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Perturbation of positive semigroups

By

WOLFGANG ARENDT and ABDELAZIZ RHANDI

Introduction. The purpose of this note is to study perturbations of generators of positive
semigroups by positive operators.

Let E be a complex Banach lattice and 4 be a linear operator on E with domain D (4).
We say that 4 is resolvent positive if there exists w € R such that (1 — A): D(4)— E is
bijective and (A — 4) ™! is a positive operator on E for all A > w. Note that the generator
of a positive semigroup is resolvent positive.

Assume that A generates a positive semigroup (by which we always mean a C,-semi-
group) and B:D(A)— E is linear and positive such that 4 + B (with domain
D(A + B) = D(A)) is resolvent positive.

Then it was shown by Desch [§] that A + B generates a positive semigroup whenever
E is a space L!. A simple proof is given by Voigt [20].

If E is an IP-space, 1 < p < oo, then the assertion is false, in general (see [4]). However,
we show in Section 1 that in the case where the semigroup generated by A is holomorphic,
also A + B generates a holomorphic semigroup without any restriction on the space.

Furthermore, we prove in Section 2 that 4 + B generates a semigroup whenever B is
a positive rank-one perturbation of A. This is remarkable in view of a recent result of
Desch-Schappacher [9]. If the semigroup generated by A is not holomorphic, there always
exists a (necessarily non positive) rank-one perturbation B such that 4 + B is not a
generator.

In Section 3 we give a criterion for perturbation by multiplication operators which, in
view of the Sobolev embedding theorems, is particularly useful for elliptic operators. As
an illustrating example we consider Schrodinger operators.

In Section 4 the results are applied to systems of evolution equations, which obtained
special attention recently (see [14]).

Concerning terminology and basic resuits we follow [17] and [13].

Acknowledgement. We are indebted to J. Voigt for several valuable suggestions
and comments.

1. Perturbation of holomorphic semigroups. Let E be a complex Banach lattice (see [17])
and let 4 be the generator of a positive semigroup T = (T'(¢)),>, on E. We consider a
positive linear operator B: D(A)— E (ie. Bf = 0 for all fe D(A),:=D(A)NE.).

In this section we prove the following perturbation result.
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Theorem 1.1. Assume that the semigroup generated by A is holomorphic.
If A + B isresolvent positive, then A -+ C generates a holomorphic semigroup whenever
C:D(A)— E is a linear mapping satisfying

(1.1) |Cul < Bu (ueD(4),).

Remark. In particular, A + B generates a positive holomorphic semigroup.
Using the classical perturbation result one would obtain this under the hypothesis that
Alim I BR(4, A)l| = 0, whereas the assumption that 4 + B be resolvent positive can be

rephrased by saying Alim r(BR (2, A)) < 1 (where r(S) denotes the spectral radius of a

bounded operator), see [20, Theorem 1.1].

Remark. We emphasize that it does not suffice to assume the existence of the
resolvent of Z + Y on a half-plane (without any norm or order condition). In order to
see this it suffices to take the generator Z of a holomorphic semigroup on a Banach space
G with empty spectrum and Y =—2Z. Then Y:(D(Z), || - |;) — G is continuous,
Z + Y has empty spectrum, but Z + Y does not generate a semigroup. As a concrete

example one may take the generator of the Riemann-Liouville semigroup on
I7(0, 1) (1 = p < ), see [10, Sec 23.16].

In the situation of Theorem 1.1 the semigroup generated by A + C is dominated by the

one generated by 4 + B. More generally, the following holds.

Theorem 1.2. Assume that A + B generates a positive semigroup (U(t))»o- If
C:D(A)— E is linear and satisfies (1.1), then A + C generates a semigroup (V (),

satisfying

(1.2) VOSI=U@Ifl (feE) forall t20.

