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INTRODUCTION

For a (real or complex) L, (1=p<o) the space Z’(L,) of all regular
operators on L, is defined as the linear span of the positive operators. If p=1,
then £'(L,) coincides with the space #(L,) of all continuous linear operators;
cf. [18; chap. IV, Theorem 1.5], [1; sec. 15]. In this paper we show that
#'(L,) is not dense in #(L,) if 1<p<oe and dimL,=c. In particular we
show that the Hilbert transformation 7 on Lp(G), for G=27,R, T, is strongly
non-regular, i.e. T does not belong to Q’(LP(G))’“’. The fundamental idea is to
prove that whenever there would exist a sequence (7,,) in Q’(L,,(G)) approx-
imating 7, it could already be chosen such that 7, commutes with translations.
This is achieved by showing that there exists a positive projection of the space
of all operators onto the subspace of translation invariant operators.

We also show that an operator on a Hilbert space which can be approximated
by regular operators with respect to all orderings induced by choosing some
orthonormal basis is of the form K+ AJ, with compact K and A€ C.

1. A POSITIVE PROJECTION ONTO THE SPACE QF ALL TRANSLATION INVARIANT
OPERATORS

In this section let G be a locally compact group. For ae G and a function
f:G—C we denote by ,f the left translate of f by a, ,f(x):=f(ax) (xe G).
Let A be a left Haar measure on G (i.e. | fdA=], fdA for all fe C.(G),
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aeG; cf. [12; §15]). For 1=p<o we shall write L,:=L,(G,4) (K-valued,
where K=R or K=C), in this section.
Let #,;(L,) denote the set of left translation invariant operators,

Li(Ly):={TeZ(L,); T(,f)=,(Tf) for all ae G, fe L,}.

A function f: G — K is right uniformly continuous if sup, | f(x) —,f(x)| =0
if y tends to the unit in G. The Banach space of all bounded, right uniformly
continuous functions will be denoted by C, ,,(G).

A left invariant mean on C, ,(G) is a functional Me C, ,,(G) satisfying
M)y=1,M=0, M(,f)=M(f) for all feC, ,,(G)aeG (cf. [10; §1.1]). In
this section we shall assume G to be amenable, i.c., there exists a left invariant
mean M on C,,,(G). This is in fact equivalent to the existence of (left) in-
variant means on other function spaces, e.g. L, (G,41); cf. [10; §2.2], [16;
Theorem 4.19].

1.1. THEOREM. Let1=<p<oo. There exists a positive, contractive projection
2 from Z(L,) onto %,;(Lp).

REMARK. Let 1<p<oo,1/p+1/g=1. Then 2 can be defined by 2(T)="T,

(1.1) (Tfgy=M(@a~(T(f),.8)

(feL,, geL,), where (.,.) denotes the natural duality bracket between L,
and L,. If p=1, then 2 can be defined in such a way that (1.1) is true for all
fe L, geCyG).

PROOF. (i) We first consider the case 1<p<oo. Let TeZ(L,). For
feL,gel,, the function a~ (T(,f),&> is bounded, [(T(.f) .8} =
IT[|f],lel, (@eG), and right uniformly continuous; cf. [12; Theorem
(20.4)]. Therefore, a bilinear mapping

B:L,XL,—K
is defined by

(1.2)  B(f,e):=M(a~<T([) &)
and the properties of M imply |B| <| T|. This implies that there exists a unique
Te%(L,) such that B(f,g)=(Tf g) for all feL, geL,, and we have the
estimate || =|B]=|T].
Next we show Te%;(L,). Let beG, feL, geL,. Then
{ 7‘:(bf)a g> =M(a - T(a(bf))’ ag>)
=M(a - LT (paf) b 6a8?)
:M(a ~ < T(af)’ b’lag>)
=(Tf,p 8> = (TN), 8.
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This shows T(,f)=,(7f), and thus Te Z;(L,).

If Te#,(L,) then it is clear from the definition that 7=T holds.

If T=0 then B(f, g)=0 for =0, g=0, and this implies 7=0.

