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0. Introduction

In 1971, S. G. Krein, G. L. Laptev and G. A. Cvetkova [K-L-C] proved
that any linear (unbounded) operator A on a Banach space E such that the
resolvent set contains a half-line (w, o), generates a C,-semigroup on a certain
(maximal) subspace Z of E (see also [Ka], [M-O-O}, [Ne3]). This is a very
general result, expressing the popular belief that linear dynamic systems are
good-natured in some sense.

The fact that no information on the size of Z is available in general,
suggests a comparison of these operators according to the actual size of Z; with
Z = E as the best possible case and with Z = {0} as the worst, but still possible
one (see [Be]). On the good side of this scale, the cases D(4*) C Z (k € N) are
of particular interest. In this paper we want to show that this situation is actually
characteristic for generators of k-times integrated semigroups which were intro-
duced in order to treat the abstract Cauchy problem «'(t) = Au(t), v{0) =z in
cases where the resolvent of the operator A exists and has polynomial growth in a
right half-plane. Such operators frequently occur if one studies differential oper-
ators in LP(R™), (1 < p £ ), systems of linear partial differential equations or
higher order Cauchy problems, to mention just a few instances (see [Arl}, [Ar2],
A'K], [dL}, [K-H], [Nel], [Ne2], [Ne3], [N-S], [Oh], [So], [T-M1], [T-M2], [Th]).
It turned out that integrated semigroups share many properties with C,-semi-
groups. The purpose of this paper is to show that every C,-semigroup on a
Banach space F' induces integrated semigroups on continuously embedded sub-
spaces and that, conversely, every integrated semigroup on F can be “sand-
wiched” by C,-semigroups on extrapolation- and interpolation spaces.

In order to make this more precise we introduce some notation. An op-
erator A on a Banach space E is the generator of k-times integrated semigroup
(where k € Np ) if there exist w > 0 and §{-):{0,00) — L(E) strongly continuous
such that {(w,oco) is contained in the resolvent set of A, and

(ul — A) 7tz = p.k/ e PtS(t)xdt (x€ E,u>w).
0

The function S(-) is called k-times integrated semigroup. If there exists M >0
such that |S(t)| < Me™* for all t > 0, then S(-) is called exponentially bounded
of type w. Thus, if S(-) is of type w, it is also of type w' for all w’' > w.

A preliminary version of this paper appeared in: Semesterbericht Funktionalanaly-
sis 15, Tiibingen (1988/89).
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Forschungsgemeinschaft)



ARENDT, NEUBRANDER, SCHLOTTERBECK

This notion differs slightly from the usual one in the case k = 0, but will be
convenient for our purposes.

An operator A generates a 0-times integrated semigroup if and only if
A generates a C,-semigroup (see [Arl]).

For Banach spaces E, F we write £ — F if FE is a subspace of F and
the inclusion is continuous. We write E <4 F if E — F and FE is dense in F.

Let B be an operator on F with domain D(B). We denote by p(B)
the resolvent set and by R(u,B) := (upI — B)™! the resolvent of B in u. If
E — F, then we denote by Bg the “part of B in E” defined by D(Bg) :=
{zre D{(BYNE:Bzxe€ E}, Bgz:= Bz.

In particular, if B € L(F) (the space of all bounded linear operators)
such that RE C E, then Rg is the usual “restriction” of R to E. It follows
from the closed graph theorem that Rg € L(E).

If B is a closed operator on F, then D(B*) is a Banach space for the
graph norm [z|pe := |z| 4+ |Bz| + ... + |B*z|, (k € Ng). This Banach space
is denoted by [D(B)*]. Clearly, [D(B*)] — F. The part of B in [D(B*)] is
denoted by Bj.

If B generates a C,-semigroup T(-) on F, then Bj generates a C,-
semigroup Ti(-) on [D(B*)] and Ti(t) coincides with the restriction of T(t) to
[D(B*)] for all t > 0 (see [Na]).

Now we can state the main results.

Theorem 0.1. (Interpolation Theorem) Let B be the generator of a C,-
semigroup T'(-) on a Banach space F.

(a) Assume that E is a Banach space such that [D(B¥)] — E — F for
some k € N. In the case k > 2 assume in addition that R(y,, B)E C E
for some u, € p(B). Then Bg generates an ezponentially bounded,
k -times integrated semigroup Sg(-) on E.

(b) Assume that D{(B) # F. Then, given any k € N, there exists a
Banach space E such that [D(B*)] — E < F and Bg generates an
ezponentially bounded, k-times integrated semigroup, but not a (k —1)-
times integrated semigroup.

The next result is a converse of Theorem 1. Given the generator A of a
k-times integrated semigroup we construct a maximal inscribed space on which

the part of A acts as a generator of a C,-semigroup. An extrapolation space is
obtained as well.

Theorem 0.2. (Extrapolation Theorem) Let A be the generator of an ezpo-
nentially bounded, k -times integrated semigoup of type w > 0 on a Banach space
E. Let a > w. Then there exists a generator B of C, -semigroup of type a on
a Banach space F such that
(a) [D(B*))— E —4 F and A= Bg;
(b) the Banach space [D(BF)] is mazimal unique in the following sense :
If W is a Banach space such that W — E and Aw generates a C, -
semigroup of type a on W, then W — [D(B*)].

Note that the operator A is not necessarily densely defined. Theorem
0.2 says that A is “sandwiched“ by the C,-semigroup generators B and Bi. In
combination with Theorem 0.1 one obtains the following characterization.