We will use the following notation. For an operator Z we denote by
s(Z) =sup {Re(}): Lea(2)}

the spectral bound of Z. If Z is resolvent positive, then

(1.3) 0=R(,Z)SR(A,Z) fors(Z)<ispu

(see for example {13, B-II-Lemma 1.9]).
If Z generates a semigroup (S (1)),» o we denote by w(Z) the growth bound (or type) of
S; ie.

w(Z) = inf {we R:sup lexp(—~w) S (1) < oo}
tz0

=inf {w>s(Z): sup NG =Wy RG, 2y < w0} .

A>w,ne

Now we establish some auxiliary results.
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Lemma 1.3. If Q, R: E— E are linear such that |Qf| £ Rf for all f € E,, then

[QfISR|f| forall feE.
For a proof we refer to [17, p. 234].

Lemma 1.4. Assume that A + B is resolvent positive and let C: D(A)— E be linear
and satisfy (1.1). Let A€ € such that Ay:= Re (1) > max {w(A4), s(4 + B)}. Then
1.4 [[CR(4, A))"u] £ [BR(Ay, A)]"|ul (ueE), forall neN.
Moreover, r{CR(A, A)) < 1, Aco(A+ C) and

(1.5) R A+C)=R(,A4) Y [CR( A"
n=0

Proof. By a result of Voigt [20] one has r(BR(44, 4)) < 1 and
(1.6) R(lo, 4+ B)= R(lg, 4) 3. [BR (2o, A)]".
n=0

Let u > s(A4). Then by (1.1) CR(u, A) and BR(u, A): E — E are linear and satisfy
|[CR{p, A)u| £ BR(yu, A)u for uekE,.

So by Lemma 1.3,

1.7 |[CR(u, Ayu| = BR(u, A)ju| (ueE).

Since R(4, A) = | exp (— 22) T(¢)dt, one has |R(4, A)u| < R(L,, A) |u| for all ue E.
Hence 0

(1.8) |CR(p A)R(4, A)u| < BR(p, A) |R(4, A)ul
< BR(4, A)R (%, A) lu] (ueE).
We consider D(A4) with the graph norm |u| , = |u] + | Aull.
Let u > s(A). Then BR(u, A): E— E is continuous as a positive linear mapping (see
[17, 5.3 p. 84]). It follows from (1.7) that CR(p, A): E —> E is continuous. Since y — A is
an isomorphism from (D (A4), |} . | ,) onto E, it follow that C: (D (A), || . | 4) — E is contin-

uous as well.
For fe D(A) one has lim |uR(p, A)f —f|4=0.
u—w

So we conclude from (1.8)

[CR(4, Ayu| = lim |uCR(pu, A)R(4, A)u|
g

IA

lim pBR (4, A)R(4o, A)|ul
[ ©

= BR(4y, A) lu] (ueE).

This is (1.4) for n = 1. For n e N the inequality follows by iteration.
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As a consequence of (1.4) one has

r(CR(4, A) £ r(BR(4p, A) < 1
and so

(I—CR(,A) " =3 [CR(, A" exists.
n=0

Consequently, (A—(A+C))=(I—-CR( A)(L— A) is invertible and (1.5)
holds. [

For the proof of Theorem 1.1 we recall that a densely defined operator Z generates a
holomorphic semigroup if and only if there exist M = 0, w > w(Z) such that

(1.9) IAR(ALZ)| =M (Re(d) 2z w).
(This follows for example from [13, A-II-Theorem 1.14].)

Proof of Theorem 1.1. Thereexist M = 0, w > max {w(4), s(4 + B)} such that
[ZR(4, A)| = M (Re(4) = w).
It follows from Lemma 1.4 that

M8

=

n

[BR(Re(4), A)]" [u]

> [CR(, A)]"u
n=0

0

< 2 [BR(w, A)]" |u|. (ueE,Re(d) 2 w)
n=0
{where (1.3) was used for the last inequality). Hence
C= sup | X [CR(4LA]"| < .
Re(A)zw ||n=0

Using this it follows that

[AR(A, A+ C)|| = “AR(A, A) 5 [CRO, A)"|| < Mc (Re(d) = w).
n=0

So A + C generates a holomorphic semigroup. [

Proof of Theorem 1.2. Let w > max {w(A4), w(4 + B)}.
It follows from Lemma 1.5 that

