Approximation of multipliers by regular operators

by Wolfgang Arendt¹ and Jürgen Voigt²

¹ Equipe de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France
 ² Fachbereich Mathematik der Universität Oldenburg, Ammerländer Heerstrasse 114-118,
 2900 Oldenburg, Germany

Communicated by Prof. A.C. Zaanen at the meeting of October 29, 1990

INTRODUCTION

For a (real or complex) L_p $(1 \le p < \infty)$ the space $\mathscr{L}^r(L_p)$ of all regular operators on L_p is defined as the linear span of the positive operators. If p = 1, then $\mathscr{L}^r(L_p)$ coincides with the space $\mathscr{L}(L_p)$ of all continuous linear operators; cf. [18; chap. IV, Theorem 1.5], [1; sec. 15]. In this paper we show that $\mathscr{L}^r(L_p)$ is not dense in $\mathscr{L}(L_p)$ if $1 and dim <math>L_p = \infty$. In particular we show that the Hilbert transformation T on $L_p(G)$, for $G = \mathbb{Z}, \mathbb{R}, \mathbb{T}$, is *strongly non-regular*, i.e. T does not belong to $\overline{\mathscr{L}^r(L_p(G))}^{\mathscr{L}}$. The fundamental idea is to prove that whenever there would exist a sequence (T_n) in $\mathscr{L}^r(L_p(G))$ approximating T, it could already be chosen such that T_n commutes with translations. This is achieved by showing that there exists a positive projection of the space of all operators onto the subspace of translation invariant operators.

We also show that an operator on a Hilbert space which can be approximated by regular operators with respect to all orderings induced by choosing some orthonormal basis is of the form $K + \lambda I$, with compact K and $\lambda \in \mathbb{C}$.

1. A POSITIVE PROJECTION ONTO THE SPACE QF ALL TRANSLATION INVARIANT OPERATORS

In this section let G be a locally compact group. For $a \in G$ and a function $f: G \to \mathbb{C}$ we denote by $_af$ the *left translate of f by a*, $_af(x) := f(ax)$ ($x \in G$).

Let λ be a left Haar measure on G (i.e. $\int f d\lambda = \int_a f d\lambda$ for all $f \in C_c(G)$,

 $a \in G$; cf. [12; §15]). For $1 \le p < \infty$ we shall write $L_p := L_p(G, \lambda)$ (K-valued, where $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), in this section.

Let $\mathscr{L}_{1i}(L_p)$ denote the set of left translation invariant operators,

 $\mathcal{L}_{1i}(L_p) := \{ T \in \mathcal{L}(L_p); T(_a f) = _a(Tf) \text{ for all } a \in G, f \in L_p \}.$

A function $f: G \to \mathbb{K}$ is right uniformly continuous if $\sup_x |f(x) - {}_y f(x)| \to 0$ if y tends to the unit in G. The Banach space of all bounded, right uniformly continuous functions will be denoted by $C_{b,ru}(G)$.

A left invariant mean on $C_{b,ru}(G)$ is a functional $M \in C_{b,ru}(G)'$ satisfying $M(1) = 1, M \ge 0, M(_af) = M(f)$ for all $f \in C_{b,ru}(G), a \in G$ (cf. [10; §1.1]). In this section we shall assume G to be amenable, i.e., there exists a left invariant mean M on $C_{b,ru}(G)$. This is in fact equivalent to the existence of (left) invariant means on other function spaces, e.g. $L_{\infty}(G, \lambda)$; cf. [10; §2.2], [16; Theorem 4.19].

1.1. THEOREM. Let $1 \le p < \infty$. There exists a positive, contractive projection \mathscr{Q} from $\mathscr{L}(L_p)$ onto $\mathscr{L}_{1i}(L_p)$.

REMARK. Let 1 , <math>1/p + 1/q = 1. Then \mathscr{Q} can be defined by $\mathscr{Q}(T) = \tilde{T}$,

(1.1)
$$\langle \tilde{T}f,g\rangle = M(a \mapsto \langle T(_af),_ag\rangle)$$

 $(f \in L_p, g \in L_q)$, where $\langle .,. \rangle$ denotes the natural duality bracket between L_p and L_q . If p = 1, then \mathscr{Q} can be defined in such a way that (1.1) is true for all $f \in L_1, g \in C_0(G)$.

PROOF. (i) We first consider the case $1 . Let <math>T \in \mathscr{L}(L_p)$. For $f \in L_p, g \in L_q$, the function $a \mapsto \langle T(_a f), _a g \rangle$ is bounded, $|\langle T(_a f), _a g \rangle| \le ||T|| ||f||_p ||g||_q$ ($a \in G$), and right uniformly continuous; cf. [12; Theorem (20.4)]. Therefore, a bilinear mapping

$$B: L_n \times L_a \to \mathbb{K}$$

is defined by

(1.2) $B(f,g) := M(a \mapsto \langle T(_af), _ag \rangle),$

and the properties of M imply $||B|| \le ||T||$. This implies that there exists a unique $\tilde{T} \in \mathscr{L}(L_p)$ such that $B(f,g) = \langle \tilde{T}f,g \rangle$ for all $f \in L_p, g \in L_q$, and we have the estimate $||\tilde{T}|| = ||B|| \le ||T||$.