(ii) Let p=1. Again let Te #(L,). Then (1.2) defines a continuous bilinear
form B on L; X Cy(G) such that |B|=|T]. So there exists a linear mapping
T:L;— Co(GY,|T|=]B], such that

SIS T NSy WRRVRE RRAT

(& TfY=B(fg) (feL,,geCy(G)).
For ne Cy(GY,ae G, let ,ue Cy(G) be defined by

(@, ) =g 10, 1) (w € Cop(G)).

Then one sees as in (i) that 7, f= ,(Tf) for all fe L,,a€ G. This implies in par-
ticular that the mapping Gsa ~ a(ff)eCO(G)’ is continuous. Therefore, by
[12: (19.27)], the measure T is absolutely continuous with respect to 4. This
means that in fact 7 maps L, into L,. It is clear from the definition that 7 is
positive if T is positive. |

2. RELATION TO THE PROJECTION ONTO THE CENTER

In this section let G be a locally compact Abelian group, 4 a Haar measure
on G, and 1 the Haar measure on the character group G, normalized by the
requirement that the Fourier transformation F: L,(G, A) = L,(G, 1) be unitary.
For brevity we shall use the notations X :=L,(G, 1), Y :=L,(G, 1).

The Fourier transformation induces a bijective linear mapping
F X (X)—> L(Y) defined by

I(T):=FTF™"

Recall that for an order complete Banach lattice E the space #Z'(E) of
regular operators is an order complete Banach lattice; cf. [18; chap. IV, §1].
The center F(E) of #(E) is the linear span of the order interval [ -1, /], where
I is the identity operator; it is a band in Z"(E'). We refer to [1; sections 8 and
15] for these statements; the elements of 3(E) are also called orthomorphisms
or multiplication operators.

For E=Y, the center 3(Y) coincides with the multiplication operators by
L -functions. This follows from [22; Theorem 7] and the localizability of 4
(cf. [6; Theorem 9.4.8] together with [14; sec. 14, M]).

Since G is commutative the set of operators commuting with translations will
be denoted by Z;(X) :=%,;,(X). These operators are also called multipliers for
X cf. [5], [15], [7]. We recall that # maps &;(X) onto3(Y); cf. [15; Theorem
4.1.1].

Let M be an invariant mean on C, ,(G):=C,,(G) (note that G is
amenable; cf. [10; Theorem 1.2.1]), and let 2: %(X)— %;(X) be the projec-
tion associated with M via Theorem 1.1. We define @:Q( Y)—- 3(Y) by

2:=992% ",

Then 2 is a contractive projection onto 3(Y).
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2.1. THEOREM. TheArestriction of 2 to P'(Y) is the band projection onto
F(Y). In particular, 2 is positive.

PROOF. (i) Let Te#(Y),. We show that 2(T)e2’(Y)and |2(T)|<T. In
fact, let f,ge Y, f=0. It is easy to check that then

| 2T)fgdl=M(a~ | T(af)agdd),
where, in the last expression, a € G is interpreted as a character on G. Therefore

] 2(T)fgdA|<sup || T(af)ag di|

< If|g| di.

Since this is true for all ge Y, we obtain | 2(T)f|<Tf. Now 2(T)eZ'(Y)
follows from [18; chap. IV, Proposition 1.6], and |§( T)| = T is obtained from
[18; chap. IV, Theorem 1.8].

(i) If 0=TeF(Y) then (i) implies 2(T)e 3(Y)". Since also 2(T)e F(Y)
we obtain é(T)zO. This implies that @, restricted to £'(Y), is the band
projection onto 3(Y). ||

2.2. REMARK. For an order complete Banach lattice E it was shown in [21]
that the band projection #: ¥'(E)— F(E) is contractive with respect to the
operator norm, and can therefore be extended as a contraction to all of Z(E).
For E:=Y, Theorem 2.1 shows that such an extension is given by 2.

2.3. EXAMPLE.’ If G is compact, then the normalized Haar measure is the
unique invariant mean on C(G). In this case the projection £ has the following
form: Since G isA discrete each operator Te Z(Y) corresponds to a matrix
(tsy)pyec- Then 2(T)=(0p,1p,)pycG> with the Kronecker delta (d4,). Indeed,
| 2(T) x4y 21 42
G
={ 2F ' TF)p7y dA

G

§ §F'TF(,),y di dA(a)

aeG G

| p@yy@ dA@)]§ Txip 2oy dh=

aeG

=0pylpy-

3. STRONG NON-REGULARITY OF MULTIPLIER OPERATORS

In the following G is a locally compact Abelian group and L,=L,(G,4)
(1 < p< ). By M(G) we denote the space of all bounded Baire measures on G.

