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Introduction 

By a Schr6dinger semigroup one understands a semigroup Sp = (Sp(t)), ~ o gener- 
ated by A - V on LP(IRN), where A denotes the Laplacian and V is a potential  in 
L~oc(IRN)+. These semigroups have been investigated by several authors,  see the 
survey article [14] by Simon for further information.  

The purpose  of the present  paper  is to study convergence of Sp(t) as t ~ vc for 
positive potentials.  In  order  to develop an intuitive idea of the problem,  it is helpful 
to see (S~( t ) f ) (x)  (x e IR N, t > 0) as the solution of the heat equat ion with absorb-  
ing potential  in IR N, 

If p > 1, then limt~ ~Sp(t) = 0 strongly even if V = 0. More  interesting is the 
case p = 1. In fact, given a positive initial value f e  L 1 (IR s), II S 1 (t) f 11 L, means the 
total  amoun t  of heat at t ime t. If V =  0, this quant i ty  is constant;  i.e. Sl ( t )  is 
isometric on the positive cone. Our  aim is to investigate, for which absorpt ions  
V the semigroup $1 is (asymptotically) stable, i.e. l im,~ ~S l ( t )  = 0 strongly. It is 
quite easy to see that  this is the case for every non-vanishing V if the Neurnann 
Laplacian on a bounded  region (of class C ~) is considered instead of A on IR N 
(Sect. 2). On IR N the asymptot ic  behavior  depends on the dimension. Whereas  for 
N = 1, 2, $1 is always stable if V + 0 (Theorem 3.2), for N > 3, there always exist 
non-zero potentials  V such that  $1 does not converge. This p roper ty  depends on 
the growth of V at infinity. If S~ is stable in La(IRN), N > 3, then necessarily 

( , )  ~ V(y) dy = ~ .  
lyl >= 1 lYl N-z 

Moreover ,  if V is radial, the converse holds as well: condit ion ( , )  implies stability 
of S~. 

The proofs given here (Theorem 3.6 and 3.7) are analytical,  throughout .  In 
a separate  paper,  the second au thor  obtains these and other  results by probabil ist ic  
methods.  
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1 Stability of positive semigroups 

In this preliminary section we give an abstract characterization of stability for 
positive (i.e. positivity preserving) semigroups. Let T =  (T(t))~>=o be a Co-semi- 
group on a Banach space with generator A. We denote by a(A) the spectrum of 
A, Pa(A) its point spectrum and by 

s(A) = s u p { R e 2 : 2 ~ r ( A ) }  

the spectral bound of A. The number 

co(A):= inf{coelR:sup~_> oe-~"ll T(t)ll < oc} 

is called the growth bound or type of T (or of A). One always has s (A) __< ~ (A) and 
growth bound and spectral bound coincide whenever T is holomorphic or T is 
a positive semigroup on L 1 or L 2 (see [12]). We denote by N(A) = {x~D(A)" 
Ax = 0} the kernel of A and by N(A')  the kernel of the adjoint A' of A. 

Definition 1.1 We say that T (or A) is stable if lim,~ ~T(t )x  = 0 for all xuE.  If 
~o(A) < 0, then T (or A) is called exponentially stable. 

In the following we assume that T is a positive Co-semigroup on a Banach 
lattice E. 

Lemma 1.2 Assume that T is bounded. I f  N(A')  4= {0}, then N(A')+:= N ( A ' ) ~  
e'+ 4: {0}. 

Proof a) Observe that supo < ~ < 1 IP 2R(2, A)' ]p < os since T is bounded. 
b) Let ~0 e E'. Then 

lim~+ 0(Ax, 2R(2, A)'cp > = limat0 ().2R(2, A)x - 2x, (p) = 0 

for a l l x sD(A) .  

Thus, if ~ is a w*-limit point of 2R(it, A)'rp for ).+0, then CeN(A') .  
c) Let (o~N(A'). Then 2R(2, A)'cp + and 2R(,:t, A)'q~- possess w*-limit points 

for ), ~ 0 (by a), which are in N(A')+ (by b). If every such limit point is 0, then it 
follows that 

~o = limz,o 2R(2, A)'~o = limz~o 2R(2, A)'~o + - lima~o 2R(2, A)'to- = 0 .  

Theorem 1.3 Let T be a positive bounded Co-semigroup with generator A such that 
a(A) c~ ilR is countable. Then T is stable if and only if N(A')+ = {0}. 

