Asymptotic stability of Schrödinger semigroups on $L^1(\mathbb{R}^N)$

Wolfgang Arendt, Charles J.K. Batty*, and Philippe Bénilan

Equipe de Mathématiques U.A. CNRS 741, Université de Franche-Comté, F-25030 Besançon Cedex, France

Mathematische Zeitschrift

Received February 19, 1991; in final form July 17, 1991

Introduction

By a Schrödinger semigroup one understands a semigroup $S_p = (S_p(t))_{t \ge 0}$ generated by $\Delta - V$ on $L^p(\mathbb{R}^N)$, where Δ denotes the Laplacian and V is a potential in $L^1_{loc}(\mathbb{R}^N)_+$. These semigroups have been investigated by several authors, see the survey article [14] by Simon for further information.

The purpose of the present paper is to study convergence of $S_p(t)$ as $t \to \infty$ for positive potentials. In order to develop an intuitive idea of the problem, it is helpful to see $(S_p(t)f)(x)$ ($x \in \mathbb{R}^N$, t > 0) as the solution of the heat equation with absorbing potential in \mathbb{R}^N .

If p > 1, then $\lim_{t\to\infty} S_p(t) = 0$ strongly even if V = 0. More interesting is the case p = 1. In fact, given a positive initial value $f \in L^1(\mathbb{R}^N)$, $||S_1(t)f||_{L^1}$ means the total amount of heat at time t. If V = 0, this quantity is constant; i.e. $S_1(t)$ is isometric on the positive cone. Our aim is to investigate, for which absorptions V the semigroup S_1 is (asymptotically) stable, i.e. $\lim_{t\to\infty} S_1(t) = 0$ strongly. It is quite easy to see that this is the case for every non-vanishing V if the Neumann Laplacian on a bounded region (of class C^1) is considered instead of Δ on \mathbb{R}^N (Sect. 2). On \mathbb{R}^N the asymptotic behavior depends on the dimension. Whereas for $N = 1, 2, S_1$ is always stable if $V \neq 0$ (Theorem 3.2), for $N \ge 3$, there always exist non-zero potentials V such that S_1 does not converge. This property depends on the growth of V at infinity. If S_1 is stable in $L^1(\mathbb{R}^N)$, $N \ge 3$, then necessarily

(*)
$$\int_{|y| \ge 1} \frac{V(y)}{|y|^{N-2}} dy = \infty.$$

Moreover, if V is radial, the converse holds as well: condition (*) implies stability of S_1 .

The proofs given here (Theorem 3.6 and 3.7) are analytical, throughout. In a separate paper, the second author obtains these and other results by probabilistic methods.

^{*} Permanent address: St. John's College, Oxford OX1 3JP, UK

1 Stability of positive semigroups

In this preliminary section we give an abstract characterization of stability for positive (i.e. positivity preserving) semigroups. Let $T = (T(t))_{t \ge 0}$ be a C_0 -semigroup on a Banach space with generator A. We denote by $\sigma(A)$ the spectrum of $A, P\sigma(A)$ its point spectrum and by

$$s(A) = \sup\{\operatorname{Re}\lambda : \lambda \in \sigma(A)\}\$$

the spectral bound of A. The number

$$\omega(A) := \inf \left\{ \omega \in \mathbb{R} : \sup_{t \ge 0} e^{-\omega t} \| T(t) \| < \infty \right\}$$

is called the growth bound or type of T (or of A). One always has $s(A) \leq \omega(A)$ and growth bound and spectral bound coincide whenever T is holomorphic or T is a positive semigroup on L^1 or L^2 (see [12]). We denote by $N(A) = \{x \in D(A): Ax = 0\}$ the kernel of A and by N(A') the kernel of the adjoint A' of A.

Definition 1.1 We say that T (or A) is stable if $\lim_{t\to\infty} T(t)x = 0$ for all $x \in E$. If $\omega(A) < 0$, then T (or A) is called exponentially stable.

In the following we assume that T is a positive C_0 -semigroup on a Banach lattice E.

Lemma 1.2 Assume that T is bounded. If $N(A') \neq \{0\}$, then $N(A')_+ := N(A') \cap E'_+ \neq \{0\}$.

