Perturbation of positive semigroups

By

Wolfgang Arendt and Abdelaziz Rhandi

Introduction. The purpose of this note is to study perturbations of generators of positive semigroups by positive operators.

Let E be a complex Banach lattice and A be a linear operator on E with domain D(A). We say that A is resolvent positive if there exists $w \in \mathbb{R}$ such that $(\lambda - A) : D(A) \longrightarrow E$ is bijective and $(\lambda - A)^{-1}$ is a positive operator on E for all $\lambda > w$. Note that the generator of a positive semigroup is resolvent positive.

Assume that A generates a positive semigroup (by which we always mean a C_0 -semigroup) and $B: D(A) \longrightarrow E$ is linear and positive such that A + B (with domain D(A + B) = D(A)) is resolvent positive.

Then it was shown by Desch [8] that A + B generates a positive semigroup whenever E is a space L^1 . A simple proof is given by Voigt [20].

If E is an L^p -space, 1 , then the assertion is false, in general (see [4]). However, we show in Section 1 that in the case where the semigroup generated by A is holomorphic, also <math>A + B generates a holomorphic semigroup without any restriction on the space.

Furthermore, we prove in Section 2 that A + B generates a semigroup whenever B is a positive rank-one perturbation of A. This is remarkable in view of a recent result of Desch-Schappacher [9]. If the semigroup generated by A is not holomorphic, there always exists a (necessarily non positive) rank-one perturbation B such that A + B is not a generator.

In Section 3 we give a criterion for perturbation by multiplication operators which, in view of the Sobolev embedding theorems, is particularly useful for elliptic operators. As an illustrating example we consider Schrödinger operators.

In Section 4 the results are applied to systems of evolution equations, which obtained special attention recently (see [14]).

Concerning terminology and basic results we follow [17] and [13].

A c k n o w l e d g e m e n t. We are indebted to J. Voigt for several valuable suggestions and comments.

In this section we prove the following perturbation result.

Theorem 1.1. Assume that the semigroup generated by A is holomorphic.

If A + B is resolvent positive, then A + C generates a holomorphic semigroup whenever $C: D(A) \longrightarrow E$ is a linear mapping satisfying

$$(1.1) |Cu| \leq Bu \quad (u \in D(A)_+).$$

Remark. In particular, A + B generates a positive holomorphic semigroup.

Using the classical perturbation result one would obtain this under the hypothesis that $\lim_{\lambda \to \infty} \|BR(\lambda, A)\| = 0$, whereas the assumption that A + B be resolvent positive can be rephrased by saying $\lim_{\lambda \to \infty} r(BR(\lambda, A)) < 1$ (where r(S) denotes the spectral radius of a bounded operator), see [20, Theorem 1.1].

Remark. We emphasize that it does not suffice to assume the existence of the resolvent of Z+Y on a half-plane (without any norm or order condition). In order to see this it suffices to take the generator Z of a holomorphic semigroup on a Banach space G with empty spectrum and Y=-2Z. Then $Y:(D(Z), \|\cdot\|_Z) \longrightarrow G$ is continuous, Z+Y has empty spectrum, but Z+Y does not generate a semigroup. As a concrete example one may take the generator of the Riemann-Liouville semigroup on $L^p(0,1)$ $(1 \le p < \infty)$, see [10, Sec 23.16].

In the situation of Theorem 1.1 the semigroup generated by A + C is dominated by the one generated by A + B. More generally, the following holds.

Theorem 1.2. Assume that A + B generates a positive semigroup $(U(t))_{t \ge 0}$. If $C: D(A) \longrightarrow E$ is linear and satisfies (1.1), then A + C generates a semigroup $(V(t))_{t \ge 0}$ satisfying

$$(1.2) |V(t) f| \le U(t) |f| (f \in E) for all t \ge 0.$$

We will use the following notation. For an operator Z we denote by

$$s(Z) = \sup \{ \operatorname{Re}(\lambda) : \lambda \in \sigma(Z) \}$$

the spectral bound of Z. If Z is resolvent positive, then

$$(1.3) 0 \le R(\mu, Z) \le R(\lambda, Z) \text{for } s(Z) < \lambda \le \mu$$

(see for example [13, B-II-Lemma 1.9]).

If Z generates a semigroup $(S(t))_{t\geq 0}$ we denote by w(Z) the growth bound (or type) of S; i.e.

$$w(Z) = \inf \left\{ w \in \mathbb{R} : \sup_{t \ge 0} \| \exp(-wt) S(t) \| < \infty \right\}$$

= $\inf \left\{ w > s(Z) : \sup_{\lambda > w, n \in \mathbb{N}} \| (\lambda - w)^n R(\lambda, Z)^n \| < \infty \right\}.$

Now we establish some auxiliary results.

