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INTRODUCTION 

For a (real or complex) L, (1 sp< 00) the space 2Fr(Lp) of all regular 
operators on L, is defined as the linear span of the positive operators. If p = 1, 
then _P(L,) coincides with the space 2?(L,) of all continuous linear operators; 
cf. [18; chap. IV, Theorem 1.51, [l; sec. 151. In this paper we show that 
_!Z?(L,) is not dense in iF(L,) if 1 <p< 03 and dim L, = 03. In particular we 
show that the Hilbert transformation T on L,(G), for G = Z, R, T, is strongly 
non-regular, i.e. T does not belong to 6t?r(L,(G))W. The fundamental idea is to 
prove that whenever there would exist a sequence (T,) in gr(L,(G)) approx- 
imating T, it could already be chosen such that T, commutes with translations. 
This is achieved by showing that there exists a positive projection of the space 
of all operators onto the subspace of translation invariant operators. 

We also show that an operator on a Hilbert space which can be approximated 
by regular operators with respect to all orderings induced by choosing some 
orthonormal basis is of the form K+ AI, with compact K and A EC. 

1. A POSITIVE PROJECTION ONTO THE SPACE QF ALL TRANSLATION INVARIANT 

OPERATORS 

In this section let G be a locally compact group. For a E G and a function 
f:G-+G we denote by .f the left translateoff by a, .f(x):=f(ax) (xEG). 

Let A be a left Haar measure on G (i.e. 1 fdA = j, f dl for all f c C,(G), 
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a~ G; cf. [12; $151). For 1 up< 03 we shall write L, :=L,(G,A) (IK-valued, 
where IK = IF? or IK =C), in this section. 

Let Eli denote the set of left translation invariant operators, 

ZIi(LP) := {TEE?; T(,f) = J Tf) for all a E G, f E LP}. 

A function f: G + IK is right uniformly continuous if supX 1 f(x) -yf (x)1 + 0 
if y tends to the unit in G. The Banach space of all bounded, right uniformly 
continuous functions will be denoted by C,,,(G). 

A left invariant mean on Cb,,,(G) is a functional MEC~,+(G)’ satisfying 
M(l)=l,MzO, M(,f)=M(f) for all fEC,,,(G),aEG (cf. [lo; $1.11). In 
this section we shall assume G to be amenable, i.e., there exists a left invariant 
mean M on C,,,(G). This is in fact equivalent to the existence of (left) in- 
variant means on other function spaces, e.g. L,(G,A); cf. [lo; $2.21, [16; 
Theorem 4.191. 

1.1. THEOREM. Let 1 sp < 00. There exists a positive, contractive projection 
9 from 5Z?(L,) onto gli(Lp). 

REMARK. Let 1 <p< 03,1/p + l/q = 1. Then 4 can be defined by S(T) = T, 

(1.1) (i;f, g> =Ma - < T(,f ), .g>) 

(f E L,, ge L,), where ( . , . ) denotes the natural duality bracket between L, 
and L,. If p = 1, then 4 can be defined in such a way that (1.1) is true for all 

f~L,,gEG,(G). 

PROOF. (i) We first consider the case 1 <p < co. Let TE .2?(L,). For 

fELp&ELq, the function a c ( T(,f ), .g> is bounded, I ( T(,f ), .g> I 5 

II TIlIlfll,Ilsllq @EGh and right uniformly continuous; cf. [12; Theorem 
(20.4)]. Therefore, a bilinear mapping 

B:L,xL,+IK 

is defined by 

(1.2) B(J g) := M(a ++ ( T(,f ), ,g)), 

and the properties of A4 imply II B II I 11 T 11. Th is implies that there exists a unique 
?-E~(L~) such that B(f, g) = ( FJ g> for all f E LP, g E L,, and we have the 
estimate 11 F 11 = 11 B 11 5 11 T 11. 

Next we show TES?ii(Lp). Let b E G,~E L,, g E L,. Then 

( &,f ), g> =M(a H ( K&f )), .g>) 

=M(aw (T(baf),b-lbag)) 

=M(aw (T(,f),bmlog)) 

= mpg) = (b(Tif)&). 
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This shows F’(J) =b(F’), and thus FEDS;. 

