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Perturbation of positive semigroups 

By 

WOLFGANG ARENDT and ABDELAZIZ RHANDI 

Introduction. The purpose of this note is to study perturbations of generators of positive 
semigroups by positive operators. 

Let E be a complex Banach lattice and A be a linear operator  on E with domain D (A). 
We say that A is resolvent positive if there exists w e P~ such that (2 - A): D (A) - -~ E is 
bijective and (2 - A)-  1 is a positive operator  on E for all 2 > w. Note that the generator 
of a positive semigroup is resolvent positive. 

Assume that  A generates a positive semigroup (by which we always mean a C0-semi- 
group) and B: D(A)---* E is linear and positive such that  A + B (with domain 
D (A + B) = D (A)) is resolvent positive. 

Then it was shown by Desch [8] that A + B generates a positive semigroup whenever 
E is a space L 1. A simple proof  is given by Voigt [20]. 

If E is an LP-space, 1 < p < 0% then the assertion is false, in general (see [4]). However,  
we show in Section 1 that in the case where the semigroup generated by A is holomorphic,  
also A + B generates a holomorphic  semigroup without any restriction on the space. 

Furthermore,  we prove in Section 2 that A + B generates a semigroup whenever B is 
a positive rank-one perturbat ion of A. This is remarkable in view of a recent result of 
Desch-Schappacher [9]. If the semigroup generated by A is not holomorphic,  there always 
exists a (necessarily non positive) rank-one perturbat ion B such that A + B is not a 
generator. 

In Section 3 we give a criterion for perturbat ion by multiplication operators  which, in 
view of the Sobolev embedding theorems, is particularly useful for elliptic operators. As 
an illustrating example we consider Schr6dinger operators. 

In Section 4 the results are applied to systems of evolution equations, which obtained 
special attention recently (see [14]). 

Concerning terminology and basic results we follow [17] and [13]. 

A c k n o w 1 e d g e m e n t. We are indebted to J. Voigt for several valuable suggestions 
and comments.  

1. Perturbation of holomorphic semigroups. Let E be a complex Banach lattice (see [17]) 
and let A 'be the generator of a positive semigroup T = (T(t))t=> o on E. We consider a 
positive linear operator  B: D (A) - -*  E (i.e. Bf >= 0 for all f ~ D (A)+ :=  D (A) c~ E+). 

In this section we prove the following perturbat ion result. 
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Theorem 1.1. Assume that the semigroup generated by A is holomorphic. 
I f  A + B is resolvent positive, then A + C generates a holomorphic semigroup whenever 

C : D (A) --+ E is a linear mapping satisfying 

(1.1) ICu]<_Bu (u~D(A)+). 

R e m a r k. In particular, A + B generates a positive holomorphic  semigroup. 
Using the classical perturbation result one would obtain this under the hypothesis that 

lira ][ BR (2, A) [] = 0, whereas the assumption that A + B be resolvent positive can be 
A~oO 

rephrased by saying l i r a  r(BR (2, A) )<  1 (where r(S) denotes the spectral radius of a 

bounded operator), see [20, Theorem 1.1]. 

R e m a r k. We emphasize that  it does not suffice to assume the existence of the 
resolvent of Z + Y on a half-plane (without any norm or order condition). In order to 
see this it suffices to take the generator Z of a holomorphic  semigroup on a Banach space 
G with empty spectrum and Y = -  2Z.  Then Y:(D(Z), [[. [[z)---+ G is continuous, 
Z + Y has empty spectrum, but Z + Y does not generate a semigroup. As a concrete 
example one may take the generator of the Riemann-Liouville semigroup on 
LP(0, 1) (I =< p < or), see [10, Sec 23.16]. 

In the situation of Theorem 1.1 the semigroup generated by A + C is dominated by the 
one generated by A + B. More generally, the following holds. 

