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Introduction

By a Schrodinger semigroup one understands a semigroup S, = (S,(¢)), » o gener-
ated by 4 — V on LP(RY), where A denotes the Laplacian and V is a potential in
Li,.(R™),. These semigroups have been investigated by several authors, see the
survey article [14] by Simon for further information.

The purpose of the present paper is to study convergence of S,(t) as t — oo for
positive potentials. In order to develop an intuitive idea of the problem, it is helpful
to see (S,(¢)f)(x) (xe R¥, ¢ > 0) as the solution of the heat equation with absorb-
ing potential in R¥.

If p > 1, then lim, . ,S,(¢t) = O strongly even if V' = 0. More interesting is the
case p = 1. In fact, given a positive initial value fe L'(IR"¥), |S,(t)f| .» means the
total amount of heat at time t. If ¥ = 0, this quantity is constant; i.e. S;(t) is
isometric on the positive cone. Our aim is to investigate, for which absorptions
V the semigroup S, is (asymptotically) stable, i.e. lim, ., ,S{(t) = 0 strongly. It is
quite easy to see that this is the case for every non-vanishing V if the Neumann
Laplacian on a bounded region (of class C!) is considered instead of 4 on RY
(Sect. 2). On R”™ the asymptotic behavior depends on the dimension. Whereas for
N =1,2, 8, is always stable if V' & 0 (Theorem 3.2), for N = 3, there always exist
non-zero potentials ¥ such that S; does not converge. This property depends on
the growth of V at infinity. If S, is stable in L'(R¥), N = 3, then necessarily
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Moreover, if V' is radial, the converse holds as well: condition (*) implies stability
of §;.
The proofs given here (Theorem 3.6 and 3.7) are analytical, throughout. In
a separate papet, the second author obtains these and other results by probabilistic
methods.
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1 Stability of positive semigroups

In this preliminary section we give an abstract characterization of stability for
positive (i.e. positivity preserving) semigroups. Let 7= (7()};» ¢ be a Cy-semi-
group on a Banach space with generator 4. We denote by g(A) the spectrum of
A, Po(A) its point spectrum and by

s(A) =sup{Rel:re0(4)}
the spectral bound of 4. The number
w(A):=inf{weR:sup,, e | T(t)| < oo}

is called the growth bound or type of T (or of A). One always has s(4) < w(A)and
growth bound and spectral bound coincide whenever T is holomorphic or T is
a positive semigroup on L' or L? (see [12]). We denote by N(4) = {xeD(A4):
Ax = 0} the kernel of A and by N(A’) the kernel of the adjoint A" of A.

Definition 1.1 We say that T (or A) is stable if lim,, ,T(t)x = 0 for all xeE. If
w(A) <0, then T (or A) 1s called exponentially stable.

In the following we assume that T is a positive Cy-semigroup on a Banach
lattice E.

Lemma 1.2 Assume that T is bounded. If N(A’) % {0}, then N(A"), = N(4")n
E'. #+ {0}.

Proof. a) Observe that supg <, <1 /|AR(4, A)'|| < oo since T is bounded.
b) Let o€ E’. Then

lim, | o<Ax, AR(4, A)' @) = lim; o (A*R(A4 A)x — Ax, D> =0
for allxeD(A).

Thus, if i is a w*-limit point of AR(4, A) ¢ for A [0, then Yy e N(A").

¢) Let e N(A’). Then AR(1, AY " and AR(A, AY ¢~ possess w*-limit points
for 4|0 (by a), which are in N(A4"). (by b). If every such limit point is 0, then it
follows that

Q= limlio AR(&, A)/(p = lim“())vR(i, A)’(P+ — Iim“() )..R(j,, A)/(ﬂ_ =0. [

Theorem 1.3 Let T be a positive bounded Cy-semigroup with generator A such that
o(A) N iR is countable. Then T is stable if and only if N(A"), = {0}.

Progf. 1t follows from the proof of [12, C-III Corollary 4.3] that Pa(A")n iR is
cyclic; in particular, 0¢ Pa(A’) implies Po(A')niR = . By Lemma 1.1,
0¢Po(A’)if and only if N(A'), = {0}. Now the theorem follows from the stability
theorem [1] or [11]. O

Corollary 1.4 Assume that T is a bounded positive semigroup which is eventually
norm continuous. Then T is stable if and only if N(A'). = {0}.
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This follows since for such a semigroup automatically o(A)niR < {0}, [12,
C-1I1 Corollary 2.13].

