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POSITIVE SEMIGROUPS GENERATED BY ELLIPTIC
OPERATORS ON LIE GROUPS

WOLFGANG ARENDT, CHARLES J. K. BATTY and DEREK W. ROBINSON

1. INTRODUCTION

The general theory of elliptic operators affiliated with representations of Lie
groups originated in 1960 with the unpublished thesis of Langlands [14]. (For a
statement of the principal results see [15].) Although second-order elliptic operators,
and in particular the Laplacian, were subsequently used by various authors (see,
for example, [7], [12], [21], [22], [24]) in analyzing the differential structure of repre-
scntations the geriera.l theory remained undeveloped until recently [26], [27], [1].
* Our purpose is to continue this development in two different directions. First we
discuss the characterization of second-order elliptic operators by positivity or dis-
persivity properties. Then we examine second-order opzrators with variable coeffi-
cients on function spaces and relate differentiability of the coefficients to smooth-
ness of the action of the operator resolvents, or the corresponding semigroups.
This emphasis on operators with non-constant cozfficients is the principal difference
between the current investigation and earlier work.

The motivation for the examination of elliptic operators affiliated with con-
tinuous representations of a general Lie group G comes from various sources.
Langlands 1960 work established that the closure of each strongly elliptic operator
generates a continuous holomorphic semigroup and hence he deduced that each
representation has a dense set of analytic elemients. This answered a question first
raised by Harish-Chandra [9] and provided the basis for the application of ana-
lylic arguments fo the analysis of representations. Nelson [21] independently obtain-
cd a similar result but in a slightly more restricted framework. Langlands analyzed
the semigroups gencrated by general order strongly elliptic operators whilst Nelson
only examined the simplest examples, second order Laplacians. On the other hand
Nelson also demonstrated that the integrability of a skew-adjoint representation of
a Lie algebra could be characterized in terms of generator properties of the Lapla-
cian. These results were developed later by various authors (sce, for cxample, [7],

(L2], (11, (28]).
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The Laplacian and the corresponding heat semigroup also played an important
role in the extension of Littlewood-Paley theory to Lie groups [31]. This theory is
the basis of many classical results in harmonic analysis and it is useful for a varicty
of purposes in representation theory. More recent developments occur in the work
of Varopoulos {33] which refers to other eariler work in this area.

Elliptic operators and their semigroups are also of interest for the description
of gcometric properties of manifolds principally through the analysis of spectral
properties of the associated semigroup kernels (see, for example, the recent book by
Davies [3]). Similarly in the Lie group setting one can relate properties of the semi-
groups to the geometry of the group. For example, if the group is nilpotent its dimen-
sion at infinity characterizes the rate of decay of the heat semigroup for larg:
times [34].

Other applications arise in the description of evolution phenomena for systems
with a Lie group symmetry. Such systems arc generally described by partial diffe-
rential equations formulated in a representation and stability, or conservation, pro-
perties can be expressed by ellipticity conditions. Although we principally examine
strongly elliptic operators some of these applications naturally concern elliptic,
or subelliptic, operators. The totality, and variety, of these applications indicate
the interest in developing a general theory of elliptic opzrators on Lic groups and
the current paper is a modest contribution to the theory which concentrates on
characterizing sccond-order operators by positivity properties of the corresponding
semigroup and initiating the basic theory of sccond-order operators with smooth

cocflicients. In order to be more precise we must introduce some notation, and recall
some definitions.

Let .2 be a Banach spacz, G a Lie group, and U a strongly, or weakly®, cot'-
nuous representation of G by bounded linear operators U(g), g € G, acting on .7
We fix a basis 4, , ..., a; of the Lie algebra g and define 4; (=dU(g;)) to bz the genc-
rator of the onc-parameter subgroup f € R — Y "), Then for cach n = 1, 2, .
we introduce the C*-subspace ¢, of & as

'2‘” =z n D(A,'l . Ai")-

1 qil, vy ingd

The corresponding C*-seminorms p, arc then defined inductively by py(x) = x|
and

R =sz g Vn(-\-) = Sl‘_lp Pa-- X(A ix)

t<igd

for n = 1,2, ... . The C"-norm is given by

xed,— rllr\.l;u = ..\3 + Pu(-"’)
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and £, is a Banach space with respect to |- ||,. The C®-subspace

XMoo= () Lo

nzl

is a Fréchet space with respect to the topology defined by the family of norms {|i+{l, ;
nzll

_ Next, if o = (7, ..., ) is a multi-index with «; non-negative integers and
if & =(&, ..., &)eR? we usc the standard notation la! = a, + ... + 9, and
gres E ... &Y. Then the m-th order form

{e RY Cul8) = 2 C*

a;la| € m

with cocfficients ¢, € C is defined to be strongly elliptic it

(1.1 Re((—1)"2 Y, ¢, &) = p,, &

a, |-l m

for some p,, > 0 and all £ € RY. The largest value of p,, for which this inequality
holds is called the ellipticity constant of the form C,,. Now we define the operator

(12) Ay = E caAl

a; la] € m

where A% = At ... Aj@and D(4,) = «,,. If C,, is strongly elliptic then A, is said
o be a strongly elliptic differential operator with constant coefficients.

In addition to this gzneral structure we necd some specific notation for func-
tion spaces. First, C(G) denotes the continuous functions over G, C,(G) the uniform-
ly bounded continuous functions, C,(G) the continuous functions which vanish
at infinity, and C_(G) the continuous functions with compact support. Second we
need the usual L,-spaces L,(G; dg), for p € [1, co], with respect to the left-invariant
Haar mcasure dg. At the risk of som: confusion with the foregoing C”-norm we use
II+]l, to denote the L,-norm

1, = (Sdglf(g)”)”p

G

if pe[l, vo)and |||, the supremum norm on L,,, or C,. On each of these spaces
G is represented by left translations L where

(L@ f)h)y = fg~'I)
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and the action is strongly continuous of C, and on L, for p«[l,20). On L, the
representation is weak®-continuous. Finally 7,,;,, and C,,;,, denote the C-subspaces
of L,, and C,, respectively, corresponding to the isometric representations (7.,
G, L) etc., and we set

(’b;[(G) v {_/'6 [‘00;1 n Cb, /",’f’@ Cb* [o== 1, . -.,(l}

Ch;n‘l(g) == {fﬂ Ch; 1, Aife th;”ﬂ s 1: . .,(l}

where A; = dL(g;) on L. We note that the spaces L., correspond to the usual
Sobolev spaces if G = R and the notations H,,. , and W, ,are conventionally used,
but in the present context L., appears more appropriate.

Next we consider operators with non-constant coefficients associated with
left translations [, on 4 = L(G; dg), pe[l, o), or 2" = Cy(G). Let A; = di(a))
denote the corresponding generators and define

Ap= Y A%
< m
with domain D(4,,) - 4, whete ¢, € L(G;dg)it & = L,, or ¢, € Cy(G) i & 2 CylG).
Then A, is said to be uniformly strongly elliptic if there is a p,, > 0 such that
mlRe((- 12 Y ¢ (g)C%) = p i<
HEG 11} m

for all & ¢ RY. The analysis ol such operators, particularly if #2 = 2, is the main
focus of the following scctions.

2. POSITLVITY AND DISPERSIVITY

In this scction we principally examine strongly elliptic differential operators
with bounded coefficients on C,(G) and in particular on Cy(R¥), or C,(£2) where Q
is a bounded open subsct of RY. Our interest is to analyze the implication of positi-
vity properties. Although this appears to be a rather restricted range for investiga-
tion the results have an impact for general strongly elliptic operators. We begin
with a statement of the relevant conclusion.

First recall that if 4,, is an m-th order operator associated with the strongly
clliptic form C,,, with constant coefficients, in the representation (.4, ¢, U) then

1. A,, is closable and its closure A, gencrates a holomorphic semigroup S,

2. the action of & is determined by a representation independent kernel K

Sy = SdgK,(g)U(’g),
G

which is jointly analytic in ¢ and g;
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3. there exist a, b, and @ > 0 such that

—d -~ b({]™ Him=1) (5
|K(g)] < ar™ " e MATD ¢

for all t > 0 and geG.

The first two statements werc proved by Langlands [14] and the third is esta-
blished in [27]. '

Now we derive a precise characterization of positive K and also lower bounds.

THEOREM 2.1.  The following conditions are equivalent ;
1. the kernel K is pointwise positive, i.e.

K(g) >0
Jorall t > 0 and g€ G,
2. m = 2 and the coefficients of the strongly elliptic form C, are real.
Mareover, if' G is connected and these conditions are satisfied then there exist
a, b, o > 0 siich that :
K(g) > at™ " g ettt g0t

forallt > 0and geG.