Theorem 1.2. Assume that A + B generates a positive semigroup (U(t))t>=o. I f  
C: D(A)---+ E is linear and satisfies (1.1), then A + C generates a semigroup (V(t))t>_o 
satisfying 

(1.2) [ V ( t ) f l < U ( t ) l f [  ( f E E )  forall  t>>_O. 

We will use the following notation. For  an operator  Z we denote by 

s (Z) = sup  {Re (2): 2 e o- (Z)} 

the spectral bound of Z. If Z is resolvent positive, then 

(1.3) 0 < R ( # , Z ) < R ( 2 ,  Z)  for s ( Z ) < 2 ~ #  

(see for example [13, B- I I -Lemma 1.9]). 
If  Z generates a semigroup (S(t))t>=o we denote by w(Z) the growth bound (or type) of 

S; i.e. 

w (Z) = inf {w ~ R :  sup [[ exp ( -  w t) S (t)[[ < ~ }  
t_>O 

= i n f { w > s ( Z ) :  sup [](2-w)nR(2, Z)"H < ~ } .  
~?>W, IIE~'4 

Now we establish some auxiliary results. 
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Lemma  1.3. I f  Q, R: E ~ E are linear such that lQfi < R f for all f ~ E+, then 

I Q f i < R i f ]  forall f ~ E .  

For  a proof  we refer to [17, p. 234]. 

Lemma  1.4. Assume that A + B is resolvent positive and let C : D (A) ~ E be linear 
and satisfy (1.1). Let 2 ~ ~ such that 20 :=  Re (2) > max {w(A), s(A + B)}. Then 

(1.4) I[CR(2, A)]'ul < [BR(2o, A)]"Iu[ (ueE), for all n e N .  

Moreover, r(CR(2, A)) < 1, ;t ~ Q(A + C) and 

(1.5) R (2, A + C) = R (2, A) ~ [CR (2, A)]". 
n = 0  

P r o o f. By a result of Voigt [20] one has r(BR(2o, A)) < 1 and 

(1.6) R(2o, A + B)= R(2o, A ) ~, [BR(2o, A)]". 
n = 0  

Let/2 > s(A). Then by (1.1) CR(/2, A) and BR (/2, A):E--+ E are linear and satisfy 

[CR(/2, A)uI <= BR(/2, A)u for u6 E+. 

So by Lemma 1.3, 

(1.7) [CR(/2, A)u[<=BR(/2, A)[u[ (u~E). 

Since R(2, A) = S exp ( -  20 T(t)dt, one has [R(2, A)u[ < R(2o, A) [u[ for all u 6 E. 
Hence o 

(1.8) [CR(/2, A)R()~,A)uI< BR(/2, A) IR(2, A)u[ 

<= BR(/2, A)R(2o, A)[u[ (u 6 E).  

We consider D(A) with the graph norm ][ u [[A = 11 u [1 + 1[ Au [1. 
Let/2 > s (A). Then BR (/2, A)" E - - .  E is continuous as a positive linear mapping (see 

[17, 5.3 p. 84]). It follows from (1.7) that  CR (/2, A): E --+ E is continuous. Since # - A is 
an isomorphism from (D (A), [I. [[A ) onto E, it follow that C: (D (A), 11. [[A) --+ E is contin- 
uous as well. 

For  f E D (A) one has lim [[/2R (/2, A) f  - f [[A = 0. 
/ t  --~ oO 

So we conclude from (1.8) 

[CR(2, A)u[ = lim 1/2CR(/2, A)R(2, A)u[ 
lt--+ oo 

_< lira #BR(#,A)R(2o, A)Iu ] 
/z ~ cx3 

=BR(2o, A) Iu [ (u6E). 