If TE~~,(LJ then it is clear from the definition that F= T holds. 

If T>O then B(J; g)rO for f?O, gr0, and this implies i%O. 

(ii) Let p= 1. Again let Te_!Z(L,). Then (1.2) defines a continuous bilinear 

form B on L, x C,(G) such that lIBI[ I /I T/I. So there exists a linear mapping 

F: L, + C,(G)‘, I/ Flj = IlBll, such that 

(is f?f > = B(S, g) (fEL,,g~G,(GN. 

For /J E C,(G)‘, a E G, let afi E C,(G)’ be defined by 

(P,.P> = (a IP,Pcc> (u, E C,(G)). 

Then one sees as in (i) that Fof = .( Ff) for all f e L,, a E G. This implies in par- 

ticular that the mapping G3a c ,( Ff) E C,(G)’ is continuous. Therefore, by 

[12; (19.27)], the measure Ff is absolutely continuous with respect to A. This 

means that in fact F maps L, into L,. It is clear from the definition that T is 

positive if T is positive. n 

2. RELATION TO THE PROJECTION ONTO THE CENTER 

In this section let G be a locally compact Abelian group, A a Haar measure 

on G, and 1 the Haar measure on the character group G’, normalized by the 

requirement that the Fourier transformation F: L,(G,A) -+ L,((.?‘,K) be unitary. 

For brevity we shall use the notations X:=L,(G,A), Y := L2((?,l;1). 

The Fourier transformation induces a bijective linear mapping 

9 : g(X) + g( Y) defined by 

#(T):=FTF-? 

Recall that for an order complete Banach lattice E the space gr(E) of 

regular operators is an order complete Banach lattice; cf. [18; chap. IV, 9 11. 

The center y(E) of 2?(E) is the linear span of the order interval [-I, I], where 

I is the identity operator; it is a band in &Z?!‘(E). We refer to [I; sections 8 and 

151 for these statements; the elements of y(E) are also called orthomorphisms 

or multiplication operators. 

For E= Y, the center g(Y) coincides with the multiplication operators by 

L,-functions. This follows from [22; Theorem 71 and the localizability of 2 

(cf. [6; Theorem 9.4.81 together with [14; sec. 14, MI). 

Since G is commutative the set of operators commuting with translations will 

be denoted by g;(X) :=gi;(X). These operators are also called multipliers for 

X; cf. [5], [15], [7]. We recall that 9maps gi(X) onto$?( Y); cf. [15; Theorem 

4.1.11. 

Let M be an invariant mean on C,,.(G):= Cb,,(G) (note that G is 

amenable; cf. [lo; Theorem 1.2.1]), and let 9: s(X) -*gj(X) be the projec- 

tion associated with A4 via Theorem 1.1. We define 3 :9(Y) -+ g( Y) by 

&:=9&P’. 

Then 2 is a contractive projection onto y(Y). 
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2.1. THEOREM. The restriction of 2 to .P( Y) is the band projection onto 
y(Y). In particular, 2 is positive. 

PROOF. (i) Let TE.JZ(Y)+. Weshowthat s(T)~g”(Y)and I&(T)IsT. In 

fact, let f, g E Y, f 2 0. It is easy to check that then 

j &( T)fg dl =M(a H S T(uf)@ dl), 

where, in the last expression, a E G is interpreted as a character on G. Therefore 

sj Tflgl d;i. 

Since this is true for all ge Y, we obtain I &T)f I Tf. Now k??(T) ~5!??‘( Y) 
follows from [18; chap. IV, Proposition 1.61, and I & T)I 4 T is obtained from 

[18; chap. IV, Theorem 1.81. 

(ii) If 05 TE $“( Y)d then (i) implies g(T) E g( Y)d. Since also s(T) E g( Y) 
we obtain s(T) =O. This implies that 5, restricted to g7’( Y), is the band 

projection onto g(Y). n 

2.2. REMARK. For an order complete Banach lattice E it was shown in [21] 

that the band projection 9: 9’(E) --f y(E) is contractive with respect to the 

operator norm, and can therefore be extended as a contraction to all of g(E). 
For E := Y, Theorem 2.1 shows that such an extension is given by 2. 