IR(A, A+ Cu| = 1R(/1, A) E‘, [CR(A, A))"u
n=0

SR(. ) 3 (BRO AP lu

=R(A, A+ B)ju| (weE) forall 1>w.
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Iterating this one obtains
(1.10) |IR(4, A+ CY'u| SR, A+ B)"|ul (ueE)
for all A > w. Since w > w(A + B) one has

sup |[(A —w)R(4, A + B)]"|| < .
A>w
neN

It follows from (1.10) that
sup [[A —w)R(4L A+ CO)N'|| < 0.
A>w

nelN

So by the Hille-Yosida theorem A + C generates a semigroup (V(2)),»,. Letting 4 = 1/t
in (1.10) one obtains

[V@©)ul = lim |(I — (t/n) (4 + C)™"ul

IIA

lim (I —(¢/n)(A+ B) "|u|l=Ut) |y

n— o

(ueE, t=20. O

Remark. Ifin Theorem 1.2 the operator C is positive, then by (1.5)R(4, 4 + C) =0
for large A and so V' (t) =z O for t = 0. We would like to mention the following more general
result of Bidard-Zerner [6]. Assume that Z,, Z,, Z, are (unbounded) operators on E such
that D(Z))=D(Z,)=D(Z)and Z,f S Z,f £ Z,f forall fe D(Z,),.

Assume that Aeg(Z,)ng(Z;)nR such that R(4,Z,)=0, R(4,Z5)=0. Then
lego(Z,)and R(4, Z,) = 0.

2. Perturbation on AL -spaces and perturbation by finite rank operators. Let E be a (real
or complex) Banach lattice, A the generator of a positive semigroup (T (), on E and
B: D(A) — E a positive linear mapping. In this section we allow (T (1)), , to be arbitrary
but assume restrictive conditions on E or the perturbation B.

Recall that E is an AL-space of u +v|| = |ul| + ||v| whenever u,ve E, (see [17]).
Any space L! () is an A L-space.

The following result is due to Desch [§].

Theorem 2.1. Assume that E is an A L-space.
If A + B is resolvent positive, then A + B generates a positive semigroup.

This result is no longer true on I (1 < p < o) or Cy () (€ locally-compact but not
compact); see [4] and Section 4. However, we obtain perturbation results valid in any
space if we consider perturbations of finite rank.

By D(A), we denote the cone of all positive linear forms on D (4) (i.e. linear mappings
¢@: D(A) — IR satisfying ¢ (1) = 0 whenever u € D (4),).
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Theorem 2.2. Suppose that there exist 9 € D(A),, g€ E, such that
Bf =o¢(f)g (feD(4).

Then A + B generates a positive semigroup on E.

Example 2.3. Let E=17(0,1), 1 £p < oo and let A be defined by Af =—f7,
D(4)={fel?(0,1):3f € ”(0, 1) such that f(x) = ?f’(y) dy (x € (0, 1))}.

Then A4 generates a positive semigroup.lLet ubea boounded positive measure on [0, 1],

g€ E, and define B: D(4) — Eby Bf = | f(x) du(x)g. Then A + B generates a positive
semigroup. 0

Theorem 2.2 can be extended to perturbations of the following type. The mapping
B:D(A)— E is called a regular finite rank perturbation of A if there exist
¢;cspan D(A),, g;€ E(i = 1...n) such that

Bf = ¥ oo (/D).

Corollary 2.4. If B is a regular finite rank perturbation of A, then A + B generates a
semigroup.

In view of Theorem 1.2 this is an immediate consequence of Theorem 2.2.

Theorem 2.2 and its corollary are remarkable in the context of results by Desch and
Schappacher [9].

Let Z be the generator of a semigroup on a Banach space G. Consider D (Z) with the
graph norm and denote by D (Z) its dual space. An operator C: D(Z) — G is called a
rank 1 perturbation of Z if D(C) = D(Z) and there exist ¢ € D(Z) and g € G such that
Cf=e(f)g

Then the following is proved in [9].