This is (1.4) for n = 1. For  n 6 N the inequality follows by iteration. 
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AS a consequence of (1.4) one has 

r(CR(2, A)) < r(BR(2o, A)) < 1 
and so 

( I -CR(2 ,  A))-I= ~ [CR(2, A)]" exists. 
n = 0  

Consequently, (2 - (A + C)) = (I - CR(2, A)) (4 - A) 
holds. []  

ARCH. MATH. 

is invertible and (1.5) 

(where (1.3) was used for the last inequality). Hence 

= sup ,=~o [CR(2, A)]" < ~ .  C 
Re(2)>_--w 

Using this it follows that 

II2R(2, A + C)ll = 2R(2, A) ~ [CR(2, A)]" < Me (Re(k) > w). 
n = 0  

So A + C generates a holomorphic semigroup. [] 

P r o o f  o f  T h e o r e m  1.2. Letw>max{w(A),w(A+B)}. 
It follows from Lemma 1.5 that 

[R(2, A + C ) u [ =  R(2, A) ~ [CR(2, A)]"u 
n = 0  

< R (4, A) ~ [BR (4, A)]" l ul 
n = 0  

=R(2, A+B)[u[ (u~E) fo ra l l  2 > w .  

,~=o [CR(2, A)I"u --< ,=o ~ [BR(Re(2),A)]" [u] 

< ~ [BR(w,A)]"Iul. (u~E, Re(2)>=w) 
n = 0  

For  the proof  of Theorem 1.1 we recall that a densely defined operator  Z generates a 
holomorphic semigroup if and only if there exist M > 0, w > w (Z) such that  

(1.9) 112R(LZ)II < M  ( R e ( 2 ) > w ) .  

(This follows for example from [13, A-II -Theorem 1.14].) 

P r o o f o f T h e o r e m 1.1. There exist M > 0, w > max {w (A), s (A + B)} such that 
II 2 R (4, A)II _-< M (Re (4) > w). 

It follows from Lemma 1.4 that 
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Iterating this one obtains 

(1.10) [R(2, A + C ) " u l < R ( 2 ,  A + B ) " l u l  ( u e E )  

for all 2 > w. Since w > w (A + B) one has 

sup II [(,l - w)  R (2, A + B)]" II < o o ,  
A>vo 

h e n  

It follows from (1.10) that 

s u p  11[(2 - w ) R ( L A  + C ) ] " l l  < o o .  
2 > w  

n ~ N  

So by the Hille-Yosida theorem A + C generates a semigroup (V(t))t>=o. Letting 2 = 1/t 
in (1.10) one obtains 

I V(t)ul-- lirno~ I(I - ( t / n ) ( A  + C))-"ul  

< lim (I - (t/n) (A + B))-" l u l  = u (t) l ul 
n-+Go 

(u e E, t >= O). [] 

R e m a r k. If in Theorem 1.2 the operator C is positive, then by (1.5) R (2, A + C) > 0 
for large 2 and so V(t) > 0 for t > 0. We would like to mention the following more general 
result of Bidard-Zerner [6]. Assume that Z 1, Z 2, Z 3 are (unbounded) operators on E such 
that D(Z1) = D(Z2) = D(Z3) and Z ~ f  < Z z f  < Z 3 f  for all f e D ( Z 1 )  + . 

Assume that 2 e Q(Za) c~ 0 (Z3) c~ R such that R (2, Z1) > 0, R (2, Z3) > 0. Then 
2 e Q (Z2) and R (2, Z2) > 0. 

2. Perturbation on AL -spaces and perturbation by finite rank operators. Let E be a (real 
or complex) Banach lattice, A the generator of a positive semigroup (T(t))t=> o on E and 
B: D (A) --+ E a positive linear mapping. In this section we allow (T(t))t>o to be arbitrary 
but assume restrictive conditions on E or the perturbation B. 

Recall that E is an AL-space of [I u + v II = II u II + II v tl whenever u, v e E+ (see [17]). 
Any space L t (#) is an AL-space. 

The following result is due to Desch [8]. 

Theorem 2.1. Assume that E is an AL-space. 
I f  A + B is resolvent positive, then A + B generates a positive semigroup. 

This result is no longer true on L p (1 < p < oo) or Co (Q) (~ locally-compact but not 
compact); see [4] and Section 4. However, we obtain perturbation results valid in any 
space if we consider perturbations of finite rank. 