Remark 1.5 The particular case where 7'is a bounded holomorphic semigroup can
be settled by a simpler argument: in that case sup,.l/[tAT(t)]| < oo; hence
T(t)x — 0 (t - o) for all xe R(A) (the range of A). Thus 7 is stable if and only if
R(A) is dense, which in turn is equivalent to N(A’) % {0}.

2 The Neumann-Laplacian with absorbing potential on bounded domain

Let @ =« RY be a bounded connected open set of class C*. Denote by A4, the
Neumann-Laplacian on L*(Q), ie. 4, is given by

D(A;)={ueH'(Q): 3ve L*(Q), [ VuVeg

Q2
=—[vp forallpeH(Q)}, Ayu=uv.

(See [4, Chap. X] or [13, X111, 15, p 263].) This operator generates a positive
semigroup T, = (T5(1)),» o on L*(£2). Moreover, there exist positive contraction
semigroups T, on LP(Q2) (1 £ p < o) such that T,(t) f= T () f (fe L?(Q) ~ LU(Q),
t 2 0). Let 4, be the generator of 7,

Theorem 2.1 Let 0 < VeL™(Q), V+0. Then A,— V is exponentially stable
(1 =p<o0)

Proof. Denote by S, the semigroup generated by 4, — V. The operator 4, — V has
compact resolvent. Assume that s(4, — V) =0. Then there exists ueD(4,),
|ull.2 = 1 such that 4,u = Vu. Hence

[(Vu)? + fvu? =(—du+ Vulu)=0.
Q

Q

It follows that Vu = 0. Hence u = const. Since | Vu? = 0, it follows that V' = 0,
contradiction. 2

We have shown that w(4, — V) = s(4, — V) < 0. So there exist o <0, M = 0
such that || S,(¢)| £ Me® (1 = 0). The semigroup T, is ultracontractive (see [3] or
[6, 2.4]); in particular, T,(1) is a bounded operator from L*(Q) to L*(Q).
Consequently, 7;(1) is bounded from L'(Q) into L*(Q), by sclf-adjointness.
Since 0 < S,(t) < Ti(1), also §,(t) maps L'(Q) into L*(Q). Thus for fe L'(Q),
IS1() f I = 1S2(t = DS (1) f | £ MeP™ D S (D g, 1)1 Sl (£21). So
S, is exponentially stable. It follows from the Riesz-Thorin theorem that S, is
exponentially stable for 1 £ p < 2;2 < p < o this follows by duality. [J

3 Stability of the Schrodinger semigroup

By T, = (T,(t)), » o we denote the Gaussian semigroup on LP(RM (1 £ p £ o0);le.
7, 1s given by

(x—y)?

(Tp(t)f)(X)=(4m)_%§€_ a0 f(y)dy (1>0).

IRN
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This defines a C, semigroup on LP(R¥) for 1 £ p <o and a w*-continuous
semigroup on L*(R¥) for p = oo. The generator 4, of T, is given by

D(4,) = {feL"(RY); A fe LP(RM)}, 4,f=Af (1<p= o).
Proposition 3.1 [f 1 < p < oo, then T, is stable.

Proof. Since (T5(1)f) " () = e" € (&) (fe L*(R™)) this is clear for p = 2. For
1 <p<2andfelL'~L? one has

IO e = I T SIEP " (O f 1227 >0 (1> 0).

Since 7, is bounded and L' n L? is dense the result follows. For 2 < p < o0 one
can argue similarly. [J

However, the Gaussian semigroup 7; on L!(RRY) is not stable, in fact, it
preserves the norm on the positive cone, || 73(t)f || = || fllz. for 0 £ feLt.

Next we introduce an absorption 0 < Ve LL (RY). Then the operator 4, — V
with domain D(4; — V) = D(4,;)n D(V) generates a bounded bolomorphic
semigroup S; on L*(IR™) which is dominated by the Gaussian semigroup (see [ 10,

15]):
0=85()=T(x) (20). ERY

Theorem 3.2 Let Ne{l, 2} and let 0 S VelLl, (RY). If V0, then 4, — V is
stable.

For the proof we use the following notion. A function @e L} (RY) is called
subharmonic if Ap = 0 (cf. [5, Chap. I1]). It is well-known that for pe L*(IR¥) (N
arbitrary) A¢ = 0 implies that ¢ is constant (cf. [, IT §2, Corollaire 17). This
remains true for subharmonic ¢ if N =1 or 2.

Proposition 3.3 Let Ne{l, 2} and let pe L*(IR") be subharmonic; then ¢ is
constant.