Lemma 1.3. If $Q, R: E \longrightarrow E$ are linear such that $|Qf| \le Rf$ for all $f \in E_+$, then $|Qf| \le R|f|$ for all $f \in E$.

For a proof we refer to [17, p. 234].

Lemma 1.4. Assume that A + B is resolvent positive and let $C: D(A) \to E$ be linear and satisfy (1.1). Let $\lambda \in \mathbb{C}$ such that $\lambda_0 := \text{Re}(\lambda) > \max\{w(A), s(A + B)\}$. Then

$$(1.4) |[CR(\lambda, A)]^n u| \leq [BR(\lambda_0, A)]^n |u| (u \in E), for all n \in \mathbb{N}.$$

Moreover, $r(CR(\lambda, A)) < 1$, $\lambda \in \varrho(A + C)$ and

(1.5)
$$R(\lambda, A + C) = R(\lambda, A) \sum_{n=0}^{\infty} [CR(\lambda, A)]^{n}.$$

Proof. By a result of Voigt [20] one has $r(BR(\lambda_0, A)) < 1$ and

(1.6)
$$R(\lambda_0, A + B) = R(\lambda_0, A) \sum_{n=0}^{\infty} [BR(\lambda_0, A)]^n.$$

Let $\mu > s(A)$. Then by (1.1) $CR(\mu, A)$ and $BR(\mu, A) : E \longrightarrow E$ are linear and satisfy $|CR(\mu, A)u| \le BR(\mu, A)u$ for $u \in E_+$.

So by Lemma 1.3,

$$(1.7) |CR(\mu, A)u| \le BR(\mu, A)|u| (u \in E).$$

Since $R(\lambda, A) = \int_{0}^{\infty} \exp(-\lambda t) T(t) dt$, one has $|R(\lambda, A) u| \le R(\lambda_0, A) |u|$ for all $u \in E$. Hence

$$(1.8) |CR(\mu, A)R(\lambda, A)u| \le BR(\mu, A)|R(\lambda, A)u|$$

$$\le BR(\mu, A)R(\lambda_0, A)|u| (u \in E).$$

We consider D(A) with the graph norm $||u||_A = ||u|| + ||Au||$.

Let $\mu > s(A)$. Then $BR(\mu, A): E \longrightarrow E$ is continuous as a positive linear mapping (see [17, 5.3 p. 84]). It follows from (1.7) that $CR(\mu, A): E \longrightarrow E$ is continuous. Since $\mu - A$ is an isomorphism from $(D(A), \|.\|_A)$ onto E, it follow that $C: (D(A), \|.\|_A) \longrightarrow E$ is continuous as well.

For $f \in D(A)$ one has $\lim_{\mu \to \infty} \|\mu R(\mu, A)f - f\|_A = 0$.

So we conclude from (1.8)

$$\begin{aligned} |CR(\lambda, A)u| &= \lim_{\mu \to \infty} |\mu \, CR(\mu, A) \, R(\lambda, A)u| \\ &\leq \lim_{\mu \to \infty} |\mu \, BR(\mu, A) \, R(\lambda_0, A)|u| \\ &= BR(\lambda_0, A) \, |u| \quad (u \in E). \end{aligned}$$

This is (1.4) for n = 1. For $n \in \mathbb{N}$ the inequality follows by iteration.

As a consequence of (1.4) one has

$$r(CR(\lambda, A)) \le r(BR(\lambda_0, A)) < 1$$

and so

$$(I - CR(\lambda, A))^{-1} = \sum_{n=0}^{\infty} [CR(\lambda, A)]^n \text{ exists.}$$

Consequently, $(\lambda - (A + C)) = (I - CR(\lambda, A))(\lambda - A)$ is invertible and (1.5) holds. \square

For the proof of Theorem 1.1 we recall that a densely defined operator Z generates a holomorphic semigroup if and only if there exist $M \ge 0$, w > w(Z) such that

(This follows for example from [13, A-II-Theorem 1.14].)

Proof of Theorem 1.1. There exist $M \ge 0$, $w > \max \{w(A), s(A+B)\}$ such that $\|\lambda R(\lambda, A)\| \le M (\operatorname{Re}(\lambda) \ge w)$.