Next we show $\tilde{T} \in \mathscr{L}_{1i}(L_p)$. Let $b \in G, f \in L_p, g \in L_q$. Then

$$\langle \tilde{T}(bf), g \rangle = M(a \mapsto \langle T(a(bf)), ag \rangle)$$

$$= M(a \mapsto \langle T(baf), b^{-1}bag \rangle)$$

$$= M(a \mapsto \langle T(af), b^{-1}ag \rangle)$$

$$= \langle \tilde{T}f, b^{-1}g \rangle = \langle b(\tilde{T}f), g \rangle.$$

This shows $\tilde{T}(_b f) = {}_b(\tilde{T}f)$, and thus $\tilde{T} \in \mathscr{L}_{1i}(L_p)$.

If $T \in \mathscr{L}_{1i}(L_p)$ then it is clear from the definition that $\tilde{T} = T$ holds.

If $T \ge 0$ then $B(f,g) \ge 0$ for $f \ge 0, g \ge 0$, and this implies $\tilde{T} \ge 0$.

(ii) Let p = 1. Again let $T \in \mathscr{L}(L_1)$. Then (1.2) defines a continuous bilinear form B on $L_1 \times C_0(G)$ such that $||B|| \le ||T||$. So there exists a linear mapping $\tilde{T}: L_1 \to C_0(G)'$, $||\tilde{T}|| = ||B||$, such that

$$\langle g, \tilde{T}f \rangle = B(f,g) \qquad (f \in L_1, g \in C_0(G)).$$

For $\mu \in C_0(G)'$, $a \in G$, let $_a\mu \in C_0(G)'$ be defined by

$$\langle \varphi, {}_a \mu \rangle = \langle {}_a \neg \varphi, \mu \rangle \qquad (\varphi \in C_0(G)).$$

Then one sees as in (i) that $\tilde{T}_a f = {}_a(\tilde{T}f)$ for all $f \in L_1, a \in G$. This implies in particular that the mapping $G \ni a \mapsto {}_a(\tilde{T}f) \in C_0(G)'$ is continuous. Therefore, by [12; (19.27)], the measure $\tilde{T}f$ is absolutely continuous with respect to λ . This means that in fact \tilde{T} maps L_1 into L_1 . It is clear from the definition that \tilde{T} is positive if T is positive.

2. RELATION TO THE PROJECTION ONTO THE CENTER

In this section let G be a locally compact Abelian group, λ a Haar measure on G, and $\hat{\lambda}$ the Haar measure on the character group \hat{G} , normalized by the requirement that the Fourier transformation $F: L_2(G, \lambda) \to L_2(\hat{G}, \hat{\lambda})$ be unitary. For brevity we shall use the notations $X:=L_2(G, \lambda), Y:=L_2(\hat{G}, \hat{\lambda})$.

The Fourier transformation induces a bijective linear mapping $\mathscr{I}: \mathscr{L}(X) \to \mathscr{L}(Y)$ defined by

$$\mathscr{I}(T) := FTF^{-1}.$$

Recall that for an order complete Banach lattice E the space $\mathscr{L}^r(E)$ of regular operators is an order complete Banach lattice; cf. [18; chap. IV, §1]. The *center* $\mathscr{J}(E)$ of $\mathscr{L}(E)$ is the linear span of the order interval [-I, I], where I is the identity operator; it is a band in $\mathscr{L}^r(E)$. We refer to [1; sections 8 and 15] for these statements; the elements of $\mathscr{J}(E)$ are also called orthomorphisms or multiplication operators.

For E = Y, the center $\mathcal{J}(Y)$ coincides with the multiplication operators by L_{∞} -functions. This follows from [22; Theorem 7] and the localizability of $\hat{\lambda}$ (cf. [6; Theorem 9.4.8] together with [14; sec. 14, M]).

Since G is commutative the set of operators commuting with translations will be denoted by $\mathscr{L}_i(X) := \mathscr{L}_{1i}(X)$. These operators are also called *multipliers* for X; cf. [5], [15], [7]. We recall that \mathscr{I} maps $\mathscr{L}_i(X)$ onto $\mathfrak{J}(Y)$; cf. [15; Theorem 4.1.1].

Let *M* be an invariant mean on $C_{b,u}(G) := C_{b,ru}(G)$ (note that *G* is amenable; cf. [10; Theorem 1.2.1]), and let $\mathscr{Q}:\mathscr{L}(X) \to \mathscr{L}_i(X)$ be the projection associated with *M* via Theorem 1.1. We define $\widehat{\mathscr{Q}}:\mathscr{L}(Y) \to \mathfrak{J}(Y)$ by

$$\hat{\mathscr{Q}} := \mathscr{I} \mathscr{Q} \mathscr{I}^{-1}.$$

Then $\hat{\mathscr{Q}}$ is a contractive projection onto $\mathscr{G}(Y)$.

2.1. THEOREM. The restriction of $\hat{\mathscr{Q}}$ to $\mathscr{L}^{r}(Y)$ is the band projection onto $\mathfrak{Z}(Y)$. In particular, $\hat{\mathscr{Q}}$ is positive.