2.3. EXAMPLE. ' If G is compact, then the normalized Haar measure is the 

unique invariant mean on C(G). In this case the projection 2 has the following 

form: Since G is discrete each operator TE&??( Y) corresponds to a matrix 

(f&,vEo. Then ~(T)=(&$,,),,.o, with the Kronecker delta (aDBy). Indeed, 

S G(T)x~~Ix~,~ dl 
d 

= ] B(F-’ TF)pT dA 
G 

= lG d Fe’ TFLP),Y d d44 

=a~GP(4y(a) dW)B Tx{p~qy) dl= 

= %J t&J . 

3. STRONG NON-REGULARITY OFMULTIPLIEROPERATORS 

In the following G is a locally compact Abelian group and L,=L,(G,A) 
(1 sp< 03). By M(G) we denote the space of all bounded Baire measures on G. 

Let TE&!?~(L,). Then T(L,fl L2)C L,fl L2, and there exists a unique 

i=~L,(e,x) such that 

FTf = F. Ff 
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for all f E L,fl L2. Moreover, IIFI~,I lITI1 (see [15; Theorems 4.1.1 and 

4.1.31). For ,D E M(G) we define the convolution operator TP on L, by TP f = 
p *f (where p*f(x) = jf(y-lx> dp(y)). Then ,D ct TP is a bijective linear map- 

ping from M(G) onto .zZ’(L,) fl g;(L,) (see [2; Proposition 3.31). In particular, 

for Te9?;(Lp) one has 

(3.1) TE_~!!~(L~) if and only if F’EB(G), 

where B(G) := {P;,D EM(G)} is the Fourier-Stieltjes algebra of G. Here ,!I is 

defined by b(y)=1 (x, y)&(x) (YE@. Then B(G)cC, JG) (cf. [17; 1.3.3]), 

and we denote by @??) the closure of B(G) in Cb(G) with respect to the 

uniform norm. \ 

3.1. THEOREM. Let TEE?;. If TEE, then FEN. 

REMARK. m is the closure of P(L,) in g(L,) with respect to the 

operator norm. We call TE&??(L~) strongly non-regular if T$m. 

PROOF. By Theorem 1.1 there exists a positive, contractive projection P from 

&?(L,,) onto gi(Lp). Let SE~!!‘(L,J. Since 9 is positive, it follows that 

9(S) ES?‘(LJ nSf?,#J. Hence 93) E B(G) and 11 T- S II 2 I/ .2?( T- S)ll = 

II~-~(~)ll~ll~-~2(~)lloo. W e h ave shown that dist(T,g3’(L,))rdist(? B(G)), 

where the expression on the left side is the distance in 9(L,) with respect to the 

operator norm, and on the right side in L,(C?,l). n 

3.2. REMARKS. (a) If p=2, then IITII =I/Tl/, for all TEJZ;(L~(G)). The 

proof of the theorem shows that 

(3.2) dist(T,g’(L,)) =dist(;r?B(G)) 

for all Te9?,(L2). 

(b) It follows from Theorem 3.1 that 

(3.3) F’E C,,,(G) for all TES?;(L,) n&Z?‘(L,). 

Moreover, C,(G)C$j by [IS; 1.2.41; in particular m=C(G)) if G is 

compact. 

3.3. EXAMPLE (Hilbert transformation on L,(R)). Let 1 <p<c~. The 

Hilbert transformation T on L,(R) is the operator TE~;(L,(R)) given by 

F(x)=-isgnx (xER) 

(see [7; sec. 6.71). Since Fis not continuous, it follows by (3.3) that Tis strongly 

non-regular. 

3.4. EXAMPLE (Hilbert transformation on I,(Z)). Let 1 <p< 03. The Hilbert 

transformation is the operator T~~i(!,(~)) given by 
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@“) = 
i(t+71)/7~ for -7rstl0, 
i(t-n)/lc for O<t<n 

(cf. [7; sec. 6.71). Since f is not continuous, T is strongly non-regular. 

