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DOMINATION AND ERGODICITY 
FOR POSITIVE SEMIGROUPS 

W. ARENDT AND C. J. K. BATTY 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. In this note we study the conditions under which ergodicity is pre- 
served by domination. As an application, the criterion for almost periodicity 
given by Ljubich-Phong [9] (see also Batty-Phong [4]) can be simplified for 
positive semigroups. 

1. ERGODICITY AND DOMINATION 

Let T = (T(t))t>o be a positive Co-semigroup on a Banach lattice E with 
generator A. As usual, we say that T is mean-ergodic (or C-ergodic) if C - 
limtoo T(t) := limto,0 t fof T(s) ds exists strongly. Due to the positivity of T, 
this is equivalent to the following two conditions (see [3]): 

(1.1) (0, ??) C p(A) and sup IIAR(A, A)II < oo 
o<A< 1 

and 

(1.2) N(A) separates N(A') (i.e. for all 0 $& f E N(A') there exists 
(1) x E N(A) such that (x, o) : O) . 

Here N(A) := {x E D(A): Ax = O} denotes the kernel of A and N(A') the 
kernel of A'. 

We are going to show that ergodicity is preserved by domination if additional 
conditions (order continuous norm or irreducibility) are satisfied. Without any 
additional assumptions, this is false as is shown by examples in ?3. 

Theorem 1.1. Assume that E has order continuous norm. Let S and T be 
Co-semigroups on E such that 

IS(t)xl < T(t)lxl (t > 0, x E E). 
If T is mean-ergodic, then S is also mean-ergodic. 
Proof. Let x E E . Since T is mean-ergodic, the set Hx : { fot T(s)Ixl ds: 
t > O} c E+ is relatively weakly compact. 

Since E has order continuous norm, E is an ideal in E" and the solid hull 
so (Hx) := {y E E: IyI < u for some u E Hx} is relatively weakly compact 
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as well (cf. [1, 13.8]). Hence {Il fgoS(s)x ds} c so (Hx) is relatively weakly 
compact for all x E E, and so S is mean-ergodic [7]. 5 

Corollary 1.2. If E is a complex Banach lattice with order-continuous norm and 
T is a positive, mean-ergodic Co-semigroup, then (e-iatT(t))t>o is also mean- 
ergodic for all real a. 

Theorem 1.3. Let T be a Co-semigroup with generator A and S be a Co- 
semigroup with generator B such that 

0 < S(t) < T(t) (t > 0). 

Assume that T is irreducible and mean-ergodic. If N(B') :$ {0}, then S(t) = 

T(t) (t > 0). 
Concerning the notion of irreducibility we refer to [5] or [10]. 

Proof. It follows from the domination property that (0, oo) c p(B) (cf. [10, 
C-II, Lemma 4.10]). Assume there exists 0 :$ V E E' such that S(t)'yI = V/ 
(t > 0) . So S(t)'Iyl > I? II (t > 0) . Consequently S(s + t)'IyVI > S(s)'jy< 
(s, t > 0); i.e. S(t)'I y/ I is increasing. Hence AR(A, B)'I y/ I = fo) Ae-itS(t)'I y I dt 
is increasing in AL. But supI>A>0 IIAR(A, B)'II < supI>A>0 IILAR(A, A)II < oo, since 
T is mean-ergodic. Then (0 supo<A< ILARQ(A, B)'T vI E N(B') n E+, 5 $: 0. 
Thus 0 < 9 = S(t)'tp < T(t)'(o. By the same argument as before u := 
supo<A<)IR(;t, A)'tP E N(A'), /u > 0 , u :$ 0. It follows that ,u > 0 (i.e. 
(x, ,u) > 0 for all x E E E, x :$ 0) since T is irreducible. Since T is mean- 
ergodic, it follows that N(A) :$ 0. Let v E N(A), v :$ 0. Then T(t) I v I - Iv I > 0 
and (T(t)lvl - lvi, ,u) = 0. Hence u := IVI E N(A), u $ 0. Since T is irre- 
ducible, it follows that u is a quasi-interior point. Now T(t)'tp - q > 0 and 
(u, T(t)'tp - (0) = 0. Hence T(t)'tp = o, t > 0. It follows that ( > 0 by the 
irreducibility of T. 

We have shown that 0 < 9 = S(t)'o = T(t)'(o (t > 0). Let x E E+. Then 
T(t)x-S(t)x > 0 and (T(t)x-S(t)x, (0) = 0. Hence T(t)x = S(t)x (t > O) . 
This shows that T(t) = S(t) (t > 0). El 

Remark. By a slight alteration of the proof of Theorem 1.3, one obtains the 
following. 

Assume that E is an order complete real or complex Banach lattice. Let T 
and S be two Co-semigroups on E with generators A and B, respectively, 
such that IS(t)xI < T(t)x for all x E E+, t > 0. If T is irreducible and 
mean-ergodic and if N(B') :$ {0}, then IS(t)I = T(t) (t > 0). 

Corollary 1.4. Let S and T be positive Co-semigroups such that 0 < S(t) < 
T(t) (t > 0). Assume that T is irreducible and mean-ergodic. Then S is 
mean-ergodic and C - limtO S(t) = 0 strongly if S $ T. 