Let Te%(L,). Then T(L,NL,)CL,NL,, and there exists a unique
Te L, (G, A) such that

FTf=T-Ff
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for all feL,NL,. Moreover, |T|,=<|T| (see [15; Theorems 4.1.1 and
4.1.3]). For ue M(G) we define the convolution operator 7, on L, by T, f=
u=f (where uxf(x)={f(y ' x)du(y)). Then T, is a bijective linear map-
ping from M(G) onto £'(L,) N ¥;(L,) (see [2; Proposition 3.3]). In particular,
for Te %,(L,) one has

(3.1) Te%'(L,) if and only if Te B(G),

where B(G):= {i;ue M(G)} is the Fourier-Stieltjes algebra of G. Here j is
defined by 4(y) = (x, y) du(x) (y € G). Then B(G)CC, ,(G) (cf. [17; 1.3.3)),
and we denote by B(G) the closure of B(G) in C,(G) with respect to the
uniform norm. .

3.1. THEOREM. Let Te%,(L,). If Te%"(L,), then Te B(G).

REMARK. #'(L,) is the closure of £'(L,) in #(L,) with respect to the
operator norm. We call Te Z(L,) strongly non-regular if T¢ £'(L,).

PROOF. By Theorem 1.1 there exists a positive, contractive projection 2 from
%(L,) onto %;,(L,). Let Seg’(Lp/).\ Since £ is positive, it follows that
2S)e L (L)NZ(L,). Hence 2(5)eB(G) and |T-S|=|2(T-S8)|=
|T- 2(S)|=| T 2(3)|... We have shown that dist(7; £'(L,))zdist(T, B(G)),
where the expression on the left side is the distance in &(L,) with respect to the
operator norm, and on the right side in L (G, A). [ |

3.2. REMARKS. (a) If p=2, then |T|=|T|, for all TeZ(L,(G)). The
proof of the theorem shows that

(3.2)  dist(7,2"(L,)) =dist(T, B(G))

for all Te%;(L,).
(b) It follows from Theorem 3.1 that

(3.3)  TeC,,(G) for all Te L (L,)NZ(L,).

Moreover, Co(G)CB(G) by [15; 1.2.4]; in particular B(G)=C(G)) if G is
compact.

3.3. EXAMPLE (Hilbert transformation on L,(R)). Let 1<p<oo. The
Hilbert transformation 7 on L,(RR) is the operator Te Z(L,(R)) given by

T(x)=—isgnx (xeR)

(see [7; sec. 6.7]). Since T is not continuous, it follows by (3.3) that T'is strongly
non-regular.

3.4. EXAMPLE (Hilbert transformation on 1,(Z)). Let 1<p<oo. The Hilbert
transformation is the operator Te%(1,(2)) given by
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=i it+m)/n for ~n=<t<0,
Te )_{ i(t—n)/n for 0<t<nm

(cf. [7; sec. 6.7]). Since T is not continuous, 7T is strongly non-regular.

3.5. EXAMPLE (Schrodinger group on L,(R")). Let A be the negative
Laplace operator in L,(R"), given by D(A):= W2(R™, Af:=—Af. For teR
let T,:=e . Then T.(&)=e "I¢F (where |&|2=¢2+ - +£&2). For t#0 the
function T, is not uniformly continuous, and therefore (3.3) implies that 7, is
strongly non-regular.

In order to give an example on L,(T) we need another criterion; we refer to
[13; Theorem in sec. 7.11] for a related fact.

3.6. LEMMA. Let ue M(G),yeG. Then
R A
lim — ¥ 4(y))=u(ly=1D),
n—oo N ;|

where [y=1]1={xeG;y(x)=1}.

PROOF. Since for xe G,
1 if y(x)=1.

