
Semigroup Forum Vol. 45 (1992) 26-37 
�9 1992 Springer-Verlag New York Inc. 

R E S E A R C H  A R T I C L E  

Interpolation of Semigroups and 
Integrated Semigroups* 

W o l f g a n g  A r e n d t ,  F r a n k  N e u b r a n d e r * *  a n d  U l f  S c h l o t t e r b e c k  

Communicated by R. Nagel 

O. I n t r o d u c t i o n  

In 1971, S. G. Krein, G. I. Laptev and G. A. Cvetkova [K-L-C] proved 
that  any linear (unbounded) operator A on a Banach space E such that  the 
resolvent set contains a half-line (w, cx~), generates a Co-semigroup on a certain 
(maximal) subspace Z of E (see also [Ka], [M-O-O], [Ne3]). This is a very 
general result, expressing the popular belief tha t  linear dynamic systems are 
good-natured in some sense. 

The fact that  no information on the size of Z is available in general, 
suggests a comparison of these operators according to the actual size of Z;  with 
Z = E as the best possible case and with Z = {0} as the worst, but  still possible 
one (see [Be]). On the good side of this scale, the cases D(A k) C Z (k e N) are 
of particular interest. In this paper we want to show that  this situation is actually 
characteristic for generators of k-times integrated semigroups which were intro- 
duced in order to treat the abstract  Cauchy problem u'(t) = Au(t) ,  u(O) = x in 
cases where the resolvent of the operator A exists and has polynomial growth in a 
right half-plane. Such operators frequently occur if one studies differential oper- 
ators in LP(I~n), (1 < p < cx~), systems of linear partial differential equations or 
higher order Cauchy problems, to mention just a few instances (see [Arl], JAr2], 
[A-K], [dL], [K-HI, [Nel], [Ne2], [Ne3], IN-S], [Oh], [So], IT-M1], [T-M2], [Wh]). 
It turned out tha t  integrated semigroups share many properties with Co-semi- 
groups. The  purpose of this paper is to show that  every Co-semigroup on a 
Banach space F induces integrated semigroups on continuously embedded sub- 
spaces and that ,  conversely, every integrated semigroup on F can be "sand- 
wiched" by Co-semigroups on extrapolation- and interpolation spaces. 

In order to make this more precise we introduce some notation. An op- 
erator A on a Banach space E is the generator of k-times integrated semigroup 
(where k E N0 ) if there exist w > 0 and S(.): [0, ~ )  - -* / : (E)  strongly continuous 
such that  (w, ~ )  is contained in the resolvent set of A,  and 

~0 ~ 
(#I - A ) - l x  = #k e-~,tS(t)xdt (x E E , #  > w). 

The function S(.) is called k-times integrated semigroup. If there exists M > 0 
such that  IS(~)l _< MeWt for all t > 0, then S(.) is called exponentially bounded 
of type w. Thus, if S(.) is of type w, it is also of type w ~ for all w ~ > w. 

* A preliminary version of this paper appeared in: Semesterbericht Funktionalanaly- 
sis 15, Tfibingen (1988/89). 
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This notion differs slightly from the usual one in the case k = 0, but  will be 
convenient for our purposes. 

An operator A generates a 0-times integrated semigroup if and only if 
A generates a Co-semigroup (see [ARID. 

For Banach spaces E ,  F we write E '--* F if E is a subspace of F and 
the inclusion is continuous. We write E '--*d F if E ~ F and E is dense in F .  

Let B be an operator on F with domain D ( B ) .  We denote by p(B) 
the resolvent set and by R ( p , B )  := ( # I -  B) -1 the resolvent of B in #.  If 
E ~ F ,  then we denote by BE the "part of B in E "  defined by D ( B E )  :=  
{x e D ( B )  n E :  B x  �9 E } ,  B ~ x  := B x .  

In particular, if R E L:(F) (the space of all bounded linear operators) 
such that  R E  C E ,  then RE is the usual "restriction" of R to E .  It follows 
from the closed graph theorem that  RE �9 F~(E). 