By D (A) + we denote the cone of all positive linear forms on D (A) (i.e. linear mappings 
q~ : D (A) - - ,  R satisfying ~o (u) > 0 whenever u e D (A) +). 
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Theorem 2.2. Suppose that there exist ~p ~ D (A)'+, g e E+ such that 

B f  =q~(f)g ( f eD(A) ) .  

Then A + B generates a positive semigroup on E. 

E x a m p l e  2.3. Let E=LP(O,I), l = < p < ~  and let A be defined by A f = - f ' ,  
x 

D(A) = {feLP(O, 1): 3 f '  e LP(0, 1) such that f (x)  = ~f ' (y )  dy(xe(O, 1))}. 
o 

Then A generates a positive semigronp. Let p be a bounded positive measure on [0, 1], 
1 

g e E + and define B : D (A) ~ E by B f  = ~ f (x) dl~ (x) g. Then A + B generates a positive 
semigroup, o 

Theorem 2.2 can be extended to perturbations of the following type. The mapping 
B: D(A)---+ E is called a regular finite rank perturbation of A if there exist 
~0 i e span D (A)'+, gl e E (i = 1. . .  n) such that 

B f =  ~ ~o i( f)gi  ( fED(A)) .  
i=1 

Corollary 2.4. I f  B is a regular finite rank perturbation of A, then A + B generates a 
semigroup. 

In view of Theorem 1.2 this is an immediate consequence of Theorem 2.2. 
Theorem 2.2 and its corollary are remarkable in the context of results by Desch and 

Schappacher [9]. 
Let Z be the generator of a semigroup on a Banach space G. Consider D (Z) with the 

graph norm and denote by D (Z)' its dual space. An operator C : D (Z) ~ G is called a 
rank 1 perturbation of Z if D(C) = D(Z) and there exist ~p e D(Z)' and g e G such that 

C f = q~(f)g. 
Then the following is proved in [9]. 

1. If Z generates an analytic semigroup, then so does Z + C for any rank-one pertur- 
bation C. 

2. I f  Z + C generates a semigroup for all rank-one perturbations C of Z, then the 
semigroup generated by Z is analytic. 

So Corollary 2.4 shows in particular, that D (A)'+ - D (A)'+ ~ D (A)' if the semigroup 
generated by A is not analytic (in other words, the cone D (A)+ is not normal in the 
ordered Banach space D (A)). On the other hand, if is easy to see that D (A) + is normal 
if A generates a multiplication semigroup (in the sense of [13, C-II-Sec 5]). 

P r o o f o f T h e o r e m 2.2. There exist q~ e D (A)' +, g e E + such that B f  = ~o ( f )  g 
for all f e D (A). 

a) We first show that A + B is resolvent positive. Since lim HR(#, A)g)llA = 0, it ,~oo 
follows that there exists w e N .  such that ~o(R(p,A)g)< 1 for all # > w .  Define 
R(#) e L(E)by R(p) f = R(#, A) f + [(p (R (p, A) T)/(1 - q~(R(p, A)g))]R(p, A ) g ( f  e E) 
for all # > w. 
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Then R(#) is a positive operator, and it is easy to see that R(#) = (# - A - B) -1 

b) Now Voigt's proof of Theorem 2.1 can be adapted to the situation considered here. 
We merely indicate the necessary alterations in [20, Section 2]. 

At first, one assumes that there exists 2 
Then for f e D (A) + one has 

i H B e x p ( - 2 0  T ( t ) f l l d t  = 
0 

Arguing as in the proof of [20, Lemma 

> s (A) such that IIB R (2, A) II < (1/2). Let e > 0. 

exp (-- 2t) q) (T( t )  f )  dt 11 g II 
0 

~o (R (2, A)f )q[g l l  

II BR (2, A ) f  II 

II B R  (2, A)II II f II. 

