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TAUBERIAN THEOREMS AND STABILITY
OF ONE-PARAMETER SEMIGROUPS

W. ARENDT AND C. J. K. BATTY

ABSTRACT. The main result is the following stability theorem: Let T =
(T(t))t>0 be a bounded Co-semigroup on a reflexive space X. Denote by A
the generator of T and by o(A) the spectrum of A. If 0(A) N<R is countable
and no eigenvalue of A lies on the imaginary axis, then lim¢—, o T(t)z = 0 for
all z € X.

1. Introduction. The asymptotic behavior of solutions of a differential equa-
tion is frequently related to spectral properties of the underlying operator. This is
well illustrated by the following classical theorem due to Liapunov.

Let A be an n X n-matrix. Then lim; , u(t) = 0 for every solution w of the
differential equation

u'(t) = Au(t) (t>0)

if and only if the spectrum of A lies in the open left half plane.

In this paper we discuss generalizations of this theorem to infinite dimensions.

Let T = (T(t))t>0 be a Cp-semigroup on a Banach space X. We say T is stable
if imy_, oo T'{t)z = 0 for all x € X. This means that the generalized solutions of the
differential equation u'(t) = Au(t) (¢t > 0) tend to 0 with ¢ — oco.

Our aim is to find spectral conditions on A which imply the stability of T .

There are two features which differ greatly from the finite dimensional case.

1. If T is stable, then A has no eigenvalues on the imaginary axis, but it can
happen that o(A) NiR # &.

2. The spectral mapping theorem does not hold in general. In particular, it can
happen that Re A < 0 for all A € o(A) (or even o(A) = & [12]) but T is unbounded
(see the discussion in [8, A-IIT]).

However, assuming boundedness, our main result is the following (which is easiest
to formulate for reflexive spaces).

STABILITY THEOREM. Let X be reflexive. Assume that T is bounded and no
eigenvalue of A lies on the imaginary azis. If 0(A) NiR s countable, then T s
stable.

This theorem is best possible in the following sense: For any closed uncountable
set E C R we give an example of a bounded unstable semigroup on a reflexive
space such that o(A) C ¢E and Po(A) = &.
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838 W. ARENDT AND C. J. K. BATTY

In the case when o(A) N<R is empty (even if X is nonreflexive), the stability
theorem follows easily from a Tauberian theorem of Ingham [4]. Simple proofs of
special cases of Ingham’s theorem have been given by Newman [9] for Dirichlet
series, and by Korevaar [6] and Zagier [13] for Laplace transforms, each being part
of a simple proof of the prime number theorem. Our proof of the stability theorem
is based on a refinement of the techniques used by Newman, Korevaar and Zagier.

Whereas they assumed that the Laplace transform is analytic across the imagi-
nary axis, and Ingham required the Laplace transform to be continuously extendible
to the imaginary axis, our main effort consists in extending the estimates to the
case when the Laplace transform behaves irregularly at some points of the axis.

We also prove the analogous stability theorem for discrete semigroups. The
result is related to a Tauberian theorem for power series by Allan, O’Farrell and
Ransford (1], which stimulated our interest and by which our attention was drawn
to the work of Ingham, Newman, Korevaar and Zagier.

ACKNOWLEDGEMENT. One of the authors (W.A.) would like to express his
gratitude for a SERC-grant. He also thanks St. John’s College for its hospitality
and generosity during his stay in Oxford.

2. The Stability Theorem for semigroups. Throughout this section we
denote by T = (T'(t)):>0 a Co-semigroup on a Banach space X and by A the gen-
erator of T. If T is stable, then T is bounded by the uniform boundedness principle.
Hence the spectrum of A is contained in the left half-plane {} € C: Re A < 0}.

There is a condition on o(A) NsR which is necessary for stability.

PROPOSITION 2.1. If T is stable, then Ro(A) N‘R = .

Here we denote by Ro(A) the residual spectrum of A, this is by definition the set
of all A € C such that range(A — A) is not dense in X; and so, by the Hahn-Banach
theorem, Ro(A) = Po(A’), the point spectrum of the adjoint A’ of A.

PROOF. Assume that there exists s € R such that is € Ro(A). Then there
exists ' € X', o’ # 0, such that T(t)'z’ = exp(ist) - 2’ (¢ > 0). Let z € X such
that (z,z’') = 1. Then (T'(t)z,2') = exp(ist) (t > 0). Hence T is not stable. O

Usually the condition that Ro(A)NiR = & is easy to check. This is in particular
the case when X is reflexive. In fact, then the following holds.

PROPOSITION 2.2. If X is reflexive and T is bounded, then Ro(A) NiR =
Po(A)NR.

This is a consequence of the following lemma.
LEMMA 2.3. If T is bounded (and X arbitrary), then Po(A) NiR C Ro(A).