If B is a closed operator on F ,  then D ( B  k) is a Banach space for the 
graph norm [x[B~ :=  Ix[ + IBx[ + ... + IBex[,  (k �9 No). This Banach space 
is denoted by [D(B)k].  Clearly, [D(Bk)] ~-, F .  The part  of B in [D(B~)] is 
denoted by Bk. 

If B generates a Co-semigroup T(.) on F ,  then Bk generates a Co- 
semigroup Tk(') on [D(Bk)] and Tk(t) coincides with the restriction of T( t )  to 
[D(Bk)] for all t > 0 (see [Na]). 

Now we can state the main results. 

T h e o r e m  0.1. (Interpolation Theorem) Let B be the generator of a Co- 
semigroup T(.)  on a Banach space F .  

(a) Assume that E is a Banaeh space such that [n(Bk)]  ~-, S ~-~ F for 
some k E N. In the case k ~_ 2 assume in addition that R(#o, B ) E  C E 
for some #o E p (B) .  Then BE generates an exponentially bounded, 
k - t imes  integrated semigroup SE(.) on E .  

(b) Assume that D ( B )  ~ F .  Then, given any k E N,  there exists a 
Banach space E such that [D(Bk)] ~-, E ~ F and BE  generates an 
exponentially bounded, k- t imes  integrated semigroup, but not a (k - 1)- 
times integrated semigroup. 

The next result is a converse of Theorem 1. Given the generator A of a 
k-times integrated semigroup we construct a maximal inscribed space on which 
the part  of A acts as a generator of a Co-semigroup. An extrapolation space is 
obtained as well. 

T h e o r e m  0.2. (Extrapolation Theorem) Let A be the generator of an expo- 
nentially bounded, k - t imes  integrated semigoup of type w > 0 on a Banach space 
E .  Let c~ > w.  Then there exists a generator B of Co -semigroup of type c~ on 
a Banaeh space F such that 

(a) [n(Bk)] ~-~ E ~-'d F and A = B E ;  
(b) the Banach space [D(Bk)] is m mal unique in the following sense : 

If  W is a Banaeh space such that W ~ E and A w  generates a Co- 
semigroup of type on W ,  then W [n(Bk)]. 

Note that  the operator A is not necessarily densely defined. Theorem 
0.2 says that  A is "sandwiched" by the Co-semigroup generators B and B~. In 
combination with Theorem 0.1 one obtains the following characterization. 

C o r o l l a r y  0.3. Let A be a densely defined operator on a Banach space E with 
non empty resolvent set. Then the following statements are equivalent. 
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(a) A generates an exponentially bounded, k- t imes integrated semigroup 
on E. 

(b) There exists a Banach space G such that [D(Ak)] "--* G ~-* E ,  and A a  
generates a Co-semigroup on G.  

(c) There exists a ~lenerator B of a Co-semigroup on a Banach space F 
such that [D(B")]  ~ E ~ F ,  R(it,  B ) E  C E for some # �9 p(B)  and 
A = B E .  

These results show tha t  the concepts of integrated semigroups and Co- 
semigroups are the same up to the choice of the Banach space. However, in 
many  instances it turns out tha t  it is relatively easy to prove tha t  an opera tor  
A generates an integrated semigroup on a "nice" Banach space E ,  whereas the 
construct ion of the inter- or extrapolat ion spaces on which Co-semigroups are 
generated is quite tedious, if not impossible (see [A-K], [Nell, [Ne2]). 

The  paper  is organized as follows. Section 1 contains the basic propert ies 
of integrated semigroups which are needed later while in Section 2 and 3 the main 
results are proved. 

1. P r e l i m i n a r i e s  

At first we define Laplace t ransforms of operator-valued functions. Let E 
be a Banach space and S(.) : [0, oc) ~ L:(E) be a strongly continuous function. 

For it �9 C and b > 0 we define the opera tor  f :  e - t ' tS ( t )d t  �9 L (E )  by 

) /o e-~ tS ( t )d t  x := e- t ' tS ( t ) xd t  (x �9 E),  

where f : e - ~ ' t S ( t ) x d t  is the usual Riemann integral. Let S, ( t )  := f o S ( s ) d s  
(t >_ 0). If S(.) is exponentially bounded,  then the Laplace t ransform 

~oo ~ e-~' ts( t)dt  := lim f b  b-.o~ Jo e- t ' tS ( t )d t  

of S(.) exists. The  converse s ta tement  does not hold (see [Do], p. 38). We 
show tha t  the Laplace t ransform of S(.) exists if and only if the once integrated 
function $1 (-) is exponential ly bounded.  