Proof. This follows from [8, Theorem 2.14, p. 67, 68] or [7, problem 2.14] if ¢ is
smooth. Applying this result to p,*¢ instead of ¢, in the general case (p, being
a mollifier), the result follows. [

Proof of Theorem 3.2 Let 0 < e N{(4; — V)'). Then 0 < pe L*(RY) and
Ao = Vo in 2'(R"). Hence o is subharmonic. It follows from Proposition 3.3 that
@ is constant, say @(x) = C (xeR¥). Then0 =49 = CV. Hence C=0or V=0.
It follows from Remark 1.5 that 4, — Visstable if V& 0. TJ

The situation is different if N = 3. Then there always exist non-zero potentials
0 £ VeLi,(RY)such that 4 — V is not stable.

Proposition 3.4 For 0 < Ve L. (RY) let

Ny={geL*(R¥):0<g <149 = Vg}.
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Denote by S the semigroup generated by A; — V on L'(IRR™). Then the following
holds.
a) Ny has a maximal element gy .

b) If Ve L*(R™), then gy = 1 — [ S(t)Vdt, where the improper integral con-

0
verges in the w*-sense in L™ (note that S(t)VeL™ for t > 0).
¢) A, — Vis stable if and only if gy = 0. _
d) If V, Ve LL(RY) such that 0 < V < V, then gy < gv.
e) Let V,e LL(R¥) such that 0 < V, £ V.4 £ Vand lim, ., V,(x) = V{(x)
a.e. Then w* —lim, ., ,, gy, = gv.

Proof. Let pe@(RRY). Then S(t)peD(A; — V)= D(4,)nD(V) for all t 2 0.
Consequently,

d
5,$0 81 = (4, = V)S(D)e, I) = = <(8(t)e, V) (tz0). (G2

Thus <o, S(t)'1) is decreasing for all 0 < pe Z(R"). It follows that S(¢)'l is
decreasing.
Let g, = inf,. (S(t)'1 = w* —lim, ., ,S(¢)'1. Then

S(s)' gy =w* —lim,, .St +s)'1 =gy.

Hence gyeN((4, — V)') and 0 < g, £ 1. Since 2(R") is a core of 4, — V (see
[10]) it follows that
Ny = {geN((4, — ¥)):0<g <1} . (33)

Consequently g, € N,.. We show that g is maximal. Let ge Ny Since 0 £ g < 1, it
follows that g = S(t)'g < S(t)’1 (t = 0); consequently, g < gy. So a) is proved.

If VeL'(RY), then S(t)p = S(t) ¢ for all pe Z(R"), hence {S(t)p, V) =
L, S()V> (¢t = 0). So it follows from (3.2) that

t

d H
o, 8(1)1) = <o, 1) = f—é;(w,S(S)'l Yds = — [0, S(s)V)ds.
0 0

t

Since @ e @(RY) is arbitrary one concludes that S(t)'l =1 — fS(s)Vds. One
obtains b) by letting t — . 0

Assertion ¢) follows from (3.3) and Remark 1.5 since Ny = {0} if and only if
gv = 0. Assertion d) follows from the fact that S(t) < S(¢) if S(¢) denotes the
semigroup generated by VelLj,, V= V.

It remains to prove e). Let g, =gy , then by d) 0 <g,.; g, < 1. Let
g = infg, = w* — limg,. Then for pe Z2(R"),

{p,4g) =<4¢,g)> =1lim{dg,g,> =1lim{p, 4g,)
=1im{ @, V,g,> = <o, Vg

by the dominated convergence theorem. Hence ge Ny.. So by a) g < gy. On the
other hand gy < S(1)'1 £ 8,(t)'1 (t 2 0) for all neN. Hence gy £ g, (neN).
Consequently, gy < ¢g. We have shown that g = g,. [
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Propesition 3.5 Let 0 < Ve Ll (R") and let . > 0. Then A, — V is stable if and
only if A, — AV is stable.

Proof. Suppose that 1 > 1. Denote by S (resp. U) the semigroup generated by
4, — V (resp. 4, — AV). The 0 £ U(t) < S(¢); hence U is stable whenever S is
stable. Conversely assume that 4, — AV is stable. Let V, = V13, ,, and denote by
Sy (resp. U,) the semigroup generated by 4, — V, (resp. 4, — AV,). Let ¥, = givu
and ¢, =gy,. Then w* —limy, =0 by Proposition 3.4. Moreover, by
Proposition 3.4e¢) g, =w* —limg, By Proposition 3.4b) we have

es]

ljl—l—AJ'U )V, ds; hence

1=, +7 j Un(5) Vads S, + 2 [ Sy(s)Vids =, + A1 — @) .
0 0

Letting n — oo we obtain 1 < A(1 — gy). Consequently Cg, < 1 where C = i/(4 — 1).
So CgyeNy. It follows that Cgy < gp. Hence g, = 0 since C > 1;ie. 4, — V is
stable. If 4 < 1, it suffices to apply the preceding result to AV. [

Theorem 3.6 Let N = 3. If 0 £ Ve LL (R") satisfies
V(y)
]

|N2

dy < oo (3.4)
izl

then A, — V is not stable.