PROOF OF LEMMA 2.3. Let n € Po(A) NiR. We can assume that n = 0
(rescaling the semigroup otherwise). Then there exists u € X, u # 0, such that
T(t)u = u (t > 0). Let v’ € X’ such that (u,u’) = 1. Let ¢ be a translation-
invariant positive linear form on L0, 00) satisfying ¢(1) = 1, where 1 denotes
the constant-1-function. Define 2’ € X by (z,z') = ¢((T(-)z,v’)). Then (u,2’) =
S((T(Ju, ') = 9(1) = 1, and (T(B)z,2') = G(T( + )z, u')) = ¢((T (), u')) =
(z,2') for all z € X. Hence 2’ € D(A’), 2’ #0, and A'z’ =0. O

PROOF OF PROPOSITION 2.2. It follows from Lemma 2.3 that Po(A) NiR C
Ro(A) and (since A’ is the generator of a bounded semigroup) Ro(A) NiR =
Po(A")NiR C Ro(A’) = Po(A") = Po(A). O
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The following is our main theorem.

STABILITY THEOREM 2.4. Let T be a bounded Cy-semigroup with generator
A. Assume that Ro(A)NiR =O. If 6(A) NiR is countable, then T is stable.

We proceed with a discussion of this result. The proof will be given in the next
section.

First we show by several counterexamples that the Stability Theorem is best
possible in several respects.

EXAMPLE 2.5. (a) Let E C R be closed and uncountable. Then there exists a
unitary group U = (U(t)):er whose generator B satisfies 0(B) C ¢E, Ro(B) = .
But U is not stable (in fact, lim; , o U(t)z = 0 implies z = 0).

PROOF. There exists a nonatomic probability measure 4 on E. Let X =
L*(E,p) and (U(t)f)(s) = €**f(s) (t€R). DO

(b) The boundedness condition on T cannot be weakened considerably: The
growth bound (or type) w(T) of T is defined by w(T) = inf{w € R: ||T(t)|| < Me®?
(t > 0) for some M > 1}.

There exists a Cp-semigroup T such that w(T) =0, Re A < 0 for all A € 0(A),
but T is not stable.

PROOF. Let X = co, (T(t)z)2n—1 = exp(—t/n%+int) - (Tan—1+tz2n), (T(t)T)2n
= exp(—t/n%+int)-z2,. Then w(T) = 0. The generator A is given by (Az)2n,—1 =
(=1/n% + in)Ton_1 + Ton, (AT)an = (—=1/n% + in)zs, whenever this defines an
element in cyo. Hence 0(A) NiR = @. Now let y2,—1 = 0, Y2, = 1/n%. Then
y € D(A), |IT(t)y|| = suppen t/n? - exp(—t/n?) — e~ ! as t — oo. Thus T is not
stable. O

(c) It is not possible to find necessary and sufficient spectral conditions for sta-
bility.

In fact, let X = Cy[0,00) and (T'(¢t)f)(z) = f(z +t). Then o(4) = {) €
C: Re A <0} and T isstable. 0O

Next we give a consequence of the Stability Theorem.

COROLLARY 2.6. Let X be reflezive and T = (T(t))1>0 be a bounded Cy-
semigroup with generator A. If 0(A) NiR is countable, then X s the direct sum of
the invariant closed subspaces X and X4, where X5 = {z € X: lim;_,o0 T'(t)z = 0}
and X, = span{z € D(A): Az = Az for some X € iR}.

Moreover, the restriction of T to Xy can be extended to a bounded Co-group on
X,

PROOF. By the splitting theorem of Jacobs, Deleeuw and Glicksberg [7, Theo-
rem 4.4, p. 105] X is the direct sum of X, and a closed subspace X, which both are
invariant under T. In addition, denoting by T, and Ts the restriction semigroup
of T to Xy and Xj, respectively, and by A, and A, their generators, then the
closure of T, with respect to the weak operator topology is a multiplicative group
of operators on X,. Hence T, consists of bijective operators and consequently, Ty
can be extended to a bounded Cop-group on Xj.

Moreover, Po(As)NiR = & by construction. Since 0(As) C 0(A), it follows from
the Stability Theorem 2.4 in conjunction with Proposition 2.2 that T; is stable. O

In conclusion, we mention a case where the assumption that T is a priori bounded
can be omitted.
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PROPOSITION 2.7. Assume that T 1is eventually norm continuous (i. e. there
exists to > 0 such that limp_,o ||T(to + k) — T'(to)|| = 0).
IfRe A <0 for all X € 0(A), then T is stable.

PROOF. Since T is eventually norm continuous, the set C := {A € C: Re A >
—1} is compact (see e.g. [8, A-II Theorem 1.20]). Consequently, s(A) := sup{Re A:
A€ o(A)} <0. Hence by [8, A-III 6.6], w(T) < 0, and so lim;— ||T(¢)]|=0. O

3. Proof of the Stability Theorem. The following is our main estimate
for Laplace transforms. It is here where we use Newman’s [9] technique (see also
Korevaar [6] and Zagier [13]). Analogous estimates for power series are given by
Allan, O’Farrell and Ransford [1].