It follows from Lemma 1.4 that

$$\left| \sum_{n=0}^{\infty} \left[CR(\lambda, A) \right]^n u \right| \leq \sum_{n=0}^{\infty} \left[BR(\operatorname{Re}(\lambda), A) \right]^n |u|$$

$$\leq \sum_{n=0}^{\infty} \left[BR(w, A) \right]^n |u|. \quad (u \in E, \operatorname{Re}(\lambda) \geq w)$$

(where (1.3) was used for the last inequality). Hence

$$C = \sup_{\operatorname{Re}(\lambda) \geq w} \left\| \sum_{n=0}^{\infty} \left[CR(\lambda, A) \right]^{n} \right\| < \infty.$$

Using this it follows that

$$\|\lambda R(\lambda, A + C)\| = \|\lambda R(\lambda, A) \sum_{n=0}^{\infty} [CR(\lambda, A)]^n\| \le Mc \quad (\text{Re}(\lambda) \ge w).$$

So A + C generates a holomorphic semigroup.

Proof of Theorem 1.2. Let $w > \max \{w(A), w(A + B)\}$. It follows from Lemma 1.5 that

$$|R(\lambda, A + C)u| = \left| R(\lambda, A) \sum_{n=0}^{\infty} [CR(\lambda, A)]^n u \right|$$

$$\leq R(\lambda, A) \sum_{n=0}^{\infty} [BR(\lambda, A)]^n |u|$$

$$= R(\lambda, A + B) |u| \quad (u \in E) \quad \text{for all } \lambda > w.$$

Iterating this one obtains

$$(1.10) |R(\lambda, A+C)^n u| \le R(\lambda, A+B)^n |u| (u \in E)$$

for all $\lambda > w$. Since w > w(A + B) one has

$$\sup_{\lambda>w} \| [(\lambda-w)R(\lambda,A+B)]^n \| < \infty.$$

It follows from (1.10) that

$$\sup_{\lambda>w} \| [(\lambda-w)R(\lambda,A+C)]^n \| < \infty.$$

So by the Hille-Yosida theorem A + C generates a semigroup $(V(t))_{t \ge 0}$. Letting $\lambda = 1/t$ in (1.10) one obtains

$$|V(t)u| = \lim_{n \to \infty} |(I - (t/n)(A + C))^{-n}u|$$

$$\leq \lim_{n \to \infty} (I - (t/n)(A + B))^{-n}|u| = U(t)|u|$$

$$(u \in E, t \ge 0).$$

R e m a r k. If in Theorem 1.2 the operator C is positive, then by (1.5) $R(\lambda, A + C) \ge 0$ for large λ and so $V(t) \ge 0$ for $t \ge 0$. We would like to mention the following more general result of Bidard-Zerner [6]. Assume that Z_1, Z_2, Z_3 are (unbounded) operators on E such that $D(Z_1) = D(Z_2) = D(Z_3)$ and $Z_1 f \le Z_2 f \le Z_3 f$ for all $f \in D(Z_1)_+$.

Assume that $\lambda \in \varrho(Z_1) \cap \varrho(Z_3) \cap \mathbb{R}$ such that $R(\lambda, Z_1) \geq 0$, $R(\lambda, Z_3) \geq 0$. Then $\lambda \in \varrho(Z_2)$ and $R(\lambda, Z_2) \geq 0$.

2. Perturbation on AL-spaces and perturbation by finite rank operators. Let E be a (real or complex) Banach lattice, A the generator of a positive semigroup $(T(t))_{t\geq 0}$ on E and $B:D(A)\longrightarrow E$ a positive linear mapping. In this section we allow $(T(t))_{t\geq 0}$ to be arbitrary but assume restrictive conditions on E or the perturbation B.

Recall that E is an AL-space of ||u+v|| = ||u|| + ||v|| whenever $u, v \in E_+$ (see [17]). Any space $L^1(\mu)$ is an AL-space.

The following result is due to Desch [8].

Theorem 2.1. Assume that E is an AL-space.

If A + B is resolvent positive, then A + B generates a positive semigroup.

This result is no longer true on $L^p(1 or <math>C_0(\Omega)$ (Ω locally-compact but not compact); see [4] and Section 4. However, we obtain perturbation results valid in any space if we consider perturbations of finite rank.

By $D(A)_+$ we denote the cone of all positive linear forms on D(A) (i.e. linear mappings $\varphi: D(A) \longrightarrow \mathbb{R}$ satisfying $\varphi(u) \ge 0$ whenever $u \in D(A)_+$).

Theorem 2.2. Suppose that there exist $\varphi \in D(A)'_+$, $g \in E_+$ such that

$$Bf = \varphi(f)g \quad (f \in D(A)).$$

Then A + B generates a positive semigroup on E.