3.5. EXAMPLE (Schrodinger group on L2(lRn)). Let A be the negative 

Laplace operator in L2(lRn), given by D(A) := W;(W), Af:= -Of. For t e R 

let T, : = e-itA. Then Ft(<)=e-“lri2 (where i<12=<F+ ... +&. For t#O the 

function c is not uniformly continuous, and therefore (3.3) implies that Tt is 
strongly non-regular. 

In order to give an example on L,(U) we need another criterion; we refer to 

[13; Theorem in sec. 7.1 l] for a related fact. 

3.6. LEMMA. Let p E M(G), y E e. Then 

,i, PW) =,mJ= ll>, 
.I 

where [~=l]={x~G;y(x)=l}. 

PROOF. Since for XE G, 

n 7(x) - 1 

if y(x) = 1. 

if y(x)#l, 

and 1 l/n CJ_, p(x)jI 5 1 (n E iN), it follows from the dominated convergence 

theorem that 

,f’_J t i, PO4 = lim S 1 i y(x)j dp(x) =p([y = 11). n 
/ n-m n ,=, 

3.7. PROPOSITION. Let rnEm,yEe. Then limn__ l/n ES;., m(y’) and 

limn + (D l/n EYE, m(y-j) exist and are equal. 

PROOF. The property is true for m EB(C?) by Lemma 3.6 and preserved by 

uniform limits. n 

3.8. COROLLARY. Let mElI( Then lim_, l/n C,“_, m(j) and lim,,_, l/n x 
I;=, m( - j) exist and are equal. In particular, if m(m) := lim,,__, m(n) and 
m(--co) := limn__, m(n) exist, then m(m) = m( - 00). 

3.9. EXAMPLE (Hilbert transformation on L,(T)). Let 1 <p<m. The 

Hilbert transformation T on L,(U) is the operator TES?((L,(U)) given by 

p(k) = i sgn k (kE0 
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(see [7; sec. 6.71. Since lim,_, F(k) #lim,__, p(k), the operator T is strongly 

non-regular by Corollary 3.8. 

3.10. REMARK. Let G = R, T or Z and let T be the Hilbert transformation on 

L,(G). It follows from (3.2) and the expression for 7 that dist(T,P(L,))? 1; 

i.e. T is orthogonal to P(L2) in the sense of Birkhoff [4]. This property had 

been proved by Synnatzschke [20] for several other singular integral transfor- 

mations (e.g. the Fourier transformation on &(R)). 

3.11. REMARK. By a similar proof as that of Lemma 3.6 one can show that 

for every m EB(R) the limits lim,+, l/t $ m(s) ds and lim,_, l/t $ m(-s) ds 
exist and are equal. 

3.12. REMARK. For the case that G is not compact it was shown in [9] that 

for 1 sq<pzz2, g;(L,) is not dense g;(L,). Since ~i’i&Yr(L,)=~j(Li) for all 

p it follows that for 1 <p 5 2 the regular operators are not dense in 5?(L,) (and 

the same for 21p< 03, by duality). 

4.EXISTENCE OF STRONGLY NON-REGULAR OPERATORS ON ARBITRARY L,- 

SPACES 

In Examples 3.3, 3.4 and 3.9 it was shown that there exists a strongly 

non-regular operator - the Hilbert transformation - on L,(G), for G= 

Z, R, U 1 <p< oz. In the first part of this section we show that this implies the 

existence of strongly non-regular operators on any infinite dimensional 

L,-space. 

4.1. PROPOSITION. Let 1 up< m, and let (sZ,d, ,u) be a measure space for 
which L,(Q,,A, p) is infinite dimensional. 

(a) There exist an isometric lattice homomorphism J: lP + L, and a 
positive contraction K : L, + lP such that K 0 J= id, . 

(b) There exist a positive isometryg: 9?(1,) -+ 9{L,) and a positive contrac- 
tion 3: g(L,,) -+ 9(I,) such that X0$= idYCID,. 

PROOF. (a) The assumption implies that there exists a disjoint sequence 

(QAEN in d such that O<p(Q,) < 00 (n E N). The mappings J, K defined by 

J((x,S := C wU(Q,,-“~XQ,,~ 

Kf := CC S fd~MQ2,)-“q),~~ 
Q, 

(where l/p + l/q = 1) have the asserted properties. 