LEMMA 3.1. Let X be a Banach space and f: [0,00) — X be a bounded,
strongly measurable function. Denote by

o(z) = /0 Tetpt)dt (Rez>0)

its Laplace transform. Let tE be the set of all singular points of g on the imaginary
azis. Suppose that 0 € E. Let R >0, {; € R, 0<¢; < |§]| (7 =1,...,n) such
that the intervals (—oo, —R), (R, 00), (§; —€j,& +¢€;) (7 =1,...,n) are disjoint
and cover E. Suppose further that for j = 1,...,n there exist n; € (§; — €5, & +¢€;5)
such that

t
M; = sup /exp(—in]s)f(s)ds 7=1,...,n)
>0 [|Jo
Then
¢
lim sup /f(s)ds—g(O)H
t— o0
(3.1) 2M0 . n
Mo [0, 4123 My, o) E - [T b
j=1 7=1 k=1, k#j

where Mo = sup;>o || f(8)l,

=(1+€( l&]l) 5](6]—6) 1,
bk = (1+ €2 (1€ — &l — ;)" ER(EE —€3) ™! (k # 7).
PROOF. After renumbering, we can arrange that
—R<&—a<bi+tea1<&-e<lte<E-ea< <& te, SR

Consider g extended to a holomorphic function in a simply-connected open set U
containing {z:Re z > 0, z € 1E}, and take a contour « in U consisting of the right-
hand half of the circle |z| = R, the right-hand halves of the circles |z —2§;| = ¢;
and smooth paths «; (0 < j < n) joining —¢R to i(& —€1) (7 = 0), ¢(&; +¢€5) to
1(&+1 —€541) (0 < j <n) and (&, +€,) to ¢R (j = n) lying entirely (except at
the endpoints) within U N (Re z < 0}. Then ~ is a closed contour, which may be
taken to be simple, with 0 in its interior.
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Let
hi(z) = (1 +€2(2 — &)™ 2)E2(&F — )7,

h(z) = (1 + 22/ R?%) ]'n[ hji(z)
j=1

9¢(2) =/ e ?f(s)ds (z€C, t>0).
0
By Cauchy’s theorem,
(3.2) (9(0) — g:(0)) = 5% / h(2)(9(2) — g:(2))e* 2~ 1 dz.
v

We estimate the integral on the different parts of .
(a) On |2| = R, Re 2 > 0. If 2 = Re® (—7/2 < 0 < 7/2), then

(0(2) = gu()et¥]| = H [ pwad| <[ T e (4 1) dr

o0
< MO/ e"™Re 2 dr = My(R cosf) !,
0

|1+ 2%2/R?| = 2cos ¥, |h;(z)| < a;. Hence

(3.3)

/ h(2)(g(2) — gi(2))ez d
|z[=R; Re 2>0

2M07T L
< R jl;[laj.

(b) We c0n81der the mtegral on |z—i&;| = ;. f 2 = i&;+€e (—m/2 < 0 < 7/2),
then letting F;(¢ fo exp(—in;s) f(s) ds we obtain

l1(0(2) = ae(2))e “u
/ exp(—s(i(&, — 1) + €5¢%)) exp(—in;s)f(s) ds

et { — exp(-i(e; = my) + ) - (0

(e — 1) +56°) | ™ exp(—s(i(€; — ny) + €5¢))F(s) ds}

<M +2€JM/ (s— t)eJcosﬁds
=M,(1+2/cos8) < 3M;/cos¥,
11+ 22/R? <2, |hy(2)| = 2co80 - E1(&] — €)',

lhi(2)| S bje (k#7), 127 < (€] —e)™
Hence

/ . h(z)(g(z) — ge(2))e* 271 dz
|z—1€,|=¢,; Re 2>0

(3.4)
< & 12M;mEF (|€5] — &)1} — €))7 H by
k#]
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(c) By the bounded convergence theorem,

(3.5) lim / h(z)g(2)e?z"1dz = 0.

t—o0o

(d) Since g; is an entire function,

/ h(2)g:(2)et? 2z~ dz

YoU:+-Uvn

(3.6) = / h(2)g:(2)et? 271 dz
|z|=R; Re 2<0

; Z / h()gu(2)et=2 " dz.

|z—i€,|=¢,; Re 2<0

If z=Re? (r/2 <0< 37r/2) then

t
g (2)e=| = | | et ps)as
0
< My(R)|cos 6])~!

So estimating as in (a) we obtain

/ h(2)g:(2)et*2"1 d
|z|=R; Re 2<0

For z =1€; + €;¢? (1/2 < 0 < 31/2) we have

et? /0 exp(—s(i(& — ny) + €5€%)) exp(—in;s) f(s) ds

t
< MO/ e—(s—t)R cos ods
0

(3.7)

2M07T -
< i jl;[laj.

llge(2)e’|| =

exp(itn; ) F5(t) + (¢(& —ny) + 6J~eio)

: / exp(tz — s(i(€] — 1;) + £5¢°)) Fy(s) ds

t
SMj+2Eij/ e—(s—t)e,cosods
0

< 3M;/|cosb)|.