Example 2.3. Let $E = L^p(0, 1)$, $1 \le p < \infty$ and let A be defined by Af = -f', $D(A) = \{ f \in L^p(0, 1) : \exists f' \in L^p(0, 1) \text{ such that } f(x) = \int_0^x f'(y) \, dy \, (x \in (0, 1)) \}.$

Then A generates a positive semigroup. Let μ be a bounded positive measure on [0, 1], $g \in E_+$ and define $B: D(A) \longrightarrow E$ by $Bf = \int\limits_0^1 f(x) \, d\mu(x) g$. Then A + B generates a positive semigroup.

Theorem 2.2 can be extended to perturbations of the following type. The mapping $B: D(A) \longrightarrow E$ is called a regular finite rank perturbation of A if there exist $\varphi_i \in \operatorname{span} D(A)'_+, g_i \in E \ (i = 1 \dots n)$ such that

$$Bf = \sum_{i=1}^{n} \varphi_i(f) g_i \quad (f \in D(A)).$$

Corollary 2.4. If B is a regular finite rank perturbation of A, then A + B generates a semigroup.

In view of Theorem 1.2 this is an immediate consequence of Theorem 2.2.

Theorem 2.2 and its corollary are remarkable in the context of results by Desch and Schappacher [9].

Let Z be the generator of a semigroup on a Banach space G. Consider D(Z) with the graph norm and denote by D(Z)' its dual space. An operator $C: D(Z) \longrightarrow G$ is called a rank 1 perturbation of Z if D(C) = D(Z) and there exist $\varphi \in D(Z)'$ and $g \in G$ such that $Cf = \varphi(f)g$.

Then the following is proved in [9].

- 1. If Z generates an analytic semigroup, then so does Z + C for any rank-one perturbation C.
- 2. If Z + C generates a semigroup for all rank-one perturbations C of Z, then the semigroup generated by Z is analytic.

So Corollary 2.4 shows in particular, that $D(A)'_{+} - D(A)'_{+} \neq D(A)'$ if the semigroup generated by A is not analytic (in other words, the cone $D(A)_{+}$ is not normal in the ordered Banach space D(A)). On the other hand, if is easy to see that $D(A)_{+}$ is normal if A generates a multiplication semigroup (in the sense of [13, C-II-Sec 5]).

Proof of Theorem 2.2. There exist $\varphi \in D(A)'_+$, $g \in E_+$ such that $Bf = \varphi(f)g$ for all $f \in D(A)$.

a) We first show that A+B is resolvent positive. Since $\lim_{\mu\to\infty}\|R(\mu,A)g)\|_A=0$, it follows that there exists $w\in\mathbb{R}$ such that $\varphi(R(\mu,A)g)<1$ for all $\mu\geq w$. Define $R(\mu)\in L(E)$ by $R(\mu)f=R(\mu,A)f+[\varphi(R(\mu,A)f)/(1-\varphi(R(\mu,A)g))]R(\mu,A)g(f\in E)$ for all $\mu\geq w$.

Then $R(\mu)$ is a positive operator, and it is easy to see that $R(\mu) = (\mu - A - B)^{-1}$.

b) Now Voigt's proof of Theorem 2.1 can be adapted to the situation considered here. We merely indicate the necessary alterations in [20, Section 2].

At first, one assumes that there exists $\lambda > s(A)$ such that $||BR(\lambda, A)|| < (1/2)$. Let $\alpha > 0$. Then for $f \in D(A)_+$ one has

$$\int_{0}^{\alpha} \|B \exp(-\lambda t) T(t) f\| dt = \int_{0}^{\alpha} \exp(-\lambda t) \varphi(T(t) f) dt \|g\|$$

$$\leq \varphi(R(\lambda, A) f) \|g\|$$

$$= \|BR(\lambda, A) f\|$$

$$\leq \|BR(\lambda, A)\| \|f\|.$$

Arguing as in the proof of [20, Lemma 2.1] one concludes

$$\int_{0}^{\alpha} \|B \exp(-\lambda t) T(t) f\| dt \le \gamma \|f\| (f \in D(A)) \text{ where } \gamma := 2 \|BR(\lambda, A)\| < 1.$$

So A + B generates a semigroup by [21, Theorem 1]. The general case follows by replacing B by (1/n) B and A by A + (j/n) B successively (j = 0, ..., n - 1) where $n \in \mathbb{N}$ such that $||BR(\lambda, A + B)|| < (n/2)$ for a fixed $\lambda > s(A + B)$.