(b) With J, K from part (a) the mappings g,X defined by 

$(T):=JoToK (TEE), 

X(T):=Ko To J (Teg(Lp)) 

are as asserted. n 

165 



4.2. COROLLARY. With $,X as in Proposition 4.1 we have S(g’(L,)) = 
Y(I,). For all TE.zZ(I,) we have 

dist(T,9’(f0))=dist($(T),9?‘(L,)). 

The proof is an easy consequence of the properties of ,$ and Z. 

As a consequence of Proposition 4.1 and Corollary 4.2 we obtain from the 

existence of strongly non-regular operators on lp (see Example 3.4) the follow- 

ing theorem. 

4.3. THEOREM. Let 1 up< 00 and let (sZ,._& p) be a measure space such that 
X := L,,(Q,d, p) is infinite dimensional. The following are equivalent. 

(9 p=l, 
(ii) .9(X) =2”(X), 

(iii) 9?(X) =5?“(X). 

In the second part of this section we show that a certain matrix represents a 

strongly non-regular operator A on lp; more precisely we show dist(A, gr(I,,_,)) = 

IIAll. Similar matrices were used in a related context; cf. [18; chap. IV, 5 1, 

Examples], [3; Abschnitt 21. 

4.4. LEMMA. Let 15~503, AEIK"~". Then (IIA~I/,<n”PIIAllp, where IIAII, 
denotes the norm of A as an operator on (IK", 11. lip). 

PROOF. Let A =(Ujk), and choose &jk such that l&jkl= 1, lfZjk1 =&jkajk. Let X= 

(Xj)E IK", IIxllp= 1. Then 

ll1441p=( i I Yi &jkajkXkIpYp 
,=I k=l 

sn"P(max c &jkajkIXk/) 
j k 

= n l’Pmax (AX')j 

(where xJ = (&jk Ixk l)k, and (AX')j denotes the j-th component Of AXj) 

5 n 1’P max llAx$ 

<r~“~IlAll~. - 

For n E M, we define recursively 2” x 2”-matrices B,, by 

B, := (l), 

> 
(n 11). 

4.5. LEMMA. Let 21~503, l/p+l/q=l. Then IIBnllp=2”‘4, I(IB,,III,= 2” 

(ne NO). 
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PROOF. For the first equality we note first the obvious equality IIB,Ij, =2”. 

Next we remark that 2P”‘2B, is an orthogonal matrix, and this implies I/B, 112 = 
2n’2. Now the Riesz-Thorin convexity theorem implies /I B, lip I 2n’q. Testing 

with the vector (1, 1, . . . . 1) shows equality. 

The second equality is easy to show. n 

Now we fix 21p<o3,l/p+ l/q= 1. We defineA,:=2-“‘qB, (no&,). Then 

llA,,/l= 1, I/ IA, III = 2”‘P (n E &J. Further we define the operator A E&!?(/~) by 

representing I,, as the IP-sum of 2”-dimensional spaces E,, :=(IK2n, /I. lip) in the 

obvious way, and letting A act as A, on E,. In the matrix representation, 

; 1. 

Ao 0 

A= Al 
A2 

0 *. . 

4.6. THEOREM. One has dist .y)(,n) (A,P(l,)) = I/All = 1. Also, A acts as an 

operator in lq, and for this operator dist,,,q, (A, gr(Iq)) = [IA II = 1. 

PROOF. The equality I/All = 1 is immediate from llA,,lj = 1 (n E No). 

Let SE 9(1,) be such that lIA - S II < 1. We are going to show that this implies 

S c$P’(I,). Let E := I/A -S/I (< 1). Define S, as the 2” x 2”-submatrix of S oc- 

cupying the same place as A, in A. Then, using Lemma 4.4, we obtain 

llBn~(A,-S,)II~IIIA,-S,II112”‘PllAn-SnII~2”’Pe, 

where “ x ” denotes the Schur product, i.e., entry by entry multiplication of 

matrices; note that B, x A, = iA, / by the definitions. Therefore 

II I sn I II 2 IIBn x Sn II 

~II&xA,II - lI4~(An-%)/l 
> pp -pp,y=pp (1 -&)-+a3 

for n--f 00. This shows SgP?“(l,). 

