Approximation of multipliers by regular operators

by Wolfgang Arendt1 and Jürgen Voigt2

1 Équipe de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France
2 Fachbereich Mathematik der Universität Oldenburg, Ammerländer Heerstraße 114-118, 2900 Oldenburg, Germany

Communicated by Prof. A.C. Zaanen at the meeting of October 29, 1990

INTRODUCTION

For a (real or complex) L_p ($1 \leq p < \infty$) the space $\mathcal{L}(L_p)$ of all regular operators on L_p is defined as the linear span of the positive operators. If $p = 1$, then $\mathcal{L}(L_1)$ coincides with the space $\mathcal{L}(L_1)$ of all continuous linear operators; cf. [18; chap. IV, Theorem 1.5], [1; sec. 15]. In this paper we show that $\mathcal{L}(L_p)$ is not dense in $\mathcal{L}(L_p)$ if $1 < p < \infty$ and $\dim L_p = \infty$. In particular we show that the Hilbert transformation T on $L_p(G)$, for $G = \mathbb{Z}, \mathbb{R}, \mathbb{T}$, is strongly non-regular, i.e. T does not belong to $\mathcal{L}(L_p(G))^{\omega}$. The fundamental idea is to prove that whenever there would exist a sequence (T_n) in $\mathcal{L}(L_p(G))$ approximating T, it could already be chosen such that T_n commutes with translations. This is achieved by showing that there exists a positive projection of the space of all operators onto the subspace of translation invariant operators.

We also show that an operator on a Hilbert space which can be approximated by regular operators with respect to all orderings induced by choosing some orthonormal basis is of the form $K + \lambda I$, with compact K and $\lambda \in \mathbb{C}$.

1. A POSITIVE PROJECTION ONTO THE SPACE OF ALL TRANSLATION INVARIANT OPERATORS

In this section let G be a locally compact group. For $a \in G$ and a function $f : G \to \mathbb{C}$ we denote by af the left translate of f by a, $af(x) := f(ax)$ ($x \in G$).

Let λ be a left Haar measure on G (i.e. $\int f d\lambda = \int_a f d\lambda$ for all $f \in C_c(G)$,
Let \(L := L(G, \lambda) \) (\(K \)-valued, where \(K = \mathbb{R} \) or \(K = \mathbb{C} \)), in this section.

Let \(\mathcal{D}_1(L_p) \) denote the set of left translation invariant operators,
\[
\mathcal{D}_1(L_p) := \{ T \in \mathcal{L}(L_p); T(a f) = a(T f) \text{ for all } a \in G, f \in L_p \}.
\]

A function \(f: G \rightarrow K \) is right uniformly continuous if \(\sup_x |f(x) - yf(x)| \rightarrow 0 \) if \(y \) tends to the unit in \(G \). The Banach space of all bounded, right uniformly continuous functions will be denoted by \(C_{b,r}(G) \).

A left invariant mean on \(C_{b,r}(G) \) is a functional \(M \in C_{b,r}(G)^* \) satisfying
\[
M(1) = 1, M \geq 0, M(a f) = M(f) \text{ for all } f \in C_{b,r}(G), a \in G \text{ (cf. [10; §1.1]).}
\]
In this section we shall assume \(G \) to be amenable, i.e., there exists a left invariant mean \(M \) on \(C_{b,r}(G) \). This is in fact equivalent to the existence of (left) invariant means on other function spaces, e.g. \(L_{\infty}(G, \lambda) \); cf. [10; §2.2], [16; Theorem 4.19].

1.1. **Theorem.** Let \(1 \leq p < \infty \). There exists a positive, contractive projection \(\mathcal{Q} \) from \(\mathcal{L}(L_p) \) onto \(\mathcal{D}_1(L_p) \).

Remark. Let \(1 < p < \infty, 1/p + 1/q = 1 \). Then \(\mathcal{Q} \) can be defined by \(\mathcal{Q}(T) = \tilde{T} \),
\[
(1.1) \quad \langle \tilde{T} f, g \rangle = M(a \rightarrow \langle T(a f), a g \rangle)
\]
\((f \in L_p, g \in L_q)\), where \(\langle \ldots \rangle \) denotes the natural duality bracket between \(L_p \) and \(L_q \). If \(p = 1 \), then \(\mathcal{Q} \) can be defined in such a way that (1.1) is true for all \(f \in L_1, g \in C_0(G) \).

Proof. (i) We first consider the case \(1 < p < \infty \). Let \(T \in \mathcal{L}(L_p) \). For \(f \in L_p, g \in L_q \), the function \(a \rightarrow \langle T(a f), a g \rangle \) is bounded, \(|\langle T(a f), a g \rangle| \leq ||T|| ||f||_p ||g||_q \) \((a \in G)\), and right uniformly continuous; cf. [12; Theorem (20.4)]. Therefore, a bilinear mapping
\[
B: L_p \times L_q \rightarrow K
\]
is defined by
\[
(1.2) \quad B(f, g) := M(a \rightarrow \langle T(a f), a g \rangle),
\]
and the properties of \(M \) imply \(|B| \leq ||T|| \). This implies that there exists a unique \(\tilde{T} \in \mathcal{D}_1(L_p) \) such that \(B(f, g) = \langle \tilde{T} f, g \rangle \) for all \(f \in L_p, g \in L_q \), and we have the estimate \(||\tilde{T}|| = ||B|| \leq ||T|| \).