R e m a r k (Ordered Banach spaces). The lattice property is not essential in the results (but convenient, in particular, for domination properties). One may consider more generally a positive semigroup on an ordered Banach space with generating and normal cone (see [5]). Then Theorem 2.2 remains valid.

Also Desch's theorem (Theorem 2.1) holds, if we suppose that the norm is additive on the positive cone (generalizing AL-spaces). Our proof (resp. Voigt's proof for Desch's theorem) go through without alterations.

Theorem 1.1 remains valid for B = C; however, some modifications (using [5], Corollary 1.7.5 for example) are necessary.

3. Perturbation by multiplication operators. Let (Ω, μ) be a measure space, $1 \le p < \infty$ and let $T = (T(t))_{t \ge 0}$ be a positive semigroup on $L^p(\Omega, \mu)$ with generator A. We assume that

(3.1)
$$D(A) \subset L^q(\Omega)$$
, where $p < q \leq \infty$.

Let
$$(1/r) + (1/q) = (1/p)$$
 (so that $L^r L^q \subset L^p$).

Theorem 3.1. Let $V \in L^{r}(\Omega, \mu)$ and $B: D(A) \longrightarrow E$ be given by Bf = Vf.

- a) If T is holomorphic, then A + V generates a holomorphic semigroup on $L^p(\Omega, \mu)$.
- b) If p = 1, then A + V generates a semigroup on $L^1(\Omega, \mu)$.

Archiv der Mathematik 56

We will show that B is relatively bounded with respect to A with relative bound 0; i.e.

(3.2)
$$\lim_{\lambda \to \infty} \| VR(\lambda, A) \| = 0.$$

So a) actually follows by the classical perturbation result and b) from Desch's theorem.

Proof. Let
$$F = \{ V \in L^r(\Omega, \mu) : \lim_{\lambda \to \infty} ||VR(\lambda, A)|| = 0 \}$$
.

Since $L^{\infty} \cap L' \subset F$, it suffices to show that F is closed. Let $V_n \in F$, $V \in L'$ such that $||V_n - V||_{L^r} \longrightarrow 0 \ (n \longrightarrow \infty)$. By the closed graph theorem the embedding (3.1) is continuous if D(A) carries the graph norm. Moreover,

$$\begin{split} \| VR(\lambda, A) \| & \leq \| (V - V_n) R(\lambda, A) \| + \| V_n R(\lambda, A) \| \\ & \leq \| V - V_n \|_{L^r} \| R(\lambda, A) \|_{L(L^p, L^q)} + \| V_n R(\lambda, A) \| \\ & \leq \text{const } \| V - V_n \|_{L^r} \| R(\lambda, A) \|_{L(L^p, D(A))} + \| V_n R(\lambda, A) \| \\ & \leq \text{const } \| V - V_n \|_{L^r} + \| V_n R(\lambda, A) \| \end{split}$$

for all $\lambda > s(A)$, $n \in \mathbb{N}$.

Hence

$$\lim_{\lambda \to \infty} \| VR(\lambda, A) \| = 0$$

(and
$$(\lambda - A - B)^{-1} = (\lambda - A)^{-1} \sum_{n=0}^{\infty} [VR(\lambda, A)]^n$$
 exists and is positive for λ sufficiently large).

Remark. One cannot omit condition (3.1). To see this it suffices to take $0 \le m \in L^p \setminus L^\infty$, Af = -mf with $D(A) = \{ f \in L^p : mf \in L^p \}$ and V = 2m.

We consider concrete examples.

1. Schrödinger semigroups. a) Let 1 and define <math>A on $L^p(\mathbb{R}^N)$ by $D(A) = W^{2,p}(\mathbb{R}^N)$, $Af = \Delta f$. Then A generates the Gaussian semigroup which is holomorphic and positive. We conclude from Theorem 3.1 that A + V generates a holomorphic semigroup on $L^p(\mathbb{R}^N)$ whenever $0 \le V \in L^p(\mathbb{R}^N)$ for some r satisfying $r \ge \max\{p, (N/2)\}$ if p = (N/2) and r > (N/2) if p = (N/2). In fact, by the Sobolev imbedding theorem one has

$$W^{2,p} \subset \begin{cases} L^{\infty} & \text{if } (N/2) p \,. \end{cases}$$

So the claim follows from Theorem 3.1.

b) Kato [11] defines the operator $\Delta + V$ on $L^1(\mathbb{R}^N)$ considering a well-known class of potentials K_N , where

$$K_{N} = \left\{ V \in L_{\text{loc}}^{1}\left(\mathbb{R}^{N}\right) \colon VD\left(A_{1}\right) \subset L^{1} \quad \text{and} \quad \lim_{\lambda \to \infty} \|VR\left(\lambda, A_{1}\right)\| = 0 \right\}$$

and A_1 is the Laplacian on $L^1(\mathbb{R}^N)$ (i.e. $D(A_1)=\{f\in L^1: \Delta f\in L^1\},\ A_1f=\Delta f\}$). So by Theorem 1.1 A_1+V generates a positive holomorphic semigroup on L^1 whenever $0 \leq V \in K_N$.