Estimating as in (b) we obtain

/ h(2)g:(2)et? 2" dz
|z—1€,|=€,; Re 2<0

<€j'12Mj'ﬂ'€?'(|€j|—€] § —-6 IHka
Now (3.1) follows from (3.2)-(3.8). O

(3.8)

k#]

REMARK 3.2. As a particular case of Lemma 3.1 we obtain: If EN[—R, R] = &

then

(3.9 lim sup

t—oo

[ a2
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This is precisely what is proved by Korevaar [6] and Zagier [13].

PROOF OF THE STABILITY THEOREM. Let T = (T(t)):>0 be a Cp-semigroup
such that M := sup,~, ||T(¢)|| < co. Denote by A the generator of T and assume
that Ro(A) NiR = @ and that E := {n € R:in € 0(A)} is countable. Rescaling
T if necessary we can assume that 0 € E.

Let R > 0 such that +R ¢ E and let Ey = [-R, R]N E. For an ordinal a > 0
let E, be the set of all cluster points of E,—_; if ¢ is nonlimit, and E, =) s<a £8
if  is a limit ordinal.

We shall prove the following inductive statement.

Let « be an ordinal. If E, = &, then

2M
(3.10) limsup |T()) A a|| < Z-|lzl] (2 € X);
t—oo R

if E, is covered by disjoint intervals (n,; —¢;, n;+¢;) (7 =1,...,n), where n; € E,,
Inj| —€; >0, R—1|nj| —e; >0and n; £e; € E (j =1,...,n), then

(3.11) liinSuPHT(t)A_le“ < M||Us]| 2M|[Uz| ﬁ

n n
+487M Y |[Uszl| [ngles (Ing| — 5) ™ (n] — )™ [ By

Jj=1 k=1
k#j

Y IJ[ () -1
ﬁ[ () -]

KZ)
(1+e2(R—In;)~*)m3(n? —e2) ™,
ﬂjk = (1+ep(lny —mel — &) mimi —en)™ (kK #7).

Once this statement has been established, the theorem is proved as follows.

Since E, is compact and countable, E, is either empty or contains isolated
points, so that E, = @ or E,y; # E4. Thus it follows that for some o (at most
w1), Eq = . Hence by the inductive statement, (3.10) holds. Since R > 0 can be
chosen arbitrarily large, it follows that lim;_,o, 7(t)z = 0 for all 2 € D(A). Since
D(A) is dense in X and T is bounded, this implies that T is stable.

“Thus it remains to prove the inductive statement. First, consider the case a = 0.
Take z in X, and'put f(t) =T (¢)Uz (¢ > 0). Then

where

II
<

o=

Ii

g(z) == /Ooo e T (t)Uzdt = R(z,A)Uz  (Re z>0).

Thus the singular set of g on 7R is contained in ¢E and g(0) = —A~'Uz. Further-
more,

/t f(s)ds = /t T(s)AA™Uzds =T(t)A"'Uz — A~ 'Ux.
0 0
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Hence ||T(t)A~1Uz|| = ||f0 s)ds — g(0)||. Moreover, ||f(t)|| < M||Uz|| (t > 0).
So letting U = I the assertion follows from Remark 3.2 in the case when Ey = &.
In the other case we have

/Ot exp(—ins)f(s)ds = /Ot exp(—in;8)T(s) [ <I27;I) - 1] Uz ds

t+2m/|n; |
= / exp(—in;8)T(s)U;z ds
27/ |m, |

t
—/ exp(—in;s)T(s)U;xz ds
0
t+2n/|n, |
=/ exp(—in;s)T(s)U;xz ds
t

27/ |m, |
- / exp(—in;s)T (s)U; z ds,
0

H/ exp(—in;s)f(s)ds

Thus (3.11) follows from Lemma 3.1.

Now suppose that « is an ordinal > 0 such that the statement is true for all
ordinals # < a. We show that the statement holds for «.

First case. o is a limit ordinal. Then E, = (g, Eg. If Eo = &, then
(by compactness) there exists # < « such that Eg = &. So (3.10) follows from
the inductive assumption. If E, is contained in the union of (n; — €;,7; + €;)
(7 =1,...,n) according to the statement, then (by compactness) there exists § < «
such that Eﬁ is contained in this union. So the inductive hypothesis yields (3.11).

Second case. « is a nonlimit ordinal. Suppose that E, C U}_, (n; — €5, 15 +€;5)
according to the statement. Then there are only finitely many points 9n41,...,
NMn+p € Eq_1 which do not lie in any of these intervals. Take €; > 0 (7 =
n+1,...,n + p) such that the intervals (n; —e;,n; +¢&;) ( =1,...,n+p) are
disjoint and such that n, te; € E, ;| —€; >0, R > nj|l+e; (j =n+1,...,n+p).