Next we show \(\tilde{T} \in \mathcal{D}_1(L_p) \). Let \(b \in G, f \in L_p, g \in L_q \). Then
\[
\langle \tilde{T}(b f), g \rangle = M(a \rightarrow \langle T(b a f), a g \rangle)
\]
\[
= M(a \rightarrow \langle T(b a f), b^{-1} b g \rangle)
\]
\[
= M(a \rightarrow \langle T(a f), b^{-1} a g \rangle)
\]
\[
= \langle \tilde{T} f, b^{-1} g \rangle = \langle b(\tilde{T} f), g \rangle.
\]
This shows $\hat{T}(\phi f) = \phi (\hat{T}f)$, and thus $\hat{T} \in L_1(L_\phi)$.
If $T \in L_1(L_\phi)$ then it is clear from the definition that $\hat{T} = T$ holds.
If $T \geq 0$ then $B(f, g) \geq 0$ for $f \geq 0, g \geq 0$, and this implies $\hat{T} \geq 0$.

(ii) Let $p = 1$. Again let $T \in L_1$. Then (1.2) defines a continuous bilinear form B on $L_1 \times C_0(G)$ such that $|B| \leq |T|$. So there exists a linear mapping $\hat{T} : L_1 \to C_0(G)'$, $|\hat{T}| = |B|$, such that

$$\langle g, \hat{T}f \rangle = B(f, g) \quad (f \in L_1, g \in C_0(G)).$$

For $\mu \in C_0(G)'$, $a \in G$, let $a\mu \in C_0(G)'$ be defined by

$$\langle \phi, a\mu \rangle = \langle \phi, \mu \rangle \quad (\phi \in C_0(G)).$$

Then one sees as in (i) that $\hat{T}_a f = \phi (\hat{T}f)$ for all $f \in L_1, a \in G$. This implies in particular that the mapping $G \ni a \mapsto \phi (\hat{T}f) \in C_0(G)'$ is continuous. Therefore, by [12; (19.27)], the measure $\hat{T}f$ is absolutely continuous with respect to λ. This means that in fact \hat{T} maps L_1 into L_1. It is clear from the definition that \hat{T} is positive if T is positive.

2. RELATION TO THE PROJECTION ONTO THE CENTER

In this section let G be a locally compact Abelian group, λ a Haar measure on G, and $\hat{\lambda}$ the Haar measure on the character group \hat{G}, normalized by the requirement that the Fourier transformation $F : L_2(G, \lambda) \to L_2(\hat{G}, \hat{\lambda})$ be unitary. For brevity we shall use the notations $X := L_2(G, \lambda), Y := L_2(\hat{G}, \hat{\lambda})$.

The Fourier transformation induces a bijective linear mapping $\mathcal{S} : \mathcal{L}(X) \to \mathcal{L}(Y)$ defined by

$$\mathcal{S}(T) := FTF^{-1}.$$

Recall that for an order complete Banach lattice E the space $\mathcal{L}'(E)$ of regular operators is an order complete Banach lattice; cf. [18; chap. IV, §1]. The center $\mathcal{Z}(E)$ of $\mathcal{L}(E)$ is the linear span of the order interval $[-I, I]$, where I is the identity operator; it is a band in $\mathcal{L}'(E)$. We refer to [1; sections 8 and 15] for these statements; the elements of $\mathcal{Z}(E)$ are also called orthomorphisms or multiplication operators.

For $E = Y$, the center $\mathcal{Z}(Y)$ coincides with the multiplication operators by L_∞-functions. This follows from [22; Theorem 7] and the localizability of $\hat{\lambda}$ (cf. [6; Theorem 9.4.8] together with [14; sec. 14, M1]).

Since G is commutative the set of operators commuting with translations will be denoted by $\mathcal{L}_t(X) := \mathcal{L}_t(X)$. These operators are also called multipliers for X; cf. [5], [15], [7]. We recall that \mathcal{S} maps $\mathcal{L}_t(X)$ onto $\mathcal{Z}(Y)$; cf. [15; Theorem 4.1.1].

Let M be an invariant mean on $C_{b,m}(G) := C_{b,m}(G)$ (note that G is amenable; cf. [10; Theorem 1.2.1]), and let $\mathcal{P} : \mathcal{L}(X) \to \mathcal{L}_t(X)$ be the projection associated with M via Theorem 1.1. We define $\hat{\mathcal{P}} : \mathcal{L}(Y) \to \mathcal{Z}(Y)$ by

$$\hat{\mathcal{P}} := \mathcal{S} \mathcal{P} \mathcal{S}^{-1}.$$

Then $\hat{\mathcal{P}}$ is a contractive projection onto $\mathcal{Z}(Y)$.