2.1] one concludes 

i[IBexp(-2t)T(t)flldt~:Tll/ll(feD(A)) where 7:=211BR(LA)[l<l ,  
0 

So A + B generates a semigroup by [21, Theorem 1]. The general case follows by replac- 
ing B by (l/n) B and A by A + (j/n) B successively (j = 0 . . . . .  n - 1) where n e N such that 
]I B R (2, A + B)II < (n/2) for a fixed 2 > s (A  + B). [] 

R e m a r k (Ordered Banach spaces). The lattice property is not  essential in the results 
(but convenient, in particular, for domination properties). One may consider more gener- 
ally a positive semigroup on an ordered Banach space with generating and normal cone 
(see [5]). Then Theorem 2.2 remains valid. 

Also Desch's theorem (Theorem 2.1) holds, if we suppose that the norm is additive on 
the positive cone (generalizing AL-spaces). Our  proof (resp. Voigt's proof  for Desch's 
theorem) go through without alterations. 

Theorem 1.1 remains valid for B = C; however, some modifications (using [5], Corol- 
lary 1.7.5 for example) are necessary. 

3. Perturbation by multiplication operators. Let ([2, #) be a measure space, 1 _<_ p < oc 
and let T = (T(t))t=>o be a positive semigroup on LP(Y2, #) with generator A. We assume 
that 

(3.1) D(A)  c Lq(f2), where p < q < oc. 

Let (1/r) + (l/q) = (l/p) (so that Lr L q c LP). 

Theorem 3.1. Le t  V e L r (g2, #) and B : D (A) ~ E be given by B f = V f  

a) I f  T is holomorphic, then A + V generates a holomorphic semigroup on LP(Y2, #). 
b) I f  p = 1, then A + V generates a semigroup on L 1 (f2, #). 

Archiv der Mathematik 56 8 
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We will show that B is relatively bounded with respect to A with relative bound 0; i.e. 

(3.2) l im l[ V R  (2, A)II = o .  
).--*00 

So a) actually follows by the classical perturbation result and b) from Desch's theorem. 

P r o o f. Let F = {V e L' ([2, #): l i m  II VR(2, A)II = 0}. 

Since L ~176 c~ L r c F, it suffices to show that F is closed. Let V, ~ F, V ~ 15 such that 
[1V, - V IlL, -----' 0 (n ~ oo). By the closed graph theorem the embedding (3.1) is continu- 
ous if D (A) carries the graph norm. Moreover, 

I[ VR (2, A)II ~ II (v - v~) R (2, A)I] + ]l V. R (2, A)It 

< [] V -  V~llL. IFR(2, A) llL(L. LV + II V.R(2, A)H 

< const II V - V. tlL~ [[R(2, A)[[L(LP, O(A)) + 11V.R(2, A)[] 

< const I] V - V. ItL. + II V.R(2,  A)II 

for all 2 > s (A), n e N. 
Hence 

lim II VR (2, A)I] = 0 

(and (2 - A - B)-1 = (2 - A)-1 ~ [VR (2, A)]" exists and is positive for 2 sufficiently 
large). [ ]  , = o 

R e m a r k .  One cannot omit condition (3.1). To see this it suffices 
O < mE LP\L ~176 A f  = - m f  with o (A)  = { f  6 Lp: m f  e L r} and V = 2 m .  

We consider concrete examples. 

to take 

1. S c h r 6 d i n g e r  s e m i g r o u p s ,  a) Let l < p < o o  and define A on LP(N N) 
by D ( A ) =  Wz'p(NN), A f  = Af.  Then A generates the Gaussian semigroup which 
is holomorphic and positive. We conclude from Theorem 3.1 that A + V generates 
a holomorphic semigroup on LP(N N) whenever 0 < V e Lr(ll. N) for some r satisfying 
r > max { p, (N/2)} if p + (N/2) and r > (N/2) if p = (N/2). In fact, by the Sobolev imbed- 
ding theorem one has 

W 2,p  c co 
L q 

if (N/2) < p 

if (N/2) = p 

for (l/q) = ((1/p) - (2/N)) 

So the claim follows from Theorem 3.1. 