The theorem follows from a sequence of more detailed results on elliptic ope-
rators acting on C,(G). The equivalence of Conditions 1 and 2 of the theorem is
cstablished at the end of Subsection 2.2 and the lower bound on K is derived in
Subsection 2.3. Lower bounds of this type arc already known for a more restricted
class of operators [33] but we give an independent proof by different techniques.
We begin the discussion by considering properties of partial differential opera-
tors on R4,

2.1. DIFFERENTIAL OPERATORS ON CONTINUOUS FUNCTIONS. Let Q < RY
be an open set and £ a Banach space of bounded continuous functions with
the supremum norm over 2 > Q. Consider the partial differential operator

A m = Z ca(l) ¢

a; la|sm

with domain D(4,,) = C2(Q) where 9% = PR / {)é:‘ .0 /65,7", and the ¢, are
continuous functions over Q.

PrROPOSITION 2.2. If A, has an extension which generates a positive semi-
group on B then the coefficients of A, are real, ¢, = 0 for |a| > 2, and

a; laj=2

- Z ca(")éq = 0

Jor all n € Q and £ € R4,
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REMARK. An analogous result has been obtained by Miyajima and Oka-
zawa [10] (see also [17]). They consider L(Q). p «[1, co) instead of C,y(Q) and use
Kato’s inequality as a necessary condition for positivity. Their result also requires
that C2(Q) is a core of A,.

Proof. The key to the proof is the observation that 4, must satisfy the positive
maximum principle on Q, ie. if feD(A,), f = 0, and f(¢) = 0 for some ¢ Q
then (A4,,1 #&) < 0. In order to establish this we note that if A, 2 4, and A,, gene-
rates the positive semigroup 7 then

<@n@ndmeqw~uvMW<u
Next observe that

FHPL0) = 215, ,

3

where PE) == &, ) = o)., 2,Y, and 8, denotes the Kronecker delta
function. Moreover, if ¢ € (0, 1) and |2} > 2 then

if (€7 ¢ (0, ¢) where (&* = &3 + ... + &, This follows because

G EN L EME = T < e < e

Now we can prove the proposition with the following three formal observations,
OBSERVATION 1. Tf 4, is real, ie. if A,/ = A4,/ forall fe1)(4,), then the
coefficients ¢, are real.

Proof. For each multi-index x and n € @ let fe C(Q) be a real-valved furc-
tion such that f(&) == P& --- ) in a neighbourhood of #. Then

en) = @)~YA4, 1) €R.

QuSERVATION 2. If A, is real and satisfies the positive maximum principle
on Q then ¢, —~ 0 whenever o > 2.

Proof. Let ‘! > 2 and assume ¢,(y) # 0. Then choose ¢ > 0 sufficiently
small that

alle,(ni + 2¢{c@o, ... + ... + g, oM} > 0.
Next for |y — &| < ¢ define g by

g(&) = (sign e, (M)E ~ M + if — i
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So g(€) > 0 for 0 < |p — &| < ¢ by the estimate preceding Observation 1. Now
choose a positive ¢ € CP(Q) with ¢ = 1 in a neighbourhood of n and such
that @(&) =0 if |p — ¢ > ¢/2. Then f= g is a posmve function in CP(Q)
and f(n) = 0. But

(A, ) = alle, ()l + 2e{cgo.af(m) + . + Cp0,2(m} > 0

which is a contradiction. Hence ¢, = O for |a| > 2.

OBstERVATION 3. If A, is a real second-order operator satisfying the positive
maximum principle on Q then A, satisfies the ellipticity property of Proposition 2.2,

Proof. Let ne Q, £ e R4, and define ¢ by
1 4 .
o) = ‘2" Z &iin: — C:)('ij = &)

Then choose fe CP(Q) such that f is positive, and f= ¢ in a neighbourhood
of #. Then f(n) = 0 and

AN =Y i< 0

ajlal=2
by the positive maximum principle.

This completes the proof of Proposition 2.2 and to complete this subsection
wec make several remarks on possible extensions of this result.

An operator B on 4 is defined to be resolvent-positive if there exists a pe R
such that (A1 + B)-!exists and is positive for 4 > p, e.g. the generator of a positive
semigroup is resolvent-positive. If B is resolvent-positive, densely-defined and

@.1) lim sup|| (.1 + B)~*} < oo,

A—00

it follows that B satisfies the positive maximum principle. Moreover, the conclusion
of Proposition 2.2 is valid if we assume that 4, has a densely-defined resolvent-posi-
tive extension satisfying (2.1). In general a resolvent-positive operator does not
satisly the positive maximum principle (see Example 2.4 below) but it does satisfy
a weakened form of this principle. In particular if B is resolvent positive, 0 < f €
€ D(B%), and f(£) = 0, then (Bf)(¢) < 0. This follows by noting that if R(1) =
= (A + B)~* then R(1) — R(4) = (%3 -~ 2)R(4)IR(4,) and hence > R(%)
is decreasing and in particular tounded for /7 = u + 1. Buat for f'e D(B) one has

AR(A)f = f — R(1)Bf
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and consequently R(A)f -» 0 as 4 -+ oc. Then if f € D(B?) it follows that AR(A)f - f
as A — co. Finally if f ¢ D(53%)

A-r00

lim 2*R(;)f - if = lim — JR(;)Bf = — BYf.
A=o0

Thus if in addition f* > 0 and f(Z) = 0 then

(BfUE) = lim -~ 22R(A)f)E) < 0.

£=00

As a consequence of these remarks we have an alternative version of Propo-
sition 2.2.

COROLLARY 2.3. Assume A, has coefficients ¢, € C2(Q). If A,, has a resolvent
positive extension then the conclusions of Proposition 2.2 are valid.

Proof. The assumption on the ¢, ensures that CP(Q) = D(43). Hence the

proof of Proposition 2.2 applies with the weakened form of the positive maximura
principle.

We also remark that if A, has an extension which generates a positive group
then the arguments of Proposition 2.2 can be applied to both + A4,,. Then anc
is forced to the conclusion that ¢, = 0 if 2 > 1.

Finally we give an example of an operator which is resolvent-positive but
does not satisfy the unrestricted form of the positive maximum principle.

Examreri 2.4. Let # ~ C([—1,0]) x Rand define Bby D(B) == Cy([— 1,0]) x
x {0} and

B{f, 0) = (=f". fO).

Then the resolvent set couals C and (A + B)~Y(/, ¢) = (g, 0) with
0.
gly) = ¥ {c + 5 d_re""yf(y)}-

Therefore B is resolvent positive. Now let f(x) = — x. Then 0 < (f, 0) € D(B) and
J0) == 0. But - f(0) =1 > 0.

2.2. Lit GroUPs. Let G be a connected Lie group and a4, ..., ay a basis of
the Lie algebra g. We will use the exponential map s ¢ R4 > e-%% € G, wherc s-¢ ==
= S04, + -+- + §4a,, to lift the results of the last subsection to give statements
about differential operators associated with left translations L acting on Cy (Gl



SEMIGROUPS GENERATED BY ELLIPTIC OPERATORS 377

First recall that there exists open sets Q < G, and O cRe , such that ee Q,
and 0 & Q, and the exponential map is a C-diffeomorphism of  onto Q. We assume
that the boundary of Q is smooth. For example, we could choose @ to be a ball

centred at the origin. Now if fis a function on G we denote by f the function on R?
given by

&

£(s) = fle==9).

“Then the generators 4, ,. .., 4, of left translations on Cy(G) introduced in Section 1
«correspond to the infinitesimal generators of the positive «-automorphism groups
L; where

(L)) = (Le™"Df Ne) = fe“ig).
“This identification leads to the following standard result.

LEMMA 2.5. For each i =1, .. .,d there exist b;; e C°°(f2) such that
S d 2
(A:f)s) =Y, bif(s)f(5)[0s;
Jo:1

or all s € Qandfe C(Q), and in addition

bU(O) = 5,’_,-.

Using this identification we can now prove a Lie group version of Propo~
:sition 2.2.

PROPOSITION 2.6. Let A,, be an m-th order differential operator on Cy(G) with
domain CX(G) given by

A m f = Z caAaf

faf<m

where c, € C(G). If A,, has an extension which generates a positive semigroup then
Ce = 0 for o] > 2, the ¢, with la| < 2 are real, and in addition

{2.2) - Y @ >0

a; =2
for all g € G and £ R4,

Proof. Define 4, on C,(R9) by
D(4,,) = C2(2)

(A,f)o0 = 4,(f>0)
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where ¢: Q — Q is the inverse of the exponential map. Since 4, has an extension
which generates a positive semigroup it follows that 4, satisfies the positive maxi-
mum principle on Q. Consequently 4,, satisfies the principle on Q.

