Asymptotic stability of Schrödinger semigroups on \(L^1(\mathbb{R}^N) \)

Wolfgang Arendt, Charles J.K. Batty*, and Philippe Bénilan
Equipe de Mathématiques U.A. CNRS 741, Université de Franche-Comté, F-25030 Besançon Cedex, France

Received February 19, 1991; in final form July 17, 1991

Introduction

By a Schrödinger semigroup one understands a semigroup \(S_p = (S_p(t))_{t \geq 0} \) generated by \(\Delta - V \) on \(L^p(\mathbb{R}^N) \), where \(\Delta \) denotes the Laplacian and \(V \) is a potential in \(L^1_{\text{loc}}(\mathbb{R}^N) \). These semigroups have been investigated by several authors, see the survey article [14] by Simon for further information.

The purpose of the present paper is to study convergence of \(S_p(t) \) as \(t \to \infty \) for positive potentials. In order to develop an intuitive idea of the problem, it is helpful to see \((S_p(t)f)(x) \) (\(x \in \mathbb{R}^N, t > 0 \)) as the solution of the heat equation with absorbing potential in \(\mathbb{R}^N \).

If \(p > 1 \), then \(\lim_{t \to \infty} S_p(t) = 0 \) strongly even if \(V = 0 \). More interesting is the case \(p = 1 \). In fact, given a positive initial value \(f \in L^1(\mathbb{R}^N) \), \(\|S_1(t)f\|_{L^1} \) means the total amount of heat at time \(t \). If \(V = 0 \), this quantity is constant, i.e. \(S_1(t) \) is isometric on the positive cone. Our aim is to investigate, for which absorptions \(V \) the semigroup \(S_1 \) is (asymptotically) stable, i.e. \(\lim_{t \to \infty} S_1(t) = 0 \) strongly. It is quite easy to see that this is the case for every non-vanishing \(V \) if the Neumann Laplacian on a bounded region (of class \(C^1 \)) is considered instead of \(\Delta \) on \(\mathbb{R}^N \) (Sect. 2). On \(\mathbb{R}^N \) the asymptotic behavior depends on the dimension. Whereas for \(N = 1, 2 \), \(S_1 \) is always stable if \(V \neq 0 \) (Theorem 3.2), for \(N \geq 3 \), there always exist non-zero potentials \(V \) such that \(S_1 \) does not converge. This property depends on the growth of \(V \) at infinity. If \(S_1 \) is stable in \(L^1(\mathbb{R}^N), N \geq 3 \), then necessarily

\[
\int_{|y| \geq 1} \frac{V(y)}{|y|^{N-2}} dy = \infty.
\]

Moreover, if \(V \) is radial, the converse holds as well: condition (\(\ast \)) implies stability of \(S_1 \).

The proofs given here (Theorem 3.6 and 3.7) are analytical, throughout. In a separate paper, the second author obtains these and other results by probabilistic methods.

*Permanent address: St. John's College, Oxford OX1 3JP, UK
1 Stability of positive semigroups

In this preliminary section we give an abstract characterization of stability for positive (i.e. positivity preserving) semigroups. Let $T = (T(t))_{t \geq 0}$ be a C_0-semigroup on a Banach space with generator A. We denote by $\sigma(A)$ the spectrum of A, $P\sigma(A)$ its point spectrum and by

$$s(A) = \sup\{\Re \lambda : \lambda \in \sigma(A)\}$$

the spectral bound of A. The number

$$\omega(A) := \inf\{\omega \in \mathbb{R} : \sup_{t \geq 0} e^{-\omega t} \|T(t)\| < \infty\}$$

is called the growth bound or type of T (or of A). One always has $s(A) \leq \omega(A)$ and growth bound and spectral bound coincide whenever T is holomorphic or T is a positive semigroup on L^1 or L^2 (see [12]). We denote by $N(A) = \{x \in D(A) : Ax = 0\}$ the kernel of A and by $N(A')$ the kernel of the adjoint A' of A.