if (N/2) > p. 
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b) Kato  [11] defines the operator  A + V on L 1 (RN) considering a well-known class of 
potentials Ku, where 

K N = { V ~ L ] o c ( I R N ) : V D ( A a ) C L  1 and lim [[VR(2, AO[ [ = 0 }  
~ o o  

and A 1 is the Laplacian on L 1 (IR N) (i.e. D(A 0 = { f  ~ L l : A f e  L1}, A l f  = A f) .  
So by Theorem 1.1 A 1 + V generates a positive holomorphic  semigroup on L 1 when- 

ever 0 < V e K N. 
It is shown by Kato  [11] that this semigroup interpolates on Lv(N N) (1 __< p < oo). This 

gives another  proof  of the result of a) in the case p > (N/2) since then L v (I~ N) c K N (see 
[2, Proposi t ion 4.3]). 

R e m a r k. A perturbat ion theory for a larger class/(N = KN has been developped by 
Voigt [19]. 

2. B o u n d e d d o m a i n. Let f2 c N N be a bounded open set with boundary  of class 
C ce" 

Then the operator  A defined by D (A) = Wl'pc~ W 2"p, A f  = A f  generates a positive 
holomorphic  semigroup on Lv(f2)(1 < p < oe) (see [1]). 

By the same argument  as in 1.a) one sees that A + V generates a positive holomorphic  
semigroup on LV(f2) whenever 0 < V e  g ( Q )  where r > max {p, (N/2)} if p + (N/2) and 
r > (N/2) if p = (N/2). 

3. E 11 i p t i c o p e r a t o r s. In Example 1 and 2 one can replace the Laplacian by any 
strictly elliptic real differential operator  of second order with (sufficiently) regular coeffi- 
cients. Indeed, those operators,  with domain W 2'v (N N) (resp. W l"v (g2) c~ W 2'p (f2)), gen- 
erate a positive holomorphic  semigroup on Lv(IR s)  (resp. LP(f2)), 1 < p < oo. 

4. Systems of evolution equations. Let A and D be generators of positive semigroups on 
a Banach lattice E (resp. F), and let B:D ( D ) ~  E and C:D (A) - - ,  F be linear and 
positive. We consider the operator  

on E x F with domain D ( d )  = D (A) x D (D). 

Proposition 4.1. The operator s~' is resolvent positive if and only if there exists 
;~ > max {s (A), s(D)} such that r(BR(2, D) CR(2, A)) < 1. 

R e m a r k. One has r (B R (2, D) C R (2, A)) = r (C R (2, A) B R (2, D)). 

P r o o f. a) Assume that  d is resolvent positive. Let 2 > s (d) .  We write ~ = ~1 + 
where 

~ r  ODI and ~ = [ 0  C B I ,  

8* 
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both with domain D (A)x D (D). It follows from [20, Theorem 1.1] that 

[ o  . . / .  spe.al rad,us ~R(2 '  dO = CR(2, A) 0 

In particular, 

Q(2):= _CR(2 ,  A) I 

is invertible and has positive inverse. It follows from [15, Lemma 2.1 and (2.1)] that 
A (2):= (I - BR  (2, D) CR (2, A)) is invertible and A (2)- 1 > 0. Since B R  (2, D) CR (2, A) 
is a positive operator one concludes r (BR (2, D)CR (2, A)) < I (by [16, App. 2.3]). 

b) Assume that 2 o > max {s(A), s(O)} such that r(BR (20, D) CR (2o, A)) < 1. Since 
R (2, D) and R (2, A) are decreasing in 2 (by (1.3)), it follows that r (BR (2, D) CR (2, A)) < 1 
for all )~ > 20. Consequently, by [15, Lemma 2.1] the operator Q (2) is invertible for 2 > 2 o 
and Q(2) -1 > 0 (this can be seen from [15, (2.1)]). Thus 

,. .~176 
has positive inverse for 2 > 2 o. [] 

Corollary 4.2. d is resolvent positive whenever B or C is bounded. 