It is shown by Kato [11] that this semigroup interpolates on $L^p(\mathbb{R}^N)$ $(1 \le p < \infty)$. This gives another proof of the result of a) in the case p > (N/2) since then $L^p(\mathbb{R}^N) \subset K_N$ (see [2, Proposition 4.3]).

R e m a r k. A perturbation theory for a larger class $\hat{K}_N \supset K_N$ has been developped by Voigt [19].

2. Bounded domain. Let $\Omega \subset \mathbb{R}^N$ be a bounded open set with boundary of class

Then the operator A defined by $D(A) = W_0^{1,p} \cap W^{2,p}$, $Af = \Delta f$, generates a positive holomorphic semigroup on $L^p(\Omega)$ (1 (see [1]).

By the same argument as in 1.a) one sees that A + V generates a positive holomorphic semigroup on $L^p(\Omega)$ whenever $0 \le V \in L^p(\Omega)$ where $r \ge \max\{p, (N/2)\}$ if $p \ne (N/2)$ and r > (N/2) if p = (N/2).

- 3. Elliptic operators. In Example 1 and 2 one can replace the Laplacian by any strictly elliptic real differential operator of second order with (sufficiently) regular coefficients. Indeed, those operators, with domain $W^{2,p}(\mathbb{R}^N)$ (resp. $W_0^{1,p}(\Omega) \cap W^{2,p}(\Omega)$), generate a positive holomorphic semigroup on $L^p(\mathbb{R}^N)$ (resp. $L^p(\Omega)$), 1 .
- **4.** Systems of evolution equations. Let A and D be generators of positive semigroups on a Banach lattice E (resp. F), and let $B: D(D) \longrightarrow E$ and $C: D(A) \longrightarrow F$ be linear and positive. We consider the operator

$$\mathscr{A} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

on $E \times F$ with domain $D(\mathcal{A}) = D(A) \times D(D)$.

Proposition 4.1. The operator \mathcal{A} is resolvent positive if and only if there exists $\lambda > \max\{s(A), s(D)\}\$ such that $r(BR(\lambda, D) CR(\lambda, A)) < 1$.

Remark. One has $r(BR(\lambda, D)CR(\lambda, A)) = r(CR(\lambda, A)BR(\lambda, D))$.

Proof. a) Assume that \mathscr{A} is resolvent positive. Let $\lambda > s(\mathscr{A})$. We write $\mathscr{A} = \mathscr{A}_1 + \mathscr{B}$ where

$$\mathcal{A}_1 = \begin{bmatrix} A & 0 \\ 0 & D \end{bmatrix}$$
 and $\mathcal{B} = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix}$,

both with domain $D(A) \times D(D)$. It follows from [20, Theorem 1.1] that

$$\mathcal{B}R(\lambda, \mathcal{A}_1) = \begin{bmatrix} 0 & BR(\lambda, D) \\ CR(\lambda, A) & 0 \end{bmatrix}$$
 has spectral radius < 1.

In particular,

$$Q(\lambda) := \begin{bmatrix} I & -BR(\lambda, D) \\ -CR(\lambda, A) & I \end{bmatrix}$$

is invertible and has positive inverse. It follows from [15, Lemma 2.1 and (2.1)] that $\Delta(\lambda) := (I - BR(\lambda, D) CR(\lambda, A))$ is invertible and $\Delta(\lambda)^{-1} \ge 0$. Since $BR(\lambda, D) CR(\lambda, A)$ is a positive operator one concludes $r(BR(\lambda, D) CR(\lambda, A)) < 1$ (by [16, App. 2.3]).

b) Assume that $\lambda_0 > \max\{s(A), s(D)\}$ such that $r(BR(\lambda_0, D)CR(\lambda_0, A)) < 1$. Since $R(\lambda, D)$ and $R(\lambda, A)$ are decreasing in λ (by (1.3)), it follows that $r(BR(\lambda, D)CR(\lambda, A)) < 1$ for all $\lambda \ge \lambda_0$. Consequently, by [15, Lemma 2.1] the operator $Q(\lambda)$ is invertible for $\lambda \ge \lambda_0$ and $Q(\lambda)^{-1} \ge 0$ (this can be seen from [15, (2.1)]). Thus

$$(\lambda - \mathcal{A}) = Q(\lambda) \begin{bmatrix} \lambda - A & 0 \\ 0 & \lambda - D \end{bmatrix}$$

has positive inverse for $\lambda \geq \lambda_0$.