PROOF. (i) Let $T \in \mathscr{L}(Y)_+$. We show that $\hat{\mathscr{Q}}(T) \in \mathscr{L}^r(Y)$ and $|\hat{\mathscr{Q}}(T)| \leq T$. In fact, let $f, g \in Y, f \geq 0$. It is easy to check that then

$$\int \hat{\mathcal{Q}}(T) f \bar{g} \, d\hat{\lambda} = M(a \mapsto \int T(af) \overline{ag} \, d\hat{\lambda}),$$

where, in the last expression, $a \in G$ is interpreted as a character on \hat{G} . Therefore

$$|\int \hat{\mathcal{Q}}(T) f \bar{g} \, d\hat{\lambda}| \leq \sup_{a} |\int T(af) \overline{ag} \, d\hat{\lambda}|$$
$$\leq \int T f|g| \, d\hat{\lambda}.$$

Since this is true for all $g \in Y$, we obtain $|\hat{\mathscr{Q}}(T)f| \leq Tf$. Now $\hat{\mathscr{Q}}(T) \in \mathscr{L}^{r}(Y)$ follows from [18; chap. IV, Proposition 1.6], and $|\hat{\mathscr{Q}}(T)| \leq T$ is obtained from [18; chap. IV, Theorem 1.8].

(ii) If $0 \le T \in \mathcal{F}(Y)^d$ then (i) implies $\hat{\mathscr{Q}}(T) \in \mathcal{F}(Y)^d$. Since also $\hat{\mathscr{Q}}(T) \in \mathcal{F}(Y)$ we obtain $\hat{\mathscr{Q}}(T) = 0$. This implies that $\hat{\mathscr{Q}}$, restricted to $\mathscr{L}'(Y)$, is the band projection onto $\mathcal{F}(Y)$.

2.2. REMARK. For an order complete Banach lattice E it was shown in [21] that the band projection $\mathscr{P}: \mathscr{L}^{r}(E) \to \mathscr{F}(E)$ is contractive with respect to the operator norm, and can therefore be extended as a contraction to all of $\mathscr{L}(E)$. For E := Y, Theorem 2.1 shows that such an extension is given by $\hat{\mathscr{Q}}$.

2.3. EXAMPLE. ' If G is compact, then the normalized Haar measure is the unique invariant mean on C(G). In this case the projection $\hat{\mathscr{Q}}$ has the following form: Since \hat{G} is discrete each operator $T \in \mathscr{L}(Y)$ corresponds to a matrix $(t_{\beta\gamma})_{\beta,\gamma\in\hat{G}}$. Then $\hat{\mathscr{Q}}(T) = (\delta_{\beta\gamma}t_{\beta,\gamma})_{\beta,\gamma\in\hat{G}}$, with the Kronecker delta $(\delta_{\beta\gamma})$. Indeed,

$$\int_{G} \hat{\mathscr{Q}}(T) \chi_{\{\beta\}} \chi_{\{\gamma\}} d\hat{\lambda}$$

$$= \int_{G} \mathscr{Q}(F^{-1}TF) \beta \bar{\gamma} d\lambda$$

$$= \int_{a \in G} \int_{G} F^{-1}TF(_{a}\beta)_{a}\bar{\gamma} d\lambda d\lambda(a)$$

$$= \int_{a \in G} \beta(a) \bar{\gamma}(a) d\lambda(a) \int_{G} T\chi_{\{\beta\}} \chi_{\{\gamma\}} d\hat{\lambda} =$$

$$= \delta_{\beta\gamma} t_{\beta\gamma}.$$

3. STRONG NON-REGULARITY OF MULTIPLIER OPERATORS

In the following G is a locally compact Abelian group and $L_p = L_p(G, \lambda)$ $(1 \le p < \infty)$. By M(G) we denote the space of all bounded Baire measures on G.

Let $T \in \mathscr{L}_i(L_p)$. Then $T(L_p \cap L_2) \subset L_p \cap L_2$, and there exists a unique $\hat{T} \in L_{\infty}(\hat{G}, \hat{\lambda})$ such that

$$FTf = \hat{T} \cdot Ff$$

for all $f \in L_p \cap L_2$. Moreover, $\|\hat{T}\|_{\infty} \leq \|T\|$ (see [15; Theorems 4.1.1 and 4.1.3]). For $\mu \in M(G)$ we define the convolution operator T_{μ} on L_p by $T_{\mu}f = \mu * f$ (where $\mu * f(x) = \int f(y^{-1}x) d\mu(y)$). Then $\mu \mapsto T_{\mu}$ is a bijective linear mapping from M(G) onto $\mathscr{L}'(L_p) \cap \mathscr{L}_i(L_p)$ (see [2; Proposition 3.3]). In particular, for $T \in \mathscr{L}_i(L_p)$ one has

(3.1) $T \in \mathscr{L}'(L_p)$ if and only if $\hat{T} \in B(\hat{G})$,

where $B(\hat{G}) := \{\hat{\mu}; \mu \in M(G)\}$ is the Fourier-Stieltjes algebra of \hat{G} . Here $\hat{\mu}$ is defined by $\hat{\mu}(\gamma) = \int (\overline{x, \gamma}) d\mu(x)$ ($\gamma \in \hat{G}$). Then $B(\hat{G}) \subset C_{b,u}(\hat{G})$ (cf. [17; 1.3.3]), and we denote by $B(\hat{G})$ the closure of $B(\hat{G})$ in $C_b(\hat{G})$ with respect to the uniform norm.

3.1. THEOREM. Let $T \in \mathscr{L}_i(L_p)$. If $T \in \overline{\mathscr{L}'(L_p)}$, then $\hat{T} \in \overline{B(\hat{G})}$.