P r o p o s i t i o n  1.1. a) / f  [Sl(t)[ < Me wt for some M , w  > 0 and all t > O, then 

~0 b lim e -~ t s ( t ) d t  
b---* o o  

exists in the operator norm for it E C with Re it > w and 

fo e - ' t s ( t ) d t  = # e-" tS1 (t)dt. 

I/: ] b) Conversely, i] sup e-~'tS(t)dt  
b>_O 

< ~ ,  then there exists M >_ 0 such that 
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ISl(t)l ~ Me Re#t (if R e ~  > 0 or ~ : O) and [Sl(t)[ ~ M(1 + t) (if Re/t  = 0 
and # ~ O ) for all t >_ O. 

P r o o f .  a) From the assumptions it follows that  

ft t+h ] e- t~S l ( s )ds  ~_ M ( e - ( R e z - w ) ' ) / ( R e # -  w) --~ 0 

for t --* c~ uniformly in h > 0 for all It E C with R e #  > w. Hence 
f ~ e - t ' ~ S l ( s ) d s  converges in the operator norm. Integrating by parts one ob- 
tains 

/0' /0' /0 e-~'~S(s)ds = e-~tS l ( t )  + It e-~'tSl(s)ds --~ It e-~sSl(s)ds  

for t ---* (xD with respect to the operator norm. 

b) By assumption, the operator family B(t)  :=  fo e-1'tS(s) ds is norm bounded. 
The s tatement  follows from 

Jo' fo' Sl( t)  = e~'~e-~'~S(s)ds = eOtB(t) - It e~'~B(s)ds. 

Next we define integrated semigroups and their generators. 

D e f i n i t i o n  1.2. Let k E N0. An operator A on a Banach space E is called 
a generator of a k-times integrated semigroup if there exist M , w  > 0 and a 
strongly continuous fimction S(.): [0, co) ~ s satisfying 

fo t S(s)ds < Me  ~'t (t >_ O) 

such that  (w, cx~) C p(A) and R ( # , A )  = # k f o e - ~ ' t S ( t ) d t  for # > w. The 
function S(-) is called the k-t imes integrated semigroup generated by A.  If there 
exists C _> 0 and w' such that  IS(t)] _< Ce~~ > 0), then S(.) is called 
exponentially bounded of type w ~. �9 

We do not know whether ill the situation of Definition 1.2 the function 
S(-) is automatically exponentially bounded. Thus the definition we give here 
might be more general than the one given in [Arl] or [Nel], where the function 
S(.) is always assumed to be exponentially bounded. However, by Proposition 
1.1, if A generates a k-times integrated semigroup S(.) ,  then A generates the 
exponentially bounded, (k + 1)-times integrated semigroups $1 (t) = fo S(s)ds.  

Moreover, the Cauchy problem with respect to A 

CP(A) u ' ( t ) = A u ( t ) ,  u ( 0 ) = x ,  u ( . ) e C I ( [ o , c ~ ) , E ) N C ( [ O , c ~ ) , D ( A ) )  

has at most one solution for all x e E (see [Arl] or [Nell). 
Let A be the generator of a k-times integrated semigroup S(.) on E .  
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Define T(t )  e s E ) ,  (t > O) by 

(1.1) T( t )x  := S ( t ) A k x + ( t k - 1 / ( k - 1 ) ! ) A k - l x + . . . + t A x + x  (x E D(Ak)).  

For x e D(A  k+l) the function u(.) := T(.)x  is the unique solution of CP(A) .  
In fact, by the proof  of Prop. 3.3 in [Arl] one has 

i' /0' (1.2) S(s)yds  e D(A)  and A S(s)yds = S( t )y  - (t~/k!)y (y e E, t  > 0), 

(1.3) S( t )Ay = AS( t )y  (y e D(A)).  

In part icular,  for y E D(A) ,  S(.)y ~_ C1([0, or N C([O, co) ,D(A))  and 

d 
(1.4) -~S(t)y  = S( t )Ay -t- ( t~- l / (k  - 1)!)y (y e D(A)).  