Proof. a) Observe that sup_{0 ≤ λ ≤ 1} ||λR(λ, A)'|| < ∞ since T is bounded.
b) Let φ∈E'. Then

 $\lim_{\lambda \downarrow 0} \langle Ax, \, \lambda R(\lambda, A)' \varphi \rangle = \lim_{\lambda \downarrow 0} \langle \lambda^2 R(\lambda, A) x - \lambda x, \varphi \rangle = 0$

for all $x \in D(A)$.

Thus, if ψ is a w*-limit point of $\lambda R(\lambda, A)' \varphi$ for $\lambda \downarrow 0$, then $\psi \in N(A')$.

c) Let $\varphi \in N(A')$. Then $\lambda R(\lambda, A)' \varphi^+$ and $\lambda R(\lambda, A)' \varphi^-$ possess w*-limit points for $\lambda \downarrow 0$ (by a), which are in $N(A')_+$ (by b). If every such limit point is 0, then it follows that

$$\varphi = \lim_{\lambda \downarrow 0} \lambda R(\lambda, A)' \varphi = \lim_{\lambda \downarrow 0} \lambda R(\lambda, A)' \varphi^+ - \lim_{\lambda \downarrow 0} \lambda R(\lambda, A)' \varphi^- = 0. \quad \Box$$

Theorem 1.3 Let T be a positive bounded C_0 -semigroup with generator A such that $\sigma(A) \cap i\mathbb{R}$ is countable. Then T is stable if and only if $N(A')_+ = \{0\}$.

Proof. It follows from the proof of [12, C-III Corollary 4.3] that $P\sigma(A') \cap i\mathbb{R}$ is cyclic; in particular, $0 \notin P\sigma(A')$ implies $P\sigma(A') \cap i\mathbb{R} = \emptyset$. By Lemma 1.1, $0 \notin P\sigma(A')$ if and only if $N(A')_+ = \{0\}$. Now the theorem follows from the stability theorem [1] or [11]. \Box

Corollary 1.4 Assume that T is a bounded positive semigroup which is eventually norm continuous. Then T is stable if and only if $N(A')_+ = \{0\}$.

This follows since for such a semigroup automatically $\sigma(A) \cap i\mathbb{R} \subset \{0\}$, [12, C-III Corollary 2.13].

Remark 1.5 The particular case where T is a bounded holomorphic semigroup can be settled by a simpler argument: in that case $\sup_{t>0} || tAT(t) || < \infty$; hence $T(t)x \to 0$ ($t \to \infty$) for all $x \in R(A)$ (the range of A). Thus T is stable if and only if R(A) is dense, which in turn is equivalent to $N(A') \neq \{0\}$.

2 The Neumann-Laplacian with absorbing potential on bounded domain

Let $\Omega \subset \mathbb{R}^N$ be a bounded connected open set of class C^1 . Denote by A_2 the Neumann-Laplacian on $L^2(\Omega)$, i.e. A_2 is given by

$$D(A_2) = \{ u \in H^1(\Omega) \colon \exists v \in L^2(\Omega), \int_{\Omega} \nabla u \nabla \varphi \\ = -\int v \varphi \quad \text{for all } \varphi \in H^1(\Omega) \}, A_2 u = v .$$

(See [4, Chap. X] or [13, XIII, 15, p 263].) This operator generates a positive semigroup $T_2 = (T_2(t))_{t \ge 0}$ on $L^2(\Omega)$. Moreover, there exist positive contraction semigroups T_p on $L^p(\Omega)$ $(1 \le p < \infty)$ such that $T_p(t)f = T_q(t)f(f \in L^p(\Omega) \cap L^q(\Omega), t \ge 0)$. Let Δ_p be the generator of T_p .

Theorem 2.1 Let $0 \leq V \in L^{\infty}(\Omega)$, $V \neq 0$. Then $\Delta_p - V$ is exponentially stable $(1 \leq p < \infty)$.

Proof. Denote by S_p the semigroup generated by $\Delta_p - V$. The operator $\Delta_2 - V$ has compact resolvent. Assume that $s(\Delta_2 - V) = 0$. Then there exists $u \in D(\Delta_2)$, $||u||_{L^2} = 1$ such that $\Delta_2 u = Vu$. Hence

$$\int_{\Omega} (\nabla u)^2 + \int_{\Omega} V u^2 = (-\Delta_2 u + V u | u) = 0.$$

It follows that $\nabla u = 0$. Hence $u \equiv \text{const.}$ Since $\int_{\Omega} V u^2 = 0$, it follows that V = 0, contradiction.