Definition 1.1 We say that T (or A) is stable if $\lim_{t \to \infty} T(t)x = 0$ for all $x \in E$. If $\omega(A) < 0$, then T (or A) is called exponentially stable.

In the following we assume that T is a positive C_0-semigroup on a Banach lattice E.

Lemma 1.2 Assume that T is bounded. If $N(A') \neq \{0\}$, then $N(A')^+ := N(A') \cap E_+^* \neq \{0\}$.

Proof.

a) Observe that $\sup_{0 \leq t \leq 1} \|\lambda R(\lambda, A)'\| < \infty$ since T is bounded.

b) Let $\varphi \in E'$. Then

$$\lim_{\lambda \to 0} \langle Ax, \lambda R(\lambda, A)'\varphi \rangle = \lim_{\lambda \to 0} \langle \lambda^2 R(\lambda, A)x - \lambda x, \varphi \rangle = 0$$

for all $x \in D(A)$.

Thus, if ψ is a w*-limit point of $\lambda R(\lambda, A)'\varphi$ for $\lambda \downarrow 0$, then $\psi \in N(A')$.

c) Let $\varphi \in N(A')$. Then $\lambda R(\lambda, A)'\varphi^+$ and $\lambda R(\lambda, A)'\varphi^-$ possess w*-limit points for $\lambda \downarrow 0$ (by a), which are in $N(A')^+$ (by b). If every such limit point is 0, then it follows that

$$\varphi = \lim_{\lambda \to 0} \lambda^2 R(\lambda, A)'\varphi = \lim_{\lambda \to 0} \lambda R(\lambda, A)'\varphi^+ - \lim_{\lambda \to 0} \lambda R(\lambda, A)'\varphi^- = 0. \quad \square$$

Theorem 1.3 Let T be a positive bounded C_0-semigroup with generator A such that $\sigma(A) \cap i\mathbb{R}$ is countable. Then T is stable if and only if $N(A')^+ = \{0\}$.

Proof. It follows from the proof of [12, C-III Corollary 4.3] that $P\sigma(A') \cap i\mathbb{R}$ is cyclic; in particular, $0 \notin P\sigma(A')$ implies $P\sigma(A') \cap i\mathbb{R} = \emptyset$. By Lemma 1.1, $0 \notin P\sigma(A')$ if and only if $N(A')^+ = \{0\}$. Now the theorem follows from the stability theorem [1] or [11]. \(\square\)

Corollary 1.4 Assume that T is a bounded positive semigroup which is eventually norm continuous. Then T is stable if and only if $N(A')^+ = \{0\}$.
This follows since for such a semigroup automatically \(\sigma(A) \cap i \mathbb{R} \subset \{0\} \), [12, C-III Corollary 2.13].

Remark 1.5 The particular case where \(T \) is a bounded holomorphic semigroup can be settled by a simpler argument: in that case \(\sup_{t > 0} \| tA T(t) \| < \infty \); hence \(T(t)x \to 0 \) (\(t \to \infty \)) for all \(x \in R(A) \) (the range of \(A \)). Thus \(T \) is stable if and only if \(R(A) \) is dense, which in turn is equivalent to \(N(A') \neq \{0\} \).

2 The Neumann-Laplacian with absorbing potential on bounded domain

Let \(\Omega \subset \mathbb{R}^N \) be a bounded connected open set of class \(C^1 \). Denote by \(A_2 \) the Neumann-Laplacian on \(L^2(\Omega) \), i.e. \(A_2 \) is given by

\[
D(A_2) = \{ u \in H^1(\Omega) : \exists v \in L^2(\Omega), \int_{\Omega} \nabla u \nabla \phi \}
= -\int \nabla \phi \text{ for all } \phi \in H^1(\Omega) \}, A_2 u = v.
\]

(See [4, Chap. X] or [13, XIII, 15, p 263].) This operator generates a positive semigroup \(T_2 = (T_2(t))_{t \geq 0} \) on \(L^2(\Omega) \). Moreover, there exist positive contraction semigroups \(T_p \) on \(L^p(\Omega) \) (\(1 \leq p < \infty \)) such that \(T_p(t)f = T_q(t)f \) (\(f \in L^p(\Omega) \cap L^q(\Omega) \), \(t \geq 0 \)). Let \(A_p \) be the generator of \(T_p \).