Proof. a) We show that there exists a measurable set B < R of positive measure
such that

dy < «wo . (3.5)

In fact,let C= [ V(x)dx. One has

I x|

2
(g
[xl=1 Ulx

dy 9
x_Y)dx}—T=—va,
|;|<3 Ix é y¥ 22
where wy = T (N ) is the surface of the unit sphere in RY,

By Fubini’s theorem there exists a measurable set B = B(0, 1):= {xe R":|x| < 1}
of positive measure such that

V Vix—y
sup | ~——Q—)N-_—2dy=sup f (—N_—;ldy< w0 . (3.6)
st|y|§2|x_y] xeB |x—y|s£2 l |
But for |x| £ 1, |y| > 2, one has |x — y| = |y| — |x| = %|y|. Thus
V(y) - V(y)
-———(——|;,_—2dy§2N 2 j. W*:fdy‘( 0:¢]

|y|>zlx“y ivi>21Y
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by (3.4). This together with (3.6) proves the claim.
b) For 0 £ ge L'(IR*) we have by Fubini’s theorem

o«

(Ti(t) = [ [ (@rt) ™V exp(— (x — y)*/4r)drg(y)dy
R" O

=(Ey*g)(x) (xeR")

o= R

1

where EN(X) = m
_ N

|x|?~¥. In view of Proposition 3.5, we may assume that

g:=sup(Ey*V){(x) <1
xeB
FornelN, let ¥, = Vlg(, . S, the semigroup generated by A4, — V, and ¢, = gy ..
Then gy = w* — lim,,, ,, g, by Proposition 3.4e); and by b)

gn(x) = 1= [ (S.(1) V) (x — [ (Ti(t) V) (x)dt
0

=1—(ExyxV)(x) 21— (EyxV)(x})21—q (xeB).
Hence gy =infg, =21 —~qgon Bandso g, +#0. O

The converse of Theorem 3.6 is not true in general. A characterization of
stability will be given by the second author [27] by means of probabilistic methods
(ie. Wiener measure and the Feynman-Kac formula). For radial V, however, we
obtain the following characterization.

Theorem 3.7 Let N = 3, and let 0 £ Ve LL (RY) be radial. Then 4, — Vis stable if
and only if

i V) dy = o

ylz1 Iy|N*2

Proof. Suppose that 4; — V is not stable. Then there exists 0 < ge L*(RY),

g %+ 0, such that 4g = Vg. We can suppose that V£ 0, so g is not constant.

Since V is radial, we can suppose that g is radial; otherwise we replace g(x) by

g(x) = f g(|x] y) da(y) where do is the surface-measure on S(0,1) =
S(0,1)

{zeRM:|z| = 1}.

Hence 1/r¥"1 (#r¥ 1g'(r)) = Vg in 2'(0, co). This implies that ge C*(0, o)
and r¥~14'(r) is non-decreasing. We show that g is non-decreasing. If not, there
exists 7, > 0 such that g'(ro) < 0. Then r¥ " 'g’(r) £ rd ~1g’(ro) on (0, ry). Hence
for re(0, ry),

o ds

g(r)=g(ro) + J (—g'(s))s"* IS

ro d
glro) + (=g rrd ) [ =10 (1= 0),

r

This is not possible since g is bounded.
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Since g is non-constant, there exists ry > 0 such that g(rg) > 0 and g'(ro) > 0.
Then
PN g (r) = 8T g (ro) + [ (sVT1g(s5)) ds

ro

S ig(re) + (8% V(s)g(s)ds 2 glro) [ sV V(s)ds.

Consequently,
! V(y) 1= .
= Vis)ds = [ ——— g~ Nt2 N1
N_Z\y>£ro\Y|N“2dy N—2,{S (s)ds ,{N~25 sV (s)ds
°T 1 w r i .
= —drs¥ ' V(s)ds = [ | sNTUV(s)ds — dr £ g'(rydr < o
N-1 T
st ro ro r g(ro)ro

since g is bounded. [
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