161
2.1. **Theorem.** The restriction of \mathcal{A} to $\mathcal{L}'(Y)$ is the band projection onto $\mathcal{J}(Y)$. In particular, \mathcal{A} is positive.

Proof. (i) Let $T \in \mathcal{L}(Y)_+$. We show that $\mathcal{A}(T) \in \mathcal{L}'(Y)$ and $|\mathcal{A}(T)| \leq T$. In fact, let $f, g \in Y, f \geq 0$. It is easy to check that then

$$\int \mathcal{A}(T) f g \, d\lambda = M(a \mapsto \int T(a f) \bar{g} \, d\lambda),$$

where, in the last expression, $a \in G$ is interpreted as a character on G. Therefore

$$|\int \mathcal{A}(T) f g \, d\lambda| \leq \sup_a |\int T(a f) \bar{g} \, d\lambda|$$

$$\leq \|Tf\|_g \, d\lambda.$$

Since this is true for all $g \in Y$, we obtain $|\mathcal{A}(T) f| \leq Tf$. Now $\mathcal{A}(T) \in \mathcal{L}'(Y)$ follows from [18; chap. IV, Proposition 1.6], and $|\mathcal{A}(T)| \leq T$ is obtained from [18; chap. IV, Theorem 1.8].

(ii) If $0 \leq T \in \mathcal{J}(Y)_d$ then (i) implies $\mathcal{A}(T) \in \mathcal{J}(Y)_d$. Since also $\mathcal{A}(T) \in \mathcal{J}(Y)$ we obtain $\mathcal{A}(T) = 0$. This implies that \mathcal{A}, restricted to $\mathcal{L}'(Y)$, is the band projection onto $\mathcal{J}(Y)$.

2.2. **Remark.** For an order complete Banach lattice E it was shown in [21] that the band projection $\mathcal{P}: \mathcal{L}'(E) \to \mathcal{J}(E)$ is contractive with respect to the operator norm, and can therefore be extended as a contraction to all of $\mathcal{L}(E)$. For $E := Y$, Theorem 2.1 shows that such an extension is given by \mathcal{A}.

2.3. **Example.** If G is compact, then the normalized Haar measure is the unique invariant mean on $C(G)$. In this case the projection \mathcal{A} has the following form: Since G is discrete each operator $T \in \mathcal{L}(Y)$ corresponds to a matrix $(t_{\beta y})_{\beta, y \in \hat{G}}$. Then $\mathcal{A}(T) = (\delta_{\beta y} t_{\beta y})_{\beta, y \in \hat{G}}$, with the Kronecker delta $(\delta_{\beta y})$. Indeed,

$$\int \mathcal{A}(T) \chi_{\beta |Y} \, d\lambda$$

$$= \int \mathcal{A}(F^{-1} TF) \beta \, d\lambda$$

$$= \int_{a \in G} \mathcal{A}(F^{-1} TF(a \beta) \bar{y} \, d\lambda \, d\lambda(a)$$

$$= \int_{a \in G} \beta(a) \bar{y}(a) \, d\lambda(a) \int_{\hat{G}} \mathcal{A}(T \chi_{\beta |Y}) \, d\lambda$$

$$= \delta_{\beta y} t_{\beta y}.$$

3. **Strong Non-Regularity of Multiplier Operators**

In the following G is a locally compact Abelian group and $L_p = L_p(G, \lambda)$ ($1 \leq p < \infty$). By $M(G)$ we denote the space of all bounded Baire measures on G.

Let $T \in \mathcal{L}(L_p)$. Then $T(L_p \cap L_2) \subset L_p \cap L_2$, and there exists a unique $\mathcal{T} \in L_{1}(\hat{G}, \hat{\lambda})$ such that

$$FTf = \mathcal{T} \cdot Ff$$

162
for all $f \in L_p \cap L_2$. Moreover, $\|T\| \leq \|T\|$ (see [15; Theorems 4.1.1 and 4.1.3]). For $\mu \in M(G)$ we define the convolution operator T_μ on L_p by $T_\mu f = \mu * f$ (where $\mu * f(x) = \int f(y^{-1} x) \, d\mu(y)$). Then $\mu \mapsto T_\mu$ is a bijective linear mapping from $M(G)$ onto $L'(L_p) \cap \mathcal{L}_i(L_p)$ (see [2; Proposition 3.3]). In particular, for $T \in \mathcal{L}_i(L_p)$ one has

\[
(3.1) \quad T \in \mathcal{L}'(L_p) \text{ if and only if } T \in B(\hat{G}),
\]

where $B(\hat{G}) := \{ \hat{\mu}; \mu \in M(G) \}$ is the Fourier-Stieltjes algebra of \hat{G}. Here $\hat{\mu}$ is defined by $\hat{\mu}(\gamma) = \int (x, \gamma) \, d\mu(x)$ ($\gamma \in \hat{G}$). Then $B(\hat{G}) \subset C_{b,u}(\hat{G})$ (cf. [17; 1.3.3]), and we denote by $B(\hat{G})$ the closure of $B(\hat{G})$ in $C_p(\hat{G})$ with respect to the uniform norm.