Theorem 2.1 Let \(0 \leq V \in L^\infty(\Omega) \), \(V \neq 0 \). Then \(A_p - V \) is exponentially stable \((1 \leq p < \infty) \).

Proof. Denote by \(S_p \) the semigroup generated by \(A_p - V \). The operator \(A_2 - V \) has compact resolvent. Assume that \(s(A_2 - V) = 0 \). Then there exists \(u \in D(A_2) \), \(\|u\|_{L^1} = 1 \) such that \(A_2 u = Vu \).

\[
\int_{\Omega} (\nabla u)^2 + \int_{\Omega} Vu^2 = (-A_2 u + Vu |_u) = 0.
\]

It follows that \(\nabla u = 0 \). Hence \(u = \text{const} \). Since \(\int_{\Omega} Vu^2 = 0 \), it follows that \(V = 0 \), contradiction.

We have shown that \(s(A_2 - V) < 0 \). So there exist \(\omega < 0 \), \(M \geq 0 \) such that \(\| S_2(t) \| \leq Me^{\omega t} \) (\(t \geq 0 \)). The semigroup \(T_2 \) is ultracontractive (see [3] or [6, 2.4]); in particular, \(T_2(1) \) is a bounded operator from \(L^2(\Omega) \) to \(L^\infty(\Omega) \). Consequently, \(T_1(1) \) is bounded from \(L^1(\Omega) \) into \(L^2(\Omega) \), by self-adjointness. Since \(0 \leq s_1(t) \leq T_1(t) \), also \(s_1(t) \) maps \(L^1(\Omega) \) into \(L^2(\Omega) \). Thus for \(f \in L^1(\Omega) \),

\[
\| s_1(t) f \|_{L^1} = \| S_2(t - 1) s_1(1) f \|_{L^1} \leq M e^{\omega(t - 1)} \| S_1(1) \|_{L^1} \| f \|_{L^1} \text{ (} t \geq 1 \).
\]

So \(s_1 \) is exponentially stable. It follows from the Riesz-Thorin theorem that \(s_p \) is exponentially stable for \(1 \leq p \leq 2 \); \(2 \leq p < \infty \) this follows by duality.

3 Stability of the Schrödinger semigroup

By \(T_p = (T_p(t))_{t \geq 0} \) we denote the Gaussian semigroup on \(L^p(\mathbb{R}^N) \) (\(1 \leq p \leq \infty \)); i.e. \(T_p \) is given by

\[
(T_p(t)f)(x) = (4\pi t)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{-\frac{(x-y)^2}{4t}} f(y) dy \quad (t > 0).
\]
This defines a C_0 semigroup on $L^p(\mathbb{R}^N)$ for $1 \leq p < \infty$ and a w^*-continuous semigroup on $L^\infty(\mathbb{R}^N)$ for $p = \infty$. The generator A_p of T_p is given by

$$D(A_p) = \{ f \in L^p(\mathbb{R}^N); \; A f \in L^p(\mathbb{R}^N), \; A_p f = Af \; \; (1 \leq p \leq \infty) \}.$$

Proposition 3.1 If $1 < p < \infty$, then T_p is stable.

Proof. Since $(T_p(t)f)(\xi) = e^{-\xi^2 t} \hat{f}(\xi)$ $(f \in L^2(\mathbb{R}^N))$ this is clear for $p = 2$. For $1 < p < 2$ and $f \in L^1 \cap L^2$ one has

$$\| T_p(t)f \|_{L^p} \leq \| T_1(t)f \|_{L^p}^{1-p} \| T_2(t)f \|_{L^2}^{2-2/p} \to 0 \quad (t \to \infty).$$

Since T_p is bounded and $L^1 \cap L^2$ is dense the result follows. For $2 < p < \infty$ one can argue similarly. \[\square\]

However, the Gaussian semigroup T_1 on $L^1(\mathbb{R}^N)$ is not stable, in fact, it preserves the norm on the positive cone, $\| T_1(t)f \|_{L^1} = \| f \|_{L^1}$ for $0 \leq f \in L^1$.