17" -5
| ;W if 'J)(X)?El,
—’X[y=1](x) (n—> o)

and |1/n Z/’.’zl )7(x)f| <1 (neN), it follows from the dominated convergence
theorem that

1 » ) 1 » .
lim — ¥ A(y/)=lim f; ; P(x) dux) =u(ly =1D. u

n—oo N j= n—oo

3.7. PROPOSITION. Let meB(G),yeG. Then lim,
lim, , 1/n X7 m(y™) exist and are equal.

—

L1/n Yl m(y)) and

PROOF. The property is true for m e B(G) by Lemma 3.6 and preserved by
uniform limits. |

3.8. COROLLARY. Let meB(Z). Then lim,
Z;.T:, m(—j) exist and are equal. In particular, if m(o):=lim,
m(—o0):=lim,  _, m(n) exist, then m(oo)=m(— ).

1/n X", m(j) and lim, . 1/nx

n— oo

- mn) and

-

3.9. EXAMPLE (Hilbert transformation on L,(T)). Let 1<p<oco. The
Hilbert transformation 7 on L,(T) is the operator 7€ %,(L,(T)) given by

T(k)y=isgnk ke2)
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(see [7; sec. 6.7]. Since lim, T(k):ﬁlimk”im T(k), the operator T is strongly
non-regular by Corollary 3.8.

3.10. REMARK. Let G=R, T or Z and let T be the Hilbert transformation on
L,(G). It follows from (3.2) and the expression for T that dist(7, 2" (L,)=1;
i.e. T is orthogonal to #"(L,) in the sense of Birkhoff [4]. This property had
been proved by Synnatzschke [20] for several other singular integral transfor-
mations (e.g. the Fourier transformation on L,(R)).

3.11. REMARK. By a similar proof as that of Lemma 3.6 one can show that
for every me B(R) the limits lim, _ 1/t m(s)ds and lim,_ _1/1§ m(-s)ds
exist and are equal.

3.12. REMARK. For the case that G is not compact it was shown in [9] that
for Isg<p=2, #(L,) is not dense Z;(L,). Since ZNL(L,)=%,(L,) for all
p it follows that for 1 <p =2 the regular operators are not dense in £(L,) (and
the same for 2=<p< o, by duality).

4. EXISTENCE OF STRONGLY NON-REGULAR OPERATORS ON ARBITRARY L,-
SPACES

In Examples 3.3, 3.4 and 3.9 it was shown that there exists a strongly
non-regular operator ~ the Hilbert transformation — on L,(G), for G=
Z,R,T 1<p<o. In the first part of this section we show that this implies the
existence of strongly non-regular operators on any infinite dimensional
L ,-space.

4.1. PROPOSITION. Let 1<p<oo, and let (Q,.«, u) be a measure space for
which L, (8,4, u) is infinite dimensional.

(@) There exist an isomeiric lattice homomorphism J:l,— L, and a
positive contraction K:L,— 1, such that KoJ=id, .

(b) There exist a positive isometry 4 : ¥(l,) - ¥(L,) and a positive contrac-
tion K :¥(L,)— P(I,) such that Ko g =idy,.

PROOF. (a) The assumption implies that there exists a disjoint sequence

(Q,),en In o such that 0<u(2,)< oo (neN). The mappings J, K defined by
‘]((xﬂ)) = Z xn,u(Qn)il/pXQn’

Kf=((5 de),u('Qn)il/q)neN

2,
(where 1/p+ 1/g=1) have the asserted properties.
(b) With J,K from part (a) the mappings &, defined by

J(Ty:=JoToK (TeZd,)),
H(T):=KoToJ (Te#L,))

are as asserted. |
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4.2. COROLLARY. With 4,4 as in Proposition 4.1 we have K(¥'(L,))=
%'(,). For all Te #(l,) we have

dist(7,2°(1,)) =dist(F(T), £"(L,)).

The proof is an easy consequence of the properties of & and .

As a consequence of Proposition 4.1 and Corollary 4.2 we obtain from the
existence of strongly non-regular operators on /, (see Example 3.4) the follow-
ing theorem.

4.3, THEOREM. Letl<p<oco and let (2,4, u) be a measure space such that
X :=L,(Q,, ) is infinite dimensional. The following are equivalent.
(i) p=1,
(i) 2(X)=2"(X),
(i) ZX)=2¢"(X).

