists, then by (3.13), 
x = (d/dt)lt =o S(t)x ED(A)]. It can even happen, that S( .  )x is not differenti- 

able at any t >___ 0 for all x ~ E \ F. 
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EXAMPLE 6.1. Let E -- Co( - ~ ,  0] and A be given by 

D ( A ) = { f E E A C ' ( - o c ,  OI:f(O)=O}, A f = f ' .  

Then (0, oc) c p(A) and 

(R(;t,A)J')(x)=e~ $ ;  e-~f(s)ds ( 2 > 0 ) .  

Hence II 2R(;t, R) II =< 1 (,l > 0). It is easy to see that A generates the inte- 

grated semigroup (S(t))t >= o given by 

I f'x+t 
[ f(s)ds for t _-< - x, 

(S(t)f)(x) = o [fxf(s)ds for t  > - x .  

Hence for t > 0 we have 

~f(x + t) for x _-< - t, 
(d/ds),,=,(S(s) f)(x) 

/0 fo rx  > - t, 

This is a continuous function in x only if f(0) = 0. Hence for any t >_- 0, S( .  ) f  

is differentiable at t if and only i f f ~D(A)  = Co( - ~ ,  0). 

However, if E has the Radon-Nikod)m property, then S( .  )x is differenti- 

able at every t > 0 for all x ~ E. In fact, the following holds. 

THEOREM 6.2. Let E be a Banach space with Radon-Nikodpm property. 
Let A be a (not densely defined) operator on E such that (a, oo) c p(A )for some 
a > 0 and such that the Hille- Yosida condition (6.1) holds. 

Then there exists a semigroup (T(t)),>o, which is strongly continuous for t > 0 
and satisfies II T(t)II --< M (t > 0)such that 

io (6.2) R(,L A) = e-a'T(t)dt (2 > a). 

Moreover, the once integrated semigroup (S(t)),,__0 generated by A is given by 

(6.3) S(t) = $o t T(s)ds. 

REMARKS. (a) The integrals (6.2) and (6.3) have to be understood strongly, 
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as Bochner integrals or equivalently Riemann integrals which are improper in 

0 and in zc in (6.2) and in 0 in (6.3). 

(b) We have l imt~oT( t )x=x  if and only if x 6 D ( A ) .  In fact, if 

l im ,~oT( t )x=x ,  then (d/dt)l,.O S ( t ) x = x  which implies x 6 D ( A )  (see 

above). The converse is clear since (T(t)lF),~o is a C0- semigroup on F = D(A). 

For the proof we need the following lemma. 

LEMMA 6.3. Let a > 0 and N C (0, a] be a set o f  measure zero such that 

s, t q~ N, s + t < a imply s + t ~ N. Then N = ~ . 

PROOF. Suppose that there exists b ~ N. Without loss of generality we can 

assume that b = a. Let x ~ (0, a ] \ N. Then a - x ~ N by assumption. Conse- 

quently ( O , a ] \ N C a - N .  Hence ( O , a ] = ( O , a ] \ N U N c ( a - N ) U N .  

This is impossible since (a - N) U N has measure 0. El 

PROOF OF THEOREM 6.2. By Theorem 4.1 there exists a strongly conti- 

nuous integrated semigroup (S(t))t> o satisfying 

II S(t) - S(s) II M It - s I 

2/ such that R(2, A) = 2e-~'S(t)dt (2 > w). 

We show that S(t)x is continuously differentiable at every t > 0 for every 

x ~ E .  
Let x E E .  Consider E0 := span{S(t)x: t >= 0}. Then E0 is separable. Let 

{x,: n ~N} be total in E0. Since Eo has the Radon-Nikod2?m property, the set 

N : =  {t El0, oc): S( .  )x, is not differentiable at t for some n ~N} 

has measure zero. Since the difference quotients of  S(t) are uniformly 

bounded, a 3e-argument shows that [0, oc) c N = {t ~ [0, oc): S( .  )y is differ- 

entiable at t for all y~Eo} .  

For t ~ N w e  let To(t)y = (d/dr)lr_eS(r)y (y ~Eo). Clearly, y ---, To(t)y defines 

a linear operator To(t) on E0 satisfying II To(t) II ~ M (t ~ N). We claim that 

(6.4) s, tq~Nimpliess  + tq~N and To(s + t)y=To(s)To(t)y (yEE.) .  

In fact, S(s)S(t)y = f~+t S(r)ydr - f~ S(r)dr - f~ S(r)dr (y ~Eo) by Theorem 
3.1. Differentiating with respect to t yields 

S(s)To(t)y = S(s + t)y (t qiN, y ~Eo). 
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Consequently, for t ~ N ,  S(r + t)y = S(r)To(t)y + S(t)y is differentiable at 

r = s whenever s ~ Nand  (d/dr)l,~s+,S(r)y = To(s)To(t)y (t, s q~ N, y EEo). We 

have shown (6.4) to hold. It follows from the preceding lemma that N C {0}. 

Since x E E  was arbitrary, we now know that S(t)x  is differentiable at all 

t > 0 for all x E E  and T(t)x :=  (d/dr)lr_~(r)x defines a semigroup (T(t))t>0 

on E. Moreover, T( .  )x is weakly measurable and separable-valued (x EE) .  