Next it follows from Lemma 2.5 that

A a N . .
Anf)s) = (Aaf)8) = X &) )s)

EHEM]

where ¢,(0) = ¢,(e) if ‘2’ = m. Thus applying Proposition 2.2 to 4,, one concludes
that ¢, (e) == 0if ! = m > 2. Then by repetition of the argument c¢,(¢) == 0if ‘%' >
> 2. In addition it follows from this same jproposition 'that ¢,(e) is real if 'z’ > 2.
In addition it follows from this same proposition that ¢,(e) is real if 'z' < 2 and (2.2)
is satisfied for g = e.

Finally if R denotcs right translations on Cy(G), then one can repeat the fore-
going arguments with 4, replaced by R(g)A4,,R(g)~1. This effectively replaces ¢ by o
and hence one obtains the general statement of the proposition.

Next we establish a result in the converse direction.

ProposITION 2.7, Let A, be a second-order differential operator on Cy(G) swith
domain IX{A4,) © Co.G) given by

A‘&f:iz C?_Aaf
2f <2

where ¢, € C(G) are real cocfficients which satisfy the ellipticity condition (2.2).
Assume Ay is closable and its closure generates a semigroup T.

Then T is positive, and T is contractive if, and only if, ¢y = 0.

Proof. let o = infey(g) and By = 4, — wl. Then the closure B, of B,

g€
generates the semigroup U U, = Te™. But U is positive and contractive if, and
only if, the operator B, is dispersive on Cy(G), (see, for example, [19], page 249),
i.e. if fe D(By) = D(4,) and
Sf(g) = sup f(h)
heG

then (8,1)(g) > 0. (Note that our definition of the generator 4 of the semigroup T°
corresponds to the formal relation T, = e~ *4. Other authors, for example [19], [35],
adopt a convention which replaces 4 by — A4 and is consistent with the relation
T, = e*4, This must be borne ir mind when making comparisons with the lite-
rature.)

Now replacing f° by R(g)f we may effectively assume the maximum is attained
at the identity e. Then

Baf)O) = (LN — a@Of©) = % 20 H0)

algfalg
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where ¢ ,(0) = c¢,(e) if o} = 2. Since zero is a local maximum of f it follows that
(@ f)(©0) = 0 for o] = 1 and the matrix (02 f(0)/ax‘_asj) is negative-definite. But the
ellipticity condition (2.2) implies that the matrix associated with the coefficients

¢ ,(0) with Ja] = 2 is negative-definite. Therefore the Hadamard (pointwise) product
of these two matrices is positive-definite. In particular

3 0@ N0 >0

jef=2

and one has (B,f)e) = 0.

Therefore we have concluded that U is positive and contractive. Since T, =
= Ue~'it follows that T is positive and if ¢, > 01t is also contractive. If, however,
T is positive and contractive then A, is dispersive. But choosing f € D(4,) with
0< f<1and f=1 in a neighbourhood of g € G then

co(g) = col@)f(g) = (4fXg) = 0.

We are now in a position to prove the first statement of Theorem 2.1. Recall
that the theorem concerns a strongly elliptic operator 4,,, with constant coefficients
c,, and the closure 4, of 4,, generates a continuous semigroup S with kernel K
on Cy(G) by the work of Langlands [14]. But positivity of K ensures that S is positive.
Hence ¢, = 0 for |o} > 2 and the ¢, with x| < 2 are real by Proposition 2.6. Thus
1 = 2 in Theorem 2.1. Conversely, if one has a second-order operator then reality
of the! ¢, together with strong ellipticity implies that S is positive by Propo-
sition 2.7. Therefore the kernel K must be positive and 2 = 1.

Next we turn to examination of lower bounds on the kernel associated with
a second-order operator.

2.3. LowER BOUNDS. Let 4, be a sccond-order strongly elliptic operator

associated with left translations on Cy(G) with real coefficients. Then 4, can be
written in the form

d d
Ay = =¥, c;;4:4; + Z ¢A; + ol
1,j-1 i1

where ¢ = (c;;) is a real-valued strictly positive-definite matrix and the c; are real.
Now let K denote the positive semigroup kernel corresponding to K. We use stan-
dard techniques of diffusion processes [18] and partial differential equations to
obtain lower bounds on K. It is convenient for this purpose to assume ¢, = 0-

The general case can then be recovered By simply multiplying K, by e’
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First, using the exponential map from G < RYto Qc G as in Subsection
2.2 and Lemma 2.5 the opecrator A, on CP(G) corresponds to a partial differential

operator A, on C2(Q) of the form

~ o 02 P 0
@3) 2 o Y eyls) +Y els)~—
i,;l ! 6S,~0.S‘j i%'l ( (')si

where the coefficients are smooth functions and ¢;;(0) = (¢; ), and we have set ¢, = 0.
Therefore by reducing the size of Q if necessary we may assume that e(s) = (¢:;(00)
is uniformly positive definite, i.e.

, d o .

2.9 Y c;i(8):i; 2 p it

ijot
for some p > 0 and all ¢ eRY, s € .
Next we may extend ¢;;, ¢;, to smooth bounded functions on R? with bounded
derivatives of first-order in such a way that (2.4) holds throughout RY. We then

regard A; asextended toa differential operator cn R? by (2.3). Moreover we note that
the left-invariant Haar measure dg on G is given in the local co-ordinates by dg =

= dse(s) where o is a strictly positive smooth function on €. Thus

Ve st0) = (s g1t

G
for all feC(Q).

The closure A, of the operator 4, generates a positive semigroup S on C,(G),
with the kernel K,. The semigroup S is also contractive, because we are assuming
¢y = 0, and consequently there exists a Markov process X on G corresponding to
S with X =: ¢ and with the transition density function p (g, #) = K,(g ) (see, for
example, [5], Chapter 4). There is also a process Y on R? with Y, = 0 governed by
the differential operator A; (sce [5], Chapter 8). The transition density function
q,(s, u) corresponding to Y is the fundamental solution of the parabolic equation

a

2.5 —— g, = Ay,
(2.5) Py g o

on RY (see 4], page 162 or [5], page 370).
Let X? and Y° denote the processes obtained by truncating X and Y at their

first exit times from Q and respectively. Further let p® and ¢° denote the corres-
ponding transition functions. (The generators of the corresponding semigroups are

given by the operators 4,, and A, on Q, and Q, with Dirichlet boundary conditions
({5], page 368).) It is clear that

(2.6) pig, #) < pg, h) = K (g~*h)
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for all g, h € Q. Moreover X0 and exp Y° have the same finite-dimensional distri-
butions so
@.7 q(s, u) = pie= e~ “)o(u).

Furthermore, it follows from the strict Markov property for Y that

2.8) g5, u) < g5, W)+ sup_gu(v, )

1<, vE0R

(see, for example, [4] or [18]).
The fundamental solution g, of the parabolic equation (2.5) may be construct-
ed by Levi’s parametrix method ([6], Chapter 1). This gives the solution in the

form
H

a5, 6) = o,(s, u) + 5 drSduat(s, DO — , b, 1)
o pd
where
o(s, u) = (4nt)~2 (det c(u))M?exp{ --(s — u)Tc(u)~1s — u)/4t}
and
|D(, v, w)| < c(p') 1=+ 2%exp{—p'iv — uj*[4t}

for all p” < p, where p is the ellipticity constant occurring in (2.4) and ¢(p’) > 0.
Clearly
lol(s, W)l < ct=¥exp{— pls — uf?4t}
where p = (supl'c(w)||)~. Thus if p’ = min(p, p’) then
t

lg (s, 1) - a,(s, )| < ¢'(p") g drg do T2 (s - 1)~ (@+2%xp{~ p'ls — vi*/4r}-

-,

0 R4

-exp{—p'lv — ul}/4(t - 1)}

Now separating the integral over t into a part over (0, #/2) and a part over (2, t)
and then estimating in a strightforward manner one obtains an estimate

lg s, u) — o,(s, u)| < a(Z)r—t¢-Vi2exp{— Als — u|?/4t}
valid for each 1 < min(p, p).

LemMaA 2.8. [32]. For each p < (supjlc(s){)=2 A (supile(s) 2|}~ there exist
My, My, My > 0 such that the fundamental solution q, of the parabolic equation
(2.5) satisfies
Myr=exp{—pls — uPlat} > qs, u) >

> Mot=Pexp{—2ls — ul’/4r} — My~=D%xp{—p|s — ul?/4t},
with A = (sup||c(s)|]), uniformly for t (0, 1].

12 - 1776
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This is a direct consequence of the foregoing estimates. It is the key to the
subsequent lower bounds on the kernel K. We note in passing that the ¢~(-1)2 factor

in the correction term is consequent on the smoothness of the coefficients of /'i,_..
Similar estimates hold if the coefficients are only Holder continuous but then one
has a factor ¢t~ (/-9/* with the value of £>0 dependent on the degree of continuity.