Now it follows immediate ly  tha t  T(.)x = (dk/dtk)S(.)x for x e D(A k) and 
tha t  T(.)x  is a solution of CP(A)  whenever x e D(Ak+1). Moreover, if u(-) is a 
solution of CP(A)  with ]u(t)] < const.e ot for some a > 0, then for ~ < # e p(A) 

(1.5) R( . ,A )u (O)  = e-" '~( t )d t  (see [Nel, 4.61). 

Next we discuss the "rescaling" of integrated semigroups (see also [dL]). 

P r o p o s i t i o n  1.3. Let k E No and r E R.  If  A generates an exponentially 
bounded, k-t imes integrated semigroup, then .4 - r I  generates an exponentially 
bounded, k-times integrated semigroup. 

P r o o f .  Let S(.) be of type w. There  exists a polynomial  p(.) of degree k - 1 
k e ~ 

such tha t  E ( ~ ) r J ~  - j  = / ~  e-" 'p( t )dt ,  ( ,  > 0). Define a strongly continuous 
j-=l 

and exponential ly bounded function St(.): [0, e~) ~ ['-(E) by 

I' St(t)  := e-r tS( t )  + p(t - s)e-r~S(s)ds (t >_ 0). 

Let # > ma~(0, w - r ) .  It  follows from Pubini 's Theorem tha t  

e-"~S, ( t )d t  = e-("+~)tS(t)dt + e( -"+' ) 'S( t )d t  e -" 'p (s )ds  

(' I = 1 + ( ,  + rl- n(, + .. A) 
i=1 / 

= (1 + r / p ) k ( ,  + r ) - k R ( ,  + r, A) = #-kR(# ,  A - r I ) .  �9 

2. Interpolation of semigroups 

We first prove Theorem 0.1 for k = 1; i.e., we consider interpolation 
spaces between tile given Banach space F and the domain of the Co-semigroup 
generator  B .  For later purposes it is convenient to consider not only generators  
of Co-semigroups, but  also generators of integrated semigroups. Thus,  for k = 1, 
Theorem 0.1 is the special case of the following theorem for m = 0. 

30 



AI~ENDT, NEUBRANDER, SCHLOTTERBECK 

T h e o r e m  2.1. Let m �9 N0 and let B generate an m-times integrated semi- 
group T(.) on a Banach space F.  Assume E is a Banaeh space such that 
[D(B)] ~-~ E ~-* F .  Then Be  generates an (m + 1)-times integrated semi- 
group SE(') on E .  Moreover, if T(.) is exponentially bounded, then SE(') is 
exponentially bounded. 

We will use the following lemma, which is easy to prove. 

L e m m a  2.2. Let A be an operator on E and let B be an operator on F such 
that E ~-* F .  Assume that there exists ~ �9 p(B) such that R ( # , B ) E  C E.  
Then A = BE if and only if ~ E p(A) and R(p.A)  = R(# ,B)E .  

P r o o f  of  T h e o r e m  2.1. Let T(.): [0, co) ~ ~:(F) be the m-times integrated 
semigroup generated by B.  Define S(t):= fo T(s)ds �9 s  (t :> 0). By (1.2), 
S(t)F C D(B) and so S(t)E C E for t > 0. Set SE(t) := S(t)E �9 I~(E). By 
(1.2), BS(t)  = T(t) - (t '~/m!)I. It follows that S(.)x �9 C([0, co), [D(B)]) for 
all x �9 F.  Consequently, SE(.): [0, co) ~ L(E) is strongly continuous. 

We show that foSE(S)ds is exponentially bounded (in s  By 
Proposition 1.1, there exist M,w > 0 such that IS(t)Is < Me wt (t > 0). Let 

x �9 E.  The,, we have fo SE(s)xds = fo S(s)xds �9 D(B) and B fo SE(s)ds = 
S(t)x - (tm+l/(m -t- 1)!)x. Since [D(S)] ~ Z ~ F we obtain 

j • o  t 8E(S)xds E <- const. ~0 t S(s)xds B 

= c o n s t ' ( ~ o t S ( s ) X d S F + l S ( t ) x - ( t m + l / ( m + l ) ! ) X l F )  

< _ c o n s t . ( M e ~ ' , X , F + M e ~ t l X , F + ( t m + l / ( m + i ) , , X , F ) .  