In the second part of this section we show that a certain matrix represents a
strongly non-regular operator A on /,; more precisely we show dist(4, # ()=
|A|. Similar matrices were used in a related context; cf. {18; chap. 1V, §1,
Examples], [3; Abschnitt 2].

4.4. LEMMA. Let 1=sp=oo, A€K"™ " Then ||A||,<n"?|Al|,, where |A|,
denotes the norm of A as an operator on (K", |- |,).

PROOF. Let A =(ay), and choose ¢ such that |g; | =1, |a;|=¢;a;. Let x=
(x))€ K" |x]|,=1. Then

n n
Alx],=(T | T exauxil)'”
J=1 k=1
=n'P(max ¥ g |x|)
J k
=n'"?max (Ax’);

7/

(where x’= (€ || )k, and (Ax’); denotes the j-th component of Ax’)

=n'"? max |Ax/|,
J

Sn””MA\lp. |
For ne N, we define recursively 2" x 2"-matrices B,,, by
BO ::(1)7
B B
Byi=( "' "—1> (n=1).
" <Bn—1 —Bn—l

4.5. LEMMA. Let 2<p=<o, 1/p+1/q=1. Then |B,|,=2"4, ||B,||,= 2"
(ne Ng).
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PROOF. For the first equality we note first the obvious equality |B,|.=2".
Next we remark that 27"/? B, is an orthogonal matrix, and this implies |B,|,=
2" Now the Riesz-Thorin convexity theorem implies |B, |,<2"/9. Testing
with the vector (1, 1,..., 1) shows equality.

The second equality is easy to show. |

Now we fix 2=p<oo,1/p+1/qg=1. We define A, :=2""9B, (neN,). Then
1Al =1,]14,]] =27 (ne Ny). Further we define the operator Ael,) by
representing /, as the /,-sum of 2"-dimensional spaces E, := (K%, |- |p) in the
obvious way, and letting A act as 4, on E,. In the matrix representation,

Ay 0

4.6. THEOREM. One has disty,(A4,2(/,))=|A|=1. Also, A acts as an
operator in l,, and for this operator distg, (A, 2'(/,)) = |A]=1.

PROOF. The equality 4] =1 is immediate from |A4,] =1 (ne€ Ny).

Let Se £(/,) be such that |4 — S| < 1. We are going to show that this implies
S¢#£'(l,). Let e:=|A—-S| (<1). Define S, as the 2" x2"-submatrix of S oc-
cupying the same place as A4, in A. Then, using Lemma 4.4, we obtain

1B, x (A~ S| =<||A, - S,||=2"7| 4, - S,] <27,

where ‘%’ denotes the Schur product, i.e., entry by entry multiplication of
matrices; note that B,xA,=|A,| by the definitions. Therefore

112112 1B, % S,
=[ By X Ap| =By X (Ay~Sp)l
22"P-2"Pg=2"" (1-¢g)> o

for n— co. This shows S¢£Z"(/,).
The statements concerning 4 as an operator in /, follow by duality, since A
is (formally) symmetric. [ |

4.7. REMARK (a permanence property for strong non-regularity). Let £ be a
Banach lattice and 7€ #(E) be strongly non-regular. Then (1 — 7)™} is strong-
ly non-regular for all A€o, (7T) (the unbounded component of the resolvent
set of T). In fact, if R(A):=(A—T) 'eZ"(E) for one 1 €0, (T) then R(1)e
&'(E) for all Aeg,(T), since £'(E) is a closed subalgebra of #(E). Conse-
quently, T=1lim; _ o, (12R(1)— 1) e Z(E).

Moreover, if E=L,, then R(A, T)& 2'(L,) for all A eo(T) since £'(L,) is a
full subalgebra of #(L,) (see [23; 24.6]).
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5. STRONGLY NON-REGULAR OPERATORS ON HILBERT SPACE

Let H be a separable infinite dimensional complex Hilbert space. Then, given
any orthonormal basis on H, one may introduce a lattice ordering on H by iden-
tifying H with /,, and one may ask which operators are regular and which
operators are in #” for all of these orderings.

The first question was answered independently by Sourour [19] and Sunder
(cf. [11; Theorem 16.5]): For Te%(H) the following are equivalent.