LEMMA 2.9. There exist a, v, T > 0 such that
K(g) = at~*
Jor t €(0, 1l and all g € G with g* < rt.
Proof. 1t follows from (2.8) and Lemma 2.8 that
g(s, u) > Myt~Pexp{— is — u?/4t} — Mt=—=NiZexp{ -p's - u?fdt} ~

— sup (Mr-9exp{—p.v — ul*/4r}).
1,000

Now suppose Q is the ball of radius 2¢ centred at the origin and that ;4! < ¢, ls —
-— u}® < bt. Then

s, ) > Myt~9i e=l4 _ M t-d=12 . qup(M,r-4%e—0c" %),

Tt
Since t-9%e~r"4 _, 0 as 1 — 0 it follows that there exist a, t > 0 such that
(2.9) (s, u) > at=9*
for |s — ul®* < bt, ! < g, and 0 < t < 7. Moreover, there is a ¢ > 0 such that
Ist < &, |4l < &, implies
cls — vl < g7 g ¢ ~ ul.

Therefore it follows from (2.6), (2.7), and (2.9), that there exist &', r > 0 such that

K(g~'h) > a't-42
for 'g~1h'® < rt and t €(0, 7], which immediately gives the desired conclusion.

Now we are prepared to prove the second statement of Theorem 2.1. It is a
consequence of Lemma 2.9 and a standard convolution argument [10].

Take g €G and ¢ > 0 and let k be the smallest positive integer such that
4.81* < rkt, t < kt. Since G is connected there is a sequence of points g, = e,
81 - +» & = g such that .g7%z; 4| = |gi/k. Then by the convolution formula

K(g) = § dhy ... Qdhk-11<,,-k(hl)1<,,,k(h;1hz) .. Ku(htie) >

G G

2 S dhl “ e \ d/]k_th!k(hl)K‘/k(lli-lllg) PP K,/A(hk-_llg)

B, B s
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where B; = {h € G; |h~g,|*> < rt/16k}. But if h; € B, and h;,, € B;4, then
17 M < (A7l + 187 gi4al + ki) < refk.

It follows that
K (hithivy) > akdi2e-912
50
K(g) > (aktPt= Ry ¥ ((r]16k)H2)<
where V(0) is the volume of the ball {#€ G; |h| < 6}. One estimates, however,

with the aid of the exponential map that V(0) > c64 for some positive constant ¢
and all small 0. Therefore

K(g) = ak(C(r/16)d/2)k—1kd/21_d/2.
But £ ~ 1 < 4ig*/rt + 1/t so if we set
b == max(—4r"110g(ac(r/16)d/2), 0)

o’ = max(—1~tlog(ac(r/16)%?), 0)
then

K't(g) > at —d/2e—b|g]2/t e—w't

Now at the outset we assume ¢, = 0 but if this is not the case then it is necessary
to multiply the lower bound by e~<*. Thus setting @ = @’ + ¢, one obtains the
bounds of Theorem 2.1.

3. SECOND-ORDER ELLIPTIC OPERATORS

Next we discuss properties of second-order elliptic operators, with variable
cozfficients, associated with left translations on the function spaces L,(G; dg) and
Co(G). Our approach is fairly standard. We begin by examining the operators on
Li(G; dg) using Hilbert space techniques. Then we prove a Sobolev embedding
lemma which can be exploited to transform the L,-results onto Cy(G). Finally we
argue with duality and interpolation techniques that many of the properties lift
to the L ,-spaces with p # 2.

3.1. SELF-ADJOINT ELLIPTIC OPERATORS. In this subsection we examine second-
-order symmetric elliptic operators associated with left translations on L,(G ; dg).
But as a preliminary we discuss the definition of such operators through quadratic
forms in a broader setting.
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Let A,, ..., 4, be closed densely-defined operators on the Hilbert space
H = Ly(Q; p), where (Q, ) is a measure space, and assume that the subspace.

d
(3.1) #y =M D4)
i=1

is dense in 7.
i “V‘Next let C = (¢;;) be a2 d X d-matrix with elements €i; € Lol Q; 1) satisfying
¢;(X) = ¢;(x). Define

d

3.2) %, = inf inf -- E e {0EES
xc {;ER‘I iJ 1
SN
and
o
(3.3) Xy == SUp sup -- Z ()&
XGR seRrd fi=1
i€.=1

We assume throughout the ellipticity condition x,, > 0. Our aim is to analyze thc
elliptic operator 4 which is formally given by

d
(3.4) A= - Y Afc;d;.

i g1

Define the form ¢, ¥/ € #, X #, - (¢, ¥), & C by

(35) ((Ps ll’/)A - Z (A,'(P, CijAjw)'

d
i, J:1

It then follows from the symmetry property of the ¢;; and the ellipticity condition
that

d
(3.6) (9. 9)s 2 %, ¥, (40, 4i9) = 0.
i=1

In particular the form (-, -), is positive. But as the 4; are closed this bound also im-
plies that the form is closed. Therefore by the basic representation theorem for
quadratic forms ([13], Chapter V1) there exists a unique positive self-adjoint opera-
tor A such that #, = D(4Y?) and

(9‘09 lp)/& = (A]llg(p, Al/zlp) .

The domain D(4) of A consists of those ¥ € 3, for which therc exist a & e#
satisfying

((”), W)A = ((p’ S:)
for all ¢ e#, and the AY = &,
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Although this approach allows one to give a precise meaning to the elliptic
operator A under very general circumstances it fails to provide any useful charac-
terization of the domain of the self-adjoint 4. This weakness can only be overcome
by adopting more stringent assumptions on the 4;. If, for example, the 4; are gene-
rators of a Lie group representation one can then use elliptic regularity techniques
to identify D(A). Before considering this question in detail we make four remarks
on the general framework.

First, one easily derives the bound

d
(@, P)a < %y Y, (Aip, 4,0)
i

for all ¢ € 5, . Therefore on the subspace #; = D(AY?) the form norm

) ¢ = llolla = (@, 9)a + (9, @)'?

is equivalent to the Sobolev norm
d 1/2
(3.8) o> ol = (z A9, 4:9) + (0, <p))
i1

and %, is complete with respect to these norms.
Second,

d
14012 < Y, (g, Ai9) < #5(p, Pl
i=1

for all ¢ € #; by (3.6). But if ¢ € D(A) then

(@, 9)a = (@, AP) < (A, Ap) + (4e) Yo, @)

for all ¢ > 0. Therefore
(3.9 14:0lF < exzlApil* + (dex,) 1|

for all ¢ € D(4) and ¢ > 0. In particular the A, are relatively bounded by 4 with
relative bound zero. Consequently one can use perturbation theory to define and
discuss operators such as

d
A+ VoA + ¢

i=:1

with the ¢; € L (Q; p).
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Third, if the 4, generate positive groups on L,(Q; u) then the contraction semi-
group generated by A4 is also positive. This follows because by a result of Nagel
and Uhlig [20] each A; automatically satisfies Kato’s equality on L,(Q; p), i.e.
@ € D(A4;) implies |p! € D(4;) and A;j¢] = (signp)d;0 where sign@(x) =
= o)/ o(x) if @(x) # 0 and signe(x) = 0 if @(x) = 0 (see, for example [19],
Chapter C--I1). But this implies that

d
(0, ©)g = -- Z (40, c;;A;0) = (lol, lo)4.

ihj=1

Therefore A satisfies the first Beurling-Deny criterion (see [25], Theorem XIII.50)
and the semigroup generated by A is positive.

Fourth, if the groups generated by the A4; are positive and isometric for the
norm| -, then one can also show that the second Beurling-Deny criterion (see [25],
Theorem XIII.51(c)) is satisfied. This implies that the semigroup generated by A4
interpolates on the whole range of L ,-spaces. We omit the details, since we will
give a different proof of a similar result in Theorem 3.13.

After these preliminaries we return to the Lie group setting. Therefore we
now take J# = L,(G: dg) and let 4; denote the skew-adjoint generators of the one-
-parameter groups f +— L{e—%) where L denotes left translations. We also use 4; to
denote the generator of the corresponding one-parameter group on L, (G; dg).
Then we define the Sobolev spaces # ,, = L.(G; dg) as in the introduction,

A;)-

ig v -

CZ/fm = ]‘2;"1(G; dg) = ﬂ D(A

Similarly we introduce the subspaces L,,.(G; dg) of L (G; dg) for each p €[, col.
Now we can derive a precise characterization of the domain D(4) of the self-adjoint
operator associated with the form (-,-), on ;% s, if the coefficients ¢;; € L1+

Note that since left translations L are weak™ continuous on L, it follows that
feD(4,) if, and only if,

sup f - L(e™") f wft < co

O<tg

ie. if, and only if,

sup sup'f(e*ug) — f(g)./t < co

0:tsl gel

(see, for example, [2], Proposition 3.1.23). Therefore one concludes that f'e L., if,
and only if]

sup{if(h-'g) — f(®)![:h}; g€G, |hi <1} <oo.
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Thus the condition f € L. corresponds to a uniform Lipschitz condition. Simi-
larly f € L, 41 if, and only|if, f€ Ly, and the derivatives A% with j{af = n
satisfy this Lipschitz property.