We have shown that $\omega(\Delta_2 - V) = s(\Delta_2 - V) < 0$. So there exist $\omega < 0, M \ge 0$ such that $||S_2(t)|| \le Me^{\omega t}$ $(t \ge 0)$. The semigroup T_2 is ultracontractive (see [3] or [6, 2.4]); in particular, $T_2(1)$ is a bounded operator from $L^2(\Omega)$ to $L^{\infty}(\Omega)$. Consequently, $T_1(1)$ is bounded from $L^1(\Omega)$ into $L^2(\Omega)$, by self-adjointness. Since $0 \le S_1(t) \le T_1(t)$, also $S_1(t) \max L^1(\Omega)$ into $L^2(\Omega)$. Thus for $f \in L^1(\Omega)$, $||S_1(t)f||_{L^1} = ||S_2(t-1)S_1(1)f||_{L^1} \le Me^{\omega(t-1)} ||S_1(1)||_{\mathscr{L}(L^1, L^2)} ||f||_{L^1}$ $(t \ge 1)$. So S_1 is exponentially stable. It follows from the Riesz-Thorin theorem that S_p is exponentially stable for $1 \le p \le 2$; $2 \le p < \infty$ this follows by duality. \Box

3 Stability of the Schrödinger semigroup

By $T_p = (T_p(t))_{t \ge 0}$ we denote the Gaussian semigroup on $L^p(\mathbb{R}^N)$ $(1 \le p \le \infty)$; i.e. T_p is given by

$$(T_p(t)f)(x) = (4\pi t)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{-\frac{(x-y)^2}{4t}} f(y) \, dy \quad (t>0)$$

This defines a C_0 semigroup on $L^p(\mathbb{R}^N)$ for $1 \leq p < \infty$ and a w*-continuous semigroup on $L^{\infty}(\mathbb{R}^N)$ for $p = \infty$. The generator Δ_p of T_p is given by

$$D(\Delta_p) = \{ f \in L^P(\mathbb{R}^N); \Delta f \in L^P(\mathbb{R}^N) \}, \Delta_p f = \Delta f \quad (1 \le p \le \infty) .$$

Proposition 3.1 If $1 , then <math>T_p$ is stable.

Proof. Since $(T_2(t)f) \wedge (\xi) = e^{-\xi^2 t} \hat{f}(\xi)$ $(f \in L^2(\mathbb{R}^N))$ this is clear for p = 2. For $1 and <math>f \in L^1 \cap L^2$ one has

$$\|T_p(t)f\|_{L^p} \leq \|T_1(t)f\|_{L^{1^{p-1}}}^{2/p-1} \|T_2(t)f\|_{L^2}^{2-2/p} \to 0 \quad (t \to \infty) .$$

Since T_p is bounded and $L^1 \cap L^2$ is dense the result follows. For $2 one can argue similarly. <math>\Box$

However, the Gaussian semigroup T_1 on $L^1(\mathbb{R}^N)$ is not stable, in fact, it preserves the norm on the positive cone, $||T_1(t)f||_{L^1} = ||f||_{L^1}$ for $0 \le f \in L^1$. Next we introduce an absorption $0 \le V \in L^1_{loc}(\mathbb{R}^N)$. Then the operator $\Delta_1 - V$

Next we introduce an absorption $0 \leq V \in L_{loc}(\mathbb{R}^N)$. Then the operator $\Delta_1 - V$ with domain $D(\Delta_1 - V) = D(\Delta_1) \cap D(V)$ generates a bounded bolomorphic semigroup S_1 on $L^1(\mathbb{R}^N)$ which is dominated by the Gaussian semigroup (see [10, 15]):

$$0 \le S_1(t) \le T_1(t) \quad (t \ge 0) . \tag{3.1}$$

Theorem 3.2 Let $N \in \{1, 2\}$ and let $0 \leq V \in L^1_{loc}$ (\mathbb{R}^N). If $V \neq 0$, then $\Delta_1 - V$ is stable.

For the proof we use the following notion. A function $\varphi \in L^1_{loc}(\mathbb{R}^N)$ is called subharmonic if $\Delta \varphi \ge 0$ (cf. [5, Chap. II]). It is well-known that for $\varphi \in L^{\infty}(\mathbb{R}^N)$ (N arbitrary) $\Delta \varphi = 0$ implies that φ is constant (cf. [5, II §2, Corollaire 1]). This remains true for subharmonic φ if N = 1 or 2.