Next we introduce an absorption $0 \leq V \in L^1_{\text{loc}}(\mathbb{R}^N)$. Then the operator $A_1 - V$ with domain $D(A_1 - V) = D(A_1) \cap D(V)$ generates a bounded holomorphic semigroup S_1 on $L^1(\mathbb{R}^N)$ which is dominated by the Gaussian semigroup (see [10, 15]):

$$0 \leq S_1(t) \leq T_1(t) \quad (t \geq 0). \tag{3.1}$$

Theorem 3.2 Let $N \in \{1, 2\}$ and let $0 \leq V \in L^1_{\text{loc}}(\mathbb{R}^N)$. If $V \neq 0$, then $A_1 - V$ is stable.

For the proof we use the following notion. A function $\varphi \in L^1_{\text{loc}}(\mathbb{R}^N)$ is called subharmonic if $A_0 \varphi \geq 0$ (cf. [5, Chap. II]). It is well-known that for $\varphi \in L^\infty(\mathbb{R}^N)$ $(N$ arbitrary) $A_0 \varphi = 0$ implies that φ is constant (cf. [5, II §2, Corollaire 1]). This remains true for subharmonic φ if $N = 1$ or 2.

Proposition 3.3 Let $N \in \{1, 2\}$ and let $\varphi \in L^\infty(\mathbb{R}^N)$ be subharmonic; then φ is constant.

Proof. This follows from [8, Theorem 2.14, p. 67, 68] or [7, problem 2.14] if φ is smooth. Applying this result to $\rho_n * \varphi$ instead of φ, in the general case (ρ_n being a mollifier), the result follows. \[\square\]

Proof of Theorem 3.2 Let $0 \leq \varphi \in N((A_1 - V)')$. Then $0 \leq \varphi \in L^\infty(\mathbb{R}^N)$ and $\Delta \varphi = V \varphi$ in $\mathcal{D}'(\mathbb{R}^N)$. Hence φ is subharmonic. It follows from Proposition 3.3 that φ is constant, say $\varphi(x) = C (x \in \mathbb{R}^N)$. Then $0 = \Delta \varphi = CV$. Hence $C = 0$ or $V \equiv 0$. It follows from Remark 1.5 that $A_1 - V$ is stable if $V \neq 0$. \[\square\]

The situation is different if $N \geq 3$. Then there always exist non-zero potentials $0 \leq V \in L^1_{\text{loc}}(\mathbb{R}^N)$ such that $A - V$ is not stable.

Proposition 3.4 For $0 \leq V \in L^1_{\text{loc}}(\mathbb{R}^N)$ let

$$N_V := \{ g \in L^\infty(\mathbb{R}^N) ; 0 \leq g \leq 1; \; \Delta g = V g \}.$$
Denote by S the semigroup generated by $A_1 - V$ on $L^1(\mathbb{R}^N)$. Then the following holds.

a) N_V has a maximal element g_V.

b) If $V \in L^1(\mathbb{R}^N)$, then $g_V = 1 - \int_0^\infty S(t)V dt$, where the improper integral converges in the w^*-sense in L^∞ (note that $S(t)V \in L^\infty$ for $t > 0$).

c) $A_1 - V$ is stable if and only if $g_V = 0$.

d) If $V, \bar{V} \in L^1_{\text{loc}}(\mathbb{R}^N)$ such that $0 \leq V \leq \bar{V}$, then $g_V \leq g_{\bar{V}}$.

e) Let $V_n \in L^1_{\text{loc}}(\mathbb{R}^N)$ such that $0 \leq V_n \leq V_{n+1} \leq V$ and $\lim_{n \to \infty} V_n(x) = V(x)$ a.e. Then $w^* - \lim_{n \to \infty} g_{V_n} = g_V$.