Proof It follows from the proof of [12, C-III Corollary 4.3] that P~r(A') m ilR is 
cyclic; in particular, OCPa(A') implies Pa(A')c~ilR= ~ .  By Lemma 1.1, 
OCPa(A') if and only if N(A')+ = {0}. Now the theorem follows from the stability 
theorem [1] or [11]. [] 

Corollary 1.4 Assume that T is a bounded positive semigroup which is eventually 
norm continuous. Then T is stable if and only if N(A')+ = {0}. 
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This follows since for such a semigroup automat ical ly  a(A)c~ ilR ~ {0}, [12, 
C- I I I  Corol lary  2.13]. 

Remark 1.5 The part icular  case where Tis  a bounded  holomorphic  semigroup can 
be settled by a simpler argument:  in that case sup,>olltAT(t)ll < oo; hence 
T(t)  x -~ 0 (t --* oo) for all x e R (A) (the range of A). Thus T is stable if and only if 
R(A)  is dense, which in turn is equivalent  to N(A' )  4= {0}. 

2 The Neumann-Laplacian with absorbing potential on bounded domain 

Let f2 ~ IR N be a bounded  connected open set of class C ~. Denote  by A2 the 
Neumann-Lap lac i an  on Lz(f2), i.e. A2 is given by 

D(A:)  = { u ~ H I ( Q ) :  3veLZ(f2), j" VuVq) 

= - J ' v c p  for a l l c p E H ~ ( f 2 ) } , A 2 u = v .  

(See [4, Chap.  X] or [13, XII I ,  15, p 263].) This opera tor  generates a positive 
semigroup T: = (Tz(t)),  > o on LZ(f2). Moreover ,  there exist positive contract ion 
semigroups Tp on LP(Q)(1 < p < o~o) such that  Tp( t ) f=  Tq(t)f(J'eLP(f2)c~ Lq(~2), 
t > 0). Let A~ be the generator  of Tp. 

Theorem 2.1 Let 0 < V~L":'(f2), V Je O. Then A p - V  is exponentially stable 
(I < p < oo). 

Proof Denote  by S r the semigroup generated by A p - V. The opera tor  A 2 - -  V has 
compac t  resolvent. Assume that  S(Z] 2 - - V ) = 0 .  Then there exists uffD(Zl2), 
II u IIL~ = 1 such that  d2u = Vu. Hence 

(Vu) 2 + y Vu ~ = ( - A 2 u  + V u l u )  = O .  

It follows that  Vu = 0. Hence u =- const. Since S V u 2  = 0 ,  it follows that  V = 0, 

contradiction.  
We have shown that  co(A2 - V) = s(A2 - V) < 0. So there exist co < 0, M > 0 

such that  II S2(t)II < M e~ (t > 0). The semigroup T2 is ul t racontract ive (see [3] or 
[6, 2.4]); in particular,  T2(1) is a bounded  opera to r  from L2(f2) to L~(f2).  
Consequently,  TI(1) is bounded from LI(Q) into LZ(f2), by self-adjointness. 
Since 0 =< S l ( t ) <  Tl(t), also Sl ( t )  maps  LI(f2)  into L2(f2). Thus for f eL l (~2) ,  
IlSl(t)f[lL1 = IlS2(t - 1)Si(1)fllg,  < Me ~ ' - ~  IlS~(1)[ISe~L,.L=)llfllL, (t > 1). So 
S~ is exponential ly stable. It  follows f rom the Riesz-Thorin theorem that  Sp is 
exponential ly stable for 1 __< p < 2; 2 __< p < oo this follows by duality. [] 

3 Stability of the Schr6dinger semigroup 

By Tp = (Tp(tl)t e o we denote the Gauss ian  semigroup on LP(lR N) (1 < p < oo); i.e. 
Tp is given by 

N ( x - Y )  2 

(Tp(t)f)(x) = ( 4 ~ t ) - 2  j" e 4, f (y)dy (t > 0). 
]R N 
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This defines a Co semigroup on LP(IR N) for 1 < p < Go and a w*-continuous 
semigroup on L~( lR  N) for p = oo. The generator zip of Tp is given by 

D[Ap) = {feLP(IR:~); AfeLV(IRS)} ,  Ap f= A f  (1 < p < oo). 

Proposition 3.1 I f  1 < p < ~ ,  then Tp is stable. 