Proof. By Proposition 1.3, S = T if N(B') $ {0}. Assume that N(B') = {0}. 
Then N(B) separates N(B'). Hence S is mean-ergodic and it follows from 
the general theory that C - limtO,0 S(t) = 0. *5C 

2. ALMOST PERIODIC SEMIGROUPS 

Let {T(t): t > 0} be a bounded C0-semigroup on a Banach space E with 
generator A, and suppose that a(A) n iR is countable. It has been shown that 
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T is stable if (and only if) Ra(A) n iR is empty [2, 8], and T is almost periodic 
if (and only if) Ea(A) n iR is empty [4, 9]. Here 

Ra(A) = Pa(A') = { E (C: R(A - A) is not dense in E} and 
Ea(A) = {) E C: R(A - A) + N(A - A) is not dense in E} 

= {, E C: N(A - A) does not separate N( - A')}, 
where R(A - A) denotes the range of (A - A). Thus 

Ea(A) n iR = {ia: a! E R, e-iatT(t) is not mean-ergodic}, 
Pa(A') = Pa(A) U Ea(A). 

Now suppose that E is a Banach lattice, and T(t) > 0. If T'(t)(o = eiatfp, 
then t |-* T'(t) I I is bounded and increasing, and its weak* limit is a fixed point 
of T'. Thus if Ra(A) n iR is nonempty, then 0 E Ra(A) . Hence, if a(A) n iR 
is countable and 0 0 Ra(A), then T is stable. In fact, for positive semigroups, 
Ra(A) n iR is always cyclic; assuming s(A) := sup{ReA: A E a(A)} = 0, this 
means that ia E Ra(A) implies ina E Ra(A) for all n E Z (where a E R), 
see proof of [10, C-Ill, Corollary 4.3]. 

It is a natural to question whether there are corresponding results for Ea(A) n 
iR and for almost periodicity. We show that there are such results if E has 
order-continuous norm, but not in general, even for Co-groups of lattice iso- 
morphisms. 

Remark. If the Banach space is reflexive and supo<,<l IIAR(A, A)II < oo (e.g., 
if T is bounded), then Ea(A) is empty. 

First we note as an immediate consequence of Corollary 1.2 and [4, Theorem 
8] (or [9]) the following. 

Theorem 2.1. If E has order-continuous norm and T is a bounded, positive, 
mean-ergodic Co-semigroup on E, and a(A) n iR is countable, then T is almost 
periodic. 

Theorem 2.2. Let T be a bounded, irreducible, positive CO-semigroup with gen- 
erator A and assume that E has order-continuous norm. Then Ea(A) is cyclic. 
Proof. Let i1 E IR such that ij E Ea(A). We have to show that inr/ E E(A) 
for all n E Z. It follows from Corollary 1.2 that 0 E Ea(A). Hence N(A') $ 
{0} (otherwise N(A) separates N(A')). By the proof of Theorem 1.3, there 
exists 0 :$ V E N(A')+. Since T is irreducible, it follows that i > 0. As a 
consequence, N(A) = {0} (in fact, otherwise there exists a quasi-interior point 
u E N(A) (by the proof of Theorem 1.3). Since order intervals are weakly 
compact, it follows that { t fo T(s)x ds: t > 0} is relatively weakly compact 
whenever lxi < m * u for some m E N. The set of such vectors x is dense, 
so T is mean-ergodic, contradicting 0 E Ea(A)). It follows from [10, C-Ill, 
Theorem 3.8] that Pa(A) n iR = 0. Hence ir E Ea(A)\Pa(A) c Ra(A). So 
the claim follows since Ra(A) is cyclic (by the proof of [10, C-III, Corollary 
4.3]). El 

3. COUNTEREXAMPLES 

The first example shows that Theorems 1.1 and 1.3 may fail if the norm is 
not order-continuous or T is not irreducible. 
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Example 3.1. Let E = C(Q) where Q is compact, and let A: Q -* [0, 0o) be 
continuous such that A-1(0) is not open in Q. Define T on E by T(t) = I 
(t > 0) and S by S(t)f = e f-ti. Then (S(t)lQ)(w) -* 1 (t - oo) if A (w)) = 0 
and (S(t)l )(w) - 0 if A (w) > 0. So S is not mean ergodic. 

Example 3.2. This example shows that the Corollary 1.2 and Theorem 2.1 may 
fail if the norm is not order-continuous, even if T is a Co-group of isometric 
lattice-isomorphisms. Let K be a compact subset of [0, oc), Q = {rei': r E 
K, 0?< 27r} and E = C(Q). Define 

T(t)f(re'6) = f(rei(O+tr)). 

For real x, let 

K, = {r E K: a E ret, 

1 2x 

fa(r) e-iaO/rf(reiO) d6 (f e E, r e Ka, r> 0), 

fo(o) = 0. 

Now N(A - ia) consists of all functions of the form f (re i) = g(r)eiae/r , where 
g E C(K), g(r) = 0 if r 0 Ka . Also N(A' - ia) consists of all functionals of 
the form 

a fA (r) dy (r) , 

where ,u is any measure on Ka. In particular, for nonzero a, ia 0 Ea(A) if 
and only if, whenever a/n E K for a nonzero integer n, then a/n is isolated 
in K. But T is mean-ergodic, as may be seen directly or by observing that 
N(A) separates N(A'). Moreover, 

a(A)={inr:nEZ, rEK}-. 

In particular, if K = [O 1], so Q is the unit disc, then e-iatT(t) is mean- 
ergodic if and only if a =0. If K = {1 +2-r: m> 1} U {l}, then a(A) = 

{n(1 + 2-m): m > 1 , n E E} U Z , so a(A) is countable and T is mean-ergodic. 
However, T is not almost periodic, since each eigenfunction is constant on the 
circle r = 1. 
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