REMARK. $\overline{\mathscr{L}^r(L_p)}$ is the closure of $\mathscr{L}^r(L_p)$ in $\mathscr{L}(L_p)$ with respect to the operator norm. We call $T \in \mathscr{L}(L_p)$ strongly non-regular if $T \notin \overline{\mathscr{L}^r(L_p)}$.

PROOF. By Theorem 1.1 there exists a positive, contractive projection \mathscr{Q} from $\mathscr{L}(L_p)$ onto $\mathscr{L}_i(L_p)$. Let $S \in \mathscr{L}^r(L_p)$. Since \mathscr{Q} is positive, it follows that $\mathscr{Q}(S) \in \mathscr{L}^r(L_p) \cap \mathscr{L}_i(L_p)$. Hence $\widehat{\mathscr{Q}(S)} \in B(\hat{G})$ and $||T - S|| \ge ||\mathscr{Q}(T - S)|| = ||T - \mathscr{Q}(S)|| \ge ||\hat{T} - \widehat{\mathscr{Q}(S)}||_{\infty}$. We have shown that $\operatorname{dist}(T, \mathscr{L}^r(L_p)) \ge \operatorname{dist}(\hat{T}, B(\hat{G}))$, where the expression on the left side is the distance in $\mathscr{L}(L_p)$ with respect to the operator norm, and on the right side in $L_{\infty}(\hat{G}, \hat{\lambda})$.

3.2. REMARKS. (a) If p=2, then $||T|| = ||\hat{T}||_{\infty}$ for all $T \in \mathscr{L}_i(L_2(G))$. The proof of the theorem shows that

(3.2) $\operatorname{dist}(T, \mathscr{L}^{r}(L_{2})) = \operatorname{dist}(\widehat{T}, B(\widehat{G}))$

for all $T \in \mathscr{L}_i(L_2)$.

(b) It follows from Theorem 3.1 that

(3.3)
$$\hat{T} \in C_{b,u}(\hat{G})$$
 for all $T \in \mathscr{L}_i(L_p) \cap \overline{\mathscr{L}^r(L_p)}$.

Moreover, $C_0(\hat{G}) \subset \overline{B(\hat{G})}$ by [15; 1.2.4]; in particular $\overline{B(\hat{G})} = C(\hat{G})$) if \hat{G} is compact.

3.3. EXAMPLE (Hilbert transformation on $L_p(\mathbb{R})$). Let $1 . The Hilbert transformation T on <math>L_p(\mathbb{R})$ is the operator $T \in \mathcal{L}_i(L_p(\mathbb{R}))$ given by

 $\hat{T}(x) = -i \operatorname{sgn} x \quad (x \in \mathbb{R})$

(see [7; sec. 6.7]). Since \hat{T} is not continuous, it follows by (3.3) that T is strongly non-regular.

3.4. EXAMPLE (Hilbert transformation on $l_p(\mathbb{Z})$). Let $1 . The Hilbert transformation is the operator <math>T \in \mathcal{L}_i(l_p(\mathbb{Z}))$ given by

$$\hat{T}(e^{it}) = \begin{cases} i(t+\pi)/\pi & \text{for } -\pi \le t \le 0\\ i(t-\pi)/\pi & \text{for } 0 < t < \pi \end{cases}$$

(cf. [7; sec. 6.7]). Since \hat{T} is not continuous, T is strongly non-regular.

3.5. EXAMPLE (Schrödinger group on $L_2(\mathbb{R}^n)$). Let A be the negative Laplace operator in $L_2(\mathbb{R}^n)$, given by $D(A) := W_2^2(\mathbb{R}^n)$, $Af := -\Delta f$. For $t \in \mathbb{R}$ let $T_t := e^{-itA}$. Then $\hat{T}_t(\xi) = e^{-it|\xi|^2}$ (where $|\xi|^2 = \xi_1^2 + \cdots + \xi_n^2$). For $t \neq 0$ the function \hat{T}_t is not uniformly continuous, and therefore (3.3) implies that T_t is strongly non-regular.

In order to give an example on $L_p(\mathbb{T})$ we need another criterion; we refer to [13; Theorem in sec. 7.11] for a related fact.

3.6. LEMMA. Let $\mu \in M(G)$, $\gamma \in \hat{G}$. Then

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n\hat{\mu}(\gamma^j)=\mu([\gamma=1]),$$

where $[\gamma = 1] = \{x \in G; \gamma(x) = 1\}.$

PROOF. Since for $x \in G$,

$$\frac{1}{n}\sum_{j=1}^{n}\overline{y}(x)^{j} = \begin{cases} 1 & \text{if } \gamma(x) = 1, \\ \frac{1}{n}\frac{\overline{y}(x)^{n+1} - \overline{y}(x)}{\overline{y}(x) - 1} & \text{if } \gamma(x) \neq 1, \\ \rightarrow \chi_{[\gamma=1]}(x) & (n \to \infty) \end{cases}$$

and $|1/n \sum_{j=1}^{n} \bar{y}(x)^{j}| \le 1$ $(n \in \mathbb{N})$, it follows from the dominated convergence theorem that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n\hat{\mu}(\gamma^j)=\lim_{n\to\infty}\int\frac{1}{n}\sum_{j=1}^n\bar{\gamma}(x)^j\,d\mu(x)=\mu([\gamma=1]).$$

3.7. PROPOSITION. Let $m \in \overline{B(\hat{G})}, \gamma \in \hat{G}$. Then $\lim_{n \to \infty} 1/n \sum_{j=1}^{n} m(\gamma^{j})$ and $\lim_{n \to \infty} 1/n \sum_{i=1}^{n} m(\gamma^{j})$ exist and are equal.