Proof Since (Ta(t)f)  A (~) = e -~ , f ( r  (feL2(iR~,')) this is clear for p = 2. For  
1 < p < 2 a n d f e L  ~ ~ L  2 one has 

T " t "  " 2 - 2 /P  ---* 0 ( t ---1. 0 0 )  IITp(t)fl[L, < [ITt(t)fll[;P-tl[ zt ) !  L~ 

Since Tp is bounded  and L t c~ L 2 is dense the result follows. For  2 < p < oo one 
can argue similarly. [] 

However,  the Gaussian semigroup 7"1 on L t ( ~  '~) is not  stable, in fact, it 
preserves the norm on the positive cone, II Tt(t)f l lL~ = IINIIL~ for 0 < f e L  1. 

Next we introduce an absorpt ion 0 =< V~Llo~(IRN). Then the operator  A1 - V 
with domain D ( A t -  V)= D ( A t ) ~ D ( V )  generates a bounded  bolomorphic  
semigroup St on L t (IR :~) which is dominated by the Gaussian semigroup (see [10, 
15]): 

o < s t ( t )  __< Tt( t )  (t __> 0) .  (3.1) 

Theorem 3.2 Let N e { I ,  2} and let O< VeL~o~ (IRN). I f  V #=O, then d l -  V is 
stable. 

For  the proof  we use the following notion. A function q)~L~oc(IR N) is called 
subharmonic if A ~0 > 0 (of. [5, Chap. II]). It is well-known that for cp ~ L ~ (IR N) (N 
arbitrary) A~o = 0 implies that ~0 is constant  (cf. [5, II w Corollaire 1]). This 
remains true for subharmonic  q0 if N = 1 or  2. 

Proposition 3.3 Let N~{1, 2} and let qoeL~(lR ~T) be subharmonic; then ~o is 
constal~t. 

Proof This follows from [8, Theorem 2.14, p. 67, 68] or [7, problem 2.14] if ~0 is 
smooth.  Applying this result to p,*~o instead of q~, in the general case (p, being 
a mollifier), the result follows. [] 

Proof of  Theorem 3.2 Let 0 <  ~ o ~ N ( ( A x -  V)'). Then 0 < (pc L~(]R N) and 
A cp = Vrp in ~ ' ( R N ) .  Hence q~ is subharmonic.  It follows from Proposi t ion 3.3 that 
~o is constant,  say q~(x) = C (x ~ R u). Then 0 = A ~0 = C V. Hence C = 0 or  V -  0. 
It follows from Remark 1.5 that  At - V is stable if V 4= 0. [] 

The situation is different if N > 3. Then there always exist non-zero potentials 
0 < VeL~o~(1R ~) such that A - Vis  not stable. 

Proposition 3.4 For 0 < VSL~o~(IR N) let 

Nv:= {y~L~ < g =< 1; Ag = Vg} . 
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Denote by S the semigroup generated by A~ - V on L~(~l'v). Then the following 
holds. 

a) N v  has a maximal element gv. 

b) I f  V~LI(IRN),  then gv = 1 - ~  S ( t ) V d t ,  where the improper integral con- 
0 

verges in the w*-sense in L ~ (note that S ( t ) V ~ L  ~ for t > 0). 
c) A 1 - V is stable if and only if gv = O. 
d) I f  V, lPeL~o~(1R N) such that 0 <= V <= V, then g~ < gv. 
e) Let  V,~L~o~(IR N) such that 0 < V, < V,+ I < V and l i m , ~  V,(x) = V(x)  

a.e. Then w* - l im,~ ~ gv, = gv. 

Proof. Let ~oc~(lRS).  Then S ( t ) q o ~ D ( A 1 - V ) = D { A 1 ) c ~ D ( V )  for all t > 0 .  
Consequently,  

d 
Z(~o,  s ( t ) ' l  ) = ( (A~  - V)S(t)~o, 1)  = - (St t)~o,  V )  (t > 0) .  (3.2) 

Thus ( ( p , S ( t ) ' l )  is decreasing for all 0 < q ~ ( R n ) ,  It follows that  S ( t ) ' l  is 
decreasing. 

Let gv = inft > oS ( t ) ' l  = w* - l imt~ ~S( t ) '  1. Then 

S(s) '  gv = w* - l imt~ ~S( t  + s ) ' l  = gv. 