Corollary 4.2. \mathcal{A} is resolvent positive whenever B or C is bounded.

Using the results of Section 1 and 2 one obtains the following conclusion.

Theorem 4.3. Assume that $r(BR(\lambda, D)CR(\lambda, A)) < 1$ for some $\lambda > \max\{s(A), s(D)\}$.

- a) If the semigroups generated by A and D are holomorphic, then $\mathcal A$ generates a holomorphic positive semigroup.
 - b) If E and F are AL-spaces, then \mathcal{A} generates a positive semigroup.

Remark. A systematic investigation of matrices of unbounded operators is given by Nagel [14], [15]. The problem under which condition a matrix of unbounded operators generates a positive semigroup is treated by [7].

We conclude by an example where $\mathcal{A} + \mathcal{B}$ does not generate a semigroup.

Let
$$F = C_0(0, 1] = \{ f \in C[0, 1] : f(0) = 0 \}, Af = -f',$$

$$D(A) = \{ f \in C^1[0, 1] : f'(0) = f(0) = 0 \}.$$

Then A generates a positive contraction semigroup on F.

Let $B: D(A) \longrightarrow F$ be given by

$$Bf(x) = (1/x) f(x)$$
 if $x \neq 0$ and $Bf(0) = 0$.

Then $\mathscr{A} + \mathscr{B} = \begin{bmatrix} A & 0 \\ B & A \end{bmatrix}$ on $E = F \times F$ is resolvent positive but does not generate a semigroup (where $\mathscr{A} = \begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$ and $\mathscr{B} = \begin{bmatrix} 0 & 0 \\ B & 0 \end{bmatrix}$).

Proof. We have

$$(\lambda - \mathcal{A} - \mathcal{B})^{-1} = \begin{bmatrix} R(\lambda, A) & 0 \\ R(\lambda, A) BR(\lambda, A) & R(\lambda, A) \end{bmatrix}$$

for $\lambda > s(A) = -\infty$, where $(R(\lambda, A) f)(x) = \exp(-\lambda x) \int_{0}^{x} \exp(\lambda y) f(y) dy$.

For $f \in F$ we compute

$$(R(\lambda, A)BR(\lambda, A)f)(x) = \exp(-\lambda x) \int_{0}^{x} \exp(\lambda y) (BR(\lambda, A)f)(y) dy$$

$$= \exp(-\lambda x) \int_{0}^{x} \exp(\lambda y) (1/y) \exp(-\lambda y) \int_{0}^{y} \exp(\lambda z) f(z) dz dy$$

$$= \exp(-\lambda x) \int_{0}^{x} (1/y) \int_{0}^{y} \exp(\lambda z) f(z) dz dy$$

$$= \exp(-\lambda x) \int_{0}^{x} \exp(\lambda z) f(z) \int_{z}^{x} (1/y) dy dz$$

$$= \int_{0}^{x} \exp(-\lambda x) \log(x/z) dz$$

$$= \int_{0}^{x} \exp(-\lambda x) \log(x/x - t) f(x - t) dt$$

$$= \int_{0}^{x} \exp(-\lambda t) (W(t) f)(x) dt$$

where

(4.1)
$$(W(t) f)(x) = \log(x/(x-t)) f(x-t) \text{ if } x > t \text{ and }$$

$$(W(t) f)(x) = 0 \text{ if } x \le t.$$

If $\mathcal{A} + \mathcal{B}$ were the generator of a semigroup U on $E = F \times F$, then by the uniqueness of Laplace transforms it would be of the form

$$U(t)(f,g) = \begin{bmatrix} T(t)f & 0 \\ W(t)f & T(t)g \end{bmatrix}.$$

But (4.1) does not define a bounded operator on $C_0(0, 1]$.

The example demonstrates the sharpness of the Hille-Yosida theorem. In fact, let $\Re(\lambda) = (\lambda - \mathscr{A} - \mathscr{B})^{-1}$ and $R(\lambda) = R(\lambda, A)$. Then

(4.2)
$$\sup_{\lambda>0} \|(\lambda \mathcal{R}(\lambda))^n\| \le \operatorname{const} \cdot n$$

for all $n \in \mathbb{N}$.