(i) UTU 'eg’(l,) for all unitary U: H - ,;

(ii) there exist a Hilbert-Schmidt operator § on H and AeC such that
T=S+AL

CArirns » 11Q1 alen
DUULUUL [17] aldu

Concerning the second question, recall that every compact operator can be
approximated in the operator norm by operators of finite rank. Hence if
T=K+ Al where K is compact and 1€C, then UTU 'e %’ for all unitary
operators U: H— 1/, as well as for all unitary operators U: H~ L,(0,1). We
shall now prove that the converse is also true.

+h Ana oy ramlana
I

at in {3 v Ly 7 (01
indat i (1) one may repiace i 0y Loy, 1),

5.1. THEOREM. Let Te¥%(H) be such that one of the following properties
holds.

(@) UTU 'e%’(l,) for all unitary operators U:H — ly;

(b) UTU 'eZ™(L,(0,1)) for all unitary operators U:H— L,(0,1).

Then there exist a compact operator K and A € C such that T=K+ Al

We use the following result which we extract from the proof of [19;
Lemma 2].

5.2. LEMMA. Let Te%(H) be a selfadjoint operator which is not of the
SJorm K+ AI with compact K, Ae€R. Then there exist a selfadjoint Hilbert-
Schmidt operator S and infinite dimensional closed subspaces H,, H,, Hy of H
such that H=H,® H,® H5, H,, H,, Hy are invariant under T+ S, (T+S)y, =
oly, and (T+ S)y,=Bly,, with a, Be R, a+ B (where (T+ Sn, denotes the part
of T+S in H;, for j=1,2).

PROOF OF THEOREM 5.1. Since UTU 'e%’ for all unitary U:H -1,
(U:H—- L,(0,1), respectively) the same is true for T*, (T+T*)/2 and (T-T%*)/
2i. So we may assume that 7 is selfadjoint.

We assume that 7 is not of the form K+ A/, and obtain S, H,, H,, Hs, o,
from Lemma 5.2. It is sufficient to find a unitary U: H—/, (U: H— L,(0,1))
such that U(T+S)U !¢ %’. Without restriction we may assume S=0. (Note
that any Hilbert-Schmidt operator on /, or L,(0, 1) is regular.)

Now if H, is a closed subspace of H such that dim H,=dim Hj" = o and
THy,C H, then also the part Ty:=Tg, of T in H, has the property that
UpTyUy "€ & for all unitary Uy: Hy— I, (Uy: Hy— L,(0,1)). (In fact, let U,:
Hy— 1, (Uy: Hy— L5(0,1)) be unitary. Consider a unitary extension U:H —
L®L (U:H-Ly(0,1)®L,(0,1)). By hypothesis there exist T,€ %" such
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that lim,_ ., 7,=UTU"!. Since the orthogonal projection P of L®L
(L,(0, 1)@ L,(0, 1), respectively) onto the first component is positive, the
operators PT, |/, (PT,|L,(0,1)) are regular and converge to U, Ty Uy '.)

We apply the previous remark to T := Ty o g, = aly, @ Bl,. Now we con-
sider the two cases (a) and (b) seperately.

Case (a). We identify H, unitarily with L,(0,7) and H, with L,(m,2m).
Then Ty is given by Ty f=mf (fe L,(0,2n)) where

o ifx=n,

mx) = { g if x>mn.

Since m is not continuous it follows from Theorem 3.1 that FTyF ' is strongly
non-regular, where F: L,(0,2n) — /,(Z) is the Fourier transformation. This is a
contradiction.

Case (b). We identify H, unitarily with ,,(—N) and H, with ,(NU {0}).
Then Tyx=(m,x,),c7, Where

. — o if n<O,
"B if n=0.

Since lim,, _, o, m, #lim,,_, _,, m,, it follows from Corollary 3.8 that FT,F ' is
strongly non-regular, where F:/,(Z)— L,(T) is the Fourier transformation.
This is a contradiction. ]

5.3. REMARK. It was pointed out to the authors that Theorem 5.1 can also
be obtained as a consequence of {8; Theorem 1 and Coroliary 3]. However, the
proof given here is more direct and elementary in the present context.
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