3.1. THEOREM. Let $T \in \mathcal{L}_i(L_p)$. If $T \in \mathcal{L}'(L_p)$, then $\hat{T} \in B(\hat{G})$.

REMARK. $\mathcal{L}'(L_p)$ is the closure of $L'(L_p)$ in $L'(L_p)$ with respect to the operator norm. We call $T \in \mathcal{L}(L_p)$ strongly non-regular if $T \notin \mathcal{L}'(L_p)$.

PROOF. By Theorem 1.1 there exists a positive, contractive projection \mathcal{P} from $\mathcal{L}(L_p)$ onto $\mathcal{L}_i(L_p)$. Let $S \in \mathcal{L}'(L_p)$. Since \mathcal{P} is positive, it follows that $\mathcal{P}(S) \in \mathcal{L}'(L_p) \cap \mathcal{L}_i(L_p)$. Hence $\mathcal{P}(S) \in B(\hat{G})$ and $\|T - S\| \geq \|\mathcal{P}(T - S)\| = \|T - \mathcal{P}(S)\| \geq \|\hat{T} - \mathcal{P}(S)\|_\infty$. We have shown that dist$(T, \mathcal{L}'(L_p)) \geq$ dist$(\hat{T}, B(\hat{G}))$, where the expression on the left side is the distance in $L'(L_p)$ with respect to the operator norm, and on the right side in $L_\infty(\hat{G}, \lambda)$.

3.2. REMARKS. (a) If $p = 2$, then $\|T\| = \|\hat{T}\|_\infty$ for all $T \in \mathcal{L}_i(L_2(G))$. The proof of the theorem shows that

\[
(3.2) \quad \text{dist}(T, \mathcal{L}'(L_2)) = \text{dist}(\hat{T}, B(\hat{G}))
\]

for all $T \in \mathcal{L}_i(L_2)$.

(b) It follows from Theorem 3.1 that

\[
(3.3) \quad \hat{T} \in C_{b,u}(\hat{G}) \text{ for all } T \in \mathcal{L}_i(L_p) \cap \mathcal{L}'(L_p).
\]

Moreover, $C_0(\hat{G}) \subset B(\hat{G})$ by [15; 1.2.4]; in particular $B(\hat{G}) = C(\hat{G})$ if \hat{G} is compact.

3.3. EXAMPLE (Hilbert transformation on $L_p(\mathbb{R})$). Let $1 < p < \infty$. The Hilbert transformation T on $L_p(\mathbb{R})$ is the operator $T \in \mathcal{L}_i(L_p(\mathbb{R}))$ given by

\[
\hat{T}(x) = -i \, \text{sgn } x \quad (x \in \mathbb{R})
\]

(see [7; sec. 6.7]). Since \hat{T} is not continuous, it follows by (3.3) that T is strongly non-regular.

3.4. EXAMPLE (Hilbert transformation on $l_p(\mathbb{Z})$). Let $1 < p < \infty$. The Hilbert transformation is the operator $T \in \mathcal{L}_i(l_p(\mathbb{Z}))$ given by
\[\hat{T}(e^{it}) = \begin{cases}
\frac{i(t + \pi)}{\pi} & \text{for } -\pi \leq t < 0,
\frac{i(t - \pi)}{\pi} & \text{for } 0 < t < \pi
\end{cases} \]

(cf. [7; sec. 6.7]). Since \(\hat{T} \) is not continuous, \(T \) is strongly non-regular.

3.5. EXAMPLE (Schrödinger group on \(L_2(\mathbb{R}^n) \)). Let \(A \) be the negative Laplace operator in \(L_2(\mathbb{R}^n) \), given by \(D(A) = W_2^2(\mathbb{R}^n), Af = -\Delta f \). For \(t \in \mathbb{R} \) let \(T_t := e^{-itA}. \) Then \(\hat{T}_t(\xi) = e^{-it|\xi|^2} \) (where \(|\xi|^2 = \xi_1^2 + \cdots + \xi_n^2 \)). For \(t \neq 0 \) the function \(\hat{T}_t \) is uniformly continuous, and therefore (3.3) implies that \(T_t \) is strongly non-regular.

In order to give an example on \(L_p(\mathbb{T}) \) we need another criterion; we refer to [13; Theorem in sec. 7.11] for a related fact.