The statements concerning A as an operator in lq follow by duality, since A 
is (formally) symmetric. n 

4.7. REMARK (a permanence property for strong non-regularity). Let E be a 

Banach lattice and TEE be strongly non-regular. Then (A - T))’ is strong- 

ly non-regular for all A E e_(T) (the unbounded component of the resolvent 

set of 7). In fact, if R(A) := (A - T))’ ES??‘(E) for one A EQ~(T) then R(A) E 

m for all A EQ_( T), since 9?“(E) is a closed subalgebra of zZ?(E). Conse- 
quently, T= lim, _ co (A2R(A) - A) e&?‘(E). 

Moreover, if E = L,, then R(A, T) $m for all A E Q( T) since g”(L,) is a 

full subalgebra of .9(L2) (see [23; 24.61). 
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5. STRONGLYNON-REGULAROPERATORSONHILBERTSPACE 

Let H be a separable infinite dimensional complex Hilbert space. Then, given 

any orthonormal basis on H, one may introduce a lattice ordering on H by iden- 

tifying H with 12, and one may ask which operators are regular and which 

operators are in gr for all of these orderings. 

The first question was answered independently by Sourour [19] and Sunder 

(cf. [ll; Theorem 16.51): For TEE the following are equivalent. 

(i) UTU-’ egr(lz) for all unitary U: H-+ lz; 
(ii) there exist a Hilbert-Schmidt operator S on H and A EC such that 

T=S+AI. 
Sourour [19] also observed that in (i) one may replace I2 by L,(O, 1). 

Concerning the second question, recall that every compact operator can be 

approximated in the operator norm by operators of finite rank. Hence if 

T=K+II where K is compact and A EC, then UTU ~9’ for all unitary 

operators U: H+ lz as well as for all unitary operators U: H -+ L2(0, 1). We 

shall now prove that the converse is also true. 

5.1. THEOREM. Let TEE be such that one of the following properties 
holds. 

(a) UTU-’ Ed” for all unitary operators U: H+ lz; 
(b) UTU-’ egr(Lz(O, 1)) for all unitary operators U: H+ L,(O, 1). 

Then there exist a compact operator K and A E C such that T= K $ AI. 

We use the following result which we extract from the proof of [19; 

Lemma 21. 

5.2. LEMMA. Let TEE? be a selfadjoint operator which is not of the 
form K+ AI with compact K, A E R. Then there exist a selfadjoint Hilbert- 
Schmidt operator S and infinite dimensional closed subspaces H,, Hz, H3 of H 
such that H = H, OH2 @ H3, H,, Hz, H3 are invariant under T+ S, (T-t S),, = 

arHl and (T+ 9, = p1H2, with a, DE fR, a +p (where (T+ S)H, denotes the part 
of T+S in Hj, for j= 1,2). 

PROOFOFTHEOREM 5.1. Since (/TV’ ~9?l’ for all unitary U: H-t I, 
(U: H+ L,(O, l), respectively) the same is true for T*, (T+ T*)/2 and (T- T*)/ 
2i. So we may assume that T is selfadjoint. 

We assume that T is not of the form K + AI, and obtain S, H,, H,, H3, o, p 
from Lemma 5.2. It is sufficient to find a unitary U: H+ l2 (U: H-t L*(O, 1)) 

such that U(T+ S)U-’ ~$9~. Without restriction we may assume S= 0. (Note 

that any Hilbert-Schmidt operator on I2 or L,(O, 1) is regular.) 

Now if H, is a closed subspace of H such that dim H,, = dim Ho1 = 03 and 

THOC H0 then also the part To := T,, of T in H, has the property that 

U, T, UO-’ ~5?!’ for all unitary U, : H,, --) 1, (U,, : H, + L2(0, 1)). (In fact, let U,: 
Ho + 12 (U, : H, --f L2(0, 1)) be unitary. Consider a unitary extension U: H-t 
lzOlz (U: H+L,(O, l)@Lz(O, 1)). By hypothesis there exist Tne_5??’ such 
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