Proof. Let $\varphi \in \mathcal{D}(\mathbb{R}^N)$. Then $S(t)\varphi \in D(A_1 - V) = D(A_1) \cap D(V)$ for all $t \geq 0$. Consequently,

$$\frac{d}{dt} \langle \varphi, S(t)'1 \rangle = \langle (A_1 - V)S(t)\varphi, 1 \rangle = - \langle S(t)\varphi, V \rangle \quad (t \geq 0). \quad (3.2)$$

Thus $\langle \varphi, S(t)'1 \rangle$ is decreasing for all $0 \leq \varphi \in \mathcal{D}(\mathbb{R}^N)$. It follows that $S(t)'1$ is decreasing.

Let $g_V = \inf_{t > 0} S(t)'1 = w^* - \lim_{t \to \infty} S(t)'1$. Then

$$S(s)'1 \leq g_V = w^* - \lim_{t \to \infty} S(t)'1 = g_V.$$

Hence $g_V \in N((A_1 - V)')$ and $0 \leq g_V \leq 1$. Since $\mathcal{D}(\mathbb{R}^N)$ is a core of $A_1 - V$ (see [10]) it follows that

$$N_V = \{g \in N((A_1 - V)'): 0 \leq g \leq 1\}. \quad (3.3)$$

Consequently $g_V \in N_V$. We show that g_V is maximal. Let $g \in N_V$. Since $0 \leq g \leq 1$, it follows that $g = S(t)'g \leq S(t)'1$ ($t \geq 0$); consequently, $g \leq g_V$. So a) is proved.

If $V \in L^1(\mathbb{R}^N)$, then $S(t)\varphi = S(t)'\varphi$ for all $\varphi \in \mathcal{D}(\mathbb{R}^N)$, hence $\langle S(t)\varphi, V \rangle = \langle \varphi, S(t)V \rangle$ ($t \geq 0$). So it follows from (3.2) that

$$\langle \varphi, S(t)'1 \rangle - \langle \varphi, 1 \rangle = \int_0^t \frac{d}{ds} \langle \varphi, S(s)'1 \rangle ds = - \int_0^t \langle \varphi, S(s)V \rangle ds.$$

Since $\varphi \in \mathcal{D}(\mathbb{R}^N)$ is arbitrary one concludes that $S(t)'1 = 1 - \int_0^t S(s)V ds$. One obtains b) by letting $t \to \infty$.

Assertion c) follows from (3.3) and Remark 1.5 since $N_V = \{0\}$ if and only if $g_V = 0$. Assertion d) follows from the fact that $\bar{S}(t) \leq S(t)$ if $S(t)$ denotes the semigroup generated by $\bar{V} \in L^1_{\text{loc}}$, $\bar{V} \geq V$.

It remains to prove e). Let $g_n = g_{V_n}$, then by d) $0 \leq g_{n+1} \leq g_n \leq 1$. Let $g = \inf g_n = w^* - \lim g_n$. Then for $\varphi \in \mathcal{D}(\mathbb{R}^N)$,

$$\langle \varphi, \Delta g \rangle = \langle \Delta \varphi, g \rangle = \lim \langle \Delta \varphi, g_n \rangle = \lim \langle \varphi, \Delta g_n \rangle = \lim \langle \varphi, V g_n \rangle = \langle \varphi, Vg \rangle$$

by the dominated convergence theorem. Hence $g \in N_V$. So by a) $g \leq g_V$. On the other hand $g_V \leq S(t)'1 \leq S(t)'1$ ($t \geq 0$) for all $n \in \mathbb{N}$. Hence $g_V \leq g_n$ ($n \in \mathbb{N}$).

Consequently, $g_V \leq g$. We have shown that $g = g_V$. \qed
Proposition 3.5 Let $0 \leq V \in L^1_{\text{loc}}(\mathbb{R}^N)$ and let $\lambda > 0$. Then $A_1 - V$ is stable if and only if $A_1 - \lambda V$ is stable.