Then E,_; C U] 1 (77] €4y Ny +8j). Let

e=T[r ()1

v, = "ﬁ”[ (|m> 1] G=1,....,n+p).

and so
4 .
l’?Jl

k#J
Then by the inductive assumption,
oM n+p
limsup ||T(t)A~Vy|| < ”V I H
t—o00
n+p n+p
+487M >[IV yll Inle;(Ins| — €)™ (] — D)™ H Bik
j=1

k#J
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for all y € X. This is true for arbitrarily small e (j =n+1,...,n+p). Ase; =0
(j=n+1,...,n+p), one has

a; — 1 (Gj=n+1,....,n+p),
Bix — 1 (k=n+1,...,n+p, j=1,...,n+p, k#7),
Bk — (1 +exlny — nl ~*)ni(nk — e) ™"
(k=1,...,n, j=n+1,....n+p, k#J).
Hence for all y € X,

n
(3.12)  Tmsup||IT()A" vyl < 2V 2M”Vy| I
t—o00 j=1

n n
+487M Y~ [[Vyll Insle;(Ins| — &) (nF —€3)™" T Biw-
j=1 k=1
k#j

Now put W = [[;2% | [T(2r/|r;]) — I], so that V = UW, V; = U;W. Since

1 ¢ {exp(2nz/|n;|): z € Ro(A)} = Ro(T(27/In;])\{0}
(observe that the spectral mapping theorem holds for the residual spectrum, see [8,
A-I116.3]), each of the operators [T'(27/|m;|)—I] has dense range, and so W has dense
range. So for z € X, there exists a sequence (y,) in X such that lim,_,,, Wy, = z.
Applying (3.12) to y,, taking the limit for r — oo and using the fact that ||T'(¢)A7||
is bounded, we obtain (3.11).

We obtain (3.10) in the same way in the case when E, =&. O

REMARK 3.3. Let T = (T'(t)):>0 be a Co-semigroup with generator A such that
Re A <0 for all A € 0(A), Ro(A) NiR = and 6(A) NiR is countable. If instead
of boundedness of T we assume that there exists a bounded operator B commuting
with T'(¢) for all ¢ > 0 such that sup,~q ||T(¢)B|| < oo, then lim;_, ||T'(t)Bz|| =0
for all z € X. B

This is proved by a slight modification of the above. (In the inductive statement
we have to write limsup,_, ||T'(t)A~1UBz|| on the left-hand side of (3.11) and
limsup,_, ||T(t)A~!Bz|| < 2M||z||/R instead of (3.10).)

As a consequence we obtain the following: If sup,~q||T(t)z|| < oo for all z €
D(A), 0(A)NiR is countable, Ro(A)NiR = & and Re A < 0 for all A € o(A), then
lim¢—, o [|T'(¢)z|| = O for all z € D(A). This can be seen by taking B = R(), A) for
some A & 0(A) in the above statement.

REMARK 3.4 (an “individual stability result”). Let T = (T'(t)):>0 be a Co-
semigroup with generator A. Assume that Re A < 0 for all A € o(A). If z € D(A)
such that sup,sq ||T(t)Az|| < oo, then limy 00 ||T(¢ )z|| =0.

PROOF. Let f(t) = T(t)Az, g(2) = [;° e *'f(t)dt = R(z,A)Az (Re z > 0).
Then . .

Ttz =2+ / T(s) Azds = —g(0) + / f(s) ds.
0 0
So the claim follows from Remark 3.2 (i.e., from Ingham’s Tauberian theorem). O

Example 2.5(b) shows that this result is not true if merely ||T'(¢)z|| is bounded.
We do not know whether this “individual stability result” can be extended to the
case when o(A)N¢R is countable and 6(A) C {A € C: Re A <0}, Ro(A)NiR = .
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4. Two Tauberian theorems for Laplace transforms. Let f: [0,00) — X
be a bounded strongly measurable function with Laplace transform

g(z) = /Ooo e *'f(t)dt  (Re z>0).

If fot f(s)ds converges for t — oo, then it is easy to see that g(z) converges for
z €R, 2 | 0 (and the limits coincide). The converse is only true under additional
assumptions and corresponding converse results are usually refered to as Tauberian
theorems (see, e.g., Widder [11, Chapter 8]). Frequently, these conditions concern
the determining function f (a well-known sufficient condition is sup,~q ||t f(t)|| < oo
to give an example). In Ingham’s Tauberian theorem [4], however, a condition on
the generating function g is given (namely (g(z) — ¢g(0))/z should extend contin-
uously to the closed right half-plane)). We give other versions of this theorem in
which the set ¢E of all singularities of g on 7R is a null set and either g is bounded
on every bounded subset of the open right half-plane (Theorem 4.4) or

sup sup < 00

neE t>0

/t e~ f(s) ds
0

(Theorem 4.1). The power series version of the latter theorem is due to Allan,
O’Farrell and Ransford [1] (see also §5).