THEOREM 3.1.If ¢;; € Lo,y then the positive self-adjoint operator canonically
associated with the form

d
¢ € Ly1(G; dg) = (9, )4 = — (4:0, c;j4;0)

i, j=1
has domain D(A) = L,.5(G; dg).
Proof. The basis of the proof is provided by the following elementary obser-

vations.

1. If U is a continuous one-parameter group on the Hilbert space s with
generator 4 then ¢ € D(4) if, and only if,

Supli( = Uolfs < co.

2. If ¢ € Ly then ¢Ly1(G; dg) = Lo (G; dg) and Acf) = (4io)f + cA;f
for all /'€ L,.1(G; dg).

The first of these is another version of the result cited above ([2], Proposition
3.1.23) and the second follows because

(I - L(h)(cf) = (( = L)e)f + (L(h)e)d — L),

forall ce L, and f € L,.
Now if ¢ € #, then 4;0 € yand ¢;;4;¢ €, because ¢;; € L,,;;. Therefore

d
Yyely—~W, 0)y = Y (W, Aici;4;0)

i j=1

is continuous and ¢ € D(A) by definition. Thus #, = D(4).

In order to prove the converse inclusion D(4) = ##, it is convenient to define
U, as the one-parameter group generated by 4; on 3#° = L,(G; dg). Then U, =
= g, and U, restricted to H, is continuous with respect to the norm (3.8) on ##,.
‘This follows because

d
(3.10) (ad Ap(Ui0))e = U0 Y, bi() A
k=1
for all ¢ € #, and ¢ € R, where the coefficients 5%, are analytic and b},(0) = 0 (see,
for example, [11]). Now if 4,; denotes the generator of U; on #, then

d
Hy = (M D(4).

i=1
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This states that the first Scbolev space for left translations L on L,., is equal to the
second Sobolev space for L on L,. Butsince J#, is a Hilbert space one has ¢ e 1)(4,;)
if, and only if]

sup /-~ UdD)g 4/t < oo.

¢e<1

Now !.7, is equivalent to the norm (3.7) and hence we conclude from these remarks
that o €.#, if, and only if,

sup (I — Ui)¢,.4t < co
1254 T

for i=1,....d.
The groups U; are unitary on L, but not on L,., . Nevertheless one has an ap-
proximate unitarity expresscd as follows.

Lemma 3.2, If ¢;;€ Loy then

(3.11) Wilt)o, ¥). - (@, UL-0) 4 < ot ;;‘!’>-‘4 : lp,;
Jor some ¢ = 0,and all 0, e #,,0< ti<lyendi,j=1,...,d.
Proof. The left hand side of (3.11) is the sum of > terms of the form

(cA;Uit)p, A - (cA;o, AU(=0D) = (c(ad ANU))o, Ah) +
(3.12)
+ ((ad YU ANA;0, A) - (cAjp, (ad ANUL— )W),

with ¢ € L ;. We estimate the three terms on the right separately.
a. Since the coefficients &% in (3.10) arc analytic one has 5%} < a;'t] for
't' < 1 and a suitable ¢, > 0. Therefore

(ctad ANULN, Ap) < ¢l (ad AU - (A <
<aitl- ol Y

for It <1, o, ¥ €y, and i, j =1, ...,d. Since -, is equivalent to |- , this
gives the appropriate bound.
b. If & e then

» . . ta; .
Ui(- -t)X(ad o)NU())E)g) = (cle 'g) -~ c(g)(g).
Therefore since ¢ € L., one has an estimate

“(ad NU (DA < ax't - (P'll
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Hence the second term again has the appropriate bound.

c. The third term on the right of (3.12) is estimated by repetition of the
argument used for the first term

Now assume y € D(4) then

(@, ¥)a = (0, 4Y)
for all ¢ € #,. Therefore setting 4,(¢) = (I — U#)) one has
14 ¥llh = Q. A4 + (AW, 4,()Y) =
= (4 — AW, Y4 + L(=DADY, ¥) +
+ (Ai(DY, A4 ~ A=A, Y)a <
< N A= DAOYN{Ag ] + I} + clel- A e 11l
where we have used Lemma 3.2. But a Duhamel estimate gives
1A= 4]| < itl- | 4Pl
and since ||- ||, is equivalent to |[- ||, this means
1A (=AWl < c'lt]- [[4(Yiia
for a suitable ¢’ > 0. Hence
14:OWi% < 1 UAplE+ WD) + e[l A,
This then implies that
(3.13) N — U@Wlld/ltl < Ayl + Wi + el < oo

for 0 < [t] < 1. Consequently y € #’, which means D(4) < #,.
This not only proves Theorem 3.1 but also proves the following.

COROLLARY 3.3. If c;; € L,y then the norm || - ||y and the graph norm i € D(A) —
= || Ayl + |¥l| are equivalent norms on #, = D(A).

Proof. Set
lcleo = sup{lc;(g); g €G, 1<, j<d}

lelooss = sup{le;(h~'g) — c;(@l/Ihl; g€ G, 0 < {hl <1, 1<i,j<d}
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Then if y € D(A4) one has

d
1AL+ Wi Y Tl A)t + gl <

i,j--1
S ClonWin + i€l Pio + MYl <
S (L4 don +0) Ve

and the graph norm is dominated by "- !,. Equivalence of the norms then follows
from the closed graph theorem (see, for example, [30], Chapter 10.4). Alternatively
(3.13) shows that ". , is dominated by the graph norm. For this one needs
that .}, is equivalent to ' . and ., is dominated by the graph norm. But these
properties were established in the discussion prior to Theorem 3.1.

CoreLLARY 3.4. The subspace CX(G) is a core of A.

Proof. Since D(A) = 3¢, and the graph norm of A4 is equivalent to |-, the
statement of the corollary is equivalent to the statement that CP is " - ,-dense in
5. But this latter property follows by standard approximation and regularization
procedures. In fact CPis “- -densein #, = L, foralln = 1,2, ...

COROLLARY 3.5. Let ¢; € Ly, and define B on 'y by
d
B =Y cd; + ¢l
i=
Then the operator C == A + B generates a holomorphic semigroup. Corollarics 3.3
and 3.4 are valid with A replaced by C.

Piroof. If W e#'; then

where {cl, now denotes the sum of the L-norms of the ¢;. Thus B is relatively
bounded by 4 with relative bound zero by (3.9). Therefore the statement of the corol-
lary follows from perturbation theory.

It follows from the discussion of quadratic forms that 5#, = D(AY?) and if
the coefficients ¢;; € L,;; then Theorem 3.1 establishes that 5#, = D(4). We next
demonstrate that increased smoothness propertics of the coefficients allows more
detailed comparison of the C"-subspaces#, = L,.(G; dg) and the domains D(4"?).
The proof uses arguments developed carlier to discuss the differertial structure of
general continuous representations of Lie groups [29]. Similar ideas occur for uni-
tary representations in Nelsoi’s work {21]. The new features in the following dis-
cussion arise because 4 has non-constant coefficients, and G is not necessarily
abelian.
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THEOREM 3.6. If ¢;; € Ly, then

(3.14) D(4™?) = # y = Ly:,(G; dg)

for m =12, ...,n+ 1, or, equivalently,

(3.15) I+ AVPH, = Hpn

for m =12, ., .,n+ 1, where #y=H# = Ly(G; dg).
Proof. If (3.14) holds then

yfm — D(A_m/z — (I + A)—l/zD(A(m—l)/z) — (1 + A)—Uzv%m-l

form =1, ...,n + 1. But this immediately gives (3.15). Conversely if (3.15) holds
then

K=+ A7V, = (I + A" = DA™

for m=1,...,n+ 1. But (3.15) can be reexpressed without the square root.

Since ¢;; € Ly, & Loy it follows from the foregoing that D(A!?) = #,
and D(4) = s, or, equivalently, (I + A)*H,, —= #,_, for m = 1, 2. But this
implies that (3.15) is equivalent to the conditions

3.16) I+ AHpy = Hp1

for p =1, ..., n. Clearly (3.15) implies (3.16) but conversely (3.16) implies
T+ DYy =T+ A, =H,

and then
I+ Ay = (I + A)~V2Hy = Hs

ctc. Now we prove (3.16).

The key to establishing (3.16) is to prove first the special case p = 2. This
can be achicved with the aid of an approximate skew-symmetry of the A, with
respect to the scalar product (+,-),.

Lemma 3.7. If ¢;; € L., then there is a C > 0 such that

(3.17) [(Aip, ¥4 + (@, A)al < Clloll - [l

Sorall o, e#sandi=1,...,d.