Hence g v e N ( ( A 1  - V)') and 0 < gv < 1. Since ~ ( I R  s)  is a core of A1 - V(see 
[10]) it follows that  

Nv = { g ~ N ( ( A I  - V) ' ) :0  < g < 1} . (3.3) 

Consequent ly  gv ~ Nv .  We show that  gv is maximal .  Let g ~ Nv.  Since 0 < g < 1, it 
follows that  g = S( t ) 'g  < S ( t ) ' l  (t > 0); consequently,  g < gv. So a) is proved. 

If VeLI( IRN) ,  then S(t)~o = S(t) '(o for all c p ~ ( I R U ) ,  hence ( S(t)~o, V )  = 
(tp, S(t)  V) (t > 0). So it follows f rom (3.2) that  

~ d  t 
(~o, s ( t ) ' l  ) - (q,, 1 ) = ! ~ (q,, s ( s ) ' l  ) as = - o ~ (~o, s ( s )  v )  as 

Since q ~ @ ( I R  ~') is arbi t rary  one concludes that  S ( t ) ' l  = 1 - j S ( s ) V d s .  One 

obtains b) by letting t ~ oc. o 
Assertion c) follows f rom (3.3) and Remark  1.5 since Nv  = {0} if and only if 

gv = 0. Assertion d) follows f r o m  the fact that  S ( t ) <  S( t )  if S(t) denotes the 
semigroup generated by l?eL~oo, V >  V. 

It  remains to prove e). Let g , = g v ,  then by d) 0 < g . + 1  < g .  < 1. Let 
g = infg~ = w* - l img, .  Then for q9 ~@(II~N), 

(cp, A g )  = (Aq), g )  = lim (A cp, g . )  = lim(cp, A g . )  

= l i m ( e ,  V . g . )  = ((p, Vg)  

by the dominated  convergence theorem. Hence g ~ Nv .  So by a) g < gv. On the 
other hand gv < S ( t ) ' l  < S , ( t ) ' l  (t > 0) for all h E N .  Hence gv < g ,  ( h e N ) .  
Consequently,  gv < g. We have shown that  g = gv. [] 
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Proposition 3.5 Let 0 < VEL~oe(IN N) and let Z > O. Then At - V is stable if and 
only if A 1 -- )~ V is stable. 

Proof  Suppose that 2 > 1. Denote by S (resp. U) the semigroup generated by 
d l -  V (resp. At - 2V). The 0 < U(t) < S(t); hence U is stable whenever S is 
stable. Conversely assume that At - 2Vis  stable. Let V, = Vl~(o,,~ and denote by 
S, (resp. U,) the semigroup generated by At - V, (resp. A1 - 2V,). Let ~,  = ,q~v, 
and O , = O w .  Then w * - l i m ~ , , = 0  by Proposi t ion 3.4. Moreover,  by 
Proposi t ion 3.4e) 9v = w* - limq),. By Proposi t ion 3.4b) we have 

~ = 1 -  2 U, ( s )V ,  ds; hence 
o 

1 = O~ + ;~ l U.ls)V~ds <= ~,~ + ;~ ~ S.(s)V.d~ = O .  + ; .(1 - ~o . ) .  
o o 

Letting n ~ oo we obtain 1 < 2(1 - gv). Consequently Cgv < 1 where C = 2/(Z - 1). 
So C g v e N v .  It follows that Cgv < gv. Hence gv = 0 since C > 1; i.e. Aa - V is 
stable. If 2 < 1, it suffices to apply the preceding result to 2V. [] 

Theorem 3.6 Let  N > 3. I fO  < VeL~oc(IR N) satisfies 

V(y) 

lyl->l 

then A 1 - V is not stable. 

(3.4) 

Proof  a) We show that there exists a measurable set B c IN N of positive measure 
such that 

V(y)  
sup ~ [x --'ZT-N-2dY < oo . (3.5) 
xeB N~ YF 

In fact, let C = ; V(x)dx .  One has 
Ixl<2 

V(x  - y )dy  } 

Ixl-<l I x - y l < 2  

lYl<3 ix_yl<_2 yl s - 2  2 

2~u /2  

C CON 

where con - - -  is the surface of the unit sphere in INN. 
F ( N / 2 )  

By Fubini's theorem there exists a measurable set B a B(0, 1):= {x eiNN: Ixl < 1} 
of positive measure such that 