Proposition 3.3 Let $N \in \{1, 2\}$ and let $\varphi \in L^{\infty}(\mathbb{R}^N)$ be subharmonic; then φ is constant.

Proof. This follows from [8, Theorem 2.14, p. 67, 68] or [7, problem 2.14] if φ is smooth. Applying this result to $\rho_n * \varphi$ instead of φ , in the general case (ρ_n being a mollifier), the result follows. \Box

Proof of Theorem 3.2 Let $0 \leq \varphi \in N((\Delta_1 - V)')$. Then $0 \leq \varphi \in L^{\infty}(\mathbb{R}^N)$ and $\Delta \varphi = V \varphi$ in $\mathcal{D}'(\mathbb{R}^N)$. Hence φ is subharmonic. It follows from Proposition 3.3 that φ is constant, say $\varphi(x) = C$ ($x \in \mathbb{R}^N$). Then $0 = \Delta \varphi = CV$. Hence C = 0 or $V \equiv 0$. It follows from Remark 1.5 that $\Delta_1 - V$ is stable if $V \neq 0$. \Box

The situation is different if $N \ge 3$. Then there always exist non-zero potentials $0 \le V \in L^{1}_{loc}(\mathbb{R}^{N})$ such that $\Delta - V$ is not stable.

Proposition 3.4 For $0 \leq V \in L^1_{loc}(\mathbb{R}^N)$ let

$$N_V := \{g \in L^{\infty}(\mathbb{R}^N) : 0 \leq g \leq 1; \Delta g = Vg\}.$$

Denote by S the semigroup generated by $\Delta_1 - V$ on $L^1(\mathbb{R}^N)$. Then the following holds.

- a) N_V has a maximal element g_V .
- b) If $V \in L^1(\mathbb{R}^N)$, then $g_V = 1 \int_0^\infty S(t) V dt$, where the improper integral converges in the w*-sense in L^{∞} (note that $S(t) V \in L^{\infty}$ for t > 0).
- c) $\Delta_1 V$ is stable if and only if $g_V = 0$.
- d) If V, $\tilde{V} \in L^{1}_{loc}(\mathbb{R}^{N})$ such that $0 \leq V \leq \tilde{V}$, then $g_{\tilde{V}} \leq g_{V}$. e) Let $V_{n} \in L^{1}_{loc}(\mathbb{R}^{N})$ such that $0 \leq V_{n} \leq V_{n+1} \leq V$ and $\lim_{n \to \infty} V_{n}(x) = V(x)$ a.e. Then $w^{*} \lim_{n \to \infty} g_{V_{n}} = g_{V}$.

Proof. Let $\varphi \in \mathscr{D}(\mathbb{R}^N)$. Then $S(t)\varphi \in D(\mathcal{A}_1 - V) = D(\mathcal{A}_1) \cap D(V)$ for all $t \ge 0$. Consequently,

$$\frac{d}{dt}\langle \varphi, S(t)'1 \rangle = \langle (\varDelta_1 - V)S(t)\varphi, 1 \rangle = -\langle S(t)\varphi, V \rangle \quad (t \ge 0) .$$
(3.2)

Thus $\langle \varphi, S(t)'1 \rangle$ is decreasing for all $0 \leq \varphi \in \mathscr{D}(\mathbb{R}^N)$. It follows that S(t)'1 is decreasing.

Let $g_V = \inf_{t \ge 0} S(t)' 1 = w^* - \lim_{t \to \infty} S(t)' 1$. Then

$$S(s)'g_V = w^* - \lim_{t \to \infty} S(t+s)' = g_V.$$

Hence $g_V \in N((\Delta_1 - V)')$ and $0 \leq g_V \leq 1$. Since $\mathscr{D}(\mathbb{R}^N)$ is a core of $\Delta_1 - V$ (see [10]) it follows that

$$N_V = \{ g \in N((\Delta_1 - V)') : 0 \le g \le 1 \} .$$
(3.3)

Consequently $q_V \in N_V$. We show that q_V is maximal. Let $g \in N_V$. Since $0 \leq g \leq 1$, it follows that $g = S(t)'g \leq S(t)'1$ ($t \geq 0$); consequently, $g \leq g_V$. So a) is proved.