Consequently, supt>0 e-Wt fo SE(s)xds < co, (x E E).  By the uniform 
- E 

boundedness principle, f :  SE(s)ds s <- CeWt' (t > 0) for C suitable. Sim- 

ilarily, one shows that ]T(t)]s < Me ~t, (t > 0) implies that ]SE(t)Is < 
C e  w t  . 

Since R ( p , B ) E  C E for # �9 p(B), one has p(B) C p(BE) and 
R(~, BE) ---- R(Iz, B)E for all # �9 p(B). For # > w define 

fO ~176 R(#) := ~m+l e-~'tSE(t)dt e s  

Integrating by parts one obtains 

R(#)x = #m e-"tT( t )xdt  -- R(#, B)x  = R(#, BE)x (z E E , #  > w). 

By definition, this means that Be  generates the (m + 1)-times integrated semi- 
group SE(') on E.  �9 
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Next we prove s tatement  (a) of Theorem 0.1 for arbitrary k. We will 
frequently use the following fact. Let B be a closed operator and k �9 N. If 
it �9 p(B), then x --* I(itI - B)kxl defines an equivalent norm on [D(Bk)]. 

P r o o f  o f  T h e o r e m  0.1. We show that  R(it, B )E  C E for all it �9 p(B). Let 
it, #o �9 p(B). I terating the resolvent equation 
R(#, B) = R(ito, B) + (#o - It)R(ito, B)R(It, B) yields 

k--1 

(2.1) R(# ,B)  = E ( i t o - i t ) J - l R ( i t o , B ) J  +(#o-#)k - lR( i to ,  B)k- lR( i t ,  B). 
j = l  

By assumption or by R(it0, B)F C D(B) (for k = 1), we have R(ito, B)E  C E 
and R(it0, B)k- lR( i t ,  B )E  C D(B k) C E.  This proves the claim. 

Let B generate a C0-semigroup T(.) with IT(t)l <_ Me '~ (t > O) 
for some M , w  > 0. Considering B - r I  if necessary instead of B ,  we can 
assume tha t  0 E p(B) (see Proposition 1.3). The exponentially bounded, k-times 

semigroup generated by B is given by S(t) := fo(( t  - s)k-1/(k - 1)!)T(s)ds. It 
follows from (1.1) that  

(2.2) 
k--1 

S(t) = B-kT( t )  - E ( t ' / i ! ) B  -k+'. 
i=0 

Consequently, S( t )E  C E, SE(t) :=  S(t)E �9 / : (E)  and SE(') :  [0, oo) --~ s  is 
strongly continuous. One obtains from (2.2) that  

k--1 

ISE(t)xlE <_ E ( t i / i ! )  IB-k+ilL(E) IXlE + IB-kT(t)x lE 
i=0 

_< const .  (e ~t IXlE + IB-kT(t)XlB k) <_ eonst" e ~t IXlE + cons t - IT( t )x lF  

_ c o n s t ,  e ~ IXlE + e o n s t  e ~ I~IF <-- c o n s t  �9 e ~ Ix lE"  

Hence, by tile uniform boundedness principle, SE(.) is exponentially bounded. 
Now one proceeds as in the proof of Theorem 2.1. �9 

We show by an example that  in case k > 1 the hypothesis of E being 
invariant under the resolvent cannot be omitted in Theorem 0.1 (a). 

E x a m p l e  2.3. Let B generate a C0-semigroup on a Banach space F .  Assume 
that  D(B) 7~ F.  Let w �9 F \ D ( B )  and E := D(B2)+R.w.  Then E is a n a n a c h  
space for the norm Ix + ewlE := IXlB2 + ICWlF. Clearly, [D(B2)] ~-~ E ~-~ f .  
But  BE does not generate a k-times integrated semigroup for any k �9 N. 
In fact, assume that  there exists # �9 p(BE) A p(B). Then R ( # , B ) E  C E. 
So there are x �9 D(B2) ,  c �9 IR such that  R(# ,B)w  = x - t - cw .  Hence 
cw = R ( # , B ) w -  x �9 D(B) .  Thus c =  0. But then R(# ,B)w  = x �9 D(B2) .  
This implies w �9 D ( B ) ,  which is a contradiction. �9 

Next we will prove s tatement  (b) of Theorem 0.1. For tha t  we need the 
following two lemmas. 