PROOF. The property is true for $m \in B(\hat{G})$ by Lemma 3.6 and preserved by uniform limits.

3.8. COROLLARY. Let $m \in \overline{B(\mathbb{Z})}$. Then $\lim_{n\to\infty} 1/n \sum_{j=1}^{n} m(j)$ and $\lim_{n\to\infty} 1/n \times \sum_{j=1}^{n} m(-j)$ exist and are equal. In particular, if $m(\infty) := \lim_{n\to\infty} m(n)$ and $m(-\infty) := \lim_{n\to\infty} m(n)$ exist, then $m(\infty) = m(-\infty)$.

3.9. EXAMPLE (Hilbert transformation on $L_p(\mathbb{T})$). Let $1 . The Hilbert transformation T on <math>L_p(\mathbb{T})$ is the operator $T \in \mathscr{L}_i(L_p(\mathbb{T}))$ given by

$$\hat{T}(k) = i \operatorname{sgn} k \qquad (k \in \mathbb{Z})$$

(see [7; sec. 6.7]. Since $\lim_{k\to\infty} \hat{T}(k) \neq \lim_{k\to-\infty} \hat{T}(k)$, the operator T is strongly non-regular by Corollary 3.8.

3.10. REMARK. Let $G = \mathbb{R}$, \mathbb{T} or \mathbb{Z} and let T be the Hilbert transformation on $L_2(G)$. It follows from (3.2) and the expression for \hat{T} that $dist(T, \mathscr{L}'(L_2)) \ge 1$; i.e. T is orthogonal to $\mathscr{L}'(L_2)$ in the sense of Birkhoff [4]. This property had been proved by Synnatzschke [20] for several other singular integral transformations (e.g. the Fourier transformation on $L_2(\mathbb{R})$).

3.11. REMARK. By a similar proof as that of Lemma 3.6 one can show that for every $m \in \overline{B(\mathbb{R})}$ the limits $\lim_{t \to \infty} 1/t \int_0^t m(s) ds$ and $\lim_{t \to \infty} 1/t \int_0^t m(-s) ds$ exist and are equal.

3.12. REMARK. For the case that G is not compact it was shown in [9] that for $1 \le q , <math>\mathscr{L}_i(L_q)$ is not dense $\mathscr{L}_i(L_p)$. Since $\mathscr{L}_i \cap \mathscr{L}'(L_p) = \mathscr{L}_i(L_1)$ for all p it follows that for $1 the regular operators are not dense in <math>\mathscr{L}(L_p)$ (and the same for $2 \le p < \infty$, by duality).

4. EXISTENCE OF STRONGLY NON-REGULAR OPERATORS ON ARBITRARY $L_p\mbox{-}$ Spaces

In Examples 3.3, 3.4 and 3.9 it was shown that there exists a strongly non-regular operator – the Hilbert transformation – on $L_p(G)$, for $G = \mathbb{Z}, \mathbb{R}, \mathbb{T} \mid . In the first part of this section we show that this implies the existence of strongly non-regular operators on any infinite dimensional <math>L_p$ -space.

4.1. PROPOSITION. Let $1 \le p < \infty$, and let $(\Omega, \mathcal{A}, \mu)$ be a measure space for which $L_p(\Omega, \mathcal{A}, \mu)$ is infinite dimensional.

(a) There exist an isometric lattice homomorphism $J: l_p \to L_p$ and a positive contraction $K: L_p \to l_p$ such that $K \circ J = id_{l_p}$.

(b) There exist a positive isometry $\mathcal{J}: \mathcal{L}(l_p) \to \mathcal{L}(L_p)$ and a positive contraction $\mathcal{K}: \mathcal{L}(L_p) \to \mathcal{L}(l_p)$ such that $\mathcal{K} \circ \mathcal{J} = id_{\mathcal{L}(l_p)}$.

PROOF. (a) The assumption implies that there exists a disjoint sequence $(\Omega_n)_{n \in \mathbb{N}}$ in \mathscr{A} such that $0 < \mu(\Omega_n) < \infty$ $(n \in \mathbb{N})$. The mappings J, K defined by

$$J((x_n)) := \sum_n x_n \mu(\Omega_n)^{-1/p} \chi_{\Omega_n},$$

$$Kf := ((\int_{\Omega_n} f \, d\mu) \mu(\Omega_n)^{-1/q})_{n \in \mathbb{N}}$$

(where 1/p + 1/q = 1) have the asserted properties.

(b) With J, K from part (a) the mappings \mathcal{J}, \mathcal{H} defined by

$$\mathcal{J}(T) := J \circ T \circ K \qquad (T \in \mathcal{L}(l_p)),$$

$$\mathcal{K}(T) := K \circ T \circ J \qquad (T \in \mathcal{L}(L_p))$$

are as asserted.

4.2. COROLLARY. With \mathcal{J}, \mathcal{K} as in Proposition 4.1 we have $\mathcal{K}(\mathcal{L}'(L_p)) = \mathcal{L}'(l_p)$. For all $T \in \mathcal{L}(l_p)$ we have

dist $(T, \mathscr{L}^r(l_p)) =$ dist $(\mathscr{J}(T), \mathscr{L}^r(L_p)).$

The proof is an easy consequence of the properties of \mathcal{J} and \mathcal{K} .