If $V \in L^1(\mathbb{R}^N)$, then $S(t)\varphi = S(t)'\varphi$ for all $\varphi \in \mathscr{D}(\mathbb{R}^N)$, hence $\langle S(t)\varphi, V \rangle =$ $\langle \varphi, S(t) V \rangle$ $(t \ge 0)$. So it follows from (3.2) that

$$\langle \varphi, S(t)'1 \rangle - \langle \varphi, 1 \rangle = \int_{0}^{t} \frac{d}{ds} \langle \varphi, S(s)'1 \rangle ds = -\int_{0}^{t} \langle \varphi, S(s)V \rangle ds$$

Since $\varphi \in \mathscr{D}(\mathbb{R}^N)$ is arbitrary one concludes that $S(t)' = 1 - \int_{0}^{t} S(s) V ds$. One obtains b) by letting $t \to \infty$.

Assertion c) follows from (3.3) and Remark 1.5 since $N_V = \{0\}$ if and only if $g_V = 0$. Assertion d) follows from the fact that $\tilde{S}(t) \leq S(t)$ if S(t) denotes the semigroup generated by $\tilde{V} \in L^1_{loc}$, $\tilde{V} \geq V$. It remains to prove e). Let $g_n = g_{N-n}$, then by d) $0 \leq g_{n+1} \leq g_n \leq 1$. Let

 $g = \inf g_n = w^* - \lim g_n$. Then for $\varphi \in \mathscr{D}(\mathbb{R}^N)$,

$$\langle \varphi, \Delta g \rangle = \langle \Delta \varphi, g \rangle = \lim \langle \Delta \varphi, g_n \rangle = \lim \langle \varphi, \Delta g_n \rangle$$
$$= \lim \langle \varphi, V_n g_n \rangle = \langle \varphi, V g \rangle$$

by the dominated convergence theorem. Hence $g \in N_V$. So by a) $g \leq g_V$. On the other hand $g_V \leq S(t)' \leq S_n(t)' \leq S_n(t)' \leq 0$ for all $n \in \mathbb{N}$. Hence $g_V \leq g_n$ $(n \in \mathbb{N})$. Consequently, $g_V \leq g$. We have shown that $g = g_V$. \Box

Proposition 3.5 Let $0 \leq V \in L^1_{loc}(\mathbb{R}^N)$ and let $\lambda > 0$. Then $\Delta_1 - V$ is stable if and only if $\Delta_1 - \lambda V$ is stable.

Proof. Suppose that $\lambda > 1$. Denote by S (resp. U) the semigroup generated by $\Delta_1 - V$ (resp. $\Delta_1 - \lambda V$). The $0 \leq U(t) \leq S(t)$; hence U is stable whenever S is stable. Conversely assume that $\Delta_1 - \lambda V$ is stable. Let $V_n = V \mathbf{1}_{B(o,n)}$ and denote by S_n (resp. U_n) the semigroup generated by $\Delta_1 - V_n$ (resp. $\Delta_1 - \lambda V_n$). Let $\psi_n = g_{\lambda V n}$ and $\varphi_n = g_{Vn}$. Then $w^* - \lim \psi_n = 0$ by Proposition 3.4. Moreover, by Proposition 3.4e) $g_V = w^* - \lim \varphi_n$. By Proposition 3.4b) we have $\psi_n = 1 - \lambda \int_0^\infty U_n(s) V_n ds$; hence

$$1 = \psi_n + \lambda \int_0^\infty U_n(s) V_n ds \leq \psi_n + \lambda \int_0^\infty S_n(s) V_n ds = \psi_n + \lambda (1 - \varphi_n) .$$

Letting $n \to \infty$ we obtain $1 \leq \lambda(1 - g_V)$. Consequently $Cg_V \leq 1$ where $C = \lambda/(\lambda - 1)$. So $Cg_V \in N_V$. It follows that $Cg_V \leq g_V$. Hence $g_V = 0$ since C > 1; i.e. $\Delta_1 - V$ is stable. If $\lambda < 1$, it suffices to apply the preceding result to λV . \Box

Theorem 3.6 Let $N \ge 3$. If $0 \le V \in L^1_{loc}(\mathbb{R}^N)$ satisfies

$$\int_{|y| \ge 1} \frac{V(y)}{|y|^{N-2}} \, dy < \infty \tag{3.4}$$

then $\Delta_1 - V$ is not stable.