Using the results of Section 1 and 2 one obtains the following conclusion. 

Theorem 4.3. Assume that r(BR(2, D) CR(2, A)) < I for some 2 > max {s(A), s(D)}. 
a) I f  the semigroups generated by A and 1) are holomorphic, then d generates a holomor- 

phic positive semigroup. 
b) I f  E and F are AL-spaces, then d generates a positive semigroup. 

R e m a r k. A systematic investigation of matrices of unbounded operators is given by 
Nagel [14], ['15]. The problem under which condition a matrix of unbounded operators 
generates a positive semigroup is treated by [7]. 

We conclude by an example where d § ~ does not generate a semigroup. 
L e t F = C o ( 0 , 1 ] = { f e C [ 0 , 1 ] : f ( 0 ) = 0 } ,  A f  = -  f ' ,  

D(A) = { f r  C 1 [0, 1] :f '(0) =f(0)  = 0}. 

Then A generates a positive contraction semigroup on F. 
Let B : D (A) ---+ F be given by 

Bf(x)  = ( l /x ) f (x )  if x # 0 and Bf(O) = O. 

�9 Olo..=...isresolvent.ositivebut.oesno .e~ 
semigroup (where d =  IO 0 ]  a n d ~ =  [ ;  :1 )"  
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P r o o f .  We have 

=[ R(2,A) 0 ] 
( 2 - d - N ) - 1  [R(2, A) BR(4, A) R(4, A) 

for 2 > s(A) = - 0% where (R(2, A)f)(x) = exp ( - 2 x ) i  exp (2y)f(y)dy. 
0 

For  f e F we compute 

(R (4, A) B R (4, A) f )  (x) = 
x 

exp ( -  2x) ~ exp (2y) (BR (2, A)f)(y) dy 
0 

x y 

exp ( -  2 x) ~ exp (4 y) (l/y) exp ( -  2 y) ~ exp (4 z)f(z)dz dy 
0 0 

x y 

exp ( -  2 x) I (l/y) I exp (2 z)f(z)dz dy 
0 0 

x 

exp ( -  2x) ~ exp (2z)f(z) i (1/y) dydz 
0 z 

x 

exp ( -  2 (x - z)) f(z) log (x/z) dz 
0 

x 

exp ( -  2t) log(x/(x - t)) f (x  -- t) dt 
0 

x 

exp (-- 2 0 (W(t)f)(x)dt 
0 

where 

(4.1) (W(t)f)(x) = log(x/(x-  t))f(x - t) if x > t and 

(W(t)f) (x) = 0 if x = t. 

If  d + ~ were the generator of a semigroup U on E = F x F, then by the uniqueness of 
Laplace transforms it would be of the form 

U ( t ) ( f g ) = [ r ( t ) f  0 ] .  
kW(t)f  T(t)O 

But (4.1) does not define a bounded operator  on Co(0, 1]. [ ]  

The example demonstrates the sharpness of the Hille-Yosida theorem. In fact, let 
(2) = (2 - d - N ) -  1 and R (2) = R (2, A). 
Then 

(4.2) sup 11 (2 ~ (2))" 11 _<_ const �9 n 
2 > 0  

for all n e N.  
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However, d + ~ does not generate a semigroup, i.e. 

sup II [,~ - w) ~ (2)]n II = oo for all w > 0. 

n~N 

P r o  o f  o f  (4.2). It is easy to show by induction that 

[ R ( 2 ) n _  R(2)" BR(2) k R(~.)"0 ] (,~)" = ~ . 1 - k " 
k = l  

But R(2)n+I-kBR(2)  k < R(2)n+I-kBR(O)R(2)  k - t  for all 2 > 0. 

Hence 

2" IIe(,~.)'+~-kBe(2)kll < ~n iie(2)=+l-kl[ IIBe(0)ll IIe(,~)k-x II < IIBe(0)ll 

since 112R(2)11 < 1. Thus 

II ,~"~ (,t)" II _-< const - n for all 2 > 0. []  
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