THEOREM 4.1. Denote by iE the set of all singularities of g on iR. Assume
that E is null, 0 ¢ E and

(4.1) M := sup sup
t>0 ne€E

< 0.

/t e f(s)ds
0

Then lim;—.co fy f(s)ds = g(0).
For the proof we shall use the following lemma.

LEMMA 4.2. Let E be a compact null set in R. Then for all € > 0 there exist
€1,...,6n €R and 0 € (0,&/n) such that the intervals (§; —0,&,+0) (j=1,...,n)
are disjoint and cover E.

PROOF. Let € > 0. Since F is a compact null set, there exist open intervals I;
(/ =1,...,m) which cover E such that 37", |I;] <e. Let 0 < 0 < g/4m.

The set F' := {¢c € R: ¢+ k20 € E for some k € Z} is a null set. Choose
c € R\F. Let K = {k € Z: (c+k20,c+ (k+ 1)20) N E # J}. Then the
intervals (¢ + k26,c + (k + 1)26) (k € K) cover E and are pairwise disjoint. Let
Ky ={k€K: (c+k20,c+ (k+1)20) c Uj~, I,}, K3 := K\K;. Since Kj has at
most 2m elements these intervals have total length card(K) - 20 < & + 2m26 < 2¢;
i.e., 0 < e/card(K) as required. O

PROOF OF THEOREM 4.1. Let R > 0 such that £R ¢ E. Let § > 0 such
that |&| > 26, R — || > 26 for all ¢ € EN[-R,R]. Let € € (0,6/2). By Lemma
4.2 there exist &1,...,&, € R, 0 € (0,&/n) such that the intervals (§; — 6,&; + 6)
( = 1,...,n) are pairwise disjoint and cover E N [-R, R]. We may assume that
(&—-0,+0NE#D(j=1,...,n). Then |§,| >6and R—|&| >6 (j =1,...,n).
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We apply Lemma 3.1 using the notation there. Since
&-(g-0)"=01-0/) <(1-62/8%)7"
<1+20%/62<1+0/5 < e/
(note that 6/6 < 1/2) and 1+ 62(R — |&;|)™2 < 1+ 6%/62 < €/ it follows that
a; <e¥/® (j=1,...,n) and so [T a0 < e2n0/6 < ¢2%/8 < ¢,
Moreover, assuming without loss of generality that &; < & < --- < &, we have
Ejtr— & —02>(2r—1)0 forre{l,...,n—j} and
& —&—r—02>(2r—1)0 forre{l,...,j—1}.

Hence

n n
[T bie = TT @ +6%(1& - &l = 0) 7)€k (€E - 0%)7 <o emD%,
k=1 k=1
k#j3 k#j3
where ¢ :=[[oo,(1+ (27' —1)72)2. So we obtain from (3.1)

< 2M0/R e+ 12Mnf -2/8 - /% . ¢ . gm0/
<2My/R-e+¢-24M[6 -c - e/®
<2My/R-e+¢c-24M/6 -c e,

lim sup s)ds — g(0)

t—o00

where Mo := sup,>, ||f(¢)||- Since € € (0,6/2) was arbitrary, it follows that
2Mo

/fds—) 20,

whenever +R ¢ E, R > 0. There exist arbitrarily large R satisfying this, so the
claim follows. O

In the proof above, we applied Lemma 3.1 with ¢; = 6 for all 5. So we did not
give the best possible estimates. In fact, one can improve (3.1) in such a way that
bjk is replaced by £2/(€2 —e2) (cf. (iv) on [1, p. 543]). Then ¢ may be replaced by
1 in the estimates above.

EXAMPLE 4.3. The condition (4.1) cannot be omitted in Theorem 4.1. In fact,
let f(t) = cost. Then g(z) = z/(22 + 1). So E = {xi}, but f; f(s)ds does not
converge for t — oo.

Whereas Theorem 4.1 is based on our main estimate Lemma, 3.1, for the next re-
sult we use another kind of modification of the Newman-Korevaar-Zagier technique
[9, 6, 13].

THEOREM 4.4. Let f: [0,00) — X be a bounded strongly measurable function,
and let

lim sup
t—o0

g(z) = /ooo e %t f(t)dt (Rez > 0)

be its Laplace transform. Assume that g is regular at 0, that the set 1E of all
singular points of g on the imaginary azis is a null set, and that for each y in
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E, g is bounded on {z € C: Re z > 0, |z —ty| < 6} for some 6, > 0. Then
limg o0 fo s)ds = ¢(0).