392 WOLEGANG ARENDT, CHARLES J, K. BATTY and DEREK W. ROBINSON

Proof. The left hand side of (3.17) is a sum of d? terms of the form
(cd;4,0, AW + (cA;0, AL AY) =
= (c(@ad 4;)(4 ), AW) + (ad)A)4;0, AY) —
—~ (cdjo, (ad A)A4)Y),

with ¢ € L,;,. We estimate the three terms on the right separately.
a. Using the structure relations relations of g one has

d
i(cad A)) (Ao, A) < Z ncl_;: “(cdyp, Ah), <

f1

d d
< Y il Aidy < Y el ol - (404w + ed, 4]
I=1

=1
where (A4 ,¢) denotes the left derivative of ¢ € L_,. Thus
e(ad 4))(A4)e, Al < Clol- ||,

for a suitable C > 0.
b.

i(tad¢) (kAi)Aj(P: A = !((Aic)Aj(P» AY) = i(Aj(P, (A;0)A ).

But since ¢ € L._,., one has A,¢ € L., and so (4,0).#, < J#,. Moreover,

:(Aj(/% (EIZ)ALQ//) <lo - :inC.ico;l Yl

which gives a bound of the appropriate type.
c. This term is bounded in the same manner as the first.
Returning to the proof of Theorem 3.6 we must prove ({ + A)# .1 = Hpy

for 2 < p < n or equivalently (I + A)™2# ,_y = Hps1.
Suppose p = 2. Take ¢ € #, and set ¢ = (I + A)~¢. Then y € D(4) = #,
and we must show that Ay € #, foreachi = 1,...,d. Butif ¢ €3, then
(@, A < (4o, ¥)4i + (Ao, Y)4 + (0, A4l <

< [(Aip, AT + A7 + Cloii- [l
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by Lemma 3.7 and the form definition of 4. Now
(40, AT + A)7O)] < Ko, 40 + g, A + A)~)| <

< Clol- 1l

for a suitable C’ > 0. Here we have used the fact that (I + A)~'is a bounded oper-
ator on ', with respect to the norm || - ||,. This is an easy consequence of the equi-
valence of the norm |- ||, and ||-||, discussed at the beginning of the subsection.
For example, if ¢ € D(4?%) < #, then

4012 < %M@, ©)4 = #3520, (I + A)p) <

< w4 MU + Ao, I + A)p) 4 <ty + Aoll;.

Hence

14+ AP < st W15

for all Y € D(4) = #;, and then for all €, by continuity.
Therefore we have established that ¢ € #, +— (@, A;(), Is || - [|-continuous.
Since #5 is dense in S there exists an n € such that

(318) ((p’ Ai'p)A = ((P5 77)

for all ¢ e s, by the Riesz representation theorem. Now as J#, is |-|,-dense in
J; the identity (3.18) extends to all ¢ €4#, . But this then implies that 4,y € D(4) =
= 5. Therefore we have proved that (I + A)~#, € #; or H#y = (I + A)H 5.
Since ¢;; £ Ley,, With n > 2, it follows however that ¢;;#, = #, and hence
(I + AYyo#, = #,. Thus we have (I + A)#y = H,.

Now we argue by induction. Suppose (3.16) is valid forp = 1,2,...,m — 1
with 2 < m < n. Take £ €#,,_, and set Yy = ([ + A)~" ¥ eH,, < #,. In order
to deduce that (/ + A)#,,+, 2 H#,_1 it is necessary to prove that 4, e #,, for
each i =1, ..., d. But since e #; we have the identity

Ay = A1 + A)~¢ =
= I+ A4 + (I + A)~Had A(4)Y.

But A, e #,,_, and (I + A)~*A;£ €3#,, by the induction hypothesis. Therefore
if we can show that (ad A)}(A )Y € #,,_, it follows by similar reasoning that (1 +



394 WOLFGANG ARENDT, CHARLES J. K. BATTY and DEREK W. ROBINSCN

+ A)~Yad A)(4;)y €, and consequently Ay e #,. Now (adAN4)y is a
sum of d* terms of the form

(ad 4 ANAN = (ad A)(A)cp AW + Aj(ad A ) (e )AW +

+ AJCIA(adA,)(A,‘) =
d ; d
= l)_{ Cii A Al + AAici )AY + 12.1 cll'kAjcjkAll,//

where we have used the structure relations of g. Since ¢ € L,;, and € #,, one
has AW e, _,, ;AW eH ., and AcpAYy €#,,_,. This follows because
repeated use of Statement 2 of the proof of Theorem 3.1 implies thatif ce L. ..,
and ¢ €5 ,_, then ¢ € ,,_,. Similarly all the other terms on the right are in
Hm-5. Therefore, by induction, we have established that (I + A)# ., 2 #,.,
for p = 1,..., n. But conversely ¢;; € Ly, implies ¢;;o¢, =« #, forp=1,....n
and hence (I + A)H .y © 3, for p = 1,...,n. Thus (3.16) is established and
the proof is complete.

Theorem 3.6 is again stable under the addition of linear terms to 4.

PROPOSITION 3.8. If ¢;; € Loy, €; € Looy,—1 and

d
C=A+ Z C,-Ai+6’0[
=1
then form=1,...,n+ 1
K = DA + Cy?)

Sor all sufficiently large /. € R, Moreover, ;- ||, is equivalent to the graph norm 3 v~
= A+ PRy + G

Proof. First, it follows from Corollary 3.5 that D(C) = ##,. Moreover C gene-
rates a holomorphic semigroup. Therefore if 2 > 1 is sufficiently large (A1 + C)
generates a holomorohic semigroup T satisfying 47| < Me~* for some M » 1
and all 7> 0. In particular one can define (i1 + C)*/* by standard means (see, for
example, [23]} or [35]). Similarly (i + A) generates a holomorphic semigroup S,
satisfying IS, | < e™# and one can define (A + A)Y2 But D((A] + A)¥3) = D{A??),
by spectral theory, and D(4Y?) = #7,, by Theorem 3.6. Therefore if we can establish
that D((A7 + C)¥?) = D((A + A)Y*) then it follows that D((A] + C)¥*) = .

Now ¢ € D((AI + C)*®) if, and only if,

lim Sdtt-&'?(l - TYo
60
g
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exists and ¢ € D((Af + A)V?) if, and only if

=]

fim Sdzt-m(l - S)o
0-0
[

exists [35]. Next suppose ¢ € D((AI + 4)*?) then

62 62 62
”Sd:z—wa—m < Sdrz-wu - s,)coN+ Sdzr-3f2n<s, — T)ol.
‘l 61 61

Hence to deduce that ¢ € D((AI + C)Y?) it suffices to show that

%

tim e e=o2)(s, — Tyoll = 0.
8, 00

%

But

t
IS, — Toll < MS ds e~0=9||BS,p]
0

where B = C — 4. Now the estimate || BY|| < |c|ol|¥]l, used in Corollary 3.5 toge-
ther with (3.9) gives bounds

1Byl < elldyll + ke~ ]|

for all y € D(4) and ¢ € (0, 1). Setting ¥ = S; ¢, ¢ = sV, and noting that one
has bounds || S| < e |||, |4Sp]| < es~Y?%e~2||4Y2%p]|, one obtains estimate

I BS @)l < ¢'s=Me=([l4¥20]| + lloll)

for all s € (0, 1). Therefore

s, s,
lim Sdf t=*3)(S, — Thell< M’ lim Sdtt“e’/4 = 0.
01 9,0 01 8,0
8, 8

Thus we have established that D((AI + 4)V?) = D((AI + C)¥2). But the converse
inclusion is established by a similar argument in which the roles of 4 and C, S and
T, interchanged. Then one needs the observation that

1BYIl < e(ICYIl + IBYID + ke~ ll,
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because 4 = C - B, and hence
(BY <ol —e)"''C¥i + ke (1 - &)=t ¢,

for all Yy eD(C)=#, and £e(0, 1). In addition one needs an cstimate
i(*.1 + C)T,'' < et=*for ¢ =(0.1). But this follows from holomorphy of 7' ({23],
Chapter 2, Theorem 6.13).

Next one has (il + C)#, = # for large /. Therefore suppose
Gl + OV o = H,, for m=0,1,...,n—2 with #,= . Let EeH ., SH,
then ¢ = (W[ + C) ¢ a# ,.,. Hence if B=C — A one has Bye#, .,
because ¢; & L,.,.,. Therefore

(T + AW =& - By el
and one concludes that
(M +C) el + A iy = Hpsy-

Thus # ., < (#[ + C)# 5. But the converse inclusion is straightforward and
hence (I + C)o#,,py = H ., for m=1,....n. One then concludes that
H o = D((AL + CY"*) for m = 1,..., n + 1 by the argument used at the beginning
of the proof of Theorem 3.6.