V ( y )  V ( x  - y) 
sup ~ I x - - ~ - ~ - 2 d y = s u p  f N-2 d y <  zo . t3.6) 
x~B 13,1_-<2 xeB I x - y l < 2  [Yl 

But for Jx[ __< 1, lY/>  2, one has Ix - y] > ]Yl - Ixl > �89 Thus 

V(y)  dy < 2 s - 2  ~> V ( y )  
Ix--~2 - -  lYl >2 [Yl 2 ] y ] N - 2 d y <  

oO 
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by (3.4). This together  with (3.6) proves  the claim. 
b) For  0 < g e L I ( I R  u) we have by Fubini 's  theorem 

( T ~ [ t ) g ) ( x ) d t  : ]" ]~ (4~t)-N/2 exp( - (x  -- y ) 2 / 4 t ) d t g O , ) d y  
0 ~ ' 0  

: ( E N * g ) ( x )  ( x 6 I R  N) 

1 
_ 2-N In view of Proposi t ion  3.5, we may  assume that  where EN(X) ( N - -  2)co~-]xl �9 

q :=  sup (EN* V ) ( x )  < 1 . 
x E B  

For  n ~ N ,  let V, = V1B(o,,), S,  the semigroup generated by A1 - Vn and g, = gvo. 
Then gv = w* - l im, ~ ~ g, by Proposi t ion  3.4e); and by b) 

g . ( x )  : 1 -- ~ (S . ( t )  V . ) ( x ) d t  __> 1 - [ ( T l ( t ) V . ) ( x ) d t  
0 0 

= 1 - (EN* Vn)(x ) ~ 1 - (EN* V)(X)  > 1 - q ( x e B ) .  

Hence gv = infg,  > 1 -- q on B and so gv 4= O. [] 

The converse of Theorem 3.6 is not  true in general. A character izat ion of 
stability will be given by the second au thor  I-2] by means of probabil ist ic methods  
(i.e. Wiener measure  and the F e y n m a n - K a c  formula). Fo r  radial V, however,  we 
obtain the following characterization.  

Theorem 3.7 Le t  N > 3, and let 0 < V E L ~oc (IR N) be radial. Then A 1 - V is stable i f  
and only i f  

l y l > t  ly[ N-2 

Proof. Suppose that  A1 - V is not stable. Then there exists 0 < geL~( IR~ ' ) ,  
g4=0,  such that  A g =  Vg. We can suppose that  V4=0, so g is not  constant.  
Since V is radial, we can suppose that  g is radial; otherwise we replace g ( x )  by 

~ ( x ) =  S g(lx] y) do (y )  where da  is the surface-measure on S(0, 1 ) =  
S(O, 1) 

{zelRN:lz[ : 1}. 
Hence 1/r u -1  ( r N - l g ' ( r ) )  ' = Vg in @'(0, oo). This implies that  g ~ C I ( O ,  oo) 

and r N - l g ' ( r )  is non-decreasing. We show that  g is non-decreasing. If not, there 
exists ro > 0 such that  g ' (ro)  < 0. Then r N - l g ' ( r )  < r ~ - l g ' ( r o )  on (0, r0). Hence 
for re (0 ,  r0), 

ro ds 
g(r)  = g(ro)  + ~ ( - g ' ( s ) ) s  u -1  sN------ ~ >= 

r 

ro ds 
g(ro)  + ( -- g ' ( r o ) r ~ - ' )  ] --* oo (r ~ 0 ) .  

This is not  possible since g is bounded.  
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Since g is non-cons tan t ,  there exists ro > 0 such that  g(ro) > 0 and g'(ro) > O. 
Then 

r N - t g ' ( r )  = r ~ ' - l g ' ( r o )  + i (sN-lg ' (s))  'ds 
t o  

= r~'-lg'(ro) + i sN-1 V(s)g(s)ds > g(ro) i s'V-1 V(s)ds. 
r o  ro  

Consequent ly ,  

1 V ( M )  , 1 ~ ~' l N+2  N ~> [y~Z~(-'ly-- -- ! o S r ( s ) d S = r o ~ S - '  s'-lv(s)ds 
N - 2 I~l =,o N 2 - 

= , o  , r~Ti-ldrsN * V ( s ) d s =  . . . .  sN-1V(s )dsr~Ti - ldr< O(ro g'(r)dr < oo 

since g is bounded.  [] 
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