Proof. a) We show that there exists a measurable set $B \subset \mathbb{R}^N$ of positive measure such that

$$\sup_{x \in B} \int_{\mathbb{R}^N} \frac{V(y)}{|x - y|^{N-2}} dy < \infty .$$
(3.5)

In fact, let $C = \int_{|x| \le 2} V(x) dx$. One has

$$\int_{|x| \leq 1} \left\{ \int_{|x-y| \leq 2} \frac{V(x-y)dy}{|y|^{N-2}} \right\} dx \leq$$

$$\int_{|y| \leq 3} \left\{ \int_{|x-y| \leq 2} V(x-y)dx \right\} \frac{dy}{|y|^{N-2}} = \frac{9}{2} C \omega_N,$$

$$2\pi^{N/2}$$

where $\omega_N = \frac{2\pi}{\Gamma(N/2)}$ is the surface of the unit sphere in \mathbb{R}^N .

By Fubini's theorem there exists a measurable set $B \subset B(0, 1) := \{x \in \mathbb{R}^N : |x| \le 1\}$ of positive measure such that

$$\sup_{x \in B} \int_{|y| \leq 2} \frac{V(y)}{|x - y|^{N-2}} dy = \sup_{x \in B} \int_{|x - y| \leq 2} \frac{V(x - y)}{|y|^{N-2}} dy < \infty$$
 (3.6)

But for $|x| \le 1$, |y| > 2, one has $|x - y| \ge |y| - |x| \ge \frac{1}{2}|y|$. Thus

$$\int_{|y|>2} \frac{V(y)}{|x-y|^{N-2}} \, dy \leq 2^{N-2} \int_{|y|>2} \frac{V(y)}{|y|^{N-2}} \, dy < \infty$$

Asymptotic stability of Schrödinger semigroups on $L^1(\mathbb{R}^N)$

by (3.4). This together with (3.6) proves the claim.

b) For $0 \leq g \in L^1(\mathbb{R}^N)$ we have by Fubini's theorem

$$\int_{0}^{\infty} (T_{1}(t)g)(x)dt = \int_{\mathbb{R}^{N}} \int_{0}^{\infty} (4\pi t)^{-N/2} \exp(-(x-y)^{2}/4t)dtg(y)dy$$
$$= (E_{N} * g)(x) \quad (x \in \mathbb{R}^{N})$$

where $E_N(x) = \frac{1}{(N-2)\omega_N} |x|^{2-N}$. In view of Proposition 3.5, we may assume that

$$q := \sup_{x \in B} (E_N * V)(x) < 1 .$$

For $n \in \mathbb{N}$, let $V_n = V \mathbb{1}_{B(o,n)}$, S_n the semigroup generated by $\Delta_1 - V_n$ and $g_n = g_{V_n}$. Then $g_V = w^* - \lim_{n \to \infty} g_n$ by Proposition 3.4e); and by b)

$$g_n(x) = 1 - \int_0^\infty (S_n(t) V_n)(x) dt \ge 1 - \int_0^\infty (T_1(t) V_n)(x) dt$$
$$= 1 - (E_N * V_n)(x) \ge 1 - (E_N * V)(x) \ge 1 - q \quad (x \in B) .$$

Hence $g_V = \inf g_n \ge 1 - q$ on B and so $g_V \ne 0$. \Box

The converse of Theorem 3.6 is not true in general. A characterization of stability will be given by the second author [2] by means of probabilistic methods (i.e. Wiener measure and the Feynman-Kac formula). For radial V, however, we obtain the following characterization.

Theorem 3.7 Let $N \ge 3$, and let $0 \le V \in L^1_{loc}(\mathbb{R}^N)$ be radial. Then $\Delta_1 - V$ is stable if and only if

$$\int_{|y|\ge 1} \frac{V(y)}{|y|^{N-2}} \, dy = \infty \quad .$$

Proof. Suppose that $\Delta_1 - V$ is not stable. Then there exists $0 \leq g \in L^{\infty}(\mathbb{R}^N)$, $g \neq 0$, such that $\Delta g = Vg$. We can suppose that $V \neq 0$, so g is not constant. Since V is radial, we can suppose that g is radial; otherwise we replace g(x) by $\tilde{g}(x) = \int_{s(0,1)} g(|x| \ y) \ d\sigma(y)$ where $d\sigma$ is the surface-measure on $S(0, 1) = \{z \in \mathbb{R}^N : |z| = 1\}$. Hence $1/r^{N-1} (r^{N-1}g'(r))' = Vg$ in $\mathscr{D}'(0, \infty)$. This implies that $g \in C^1(0, \infty)$