3.6. LEMMA. Let \(\mu \in M(G), \gamma \in \hat{G}. \) Then
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \hat{\mu}(\gamma^j) = \mu([\gamma = 1]), \]
where \([\gamma = 1] = \{ x \in G ; \gamma(x) = 1 \}. \)

PROOF. Since for \(x \in G, \)
\[\frac{1}{n} \sum_{j=1}^{n} \gamma(x)^j = \begin{cases}
1 & \text{if } \gamma(x) = 1,
\frac{1}{n} \frac{\gamma(x)^{n+1} - \gamma(x)}{\gamma(x) - 1} & \text{if } \gamma(x) \neq 1,
\end{cases} \]
and \(|1/n \sum_{j=1}^{n} \gamma(x)^j| \leq 1 (n \in \mathbb{N}), \) it follows from the dominated convergence theorem that
\[\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \hat{\mu}(\gamma^j) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \gamma(x)^j \mu(dx) = \mu([\gamma = 1]). \]

3.7. PROPOSITION. Let \(m \in B(\hat{G}), \gamma \in \hat{G}. \) Then \(\lim_{n \to \infty} 1/n \sum_{j=1}^{n} m(\gamma^j) \) and \(\lim_{n \to \infty} 1/n \sum_{j=1}^{n} m(\gamma^{-j}) \) exist and are equal.

PROOF. The property is true for \(m \in B(\hat{G}) \) by Lemma 3.6 and preserved by uniform limits.

3.8. COROLLARY. Let \(m \in B(\mathbb{Z}). \) Then \(\lim_{n \to \infty} 1/n \sum_{j=1}^{n} m(j) \) and \(\lim_{n \to \infty} 1/n \times \sum_{j=1}^{n} m(-j) \) exist and are equal. In particular, if \(m(\infty) := \lim_{n \to \infty} m(n) \) and \(m(-\infty) := \lim_{n \to -\infty} m(n) \) exist, then \(m(\infty) = m(-\infty). \)

3.9. EXAMPLE (Hilbert transformation on \(L_p(\mathbb{T}) \)). Let \(1 < p < \infty. \) The Hilbert transformation \(T \) on \(L_p(\mathbb{T}) \) is the operator \(T \in L(\mathcal{L}(L_p(\mathbb{T}))) \) given by
\[\hat{T}(k) = i \text{ sgn } k \quad (k \in \mathbb{Z}) \]

164
(see [7; sec. 6.7]. Since \(\lim_{k \to -\infty} \hat{T}(k) \neq \lim_{k \to -\infty} \hat{T}(k) \), the operator \(T \) is strongly non-regular by Corollary 3.8.

3.10. REMARK. Let \(G = \mathbb{R}, \mathbb{T} \) or \(\mathbb{Z} \) and let \(T \) be the Hilbert transformation on \(L_2(G) \). It follows from (3.2) and the expression for \(\hat{T} \) that \(\text{dist}(T, \mathcal{L}''(L_2)) \geq 1 \); i.e. \(T \) is orthogonal to \(\mathcal{L}''(L_2) \) in the sense of Birkhoff [4]. This property had been proved by Synnatzschke [20] for several other singular integral transformations (e.g. the Fourier transformation on \(L_2(\mathbb{R}) \)).

3.11. REMARK. By a similar proof as that of Lemma 3.6 one can show that for every \(m \in \overline{B}(\mathbb{R}) \) the limits \(\lim_{t \to -\infty} \frac{1}{t} \int_0^t m(s) \, ds \) and \(\lim_{t \to -\infty} \frac{1}{t} \int_0^t m(-s) \, ds \) exist and are equal.

3.12. REMARK. For the case that \(G \) is not compact it was shown in [9] that for \(1 < q < p < 2 \), \(\mathcal{L}(L_q) \) is not dense in \(\mathcal{L}(L_p) \). Since \(\mathcal{L}(L_q) \cap \mathcal{L}''(L_p) = \mathcal{L}(L_1) \) for all \(p \) it follows that for \(1 < p < 2 \) the regular operators are not dense in \(\mathcal{L}(L_p) \) (and the same for \(2 < p < \infty \), by duality).

4. EXISTENCE OF STRONGLY NON-REGULAR OPERATORS ON ARBITRARY \(L_p \)-SPACES

In Examples 3.3, 3.4 and 3.9 it was shown that there exists a strongly non-regular operator – the Hilbert transformation – on \(L_p(G) \), for \(G = \mathbb{Z}, \mathbb{R}, \mathbb{T} \) \(1 < p < \infty \). In the first part of this section we show that this implies the existence of strongly non-regular operators on any infinite dimensional \(L_p \)-space.

4.1. PROPOSITION. Let \(1 \leq p < \infty \), and let \((\Omega, \mathcal{A}, \mu) \) be a measure space for which \(L_p(\Omega, \mathcal{A}, \mu) \) is infinite dimensional.

(a) There exist an isometric lattice homomorphism \(J : l_p \to L_p \) and a positive contraction \(K : L_p \to l_p \) such that \(K \circ J = \text{id}_{l_p} \).

(b) There exist a positive isometry \(\mathcal{J} : \mathcal{L}(l_p) \to \mathcal{L}(L_p) \) and a positive contraction \(\mathcal{K} : \mathcal{L}(L_p) \to \mathcal{L}(l_p) \) such that \(\mathcal{K} \circ \mathcal{J} = \text{id}_{\mathcal{L}(l_p)} \).