Proof. Suppose that $\lambda > 1$. Denote by S (resp. U) the semigroup generated by $A_1 - V$ (resp. $A_1 - \lambda V$). The $0 \leq U(t) \leq S(t)$; hence U is stable whenever S is stable. Conversely assume that $A_1 - \lambda V$ is stable. Let $V_n = V 1_{B(e, n)}$ and denote by S_n (resp. U_n) the semigroup generated by $A_1 - V_n$ (resp. $A_1 - \lambda V_n$). Let $\psi_n = g_{\lambda V_n}$ and $\phi_n = g_{\lambda V_n}$. Then $\psi_n = w^* - \lim \psi_n = 0$ by Proposition 3.4. Moreover, by Proposition 3.4e) $g_{\lambda V_n} = w^* - \lim \phi_n$. By Proposition 3.4b) we have

$$\psi_n = 1 - \lambda \int_0^\infty U_n(s) V_n ds;$$

hence

$$1 = \psi_n + \lambda \int_0^\infty U_n(s) V_n ds \leq \psi_n + \lambda \int_0^\infty S_n(s) V_n ds = \psi_n + \lambda (1 - \phi_n).$$

Letting $n \to \infty$, we obtain $1 \leq \lambda (1 - \phi_n)$. Consequently $C g_{\lambda V_n} \leq 1$ where $C = \lambda (\lambda - 1)$. So $C g_{\lambda V_n} \in N_{\lambda V_n}$. It follows that $C g_{\lambda V_n} \leq g_{\lambda V_n}$. Hence $g_{\lambda V_n} = 0$ since $C > 1$; i.e. $A_1 - V$ is stable. If $\lambda < 1$, it suffices to apply the preceding result to λV.

Theorem 3.6 Let $N \geq 3$. If $0 \leq V \in L^1_{\text{loc}}(\mathbb{R}^N)$ satisfies

$$\int_{|y| \geq 1} \frac{V(y)}{|y|^{N-2}} dy < \infty$$

then $A_1 - V$ is not stable.

Proof. a) We show that there exists a measurable set $B \subset \mathbb{R}^N$ of positive measure such that

$$\sup_{x \in B} \int \frac{V(y)}{|x-y|^{N-2}} dy < \infty.$$

In fact, let $C = \int_{|x| \leq 2} V(x) dx$. One has

$$\int_{|x| \leq 1} \left\{ \int_{|x-y| \leq 2} \frac{V(x-y) dy}{|y|^{N-2}} \right\} dx \leq$$

$$\int_{|y| \leq 3} \left\{ \int_{|x-y| \leq 2} V(x-y) dx \right\} \frac{dy}{|y|^{N-2}} = \frac{9}{2} C \omega_N,$$

where $\omega_N = \frac{2\pi^{N/2}}{I(N/2)}$ is the surface of the unit sphere in \mathbb{R}^N.

By Fubini's theorem there exists a measurable set $B \subset B(0, 1) = \{x \in \mathbb{R}^N: |x| \leq 1\}$ of positive measure such that

$$\sup_{x \in B} \int_{|y| \leq 2} \frac{V(y)}{|x-y|^{N-2}} dy = \sup_{x \in B} \int_{|x-y| \leq 2} \frac{V(x-y)}{|y|^{N-2}} dy < \infty.$$

But for $|x| \leq 1$, $|y| > 2$, one has $|x-y| \geq |y| - |x| \geq \frac{1}{2}|y|$. Thus

$$\int_{|y| > 2} \frac{V(y)}{|x-y|^{N-2}} dy \leq 2^{N-2} \int_{|y| > 2} \frac{V(y)}{|y|^{N-2}} dy < \infty.$$
by (3.4). This together with (3.6) proves the claim.