PROOF. Take R > 0 such that +R ¢ E. By the assumption on g, and com-
pactness, there exists ¢ > 0 such that ||g(2)|| < ¢ whenever Re z > 0, |z| < R.
Considering the holomorphic extension of g into the left half-plane, we may find an
open set U with the following properties: {z € C: Re 2 >0, |2| < R, 2 ¢E} C U,
z+1iy €U, z <2’ <0 implies 2’ + iy € U, g is holomorphic on U, ||g(2)|| < ¢+ 1
for all z € U. There is a continuous path ~g of the form

T(y) =9¢y)+iy (-R<y<R),

where ¢(y) <0 (-R<y<R), ¢(y) =0if and only if y € {xR} UE, vo(y) € U if
y & {£R}UE, ¢ is continuously differentiable on (—R, R)\E such that |¢'(y)] < 1
(v € (—R,R)\E) (observe that (—R,R)\E is the disjoint union of a countable
number of open intervals). For T > 0 put

hr(z) =eT? - (1+22/R?) -1/,
JT—/hT dZ,

where ~ is any path in the simply connected region U\{z: z > 0} from —iR to iR.
We will show that

(4.2) lim ||Jr|| =0.
T — 00

Admlttlng (4.2) for a moment, the theorem is proved as follows. Let gr(z) =

fo e~t?g(t)dt (T > 0). Since gr is holomorphic in the entire plane, two applications
of Cauchy s theorem show that

9r(0) - (0) = 5 o e a0 () — a2 2

_ 2172 / hr(2)(gr(2) — 9(2)) dz

_2_2 hr(2)(g97(2) — 9(2)) dz
Tt J|z|=R; Rez>0

1 1
+ — hTZgTZdZ+—,JT.
27t J|2)=R; Re z<0 (2)ar (%) 2me

Now the integrands can be estimated as follows:

|hr(2)| = eTRe 2. 2|Re 2|/R? (2| = R),
llg(2) —gr(2)]| <M -eTRe2/Rez  (Rez>0),
llgr(2)[| < M/|Re z| - e~ T'Re 2 (Re z < 0),

where M := sup,>q ||f(t)|[. Hence [|g(0) — gr(0)|| < 2M/R + 1/27||Jr||, and so
by (4.2), limsupy_,  ||g(0) — g7 (0)|| < 2M/R. Since R can be chosen arbitrarily
large, it follows that

T
tim [ f(s)ds = lim_gn(0) = 9(0).

T—o0 0
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It remains to show (4.2). By Cauchy’s theorem Jr is independent of the choice of
the path 4. In particular, for 0 < € < —¢(0)/R?, taking

Ye(y) = ¢(y) +e(R? —y®) +1y
we have

R
Jr = / A (1e)g(e(6) (¢ () ~ 2oy + ) dy.

Letting € | 0 and using the bounded convergence theorem, it follows that

R
Jr = / b (4())a(v() (@ () +7) dy

-R

(where the integrand is defined a.e.). Now hr(y(y)) — 0 (T — oo0) whenever y ¢ E.
Hence (4.2) follows from the bounded convergence theorem. O

5. Stability of discrete semigroups. The analogue of the Stability Theorem
2.4 for power bounded operators holds as well.

THEOREM 5.1. Let T be a bounded operator on X such that

M = sup ||T"|| < c0.
neEN

If o(T)NT s countable and Ro(T)NT =, then lim,_,oo T2 =0 for all z € X.

Here we denote by I' := {z € C: |z| = 1} the unit circle.

REMARK 5.2. As in the continuous case, on a reflexive space, the condition
Ro(T)NT = can be replaced by the condition Po(T)NT = .

The proof is based on the following estimate for power series which is due to
Allan, O’Farrell and Ransford [1].

LEMMA 5.3. Let (ay) be a sequence in X such that the power series f(z) =
ZZ":O an2™ has radius of convergence 1. Let E be the set of all singular points of
finTand F={£€R: (E—1)/(€+1) € E}. Suppose that 1 ¢ E (so that F is
compact and Ro := sup{|z|: (z —1)/(z +1) is a singular point of f} < co0). Then
for all R > Rg the following holds. If F is contained tn the union of disjoint open
intervals (§; —€j,&+¢€,) (J=1,...,m) where 0 < g; <1, |{;| +¢; < R such that
for some n; € (§, —¢€;,& +¢5),

N n
. 77:'—2) _
M, := su a - < 00 =1,...,m),
= em (250) <= G=rm
then
N
lim su a, — f(1
N—»oop nzz:o n f()
(5.1) m m
<16R*Y " Mye, [T(1+ (16 — &1 — ) 7).
7=1 k=1
k#j

For the proof we refer to Allan, O’Farrell and Ransford (proof of [1, Theorem
4]). Note that the estimate (iv) on [1, p. 543] is no longer valid, since we do not
assume that €;/ex > 1/2.
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PROOF OF THEOREM 5.1. Replacing T by AT for some A € " we can assume
that 1 g o(T). Let E={2€T: 27  €o(T)}, o ={€€R: (£E—1)/(E+1) € E}.
For a nonlimit ordinal «, let F,, be the set of all cluster points of F,_;; for a limit
ordinal & let Fy = (g, Fp. Fix R > sup{|w|:w € C, (w +1)/(w —1) € o(T)}.
We shall prove by transfinite induction the following statement:

If F, = &, then
(5.2) lim [|T"z|| =0 (z € X);

n—oo

if F, is covered by disjoint subintervals (¢; —¢;,&;+¢€;) of (-R,R) (7 =1,...,m)
such that &; & ¢; ¢ Fy, then

hmsup||T"Uz||<16(M+1 R?ZHU I —T)zlle;
7=1

Y M +ei(lee - &l —€)7?
k=1
k#j
where U = H;’l:l(/\j—T), Uj = H%n;}()‘k—T)’ )\j = (£,+z)/(§,—z) (j =1,.. .,m).
Having proved the inductive statement, we argue as follows. For some o < wy,
F, is empty. So (5.2) holds, as required.