L e m m a  2.4. Let S(.) be an exponentially bounded, (k + 1)-t imes integrated 
semigroup on F with generator B .  Then B generates a k-times integrated 
semigroup if and only if S(.)x e C([0, oo), [D(B)]) for all x E f . 
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P r o o f .  Assume that  S( . )x  e C([O,oo),[D(B)]) for all x e F . By (1.2), 
T( . )x  := d / d t S ( . ) x  e C([0, oc), E)  for all x e F .  Hence 

/0 /0 R(#,  B)  = #k+l e-~,tS(t)dt  = #k e-~,tT(t)dt  

for # large. By definition, B generates the k-times integrated semigroup T(.) .  
The converse follows from (1.2). �9 

L e m m a  2.5. Let S(.)  be an exponentially bounded, k - t imes  integrated semi- 
group on F with generator B .  Assume that D ( B )  9t F in the case k = 0 and 
that B does not generate a ( k - 1) -times integrated semigroup in the case k > O . 
Then there exists a Banach space E such that [D(B)] "--* E ~ F and such that 
BE generates an exponentially bounded (k + 1)-times integrated semigroup but 
not a k - t imes  integrated semigroup on E .  

P r o o f .  By Lemma 2.4, there is w E F such that  S( . )w • C([0, oc) , [D(B)D.  
By (1.3), w ~ D ( B )  so that  E := [D(B)] + N.w is a direct sum. Define 
Ix+cwls := IxlB + ICWlF. Then [D(B)] ~-* E ~-* F. By Theorem 2.1, BE 
generates a (k+  1)-times integrated semigroup on E .  Suppose that  BE generates 
a k-times integrated semigroup SE(.) on E .  Then 

/0 /0 #k e - t ' tSE( t )yd t  = R(# ,  BE)y  = R(# ,  B )y  = Itk e - t ' t s ( t ) y d t  

(y E E, # large). So it follows from the uniqueness theorem for Laplace trans- 
forms that  SE(.)y  = S(.)y for all y E E.  Consequently S(.)y  E C([0, oc) ,E)  
for all y E E .  In particular, there exists Sl ( . )w  E C([O, oc),[D(B)]) and 
c(.) E C([0, oc)) such that  S( . )w = S l ( . )w  +c( . )w .  Hence h ( . ) : =  f o ( S ( s ) w -  

c(s)w)ds  e C([0, oc), [D(B)]). By (1.2), f j  S ( s )wds  e D ( B )  for t > 0. Hence 

(fo c(s)ds)w e D ( B )  for all t > 0. Since w r D ( B ) ,  we conclude c(.) = 0. But 
then S( . )w = S l ( . )w  E el0,  oc), [D(B)]). This contradicts Lemma 2.4. �9 

P r o o f  o f  T h e o r e m  0 .1(b) .  Let B be the generator of a C0-semigroup T(.) 
on a Banach space F with D ( B )  ~ F .  By Lemma 2.5, there exists a Banach 
space E1 such that  [D(B)] ~-~ E1 ~-* E0 := F and such that  the part  B1 of B 
in E1 generates an exponentially bounded, 1-times integrated semigroup, but 
not a 0-times integrated semigroup. By Lemma 2.5, there exists a Banach space 
E2 such that  [D(B1)] ~-* E2 ~-~ E1 and such that  the part  B2 of B1 in E2 
generates an exponentially bounded, 2-times integrated semigroup, but not a 1- 
times integrated semigroup. Then B~ is the part  of B in E2. Hence we found a 
Banach space E2 such that  [D(B2)] ~-~ E2 ~-~ F and such that  the part  of B in 
E2 generates an exponentially bounded, 2-times integrated semigroup, but not a 
1-times integrated semigroup. Proceeding in this manner one obtains inductively 
Banach spaces Ek such that  [D(Bk)] ~ Ek ~-~ F and such that  the part  of B 
in Ek generates an exponentially bounded k-times integrated semigroup, but 
not a (k - 1)-times integrated semigroup. �9 