b) For $0 \leq g \in L^1(\mathbb{R}^N)$ we have by Fubini's theorem

$$\int_0^\infty (T_1(t)g)(x) \, dt = \int_0^\infty \int_{\mathbb{R}^N} (4\pi t)^{-N/2} \exp(-\frac{(x-y)^2}{4t}) \, dt \, g(y) \, dy$$

$$= (E_N \ast g)(x) \quad (x \in \mathbb{R}^N)$$

where $E_N(x) = \frac{1}{(N-2)\omega_N} |x|^{2-N}$. In view of Proposition 3.5, we may assume that

$$q := \sup_{x \in B} (E_N \ast V)(x) < 1.$$

For $n \in \mathbb{N}$, let $V_n = V\mathbf{1}_{B(o,n)}$, S_n the semigroup generated by $A_1 - V_n$ and $g_n = g_n \ast v_n$. Then $g\ast w = w^* - \lim_{n \to \infty} g_n$ by Proposition 3.4e); and by b)

$$g(\ast)(x) = 1 - \int_0^\infty (S_n(t)\mathbf{1}_{V_n})(x) \, dt \geq 1 - \int_0^\infty (T_1(t)\mathbf{1}_{V_n})(x) \, dt$$

$$= 1 - (E_N \ast V_n)(x) \geq 1 - (E_N \ast V)(x) \geq 1 - q \quad (x \in B).$$

Hence $g\ast w = \inf g_n \geq 1 - q$ on B and so $g\ast w \neq 0$. \qed

The converse of Theorem 3.6 is not true in general. A characterization of stability will be given by the second author [2] by means of probabilistic methods (i.e. Wiener measure and the Feynman-Kac formula). For radial V, however, we obtain the following characterization.

Theorem 3.7 Let $N \geq 3$, and let $0 \leq V \in L^1_{\text{loc}}(\mathbb{R}^N)$ be radial. Then $A_1 - V$ is stable if and only if

$$\int_{|y| \geq 1} \frac{V(y)}{|y|^{N-2}} \, dy = \infty.$$

Proof. Suppose that $A_1 - V$ is not stable. Then there exists $0 \leq g \in L^\infty(\mathbb{R}^N)$, $g \neq 0$, such that $Ag = Vg$. We can suppose that $V \neq 0$, so g is not constant. Since V is radial, we can suppose that g is radial; otherwise we replace $g(x)$ by $	ilde{g}(x) = \int g(|x| y) \, d\sigma(y)$ where $d\sigma$ is the surface-measure on $S(0, 1) = \{ z \in \mathbb{R}^N : |z| = 1 \}$.

Hence $1/r^{N-1} (r^{N-1} g'(r))' = Vg$ in $\mathcal{D}'(0, \infty)$. This implies that $g \in C^1(0, \infty)$ and $r^{N-1} g'(r)$ is non-decreasing. We show that g is non-decreasing. If not, there exists $r_0 > 0$ such that $g'(r_0) < 0$. Then $r^{N-1} g'(r) \leq r_0^{N-1} g'(r_0)$ on $(0, r_0)$. Hence for $r \in (0, r_0)$,

$$g(r) = g(r_0) + \int_r^{r_0} (-g'(s))r^{-N-1} \, ds.$$

This is not possible since g is bounded.
Since \(g \) is non-constant, there exists \(r_0 > 0 \) such that \(g(r_0) > 0 \) and \(g'(r_0) > 0 \). Then

\[
N^{-1} g'(r) = r_0^{N-1} g'(r_0) + \int_{r_0}^{r} (s^{N-1} g'(s))' \, ds
\]

\[
= r_0^{N-1} g'(r_0) + \int_{r_0}^{r} s^{N-1} V(s) g'(s) \, ds \geq g(r_0) \int_{r_0}^{r} s^{N-1} V(s) \, ds.
\]

Consequently,

\[
\frac{1}{N-2} \int_{|y| \geq r_0} \frac{V(y)}{|y|^{N-2}} \, dy = \frac{1}{N-2} \int_{r_0}^{\infty} s V(s) \, ds = \frac{1}{N-2} \int_{r_0}^{\infty} s^{-N+2} s^{N-1} V(s) \, ds
\]

\[
= \int_{r_0}^{\infty} \int_{r_0}^{\infty} \frac{1}{r^{N-1}} s^{N-1} V(s) \, ds = \int_{r_0}^{\infty} \int_{r_0}^{r} s^{N-1} V(s) \, ds \frac{1}{r^{N-1}} \, dr \leq \frac{1}{g(r_0)} \int_{r_0}^{\infty} g'(r) \, dr < \infty
\]

since \(g \) is bounded.

References