Hence $1/r^{N-1}(r^{N-1}g'(r))' = Vg$ in $\mathcal{D}'(0, \infty)$. This implies that $g \in C^1(0, \infty)$ and $r^{N-1}g'(r)$ is non-decreasing. We show that g is non-decreasing. If not, there exists $r_0 > 0$ such that $g'(r_0) < 0$. Then $r^{N-1}g'(r) \leq r_0^{N-1}g'(r_0)$ on $(0, r_0)$. Hence for $r \in (0, r_0)$,

$$g(r) = g(r_0) + \int_{r}^{r_0} (-g'(s))s^{N-1} \frac{ds}{s^{N-1}} \ge$$
$$g(r_0) + (-g'(r_0)r_0^{N-1})\int_{r}^{r_0} \frac{ds}{s^{N-1}} \to \infty \quad (r \to 0)$$

This is not possible since g is bounded.

Since g is non-constant, there exists $r_0 > 0$ such that $g(r_0) > 0$ and $g'(r_0) > 0$. Then

$$r^{N-1}g'(r) = r_0^{N-1}g'(r_0) + \int_{r_0}^r (s^{N-1}g'(s))' ds$$

= $r_0^{N-1}g'(r_0) + \int_{r_0}^r s^{N-1}V(s)g(s) ds \ge g(r_0) \int_{r_0}^r s^{N-1}V(s) ds.$

Consequently,

$$\frac{1}{N-2} \int_{|y| \ge r_0} \frac{V(y)}{|y|^{N-2}} dy = \frac{1}{N-2} \int_{r_0}^{\infty} s V(s) ds = \int_{r_0}^{\infty} \frac{1}{N-2} s^{-N+2} s^{N-1} V(s) ds$$
$$= \int_{r_0}^{\infty} \int_{s}^{\infty} \frac{1}{r^{N-1}} dr s^{N-1} V(s) ds = \int_{r_0}^{\infty} \int_{r_0}^{r} s^{N-1} V(s) ds \frac{1}{r^{N-1}} dr \le \frac{1}{g(r_0)} \int_{r_0}^{\infty} g'(r) dr < \infty$$

since g is bounded. \Box

References

- 1. Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans Am. Math. Soc. 306, 837-852 (1988)
- 2. Batty, C.J.K.: Asymptotic stability of Schrödinger semigroups: path integral methods Math. Ann. (to appear)
- 3. Bénilan Ph.: Opérateurs accrétifs et semi-groupes dans les espaces L^p. In: Fujita, H. (ed.) Funct. Anal. and Num. Anal. Japan-France Seminar. Tokyo and Kyoto 1976
- 4. Brézis, H.: Analyse fonctionnelle. Paris: Masson 1963
- 5. Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique. Paris: Masson 1987
- 6. Davies, E.B.: Heat Kernels and spectral theory. Cambridge: Cambridge University Press 1989
- 7. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Berlin Heidelberg New York: Springer 1983
- 8. Hayman, W.K., Kennedy, P.B.: Subharmonic Functions. London: Academic Press 1976
- Hempel, R., Voigt, J.: On the L_p-spectrum of Schrödinger operators. J. Math. Anal. Appl. 121, 138–159 (1987)
- Kato, T.: L_p-Theory of Schrödinger operators with a singular potential. In: Nagel, R., Schlotterbeck, U., Wolff, H. (eds.): Aspects of Positivity in Functional Analysis. Amsterdam: North Holland 1986
- 11. Lyubich, Yu.I., Vũ Quốc Phóng: Asymptotic stability of linear differential equations on Banach spaces. Stud. Math. 88, 37-42 (1988)
- 12. Nagel, R. (ed.): One-parameter Semigroups of Positive Operators. (Lect. Notes Math., vol. 1184) Berlin Heidelberg New York: Springer
- Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. IV. London: Academic Press 1978
- 14. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447-526 (1982)
- 15. Voigt, J.: Absorption semigroups, their generators and Schrödinger semigroups. J. Oper. Theory 20, 117-131 (1988)