Finally the graph norm is dominated by ! - ' and &, = D((I + Cy*?) is
closed with respect to both norms. Hence the norms are equivalent by the closed
graph theorem ([30], Chapter 10.4).

Note that since the semigroup S generated by C is holomorphic

S = (Y DC7)

n>1

for ¢ > 0. Consequently the smoothness conditions on the coefficients of C imply
the smoothness property

SH < Hpan
of the action of S, for ¢t > 0.

3.2. Cy- AND L,-SEMIGROUPS. Next we examine properties of the semigroup S
on Ly(G: dg) generated by the elliptic operators discussed in the previous subsection
with respect to the spaces C,(G) and L (G; dg). The starting point for the discussion
is a Sobolev embedding result of a type which is quite standard in differential geo-
metry. This result can be proved by classical mzthods or by semigroup techniques.
Since these latter techniques are discussed at lzngth in [27] wz describe the classical
method.
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ProposiTioN 3.9. Let dg denote right Haar measure on G and L}m =

= L,,.{(G; dg) the C™-subspaces for G acting by left translations on L (G;dg). Then
Lp;m(G; dé) L= CO;n(G)

for m > dfp + n, where d is the dimension of G. Moreover, the embedding is conti-
nious.

Proof. We use the exponential map as in Subsections 2.2 and 2.3. In local

coordinates dg, on Q is given by dg = ds¢(s) where ¢ is a smooth function on Q
satisfying ¢; < ¢(s) < ¢, where 0 < ¢; < ¢; < co. Thus

Sdf}f(g) - Sdscpm fle=s4)
Q

£2

for fe C(Q). Moreover, for any he G local coordinates at & are given by
s > e~%¢h, mapping Q onto Qh, and

Sdéﬂg) - Sdé(R(h)f)(g) - S ds p(s)f (e~ <)

Qh Q 0

if f has support in Q). Now take 6 > Osuch that {s;!s| < 6} < Q. Let y e CP(R)

be such that ¥(0) =1, and () =0, if ¢! > 5. For fe C¥G), he G, and
0eS,.; = {0eR’|0| =1} one has

8

Sy = (~ 1)'"Sdr
0

~m

6
(m — 1)1 or™

-1

() fle=rh)).

Taking d0 to be Lebesgue measure on S,_, and w,_, the surface area of S,. |

)

S = RSl S dOSdrr"’"l—?l((p(r)f(e"’”'”/z)).
(',’J“

(m — D)o, _,

41 Y]

Thus f(#) is a finite sum of terms of which a typical one is

'
o 1ymla
(- Tymts g gd” Sd”.m_1¢(j)(,-)g«(Aaf)(‘e—"9 “r)

(m - D! wy_,
Sd—:l 0
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where o is a multi-index, 4* the difterential operator associated with left translations,
and }=; + j = m. Thus this term is bounded by

8
C1 S doSdl'I‘d'l!:(A“f)(e—re-ah)irm—dg

S d_1 0

2 v v
~ q o
< Cg( S do\ dr r"‘lr“(""d)) ( ds(A’f)(e‘”lz)i”) <

sd—l Q0 |sigé

< cs( S ds o(s) (A=f)(e—f-"h)lp)”"<
‘sigé

o 1/p
< 04( e :(Avf)(g)w) < il
G
for suitable C; > 0, where g is conjugate to p, i.e. ¢~ + p~! = 1. The first estimatc
is the Holder inequality and for a finite bound one requires that re(m-dH+d-1 jg
integrable at the origin, i.e. #m > d/p. This establishes the proposition for n = Cs
The general case is obtained by replacing f by A*f with | < n and estimating

if1 w0 as above.
Since dg = dgd(g)~!, where 4 is the modular function, there is an isometric

isomorphism from L. to L, given by f+> 4~ f. Therefore A; = AMP4,417 gene-
rates the group ¢~ L(t) = AYPL(e~"HA-V7 on L.. But if L denotes left trans-
lations on Lf»’ and A‘:- the corresponding generators one has
L(t) = A¥P(e™"))L(e™ ™).
Therefore
;15 = fi‘i + (B.'P)[
where f; = (4,4)(¢). But if f € C?

Sdgl(Av‘)(g)i" - SdgA(g)-l;(Jm vof)(g)le.
G

G

Consequently there is a C > 1 such that

Hlipin < CAYES
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foralln =1, 2, ... . Similarly one obtains bounds
Cjavef)| o, < Wfllpin -

It follows immediately that AY?L,,, = Ll;," for all n=1,2,.... But Proposi-
tion 3.9 gives an estimate

1o < Clflz,
whenever m > d/p + n. Hence replacing f by AY?f one finds bounds
(3.20) 14Y2fNlosn < Cafiflipsm -

Therefore one has the following :

COROLLARY 3.10. If C{?X(G) denotes the closure of CP(G) with respect to the norm

IFIIE = sup{{(4Y7f X&)l ; & € G}

and C§®) the C"-subspaces corresponding to left translations then

Lyn(G; dg) = CE2XG)
Jor m > dlp + n, and the embedding is continuous.

Proof. If n = 0 the result follows immediately from (3.20). Butif n > 1 it also
follows from (3.20) because a calculation similar to the above establishes that
A””Ce,-n = C((),,’lz and

11882 < C™A4Y*fllco;n

for a suitable C > 1.

REMARK. It is not generally true that L,;,, = C,.,. If G is the two-dimensional
(ax + b)-group one can construct an f € Ly, such that f ¢ C,, but A2 f € C in agree-
ment with Corollary 3.10. Explicitly, this group G can be described as the matrices

(6)

with a € (0, c0), b € (—o0, 00) equipped with the usuval product. Then if G is topo-
logized as a subset of R? it is a Lie group and dg = dadba=2, d = dadba~! (see,
for example, [8], § 58, Example 4). Now fix ¢, € C*(R,) such that ¢, vanishes near
the origin and increases to one at infinity. Further fix ¢, € C&(R). Then defining
@ by ¢(a, b) = ¢,(a)p,(b) one has ¢ € L, (G; dg) for all pe[l, oo] but
@ ¢ Co(G). Nevertheless A%p € C4(G) for all « > 0 because A(a, b) = a~.
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Now we return to the discussion of the semigroups S on L, generated by ¢llip-
tic operators and their properties with respect to the spaces C, and L,. To aveid
confusion with the L,-formalism we let A7 denote the generators of the groups

t +> L(e™ ") of left translations on Cy(G). Then Cy.,(G) = MDY, and Gy, =
== {¢ € Cyi1s A € Cy.n_y). Then we define the analogue C° of the elliptic operator
C considered in Proposition 3.8 by D(C®) = C,.,(G) and
d d
CY = Yy, Ale;;AS + ¥ ¢, AY + 1
ii:1

ij-1

where ¢; € Cy(G) and ¢;; € Cy:1(G). We assume the hermitian matrix (c;;) satisfies
the standard ellipticity assumption

l’ :! . - s R7al
(3.19) inf} — }_“ ¢;{(8)iis;; g€ G, ¢ eRY, & = l} >0

iJ -1

and note that C° can be written in the form

d d
C" = z rC,JA?Ag + x C:A? + C()I.
ij 1 f=:1

This folows because A9 is a derivation and AY is the part of A® in Cyso0if c € Cy,y
and ¢ e Cy., then cp € Cy;; and A%cp) = A;(¢)o + ¢Adp. Since L is not strongly
continuous on Cy, this is not irnmediate but it can be first established for ¢ of com-
pact support, using the uniform continuity of ¢ and A4;(¢) on compacts, and then by
approximation.

PROPOSITION 3.11. If ¢;; € Cyy then C° -- ¢, is dissipative. Moreover if the
cocfficients ¢;, ¢;;,i.j = 1, ..., d are real then C° — ¢,l is dispersive,

Proof. If @ € Cy. and

o(g) = sup,o(M)!
heG

then for dissipativity we must prove that
Re((C° — coD)p)(g) = 0.

But since ¢ attains its maximum at g one has (4%)(g) =0 fori=1,...,d and

d
Y a;(43450)g) < 0

igo1
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for each positive-definite matrix (a;;). Therefore

d
Re((C® — col) 9)(g) = Y Re(c; () AMj0)(g) +

i1
+ 3 Rec@)Al)e) > 0
=1

by the ellipticity assumption. ‘
Dispersivity follows by a similar argument. If ¢ € Cy,5, ¢ > 0, and

¢(g) = sup o(h)
heqG

one must prove that
((C° ~ co)p)(g) 2 0.

But if the coefficients of C® — ¢, 7 are real this again follows from the ellipticity assum-
ption.

Note that dissipativity of C® — ¢,I implies closability of C° because C°is densely
defined.