As a consequence of Proposition 4.1 and Corollary 4.2 we obtain from the existence of strongly non-regular operators on l_p (see Example 3.4) the following theorem.

4.3. THEOREM. Let $1 \le p < \infty$ and let $(\Omega, \mathcal{A}, \mu)$ be a measure space such that $X := L_p(\Omega, \mathcal{A}, \mu)$ is infinite dimensional. The following are equivalent.

- (i) p = 1,
- (ii) $\mathscr{L}(X) = \mathscr{L}^{r}(X)$,
- (iii) $\mathscr{L}(X) = \overline{\mathscr{L}'(X)}$.

In the second part of this section we show that a certain matrix represents a strongly non-regular operator A on l_p ; more precisely we show dist $(A, \mathscr{L}^r(l_p)) = ||A||$. Similar matrices were used in a related context; cf. [18; chap. IV, §1, Examples], [3; Abschnitt 2].

4.4. LEMMA. Let $1 \le p \le \infty$, $A \in \mathbb{K}^{n \times n}$. Then $||A||_p \le n^{1/p} ||A||_p$, where $||A||_p$ denotes the norm of A as an operator on $(\mathbb{K}^n, \|\cdot\|_p)$.

PROOF. Let $A = (a_{jk})$, and choose ε_{jk} such that $|\varepsilon_{jk}| = 1$, $|a_{jk}| = \varepsilon_{jk}a_{jk}$. Let $x = (x_j) \in \mathbb{K}^n$, $||x||_p = 1$. Then

$$\||A|x\|_{p} = \left(\sum_{j=1}^{n} |\sum_{k=1}^{n} \varepsilon_{jk} a_{jk} x_{k}|^{p}\right)^{1/p}$$

$$\leq n^{1/p} (\max_{j} \sum_{k} \varepsilon_{jk} a_{jk} |x_{k}|)$$

$$= n^{1/p} \max_{j} (Ax^{j})_{j}$$

(where $x^{j} = (\varepsilon_{ik}|x_{k}|)_{k}$, and $(Ax^{j})_{i}$ denotes the *j*-th component of Ax^{j})

$$\leq n^{1/p} \max_{j} ||Ax^{j}||_{p}$$

 $\leq n^{1/p} ||A||_{p}.$

For $n \in \mathbb{N}_0$ we define recursively $2^n \times 2^n$ -matrices B_n , by

$$B_0 := (1),$$

$$B_n := \begin{pmatrix} B_{n-1} & B_{n-1} \\ B_{n-1} & -B_{n-1} \end{pmatrix} \qquad (n \ge 1).$$

4.5. LEMMA. Let $2 \le p \le \infty$, 1/p + 1/q = 1. Then $||B_n||_p = 2^{n/q}$, $||B_n||_p = 2^n$ $(n \in \mathbb{N}_0)$.

PROOF. For the first equality we note first the obvious equality $||B_n||_{\infty} = 2^n$. Next we remark that $2^{-n/2}B_n$ is an orthogonal matrix, and this implies $||B_n||_2 = 2^{n/2}$. Now the Riesz-Thorin convexity theorem implies $||B_n||_p \le 2^{n/q}$. Testing with the vector (1, 1, ..., 1) shows equality.

The second equality is easy to show.

Now we fix $2 \le p < \infty$, 1/p + 1/q = 1. We define $A_n := 2^{-n/q} B_n$ $(n \in \mathbb{N}_0)$. Then $||A_n|| = 1$, $||A_n|| = 2^{n/p}$ $(n \in \mathbb{N}_0)$. Further we define the operator $A \in \mathscr{L}(l_p)$ by representing l_p as the l_p -sum of 2^n -dimensional spaces $E_n := (\mathbb{K}^{2^n}, || \cdot ||_p)$ in the obvious way, and letting A act as A_n on E_n . In the matrix representation,

$$A = \begin{pmatrix} A_0 & 0 \\ A_1 & \\ & A_2 \\ 0 & \ddots \end{pmatrix}.$$

4.6. THEOREM. One has $\operatorname{dist}_{\mathscr{L}(l_p)}(A, \mathscr{L}^r(l_p)) = ||A|| = 1$. Also, A acts as an operator in l_q , and for this operator $\operatorname{dist}_{\mathscr{L}(l_q)}(A, \mathscr{L}^r(l_q)) = ||A|| = 1$.

PROOF. The equality ||A|| = 1 is immediate from $||A_n|| = 1$ $(n \in \mathbb{N}_0)$.

Let $S \in \mathscr{L}(l_p)$ be such that ||A - S|| < 1. We are going to show that this implies $S \notin \mathscr{L}'(l_p)$. Let $\varepsilon := ||A - S||$ (<1). Define S_n as the $2^n \times 2^n$ -submatrix of S occupying the same place as A_n in A. Then, using Lemma 4.4, we obtain

 $||B_n \times (A_n - S_n)|| \le |||A_n - S_n||| \le 2^{n/p} ||A_n - S_n|| \le 2^{n/p} \varepsilon,$

where " \times " denotes the Schur product, i.e., entry by entry multiplication of matrices; note that $B_n \times A_n = |A_n|$ by the definitions. Therefore

$$\| |S_n|\| \ge \|B_n \times S_n\|$$

$$\ge \|B_n \times A_n\| - \|B_n \times (A_n - S_n)\|$$

$$\ge 2^{n/p} - 2^{n/p} \varepsilon = 2^{n/p} \quad (1 - \varepsilon) \to \infty$$

for $n \to \infty$. This shows $S \notin \mathscr{L}^r(l_p)$.