1. If Z generates an analytic semigroup, then so does Z + C for any rank-one pertur-
bation C.

2. If Z + C generates a semigroup for all rank-one perturbations C of Z, then the
semigroup generated by Z is analytic.

So Corollary 2.4 shows in particular, that D(4), — D(A)', + D(AY) if the semigroup
generated by A4 is not analytic (in other words, the cone D(A), is not normal in the
ordered Banach space D(A)). On the other hand, if is easy to see that D(A), is normal
if A generates a multiplication semigroup (in the sense of [13, C-II-Sec 5]).

Proof of Theorem 2.2. There exist p € D(A4) ., ge E, such that Bf = ¢(f)g
for all f € D(A).

a) We first show that A + B is resolvent positive. Since lim |R (g, 4)g)ll, =0, it
u—r o

follows that there exists we IR such that ¢@(R(u, A)g) <1 for all u>=w. Define

R(p) e LIE)by R(1) f = R(p, A) f + [o(R(p, A) /)1 — o(R (1, A9 R(pn, A)g(f € E)
for all u = w.
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Then R(p) is a positive operator, and it is easy to see that R(u) = (u — A — B)™ .

b) Now Voigt’s proof of Theorem 2.1 can be adapted to the situation considered here.
We merely indicate the necessary alterations in [20, Section 2].

At first, one assumes that there exists A > s(A4) such that || BR(4, 4)|| < (1/2). Let o > 0.
Then for f e D(A4), one has

E | Bexp(— A0 TS || dt = Eexp(—ﬂ»t)qo(T(t)f)dt gl

S 9R(4A)Sf) gl
= [BR(4 A) [
SBR@A AN

Arguing as in the proof of [20, Lemma 2.1] one concludes

'3

[IBexp(=AT@fldt <y f I (feD(A4) where y:=2|BR(L A <1.

0

So 4 + B generates a semigroup by [21, Theorem 1]. The general case follows by replac-
ing Bby (1/n) Band A by A + (j/n) B successively (j = 0, ..., n — 1) where n € N such that
IBR(, A+ B)|| <(n/2) for a fixed 1 >s(4 + B). [

Remark (Ordered Banach spaces). The lattice property is not essential in the results
(but convenient, in particular, for domination properties). One may consider more gener-
ally a positive semigroup on an ordered Banach space with generating and normal cone
(see [5]). Then Theorem 2.2 remains valid.

Also Desch’s theorem (Theorem 2.1) holds, if we suppose that the norm is additive on
the positive cone (generalizing AL-spaces). Our proof (resp. Voigt’s proof for Desch’s
theorem) go through without alterations.

Theorem 1.1 remains valid for B = C; however, some modifications (using [5], Corol-
lary 1.7.5 for example) are necessary.

3. Perturbation by multiplication operators. Let (Q, 1) be a measure space, 1 < p < o
and let T = (T (t));», be a positive semigroup on I7 (€, u) with generator A. We assume
that

3.1) D(A) < I1(), where p<gq = .

- Let (1/r) + (1/g9) = (1/p) (so that L' I1 < 7).

Theorem 3.1. Let Ve L'(Q, u) and B: D(4) — E be given by Bf = Vf.

a) If T is holomorphic, then A + V generates a holomorphic semigroup on LF (L, p).
b) If p =1, then A + V generates a semigroup on L (Q, ).

Archiv der Mathematik 56 8
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We will show that B is relatively bounded with respect to 4 with relative bound 0; i.e.

(3.2) lim | VR(4, 4)| = 0.

A= ©

So a) actually follows by the classical perturbation result and b) from Desch’s theorem.

Proof. Let F = (Ve L'(2, #: lim [VR(, 4)] =0},

Since L* n L' c F, it suffices to show that F is closed. Let V,e F, V e I such that
|V, — Vip— 0(n— o). By the closed graph theorem the embedding (3.1) is continu-
ous if D (A) carries the graph norm. Moreover,

IVR@A A = [(V—=VIREG A + IV,RA A)|
SNV = Vlie- 1IRG, AllLwr, o) + I V,REA A
sconst |V — WVl IR, AllLwe,piay + 1 VaR(4 Al
Sconst |V — Vil + | V,R(, A
for all A > s(A4), ne N.