3. E x t r a p o l a t i o n  o f  i n t e g r a t e d  s e m i g r o u p s  

In this section we prove Theorem 0.2 and Corollary 0.3. Let k E N and 
S(.) be a k-times integrated semigroup on E of type w > 0 with generator A. 
Let #0 > c~ > w be fixed. Define F to be the completion of E with respect to 
the norm 

(3.1) M R  :--- sup l e - " 'T ( t )R (#o ,  A)kXlE , 
t>_0 
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where T(.)  is given by (1.1). Since a > 0, it follows tha t  IxlF < cons t .  Ix]E 
(x E E ) .  Thus  E "-*d F .  Next we show that  

(3.2) ] ( # -  a)R(tt, A)X[F < IXlF (# > a , x  E E).  

Let y E D(A k) and t >_ 0. Then u(s) :=  T( t+s)R(#o ,A)y ,  (s > 0) is a solution 
of CP(A)  for the initial value x = T(t)R(tto, A)y.  
It  follows from (1.5) that  R(#0, A)R(g, A)T(t)y = R(#o, A) f o  e-V'T( t + s)yds 
(# > a ) .  Hence 

(3.3) n(~, A)T(t)y = e-"'T(t + s)yas (~ > ,~) 

for all y E D(Ak).  Let x E E and # > a .  Using (3.3) one obtains 

[e-atT(t)R(#o, A)~R(#, A)xlE = e -at e-~"T(t + s)R(#o, A)kxds 
E 

= ~o ~ e-(t '-~)'e-~(t+')T(t + s)R(#o, A)kxds F~ 

< e-U'-~)~dslzlF = IXlF/(/~-- a). 

Since t > 0 is arbi t rary this implies (3.2). It follows from (3.2) tha t  R(#,  A) has 
a unique extension R(p)  E / : ( F )  satisfying 

(3.4) I(# - ~)n(~)lL(~)  < 1 (~, > ~). 

Then {R(/~) : # > a} is a pseudo resolvent on F .  We show that  

(3.5) lim~,_.~ ]ttR(#)y - Y]F = 0 (y E F). 

Because of (3.4) and density it sufficies to show (3.5) for y E E .  Let x = 
R(go, A)ky. Then,  by (3.3), 

I~n(g)y  - YIF = sup ]e-at(#R(#, A)T(t)x - T(t)x)l s 
t>_o 

e - a t  f o o  ds = sup #e-•S(T(t + s)x - T(t)x) . 
t>o Jo E 

Let r > 0. Since S(.) is of type w > 0 there exists M _> 0 such that  
IT(t + s ) x - T ( t ) x  I < Me '~(t+s) for all s,t > O. Since a > w, there exists 
q > 0 such that  

e -at f ~  #e-t'S(T(t + s)x - T(t)x)ds (3.6) sup 
t > q  I .Io E 

< const �9 # .  e('~-a)q/(# - w) < e/2 

for all p > a .  Since T(.)  is uniformly continuous on compact  intervals, there 
exists ~ > 0 such tha t  [T(t + s)x - T ( t ) x [ F  < e/2 for t e [0,ql,s e [0,5l. Hence 

f ~  T(t)x)ds (3.7) sup e - s t  #e-g ' (T( t  + s)x - < ~/2 (~ > a). 
o<_t<_q Jo  E 
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Since S(.) is of type w, 

F [ sup e -~t  #e-"~(T(t  + s )x  - T ( t ) ~ ) d s  _< cons t . /~ ,  e( '~  - w) ~ 0 
O<t<q J6 E 

for ~ ~ co. This together with (3.6), (3.7) shows that  lim IpR(#)y  - YlF ~ C. 

Since E > 0 is arbitrary, (3.5) is proved. 
It follows from (3.5) that  KerR(#)  -- {0}, (# > 0; observe that  KerR(#)  

is independent of # > c~ because of the resolvent equation). Hence there exists 
an operator B on F such that  (a, co) C p(A) and R(#)  = R ( # , B )  for # > a 
(see the proof of Theorem 1.9.3 in [Pa D. Because of (3.5) the domain of B is 
dense in F .  It follows from (3.4) and the Hille-Yosida Theorem that  B generates 
a C0-semigroups of type a on F .  