The statements concerning A as an operator in l_q follow by duality, since A is (formally) symmetric.

4.7. REMARK (a permanence property for strong non-regularity). Let *E* be a Banach lattice and $T \in \mathscr{L}(E)$ be strongly non-regular. Then $(\lambda - T)^{-1}$ is strongly non-regular for all $\lambda \in \varrho_{\infty}(T)$ (the unbounded component of the resolvent set of *T*). In fact, if $R(\lambda) := (\lambda - T)^{-1} \in \overline{\mathscr{L}'(E)}$ for one $\lambda \in \varrho_{\infty}(T)$ then $R(\lambda) \in \overline{\mathscr{L}'(E)}$ for all $\lambda \in \varrho_{\infty}(T)$, since $\mathscr{L}'(E)$ is a closed subalgebra of $\mathscr{L}(E)$. Consequently, $T = \lim_{\lambda \to \infty} (\lambda^2 R(\lambda) - \lambda) \in \overline{\mathscr{L}'(E)}$.

Moreover, if $E = L_2$, then $R(\lambda, T) \notin \overline{\mathscr{L}'(L_2)}$ for all $\lambda \in \varrho(T)$ since $\overline{\mathscr{L}'(L_2)}$ is a full subalgebra of $\mathscr{L}(L_2)$ (see [23; 24.6]).

5. STRONGLY NON-REGULAR OPERATORS ON HILBERT SPACE

Let *H* be a separable infinite dimensional complex Hilbert space. Then, given any orthonormal basis on *H*, one may introduce a lattice ordering on *H* by identifying *H* with l_2 , and one may ask which operators are regular and which operators are in $\overline{\mathscr{L}^r}$ for all of these orderings.

The first question was answered independently by Sourour [19] and Sunder (cf. [11; Theorem 16.5]): For $T \in \mathscr{L}(H)$ the following are equivalent.

(i) $UTU^{-1} \in \mathscr{L}^r(l_2)$ for all unitary $U: H \to l_2$;

(ii) there exist a Hilbert-Schmidt operator S on H and $\lambda \in \mathbb{C}$ such that $T = S + \lambda I$.

Sourour [19] also observed that in (i) one may replace l_2 by $L_2(0, 1)$.

Concerning the second question, recall that every compact operator can be approximated in the operator norm by operators of finite rank. Hence if $T=K+\lambda I$ where K is compact and $\lambda \in \mathbb{C}$, then $UTU^{-1} \in \overline{\mathscr{L}}^r$ for all unitary operators $U: H \to l_2$ as well as for all unitary operators $U: H \to L_2(0, 1)$. We shall now prove that the converse is also true.

5.1. THEOREM. Let $T \in \mathscr{L}(H)$ be such that one of the following properties holds.

(a) $UTU^{-1} \in \widehat{\mathscr{U}^r(l_2)}$ for all unitary operators $U: H \to l_2$;

(b) $UTU^{-1} \in \overline{\mathscr{U}^r(L_2(0,1))}$ for all unitary operators $U: H \to L_2(0,1)$.

Then there exist a compact operator K and $\lambda \in \mathbb{C}$ such that $T = K + \lambda I$.

We use the following result which we extract from the proof of [19; Lemma 2].

5.2. LEMMA. Let $T \in \mathscr{Q}(H)$ be a selfadjoint operator which is not of the form $K + \lambda I$ with compact K, $\lambda \in \mathbb{R}$. Then there exist a selfadjoint Hilbert-Schmidt operator S and infinite dimensional closed subspaces H_1, H_2, H_3 of H such that $H = H_1 \oplus H_2 \oplus H_3$, H_1, H_2, H_3 are invariant under T + S, $(T + S)_{H_1} = \alpha I_{H_1}$ and $(T + S)_{H_2} = \beta I_{H_2}$, with $\alpha, \beta \in \mathbb{R}, \alpha \neq \beta$ (where $(T + S)_{H_j}$ denotes the part of T + S in H_j , for j = 1, 2).

PROOF OF THEOREM 5.1. Since $UTU^{-1} \in \overline{\mathscr{L}^r}$ for all unitary $U: H \to l_2$ $(U: H \to L_2(0, 1))$, respectively) the same is true for T^* , $(T+T^*)/2$ and $(T-T^*)/2i$. So we may assume that T is selfadjoint.

We assume that T is not of the form $K + \lambda I$, and obtain $S, H_1, H_2, H_3, \alpha, \beta$ from Lemma 5.2. It is sufficient to find a unitary $U: H \rightarrow l_2$ ($U: H \rightarrow L_2(0, 1)$) such that $U(T+S)U^{-1} \notin \overline{\mathscr{Q}^r}$. Without restriction we may assume S=0. (Note that any Hilbert-Schmidt operator on l_2 or $L_2(0, 1)$ is regular.)