To prove the inductive statement, first consider the case « = 0. Take z € X,
and put a, = (T™ — T"*1)Uz. Then

(5.3)

= i T -TUz=(I-2T)"'I-TUz  (]z| <1).
n=0

Thus the singular set of f is contained in E, and f(1) = Uz,
N

Z an =Y (T" =T Uz = (I -T*")Uz.

n=0

Thus ||[TN1Uz|| = || 20_ an — (1)|| Moreover,

< (M +D)||U5(I = T)zl].

& 1 ] "
a g
:‘;o i [fa' i
Now (5.3) follows from (5.1); and, in the case when Fy = &, the spectral radius of
T is less than 1, so (5.2) is trivial.

Now let o be an ordinal > 0 such that the statement is true for all 8 < a. We
have to prove that the statement is true for a.
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In the case when « is a limit ordinal we argue as in the proof of Theorem 2.4.
So assume that « is nonlimit. Assume that F, C Uj~, (& — €5, & + &) according
to the inductive statement. There are only finitely many points €41, .., Emtp i
Fo i \Uj—,(& — €5, & +¢€5). Take gj € (0,1) (j = m+1,...,m + p) such that
the intervals (§; —€5,& +¢€5) ( = 1,...,m + p) are disjoint, and &; £ ¢; € Fo.
Now Fpy_;1 C Um+p( — €4, & +¢€;). By the inductive hypothesis we obtain for all
yEeX,

m-+p

limsup ||T"Vy|| < 16(M + 1)R* > [[V;(I = T)ylle;
n—oo j=1
m+p
S+ ed(lge - &l —e5) 7
k=1
k#j

where V = ]_[m"'p( -T),V; = m'”’()\k -T).
=
Letting ; = 0 (j =m +1,...,m + p) we obtain

lim sup 7"V y]| < 16(M + 1)R? Z V5T = T)ylle;

7=1

D [+ eR(l€e - &1 &) 70
(7

(5.4)

Now, put W = [[74?  (A; = T), so that V = UW, V; = U;W (j = 1,...,m).
Since A; € Ro(T'), W has dense range. So, for any x € X, there exists a sequence
(yr) in X such that Wy, — oo (r — oo). Applying (5.4) to y,, taking the limit for
r — oo and using the fact that ||T™|| is bounded, (5.3) follows. In the case when
F, =, (5.2) is proved similarly. O

REMARK 5.4. There is a similar result due to Sz.-Nagy-Foias [10, II, Propo-
sition 6.7, p. 85]: If T is a completely nonunitary contraction on a Hilbert space
and ¢(T) NT is null, then lim,_,, "z = 0 for all z € X. The discrete version of
Example 2.5(a) shows that this result is no longer true if T" is unitary (and o(T)NT
uncountable).

The Allan, O’Farrell and Ransford Tauberian theorem for power series [1, The-
orem 4] is a generalization of a Tauberian theorem due to Katznelson and Tzafriri
[5], which has the following stability result as an easy corollary.

THEOREM 5.6 (KATZNELSON-TZAFRIRI [6]). Let T be a power-bounded op-
erator. Then lim, o ||T"T! — T"|| = 0 if and only if o(T) NT C {1}.

In the case when o(T)NT C {1} and 1 € Ro(T'), Theorem 5.1 is easily deduced
from Theorem 5.6. Similarly, if o(T') NT is finite and Ro(T) NI = &, Theorem 5.1
can be deduced from (1, Theorem 5].

We conclude this section by mentioning the relation of the discrete results with
our Stability Theorem 2.4. It may be deduced from the discrete Theorem 5.1
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provided that the spectral mapping theorem holds in the form: o(T'(t)) NT =
exp(to(A)) NT for some ¢ > 0. However, the latter may fail even in situations
where Theorem 2.4 is applicable as the following example shows.

EXAMPLE 5.5. Let @ = {z € C: 0< |z| <1} and X = Cp(Q?). Define T by
(T(t)f)(re®) = e - f(re /) (>0, r>0, 0 ER).
Then by [2, Theorem 4.4],

o(A) = |{0}U U{(—r+in/r): neZ, 0<r<1}|,
n€Z

so exp(to(A)) NT = {1}, but
o(T(t))NT = exp(to(A)) NI =T forall ¢t > 0.
It is easy to see that T is stable (either directly or applying Theorem 2.4).
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