However, $\mathcal{A} + \mathcal{B}$ does not generate a semigroup, i.e.

$$\sup_{\substack{\lambda > w \\ n \in \mathbb{N}}} \| [\lambda - w) \mathcal{R}(\lambda)]^n \| = \infty \quad \text{for all } w \ge 0.$$

Proof of (4.2). It is easy to show by induction that

$$\mathscr{R}(\lambda)^{n} = \begin{bmatrix} R(\lambda)^{n} & 0\\ \sum\limits_{k=1}^{n} R(\lambda)^{n+1-k} BR(\lambda)^{k} & R(\lambda)^{n} \end{bmatrix}.$$

But $R(\lambda)^{n+1-k}BR(\lambda)^k \leq R(\lambda)^{n+1-k}BR(0)R(\lambda)^{k-1}$ for all $\lambda \geq 0$. Hence

$$\lambda^{n} \| R(\lambda)^{n+1-k} BR(\lambda)^{k} \| \le \lambda^{n} \| R(\lambda)^{n+1-k} \| \| BR(0) \| \| R(\lambda)^{k-1} \| \le \| BR(0) \|$$

since $\|\lambda R(\lambda)\| \le 1$. Thus

$$\|\lambda^n \mathcal{R}(\lambda)^n\| \leq \text{const} \cdot n \text{ for all } \lambda > 0.$$

References

- [1] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12, 623–727 (1959).
- [2] M. AIZENMAN and B. SIMON, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math. 35, 209-273 (1982).
- [3] W. Arendt, Resolvent positive operators and integrated semigroup. Semesterbericht Funktionalanalysis, 73-101, Tübingen SS 1984.
- [4] W. Arendt, Resolvent positive operators. Proc. London Math. Soc. 54, 321-349 (1987).
- [5] C. J. K. BATTY and D. W. ROBINSON, Positive One-Parameter Semigroups on Ordered Banach Space. Acta Appl. Math. 1, 221–296 (1984).
- [6] C. BIDARD and M. ZERNER, The Perron-Frobenius Theorem in relative spectral theory. Preprint 1989.
- [7] P. CHARISSIADIS, Zur Charakterisierung positiver Matrixhalbgruppen auf Banachverbänden. Semesterbericht Funktionalanalysis Tübingen 14, 61-65 (1988).
- [8] W. Desch, Perturbations of positive semigroup on AL-space. Preprint.
- [9] W. Desch and W. Schappacher, Some perturbation results for analytic semigroup. Preprint 1988.
- [10] E. HILLE and R. PHILLIPS, Functional Analysis and semigroups. Amer. Math. Soc. Coll. Pub. 31, Providence, R.I. 1957.
- [11] T. Kato, L_p-theory of Schrödinger operators with a singular potential. In: R. Nagel; U. Schlotterbeck; M. P. H. Wolff (eds.): Aspects of Positivity in Functional Analysis. Amsterdam 1986.
- [12] I. MIYADERA, On perturbation theory for semigroup of operators. Tôhoku Math. J. 18, 299-310 (1966).
- [13] R. NAGEL, One-parameter Semigroups of Positive Operators. LNM 1184, Berlin-Heidelberg-New York 1986.
- [14] R. NAGEL, Well-posedness and positivity for systems of linear evolution equations. Bari 1985.
- [15] R. Nagel, Towards a "Matrix Theory" for Unbounded Operator Matrices. Math. Z. 201, 57-68 (1989).
- [16] H. H. Schaefer, Topological Vector Spaces. Berlin-Heidelberg-New York 1971.
- [17] H. H. Schaefer, Banach Lattices and Positive Operators. Berlin-Heidelberg-New York 1974.
- [18] B. Simon, Schrödinger semigroups. Bull. Amer. Math. Soc. 7, 447-526 (1982).

- [19] J. Voigt, Absorption semigroups, their generators, and Schrödinger semigroups. J. Funct. Anal. 67, 167-205 (1982).
- [20] J. Voigt, On resolvent positive operators and positive C_0 -semigroups on AL-spaces. Semigroup Forum 38, 263–266 (1989).
- [21] J. Voigt, On the perturbation theory for strongly continuous semigroups. Math. Ann. 229, 163-171 (1977).

Eingegangen am 12. 6. 1989*)

Anschrift der Autoren:

Wolfgang Arendt Abdelaziz Rhandi Laboratoire de Mathématiques Université de Franche-Compté 25030 Besançon-Cedex/France

^{*)} Eine Neufassung ging am 8. 12. 1989 ein.