Now if H_0 is a closed subspace of H such that dim $H_0 = \dim H_0^{\perp} = \infty$ and $TH_0 \subset H_0$ then also the part $T_0 := T_{H_0}$ of T in H_0 has the property that $U_0 T_0 U_0^{-1} \in \overline{\mathscr{D}^r}$ for all unitary $U_0 : H_0 \to l_2 (U_0 : H_0 \to L_2(0, 1))$. (In fact, let $U_0 : H_0 \to l_2 (U_0 : H_0 \to L_2(0, 1))$ be unitary. Consider a unitary extension $U : H \to l_2 \oplus l_2 (U : H \to L_2(0, 1) \oplus L_2(0, 1))$. By hypothesis there exist $T_n \in \mathscr{D}^r$ such

that $\lim_{n\to\infty} T_n = UTU^{-1}$. Since the orthogonal projection P of $l_2 \oplus l_2$ $(L_2(0, 1) \oplus L_2(0, 1)$, respectively) onto the first component is positive, the operators $PT_n|l_2$ $(PT_n|L_2(0, 1))$ are regular and converge to $U_0T_0U_0^{-1}$.)

We apply the previous remark to $T_0 := T_{H_1 \oplus H_2} = \alpha I_{H_1} \oplus \beta I_{H_2}$. Now we consider the two cases (a) and (b) separately.

Case (a). We identify H_1 unitarily with $L_2(0,\pi)$ and H_2 with $L_2(\pi, 2\pi)$. Then T_0 is given by $T_0 f = mf$ ($f \in L_2(0, 2\pi)$) where

$$m(x) = \begin{cases} \alpha & \text{if } x \le \pi, \\ \beta & \text{if } x > \pi. \end{cases}$$

Since *m* is not continuous it follows from Theorem 3.1 that FT_0F^{-1} is strongly non-regular, where $F: L_2(0, 2\pi) \rightarrow l_2(\mathbb{Z})$ is the Fourier transformation. This is a contradiction.

Case (b). We identify H_1 unitarily with $l_2(-\mathbb{N})$ and H_2 with $l_2(\mathbb{N} \cup \{0\})$. Then $T_0 x = (m_n x_n)_{n \in \mathbb{Z}}$, where

$$m_n = \begin{cases} \alpha & \text{if } n < 0, \\ \beta & \text{if } n \ge 0. \end{cases}$$

Since $\lim_{n\to\infty} m_n \neq \lim_{n\to\infty} m_n$, it follows from Corollary 3.8 that FT_0F^{-1} is strongly non-regular, where $F: l_2(\mathbb{Z}) \to L_2(\mathbb{T})$ is the Fourier transformation. This is a contradiction.

5.3. REMARK. It was pointed out to the authors that Theorem 5.1 can also be obtained as a consequence of [8; Theorem 1 and Corollary 3]. However, the proof given here is more direct and elementary in the present context.

REFERENCES

- 1. Aliprantis, C.D. and O. Burkinshaw Positive operators. Academic Press, Orlando, 1985.
- Arendt, W. On the o-sprectrum of regular operators and the spectrum of measures. Math. Z. 178, 271-287 (1981).
- Arendt, W. and H.-U. Schwarz Ideale regulärer Operatoren und Kompaktheit positiver Operatoren zwischen Banachverbänden. Math. Nachr. 131, 7-18 (1987).
- 4. Birkhoff, G. Orthogonality in linear metric spaces. Duke Math. J. 1, 169-178 (1935).
- Brainerd, B. and R.E. Edwards Linear operators which commute with translations, part I: representation theorems. J. Australian Math. Soc. 6, 289–327 (1966).
- 6. Cohn, D.L. Measure theory. Birkhäuser, Boston, 1980.
- Edwards, R.E., G.I. Gaudry Littlewood-Paley and multiplier theory. Springer-Verlag, Berlin, 1977.
- Fong, C.K., C.R. Miers and A.R. Sourour Lie and Jordan ideals of operators on Hilbert space. Proc. Amer. Math. Soc. 84, 516-520 (1982).
- Gaudry, G.I. and I.R. Inglis Approximation of multipliers. Proc. Amer. Math. Soc. 44, 381-384 (1974).
- Greenleaf, F.P. Invariant means on topological groups. Van Nostrand-Reinhold, New York, 1969.
- Halmos, P.R. and V.S. Sunder Bounded integral operators on L² spaces. Springer-Verlag, Berlin, 1978.
- 12. Hewitt, E. and K.A. Ross Abstract harmonic analysis I. Springer-Verlag, Berlin, 1963.

- 13. Katznelson, Y. An introduction to harmonic analysis. 2nd ed. Dover Publications, New York, 1976.
- 14. Kelley, J.L. I. Namioka Linear topological spaces. Van Nostrand, Princeton, 1963.
- 15. Larsen, R. An introduction to the theory of multipliers. Springer-Verlag, Berlin, 1971.
- 16. Pier, J.-P. Amenable locally compact groups. John Wiley & Sons, New York, 1984.
- 17. Rudin, W. Fourier analysis on groups. Interscience Publishers, New York, 1962.
- 18. Schaefer, H.H. Banach lattices and positive operators. Springer-Verlag, New York, 1974.
- 19. Sourour, A.R. Operators with absolutely bounded matrices. Math. Z. 162, 183-187 (1978).
- 20. Synnatzschke, J. Zu einer Eigenschaft gewisser Integraltransformationen. Beiträge zur Analysis 15, 93-98 (1981).
- 21. Voigt, J. The projection onto the center of operators in a Banach lattice. Math. Z. 199, 115-117 (1988).
- 22. Zaanen, A.C. Examples of orthomorphisms. J. Approximation Theory 13, 192-204 (1975).
- 23. Zelasko, W. Banach algebras. Elsevier, Amsterdam, 1973.