THEOREM 3.12. Assume c; € Cy.,, ¢;; € Coipiyr and ¢y € Cy, where n>d[2. The
closure C° of C° generates a strongly continuous semigroup T° on Cy(G) satisfying

T2l < et

where o = inf{Re c,(g); g € G}. If ¢y > 0, and the coefficients c;, ¢;; are real then
T° is positive and contractive.

Moreover, if T denotes the semigroup generated by C on Ly(G; dg) then T,p =
=Tp forall peL, n Cyand t > 0.

Proof. 1t suffices to consider the case ¢, = 0. The general case is then obtained
by bounded perturbation theory. Now as C° is dissipative its closure C° js automa-
tically dissipative and it generates a semigroup if, and only if, the range R(.I +C°
of AT + C°is dense in Cy(G) for all large A e R.

Let C denote the elliptic operator on L, determined by the coefficients ¢;,
¢;j» and S the semigroup generated by C. Then S = AY2SA-12 where A denotes
multiplication with the modular function, is a holomorphic semigroup on L; with
generator C = AY2CA-Y2 where D(C) = A¥*D(C) = AY2L,.,. Now if A, =
==AY24;,A-Y% we verified prior to Corollary 3.10 that 4, = A, + (;/2) I where 4,
i=1,...,d, denote the generators of left translations on L; and f§;=(4,4)(e).
Morcover, ALy = Ly, .
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Next if

d . - d ~
B = Z AicijAj + 2 c,~A,~

§,j=1 i1

is defined on L; by the method of Subsection 3.1, i.e. via a form, then one immedia-
tely verifies that B=C. In particular D(B) = D(C) = 4%2L,;, = L;, and D((A +
+ BY"?) = AVED((d + C)"™) = AV?Ly, = Ly, for m = 12,...,n + 2, and /
sufficiently large.

Next since ¢;; € Ly, it follows that ¢;;L;, < L, and one can define C on

2;1
L by

A~
o
2;2

o d " d -
C =E§1Aici".A‘i +i§lciAi.

One then computes that 6 = B + P where
d ~ “ ~
P = Z c;A; + ¢,
i=t

is linear in the 4, and the ccefficients ¢, are completely determined by ¢;;, ¢;, and
B ;. But estimates similar to those made at the beginning of Subsection 3.1 show
that P is relatively bounded with respect to the ;| -,!5-norm by B with relative bound
zero. Since B= C generates the holomorphic semigroup S = 41254172 jt follows
from perturbation theory that ¢ generates a holomorphic semigroup on L;. In par-
ticular (.1 + 6)‘1 exists for all sufficiently large positive Z, and D(é) =Ls,.

If ¢ CP(G)e Ly, then = (Al + €)~* €Lg, by Proposition 3.8. But
L;. < Cy.2 by Proposition 3.9. Thus ¢ € Coz. It follows immediately that

R B

E=Q@I+ CW = (A + CW

because A,¢p= AYp and 4,4;0 = A% forall ¢ Ly, 0 Coz. Therefore we have
deduced that C< R + C°). Hence the range of Al + C°is dense in C, and ol
generates a continuous contraction semigroup 7. If the coefficients ¢;, and ¢;;, are
real then CY is dispersive, by Proposition 3.11, and T is positive.

Finally it follows from the foregoing that

(M - C-1¢ = (I + €)1 ¢

for all ¢ &€ CP if 4 is sufficiently large. Moreover, (A + C®~1is a contraction on C,,
and (M1 + é‘) ~1a contraction on L3 . Let o € Cyn L; then there exist &, e CP
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such that &, — ¢ in C, and in L. Since (Al + C)-1¢, = (M + é)‘lé,, it follows
that

(M + C)-1p = (M + C)~1¢
forall g € Cy 0 Ly and all sufficiently large A. But if T denotes the semigroup ge-

nerated by C on L4 then

f,(p = lim (I +(t/n)C)~"p

n—=00

in Ly and

TPp = lim (I + (t/n) CO)~"p

n—+oo

in C,. Therefore one must have
T.o = TP

forallo €eCy n L;. Now if ¢ € L, n L; we want to argue that i’,(p = T,p. For
this it suffices to show that

(I + C)lp = (Ml + C)~1p

for all ¢ € L, n L; and all sufficiently large 2. But if ¢ € L, n Lj then (I+4-12)¢
<@ € L, and we next construct smooth L,-approximations to (I + 4-1%)g.
Introduce the operator X by D(X) = C2(G) and

X = (I + 4-1)C{ + A~V2)-1,

Since
(I + AV)A + A2) Y = (4, + (B/DY — (BT + A-2)~1y
for all y € CP(G) one has
X=C+ P+ (I +A4°Y)-1p, + (I + A~V2)-2p,

where P,, P,, and P; are linear in the generators A;. Thus X is a small perturbation
of the generator C on L,. Then it follows from Corollary 3.5 and perturbation theory
that (Al + X)CP(G) is dense in L, for all sufficiently large . Therefore one may
choose a sequence ¥, € CP(G) such that

Lim|[(A] + X)y, — (1 + A7")p[ly = 0
n-0
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but setting s, = (I + 4712)y, one has , € C2(G) and

lim (I + 47T + CW, — @), = 0.

- co

This implies that

9

lim I+ Wy — ¢ =

n->00

and

vy
"
e

lim (A + CW, — ¢ ;
B 00
Since C¥, = Cy, it follows that

(2 + C)y ¢ = lim (2 -+ C)"Y + O, = lim,

n- 200
in L. Similarly

(AT -+ C)lp =limy,

>3O

in L,. Hence (Al + C)"to = (A] + é)‘l(p for all 9 eLy, n Ls

5o and Ty = Ty
for all peL,n L, .

In conclusion one has
T =Teo =Tl
for all ¢ € C,. Since C. is dense in C, N L, it follows that
T =T
forall e C.n Ly.

Finally we argue that the semigroup T interpolates to all the L*-spaces.

THEOREM 3.13. Assume ¢; € Cyyy € € Cryo 1 and ¢4 €Cy, where n > d2.
Further let T denote the semigroup generated by the corresponding elliptic operator
JC on Ly(G; dg). Then there exist strongly continuous semigroups TP on L(G: dg)»
p €1, 00), T on Cy(G), and a weak*-continuous semigroup T® on L. (G; dg) with tie
Jollowing properties :

1. =T,

2. TPp T for all p e L,n L, and all p, q (1, oo].



SEMIGROUPS GENERATED BY ELLIPTIC OPERATORS 405

3. TPp = T/ ¢ for all p eCyon L, and all p €[], o),
4. |TPlpap < AP for all £ 20 and p €1, o], where w=inf{Re ¢y(g);

d Al
£ eG}, Wy = inf{ Re( co(g) — Y A,-ci)(g); g eG} and q is conjugate to p. If
—

L3

the coefficients c;, c;;, ¢, are real the semigroups are positive.

Proof. 1t follows from Theorem 3.12 that

1Tl < e™'lle

for all ¢ € Cy(G). Next consider the operator

d d
C*= Y, Ajcydi — Y cidi + ¢ 1
i1

i,j=1
where ¢g = ¢o— Y. (4;c;). Then C* with domain D(C*) = D(C) = L, , generates

a semigroup T* on Ly. Since (¢, C) = (C¥p, §) for all g, € D(C) = D(C*) the
operator C* is the adjoint of C, and T* is the adjoint of T. It then follows from the
foregoing estimate applied to T% that

NTEolw < e o'

for all ¢ € C, where w. = infRe{cy(g) — Z(A,-ci)('g) ; & € G}. So by duality

| Tyl < €™ (ool

for all p e L, n L,. Then by the Riesz-Thorin interpolation theorem there exist
bounded operators 77 on L, such that T/¢ = T/¢ for all p eL,nL,, and T{p =
= T,p for ¢ €L,n L,. Moreover

1 T70,li2 < e=©slrio o1

for all ¢ € L, where ¢ is the conjugate variable to p.

Since T is a semigroup each T is a semigroup and strong continuity for
pefl.oo) follows from strong continuity on the dense subspace L, n L,.

Finally if the coefficients are real then T is positive on C; by Theorem 3.1.
But rpositivity on the L ,-spaces follows by another density argument.

In conclusion we remark that the semigroups 77 on the L -spaces, p € (1, 00),

constructed in the aktove manner are automatically holomorphic.This follows by

a slight variation of a general argument of Stein (see, for example, [25], Theorem
X.55(cey).

The generator C* of T on L, is automatically an extension of the elliptic opera-

tor associated with the coefficients ¢;, ¢;;, and ¢, on L, but we do not know
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whether C? is closed on L,, , for p € (1, co). This is true for p = 2by Theorem 3.1
but for p = 1, oo it is certainly false because the domain of the Laplacian on
L,(R4; dx) (Lo(R4; dx)) strictly contains L. 5 (R9; dx) (L,;2(R9; dx)).
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