Hence

lim [VR( 4)] =0

(and (A — 4 —B)y ' =(A— A)"* I [VR(4, 4)]" exists and is positive for A sufficiently
large). [ n=0

Remark. One cannot omit condition (3.1). To see this it suffices to take
0=meI\L*, Af =—mf withD(A)={fel’:mfel’}and V =2m.

We consider concrete examples.

1. Schrédinger semigroups. a) Let 1 <p < oo and define 4 on IP(RY)
by D(4) = W*»P(R¥), Af = Af. Then A generates the Gaussian semigroup which
is holomorphic and positive. We conclude from Theorem 3.1 that A + V generates
a holomorphic semigroup on IF(R") whenever 0 < V e I (R") for some r satisfying
r = max {p, (N/2)}if p £ (N/2) and r > (N/2)if p = (N/2). In fact, by the Sobolev imbed-
ding theorem one has

L> if (N/2)<p
W2p o U L A (N2)y=p
I for (1/g) = ((1/p) — (2/N)) if (N/2) > p.

So the claim follows from Theorem 3.1.
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b) Kato [11] defines the operator 4 + V on L* (IR¥) considering a well-known class of
potentials K, where

Ky={VeLL, (R"): VD)=L and lim VR, 4] = 0}

and A4, is the Laplacian on L' (RY) (ie. D(4,) = {fe*: Af e '}, A, f = Af).

So by Theorem 1.1 A, + V generates a positive holomorphic semigroup on L' when-
ever 0 < VeK,.

It is shown by Kato [11] that this semigroup interpolates on I7 (IRY) (1 < p < o). This
gives another proof of the result of a) in the case p > (N/2) since then I7 (R") = K (see
[2, Proposition 4.3]).

Remark. A perturbation theory for a larger class Ky > K, has been developped by
Voigt [19].

2.Bounded domain. Let @ < RY be a bounded open set with boundary of class
C=.

Then the operator A defined by D(4) = WP n WP, Af = Af, generates a positive
holomorphic semigroup on I*{2) (1 < p < o) (see [1]).

By the same argument as in 1.a) one sees that A + V generates a positive holomorphic
semigroup on I? (Q) whenever 0 < Ve I/ (Q) where r > max {p, (N/2)} if p & (N/2) and
r>(N/2)if p = (N/2).

3.Elliptic operators. In Example 1 and 2 one can replace the Laplacian by any
strictly elliptic real differential operator of second order with (sufficiently) regular coeffi-
cients. Indeed, those operators, with domain W?2-? (R¥) (resp. Wi¥ (Q) n W*? (), gen-
erate a positive holomorphic semigroup on I7 (R¥) (resp. [ (2)), 1 < p < .

4. Systems of evolution equations. Let 4 and D be generators of positive semigroups on
a Banach lattice E (resp. F), and let B: D(D)— E and C: D(A4)— F be linear and
positive. We consider the operator

of = A B
“lc D
on E x F with domain D (<) = D(A4) x D (D).

Proposition 4.1. The operator </ is resolvent positive if and only if there exists
4> max {s(A), s(D)} such that r(BR(4, D)CR{4, 4)) < 1.

Remark. One has r(BR (4 D)CR(4, A)) = r(CR(4, A) BR (4, D)).