Since by construction R ( ~ , B ) E  C S and R(I~,B)E = R(# ,A)  (# > a ) ,  
it follows by Lemma 2.2 that  A = BE. Taking t = 0 in (3.1) one obtains 

(3.8) IR(#o,A)kYlE <-MR (Y �9 E). 

Let x �9 D(B  k) and y �9 F with x = R(#o,B)ky .  Then there exist y,~ �9 E such 
that Yn -* Y ill F .  By (3.8), R(#0,A)ky~ is a Cauchy seqence in E .  Hence 
x = F - l imR(~o ,B )ky~  = E - l imR(~o ,A)kyn  �9 E.  This implies D(B ~) C E 
and IR(#o,B)kylF, < lYlF for all y �9 F .  Consequently IxlE < t(~o - B)kXIF 
for all x �9 D(Bk) .  This shows that  [D(B k] ~ E .  

We have proved part  a) of Theorem 0.2. Before giving the proof of 
part b) we observe that  G := [D(Bk)] is a Banach space with the norm IXlG := 
I(#o -- B)kx[ F (which is equivalent to the graph norm). Since A = BE,  it follows 
A c  = Bk (the part  of B in [D(Bk)]).  Moreover, R(#o,B)  k is an isometric 
isomorphism from F onto G which coincides with R(#0,A)  k on E .  Since E is 
dense in F ,  it follows that  D(A k) = R(#0, B)kE  is dense in G. For x �9 D(A k) 
the norm is given by 

(3.9) Ixic :=  sup le-~tT(t)xlE,  
t>0 

where T(.) is given by (1.1). Now we prove the maximaiity assertion (b). Assume 
that  W ~-* E such that  A w  generates a C0-semigroup Tw(.)  of type a on W.  
Then D ( A ~ )  C D(A k) and for x �9 D(A k )  one has (by (3.5) for t = 0) 

f0 ~ f0 ~ e-U~Tw(s)xds = -R(#,Aw)x = R(# ,A)x  = e-U~r(s)xds (# > a). 

So the uniqueness of the Laplace transform implies that  T(.)x = Tw( . )x .  Con- 
sequently, I~lc :-- sup __ const ,  sup ___ const .  IXlw 

t>0 t_>0 
for all x e D(A~v ) since Tw( ' )  is of type (~. This implies tha t  

W = W-closure of D ( A ~ )  ~-~ G-closure of D(A k) -- G. �9 

R e m a r k  3.1. a) In the situation of Theorem 0.2 one has p(A) = p(B).  In 
fact, by the construction itself it follows that  R(#, B )E  C E for # > a .  Hence 
p(B) C p(A) Theorem 0.1. Conversely, assume that  # E p(A). Then it follows 
from (3.1) that  R (p ,A)  has a continuous extension R(#)  to F .  It is easy to see 
that  R(#) = R(# ,B ) .  
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b) One ,night define the norm HG on D(A k) directly by formula (3.9), and 
then define the space G as the completion of (D(Ak), I'10)" Doing so, one has 
to prove that G can be identified with a subspace of E.  It is this point which 
was missed in [Eel and [Nell. The proofs given there can be "repaired" if one 
replaces the operators T(t) by their closures (#0-A)kT(t)R(#0,  A) *with domain 
{x e E :  T(t)R(#o, A)~x e D(A})}. However, these proofs a far more technical 
than the one given above. 

P r o o f  of  Coro l la ry  0.3. The implications (a) ~ (c) follow from Theorem 
0.2. Choosing G := [D(Bk)] in (c) one sees that (c) --* (b). If (b) holds, then, 
for every initial value x E D(A k+l) C D(AG), there exists a unique solution 

u(.,x) e cl([0,  cc) ,E)  C cl([0,  cc) ,E)  

of CP(A) with u(t, x) e D(AG) C D(A) and 

}u(t,x)l <_ const. ]u(t,x)l G < const, e ~t IXlG < const, e ~elxlA~. 

With this, statement (a) follows from Theorem 4.2 in [Nell. �9 
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