Hence (T(t))t>0 is strongly continuous at t > 0 by [11, 10.2.3]. Furthermore, 

II T(t)II =< M ( t  > 0) and S(t)x = S6 T(s)xds ( x E E ,  t > 0). Thus 

L fo R(2, A)x = 2e-~S(t)xdt = e-~'r(t)xdt 

(by integration by parts). [] 

We point out that on a reflexive space every operator satisfying the Hille- 

Yosida condition (6.1) automatically has dense domain (see e.g. [29, VII.4 

Corollary 1' (p. 218)]). On spaces with Radon-Nikod~m property this is no 

longer true, in general. The following example is due to H. P. Lotz. 

EXAMPLE 6.4. The James space Jconsists of  all sequences x = (Xk)keN in Co 

for which there exists a constant d > 0 such that 

(6.5) (Ixp,-xp2[2 + IXp2-  Xp312JV " ' "  -v IXp, - xp, 12)l/X < d 

for all n ~ N  and all natural numbers 1 < pl < P2 < • • • < Pn. It is a Banach 

space if the norm [I x II is defined as the infimum of all constants d such that 

(6.5) holds (see [15, Example 1.d.2 (p. 25)]). 

Let E = J + Re c c, where c denotes the space of  all convergent sequences 

and e the constant-1 sequence. Then E, with respect to the product norm, is a 

Banach space with the Radon-Nikod;cm property~ 

Define A on E by (Ax)k = -- kx~ (k E N) with maximal domain; i.e., D(A) = 

{ x E E :  ( -  kXk)k~NEE}. Then (0, oo) Cp(A), the Hille-Yosida condition 
(6.1) is satisfied, but D(A) is not dense. 

PROOF. Since the space of  all finite sequences is dense in J ,  the space E is 

separable. Moreover, E is isomorphic to J"  (see [ 15]), and so E has the Radon-  

Nikod~?m property as a separable dual space. 

It is obvious from the definition that l 2 c J and II x II =< 2 II x II= for all 
x ~ l  2. 

We define an auxiliary operator dc on c given by (ddC)k = -  lOCk with 

domain D ( d c ) = { x ~ c : l i m k _ . - k x ~  exists). Then ( - 1 ,  oo)cp(Ac)  and 
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(R(2, Ac)X)k = (4 + k ) -  ix  k (k E N, 2 > - 1). Consequently, R(2, Ac)E c 12 c 
J (4 > - I). The operator A is the part [22, Definition 10.3] of Ac in E. Since 

R(2,A~) leaves E invariant, it follows that ( -  1, oo)Cp(A) and R ( 2 , A ) =  

R(2, A~)le (2 > -- 1). Similarly, let As be the part of  A~ in J. Then ( - 1, oo) c 

p(As) and R (4, As) = R (2, A~)ls (4 > - 1). We show that As is the generator of a 

bounded Co-semigroup on J. This implies 

(6.6) sup{ II (2R(2, A)~s I1" 2 > 0, n = 0, 1, 2 . . . .  } < oo. 

In fact, for x E J, t > 0 let Tj(t)x = (e-t"x,),eN. Then for t > 0, Tj(t)x E l 2 c J 

for all x E J a n d  Tj(t) is a bounded operator on J(as  is easy to see by the closed 

graph theorem). Let CEJ ' .  Then ~ b E I  2 and Y-~,=I x , G  = (x, ¢) exists for all 

x E J  (since the unit vectors form a Schauder basis in J). Moreover, 

e - t " x , G = ( T s ( t ) x ,  4)) (t >0) .  
t l = l  

By Abel's classical theorem it follows that limt-0 ( Ts(t)x, ~) = (x, ¢.). Thus 

(Tj(t))t>o is weakly continuous in 0 and so a C0-semigroup [2, Proposition 

1.231. 

Since for e > 0, supt>_, II Tj(t)x II < 2 supt_>_~ II Ts(t)x 112 < oo for all x E J,  it 

follows from the uniform boundedness principle that (Ts(t))t >=o is bounded. 
Let B be the generator of(Ts(t))t>__o. Let x E J .  Then for 2 > 0 one has 

L 
oo 

(R(2, B)X)k = e-~te-ktxfflt = (4 + k)-~xk = (R(2, As)X)k (kEN) .  

Hence R(2, B) = R(2, As). This implies that B = As. 
In view of  (6.6) it remains to show that sup{ I[ O~R(2,A)) "e 1[ : 4 > 0 ,  

n = 0, 1, 2 , . . . }  < oo in order to obtain (6.5). 

It follows immediately from the definition of J that every decreasing 

sequence x E Co is in J and II x II --< 2Xl. Hence 

II (2R(2,A))"e II = II (4/(2 + k))~eN II --< 2. 

Finally, since D(A) = R(I,  A)E C 12 C J and e ~ J  = J,  the domain of A is 

not dense in E. [] 

REMARK. It is not difficult to verify Theorem 6.2 in the concrete example. 

Of  course, here T(t) is given by T(t)x = (e-tnx,),eN for all x E E. 
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7. Concluding remarks 

The technique developed here can also be used for the Cauchy problem of 
second order. In fact, it is not difficult to show that an operator A is the 
generator of a cosine function ([8], [10, Chap. 2, Sec. 7, 8] if and only if 
(a, ~ ) c p ( A )  for some a > 0  and the function 2---,R(22,A)/2:(a ~/2, ~ ) ~  
~(E)  is a Laplace transform. By similar arguments as in the proof of Theorem 
4.3 one obtains the characterization theorem due to Sova (see [8] or [10, 8.3]) 
from Corollary 1.2. 
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