Proof. a) Assume that &/ is resolvent positive. Let 4 > s(of). We write & = o/, + &

where
A 0 0 B
oA = d #=

8*
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both with domain D (A4) x D (D). It follows from [20, Theorem 1.1] that

0 BR(4, D .
BR(A A) = I:CR(/L ) i) ):| has spectral radius < 1.
In particular,
I —BR(4, D)
Q):=
—CR(%, A) I

is invertible and has positive inverse. It follows from [15, Lemma 2.1 and (2.1)] that
A(A):=(I — BR(4, D) CR(4, 4)) is invertible and A(4)"* = 0. Since BR(4, D) CR(4, 4)
is a positive operator one concludes r (BR (4, D) CR (4, A)) < 1 (by [16, App. 2.3]).

b) Assume that 4 > max {s(4), s(D)} such that r(BR (4, D) CR (A, A)) < 1. Since
R (2, D)and R (4, A) are decreasing in A (by (1.3)), it follows that #» (BR(4, D) CR (4, 4)) < 1
forall A = A,. Consequently, by [15, Lemma 2.1] the operator Q (4) is invertible for 4 = A,
and Q (1)~ ! = 0 (this can be seen from [15, (2.1)]). Thus

i—4 0
(A—af)=Qu>[ . A_D]

has positive inverse for A = 4,. [

Corollary 4.2. o/ is resolvent positive whenever B or C is bounded.

Using the results of Section 1 and 2 one obtains the following conclusion.

Theorem 4.3. Assume that r(BR (A, D)CR (4, A)) < 1 for some ). > max {s(A), s(D)}.
a) If the semigroups generated by A and D are holomorphic, then of generates a holomor-

phic positive semigroup.
b) If E and F are AL-spaces, then </ generates a positive semigroup.

Remark. A systematic investigation of matrices of unbounded operators is given by
Nagel [14], [15]. The problem under which condition a matrix of unbounded operators
generates a positive semigroup is treated by [7].

We conclude by an example where <7 + # does not generate a semigroup.
Let F = CO(Oa 1] = {fE C[O: 1]f(0) = 0}, Af = —f"

D(4) = {feC'[0,1]:f'(0) = f(0) = 0} .

Then A generates a positive contraction semigroup on F.
Let B: D(A)— F be given by

Bf(x)=(1/x)f(x) if x+0 and Bf(0)=0.

B 4

A 0 00
i h = = .
semigroup <w ere .o/ I:O AJ and # [B 0])

A 0
Then o + # -—-I: } on E = Fx F is resolvent positive but does not generate a
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Proof. We have

(l—d—ﬂ)‘lz[ R(4 A) 0 ]

R(A, A) BR(4, A) R(A, A)
for 4 > s(4) = — oo, where (R(A, A) f) (x) = exp(— Ax) T exp (4y) f(y) dy.
0

For f € F we compute

(R(2 A)BR (%, A) f) (x) = exp (— 2) | exp () BR (% 4) f) (y) dy
= exp (=A%) | exp (1) (1/3) exp (— £7) j exp(12) £ (2)dz dy
= exp (— Ax) | (1)) j exp (12) f(2) dzdy

=exp(—1x)

Ot Otk Ot—mk  Ot—m¥

exp (12) £(2) | (A/y)dy dz

exp (— A(x — z)) f(2)log(x/z)dz

exp (—At) log(x/(x — 1) f(x — t)dt

i
Oty Oty Ot X

exp (=AW () f) (x)dt

where

{4.1) WwoONHx=logx/x—t)f(x—t) if x>t and
W@ f)(x) =0 if x<t.

If o + % were the generator of a semigroup U on E = F x F, then by the uniqueness of
Laplace transforms it would be of the form

T@of O ]
w@f Tog]l

But (4.1) does not define a bounded operator on Cy(0,1]. [

U@Mw=[

The example demonstrates the sharpness of the Hille-Yosida theorem. In fact, let
R(A)=(— o — B~ and R(A) = R(1, A).
Then

4.2) sup [[(AZ ()| <const-n
A>0

for all ne IN.
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However, o« + % does not generate a semigroup, i.e.
sup |[[A —w)Z(A)]"|| =0 forall wz0.
e
Proof of (4.2). It is easy to show by induction that
R(A)" 0
AW =1 ¥ ROPUBROE RO

But R(A)"T* " *BRA)} <R *BROYR(Af*forall A = 0.
Hence
ARy BRW £ A IR * [BRO) | RG] £ |BRO)]

since | AR(A)]] £ 1. Thus
A" RA)'| Sconst-n forall A>0. [
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