PROOF. (a) The assumption implies that there exists a disjoint sequence \((\Omega_n)_{n \in \mathbb{N}} \) in \(\mathcal{A} \) such that \(0 < \mu(\Omega_n) < \infty \) \((n \in \mathbb{N}) \). The mappings \(J, K \) defined by

\[
J((x_n)) := \sum_{n} x_n \mu(\Omega_n)^{-1/p} \chi_{\Omega_n},
\]

\[
Kf := (\int \frac{1}{\mu(\Omega_n)} f \, d\mu(\Omega_n))_{n \in \mathbb{N}}
\]

(where \(1/p + 1/q = 1 \)) have the asserted properties.

(b) With \(J, K \) from part (a) the mappings \(\mathcal{J}, \mathcal{K} \) defined by

\[
\mathcal{J}(T) := J \circ T \circ K \quad (T \in \mathcal{L}(l_p)),
\]

\[
\mathcal{K}(T) := K \circ T \circ J \quad (T \in \mathcal{L}(L_p))
\]

are as asserted.

\[165\]
4.2. **COROLLARY.** With \mathcal{A}, \mathcal{K} as in Proposition 4.1 we have $\mathcal{K}(\mathcal{L}'(l_p)) = \mathcal{L}'(l_p)$. For all $T \in \mathcal{L}(l_p)$ we have
\[
\text{dist}(T, \mathcal{L}'(l_p)) = \text{dist}(\mathcal{A}(T), \mathcal{L}'(l_p)).
\]

The proof is an easy consequence of the properties of \mathcal{A} and \mathcal{K}.

As a consequence of Proposition 4.1 and Corollary 4.2 we obtain from the existence of strongly non-regular operators on l_p (see Example 3.4) the following theorem.

4.3. **THEOREM.** Let $1 \leq p < \infty$ and let $(\Omega, \mathcal{A}, \mu)$ be a measure space such that $X := L_p(\Omega, \mathcal{A}, \mu)$ is infinite dimensional. The following are equivalent.

(i) $p = 1$,
(ii) $\mathcal{L}(X) = \mathcal{L}'(X)$,
(iii) $\mathcal{L}'(X) = \mathcal{L}'(X)$.

In the second part of this section we show that a certain matrix represents a strongly non-regular operator A on l_p; more precisely we show $\text{dist}(A, \mathcal{L}'(l_p)) = ||A||$. Similar matrices were used in a related context; cf. [18; chap. IV, §1, Examples], [3; Abschnitt 2].

4.4. **LEMMA.** Let $1 \leq p \leq \infty$, $A \in \mathbb{K}^{n \times n}$. Then $||A||_p \leq n^{1/p} ||A||_p$, where $||A||_p$ denotes the norm of A as an operator on $(\mathbb{K}^n, ||.||_p)$.

PROOF. Let $A = (a_{jk})$, and choose e_{jk} such that $|e_{jk}| = 1$, $|a_{jk}| = e_{jk} a_{jk}$. Let $x = (x_j) \in \mathbb{K}^n$, $||x||_p = 1$. Then
\[
||A||_p = (\sum_{j=1}^n |A_{jk} x_k|^p)^{1/p} \leq n^{1/p} (\max_j \sum_k e_{jk} |a_{jk} x_k|) = n^{1/p} \max_j (Ax^j)_j
\]
(\text{where } x^j = (e_{jk} |x_k|)_k, \text{ and } (Ax^j)_j \text{ denotes the } j\text{-th component of } Ax^j)\)
\[
\leq n^{1/p} \max_j ||Ax^j||_p \leq n^{1/p} ||A||_p.
\]

For $n \in \mathbb{N}_0$ we define recursively $2^n \times 2^n$-matrices B_n, by
\[
B_0 := (1),
B_n := \begin{pmatrix} B_{n-1} & B_{n-1} \\ B_{n-1} & -B_{n-1} \end{pmatrix} (n \geq 1).
\]

4.5. **LEMMA.** Let $2 \leq p \leq \infty$, $1/p + 1/q = 1$. Then $||B_n||_p = 2^{n/q}$, $||B_n||_q = 2^n$ $(n \in \mathbb{N}_0)$.

166
PROOF. For the first equality we note first the obvious equality \(\|B_n\|_\infty = 2^n \). Next we remark that \(2^{-n/2}B_n \) is an orthogonal matrix, and this implies \(\|B_n\|_2 = 2^{n/2} \). Now the Riesz-Thorin convexity theorem implies \(\|B_n\|_p \leq 2^{n/q} \). Testing with the vector \((1, 1, \ldots, 1)\) shows equality.

The second equality is easy to show. □

Now we fix \(2 \leq p < \infty, 1/p + 1/q = 1 \). We define \(A_n := 2^{-n/q}B_n \) (\(n \in \mathbb{N}_0 \)). Then \(\|A_n\| = 1, \|A_n\| = 2^{n/p} \) (\(n \in \mathbb{N}_0 \)). Further we define the operator \(A \in \mathcal{B}(l_p) \) by representing \(I_p \) as the \(l_p \)-sum of \(2^n \)-dimensional spaces \(E_n := (\ell^\infty, \| \cdot \|_p) \) in the obvious way, and letting \(A \) act as \(A_n \) on \(E_n \). In the matrix representation,

\[
A = \begin{bmatrix}
A_0 & 0 & & \\
& A_1 & & \\
& & A_2 & \\
& & & \ddots
\end{bmatrix}.
\]

4.6. THEOREM. One has \(\text{dist}_{\mathcal{B}(l_p)}(A, \mathcal{B}'(l_p)) = \|A\| = 1 \). Also, \(A \) acts as an operator in \(l_q \), and for this operator \(\text{dist}_{\mathcal{B}(l_q)}(A, \mathcal{B}'(l_q)) = \|A\| = 1 \).

PROOF. The equality \(\|A\| = 1 \) is immediate from \(\|A_n\| = 1 \) (\(n \in \mathbb{N}_0 \)).

Let \(S \in \mathcal{B}(l_p) \) be such that \(\|A - S\| < 1 \). We are going to show that this implies \(S \in \mathcal{B}'(l_p) \). Let \(\varepsilon := \|A - S\| (< 1) \). Define \(S_n \) as the \(2^n \times 2^n \)-submatrix of \(S \) occupying the same place as \(A_n \) in \(A \). Then, using Lemma 4.4, we obtain

\[
\|B_n \times (A_n - S_n)\| \leq \|A_n - S_n\| \leq 2^{n/p} \|A_n - S_n\| \leq 2^{n/p} \varepsilon,
\]

where \(\times \) denotes the Schur product, i.e., entry by entry multiplication of matrices; note that \(B_n \times A_n = A_n \) by the definitions. Therefore

\[
\|S_n\| \geq \|B_n \times S_n\| \geq \|B_n \times A_n\| - \|B_n \times (A_n - S_n)\| \geq 2^{n/p} - 2^{n/p} \varepsilon = 2^{n/p} (1 - \varepsilon) \to \infty
\]

for \(n \to \infty \). This shows \(S \in \mathcal{B}'(l_p) \).

The statements concerning \(A \) as an operator in \(l_q \) follow by duality, since \(A \) is (formally) symmetric. □

4.7. REMARK (a permanence property for strong non-regularity). Let \(E \) be a Banach lattice and \(T \in \mathcal{L}(E) \) be strongly non-regular. Then \((\lambda - T)^{-1} \) is strongly non-regular for all \(\lambda \in \mathcal{P}_{\infty}(T) \) (the unbounded component of the resolvent set of \(T \)). In fact, if \(R(\lambda) := (\lambda - T)^{-1} \in \mathcal{B}'(E) \) for one \(\lambda \in \mathcal{P}_{\infty}(T) \) then \(R(\lambda) \in \mathcal{B}'(E) \) for all \(\lambda \in \mathcal{P}_{\infty}(T) \), since \(\mathcal{B}'(E) \) is a closed subalgebra of \(\mathcal{B}(E) \). Consequently, \(T = \lim_{\lambda \to \infty} (\lambda^2 R(\lambda) - \lambda) \in \mathcal{B}'(E) \).

Moreover, if \(E = L_2 \), then \(R(\lambda, T) \notin \mathcal{B}'(L_2) \) for all \(\lambda \in \mathcal{P}(T) \) since \(\mathcal{B}'(L_2) \) is a full subalgebra of \(\mathcal{B}(L_2) \) (see [23; 24.6]).
Let H be a separable infinite dimensional complex Hilbert space. Then, given any orthonormal basis on H, one may introduce a lattice ordering on H by identifying H with l_2, and one may ask which operators are regular and which operators are in \mathcal{D}_f for all of these orderings.

The first question was answered independently by Sourour [19] and Sunder (cf. [11; Theorem 16.5]): For $T \in \mathcal{D}(H)$ the following are equivalent.

(i) $UTU^{-1} \in \mathcal{D}_f(l_2)$ for all unitary $U: H \to l_2$;

(ii) there exist a Hilbert-Schmidt operator S on H and $\lambda \in \mathbb{C}$ such that $T = S + \lambda I$.

Sourour [19] also observed that in (i) one may replace l_2 by $L_2(0, 1)$.

Concerning the second question, recall that every compact operator can be approximated in the operator norm by operators of finite rank. Hence if $T = K + \lambda I$ where K is compact and $\lambda \in \mathbb{C}$, then $UTU^{-1} \in \mathcal{D}_f$ for all unitary operators $U: H \to l_2$ as well as for all unitary operators $U: H \to L_2(0, 1)$. We shall now prove that the converse is also true.

5.1. THEOREM. Let $T \in \mathcal{D}(H)$ be such that one of the following properties holds.

(a) $UTU^{-1} \in \mathcal{D}_f(l_2)$ for all unitary operators $U: H \to l_2$;

(b) $UTU^{-1} \in \mathcal{D}_f(L_2(0, 1))$ for all unitary operators $U: H \to L_2(0, 1)$.

Then there exist a compact operator K and $\lambda \in \mathbb{C}$ such that $T = K + \lambda I$.

We use the following result which we extract from the proof of [19; Lemma 2].

5.2. LEMMA. Let $T \in \mathcal{D}(H)$ be a selfadjoint operator which is not of the form $K + \lambda I$ with compact K, $\lambda \in \mathbb{R}$. Then there exist a selfadjoint Hilbert–Schmidt operator S and infinite dimensional closed subspaces H_1, H_2, H_3 of H such that $H = H_1 \oplus H_2 \oplus H_3$, H_1, H_2, H_3 are invariant under $T + S$, $(T + S)_{H_1} = \alpha I_{H_1}$, and $(T + S)_{H_2} = \beta I_{H_2}$, with $\alpha, \beta \in \mathbb{R}$, $\alpha \neq \beta$ (where $(T + S)_{H_j}$ denotes the part of $T + S$ in H_j, for $j = 1, 2$).

PROOF OF THEOREM 5.1. Since $UTU^{-1} \in \mathcal{D}_f$ for all unitary $U: H \to l_2$ ($U: H \to L_2(0, 1)$, respectively) the same is true for T^*, $(T + T^*)/2$ and $(T - T^*)/2i$. So we may assume that T is selfadjoint.

We assume that T is not of the form $K + \lambda I$, and obtain $S, H_1, H_2, H_3, \alpha, \beta$ from Lemma 5.2. It is sufficient to find a unitary $U: H \to l_2$ ($U: H \to L_2(0, 1)$) such that $U(T + S)U^{-1} \in \mathcal{D}_f$. Without restriction we may assume $S = 0$. (Note that any Hilbert-Schmidt operator on l_2 or $L_2(0, 1)$ is regular.)

Now if H_0 is a closed subspace of H such that dim $H_0 = \dim H_0^\perp = \infty$ and $TH_0 \subset H_0$ then also the part $T_0 := T_{H_0}$ of T in H_0 has the property that $U_0 T_0 U_0^{-1} \in \mathcal{D}_f$ for all unitary $U_0: H_0 \to l_2$ ($U_0: H_0 \to L_2(0, 1)$). (In fact, let $U_0: H_0 \to l_2$ ($U_0: H_0 \to L_2(0, 1)$) be unitary. Consider a unitary extension $U: H \to l_2 \oplus l_2$ ($U: H \to L_2(0, 1) \oplus L_2(0, 1)$). By hypothesis there exist $T_0 \in \mathcal{D}_f$ such
that \(\lim_{n \to \infty} T_n = U T U^{-1} \). Since the orthogonal projection \(P \) of \(L_2(0, 1) \oplus L_2(0, 1) \), respectively) onto the first component is positive, the operators \(P T_n | L_2 \) (\(P T_n | L_2(0, 1) \)) are regular and converge to \(U_0 T_0 U_0^{-1} \).

We apply the previous remark to \(T_0 := T_{H_1 \oplus H_2} = \alpha I_{H_1} \oplus \beta I_{H_2} \). Now we consider the two cases (a) and (b) separately.

Case (a). We identify \(H_1 \) unitarily with \(L_2(0, \pi) \) and \(H_2 \) with \(L_2(\pi, 2\pi) \). Then \(T_0 \) is given by \(T_0 f = m f (f \in L_2(0, 2\pi)) \) where

\[
m(x) = \begin{cases}
\alpha & \text{if } x \leq \pi, \\
\beta & \text{if } x > \pi.
\end{cases}
\]

Since \(m \) is not continuous it follows from Theorem 3.1 that \(F T_0 F^{-1} \) is strongly non-regular, where \(F : L_2(0, 2\pi) \to L_2(\mathbb{Z}) \) is the Fourier transformation. This is a contradiction.

Case (b). We identify \(H_1 \) unitarily with \(L_2(-\infty) \) and \(H_2 \) with \(L_2(\mathbb{N} \cup \{0\}) \). Then \(T_0 x = (m_n x_n)_{n \in \mathbb{Z}} \), where

\[
m_n = \begin{cases}
\alpha & \text{if } n < 0, \\
\beta & \text{if } n \geq 0.
\end{cases}
\]

Since \(\lim_{n \to -\infty} m_n \neq \lim_{n \to -\infty} m_n \), it follows from Corollary 3.8 that \(F T_0 F^{-1} \) is strongly non-regular, where \(F : L_2(\mathbb{Z}) \to L_2(\mathbb{Z}) \) is the Fourier transformation. This is a contradiction.

5.3. REMARK. It was pointed out to the authors that Theorem 5.1 can also be obtained as a consequence of [8; Theorem 1 and Corollary 3]. However, the proof given here is more direct and elementary in the present context.

REFERENCES