Corollary 0.3. Let A be a densely defined operator on a Banach space E with
non empty resolvent set. Then the following statements are equivalent.
27
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{a) A generates an exponentially bounded, k-times integrated semigroup

on E.
(b) There exists @ Banach space G such that [D(A¥)] — G — E, and Ag
generates a C,-semigroup on G.

(c) There exists a generatar B of a C,-semigroup on a Banach space F
such that [D(B*)] — E — F, R(u,B)E C E for some p € p(B) and
A= Bg.

These results show that the concepts of integrated semigroups and C,-
semigroups are the same up to the choice of the Banach space. However, in
many instances it turns out that it is relatively easy to prove that an operator
A generates an integrated semigroup on a “nice” Banach space E, whereas the
construction of the inter- or extrapolation spaces on which C,-semigroups are
generated is quite tedious, if not impossible (see [A-K], [Nel], [Ne2]).

The paper is organized as follows. Section 1 contains the basic properties
of integrated semigroups which are needed later while in Section 2 and 3 the main
results are proved.

1. Preliminaries

At first we define Laplace transforms of operator-valued functions. Let E
be a Banach space and S(-) : [0,00) — L(E) be a strongly continuous function.

For p € C and b > 0 we define the operator fob e~#tS(t)dt € L(E) by

b b
(/ e_"tS(t)dt>:z = / e P S(t)zdt (z € E),
0 0

where fob e~#tS(t)zdt is the usual Riemann integral. Let S;(t) := fot S(s)ds
(t > 0). If S(-) is exponentially bounded, then the Laplace transform

00 b
/ e #tS(t)dt := lim e HS(t)dt
0 b—oa Jg
of S(-) exists. The converse statement does not hold (see [Do], p. 38). We

show that the Laplace transform of S(-) exists if and only if the once integrated
function S;(-) is exponentially bounded.

Proposition 1.1. a) If |S1(t)] < Me™* for some M,w >0 and all t > 0, then
b
lim / e #tS(t)dt
b—oo Jg
exists in the operator norm for p € C with Rep > w and

/ e~BtS(t)dt = p / e~HES, (¢)dt.
0

0

< o0, then there exists M > 0 such that

b
/ e~MS(t)dt
Y]

b) Conversely, if sup
>0

28
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1S1(t)] < MeRe#t (if Rep >0 or p=0) and |S1(t)] < M(1+1t) (if Rep =10
and p#0) forallt > 0.
Proof. 2a) From the assumptions it follows that

t+h
/ e M8y (s)ds| < M(e™(Rer—w)t) [(Rep — w) — 0
t

for t — oo uniformly in A > 0 for all g4 € C with Regy > w. Hence
fo e #3S,(s)ds converges in the operator norm. Integrating by parts one ob-
tains

oo

t t
/ e # S(s)ds = eS8 () + u/ e 8 (s)ds — u/ e " 8,(s)ds
0 0 0

for ¢ — oo with respect to the operator norm.

b) By assumption, the operator family B(t) := f e~ #tS(s)ds is norm bounded.
The statement follows from

t

S1(t) :/0 et*e™#S(s)ds = e* B(t) — ,u/ e** B(s)ds. =

4]

Next we define integrated semigroups and their generators.

Definition 1.2. Let k£ € Ng. An operator A on a Banach space F is called
a generator of a k-times mtegrated semlgroup if there exist M,w > 0 and a
strongly continuous function S(-):{0,00) — L(E) satisfying

/OtS(s)ds

such that (w,00) C p(A) and R(p,A) = p* [(Ce™#tS(t)dt for p > w. The
function S(-) is called the k-times integrated semigroup generated by A. If there
exists C > 0 and w’ such that |S(t)] < Ce*'*(t > 0), then S§(-) is called
exponentially bounded of type w'. u

< Mevt t>0

We do not know whether in the situation of Definition 1.2 the function
S(-) is automatically exponentially bounded. Thus the definition we give here
mlght be more general than the one given in [Arl] or [Nel), where the function
S(-) is always assumed to be exponentially bounded. However, by Proposition
L1, if A generates a k-times integrated semigroup S(-), then A generates the
exponentially bounded, (k + 1)-times integrated semigroups Sy(t) = fot S(s)ds.
Moreover, the Cauchy problem with respect to A

CP(A)  u'(t) = Au(t), u(0)=z, u()e CH[0,00),E)n C([0,00), D(A))
has at most one solution for all z € E (see [Arl] or [Nel]).

Let A be the generator of a k-times integrated semigroup S(-) on E.
29
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Define T'(t) € L([D(A¥)], E), (t > 0) by

(1.1) T(t)z := S(t)A*z+ (t* (k= 1))A* 'z + .. +tAz+z  (z € D(AY)).
For = € D(A**!) the function u(-) ;= T(-)z is the unique solution of CP(A).
In fact, by the proof of Prop. 3.3 in [Arl] one has

(1.2) /Ot S(s)yds € D(A) and A/OQ S(s)yds = S(t)y — (t*/k)y (y € E,t >0),

(1.3) S(t)Ay = AS(t)y  (y € D(A)).
In particular, for y € D(A), S(-)y € C¥([0, ), E) N C([0,0), D(A)) and

(14) ZS( = SOAY+ (- (k- 1)y (y € D(A)).

Now it follows immediately that T(-)z = (d"/dt")S( 2:1: for z € D(A*) and
that T(-)z is a solution of CP(A) whenever z € D(A*+1). Moreover, if u(-) is a
solution of CP(A) with |u(t)| < const-e®* for some a > 0, then for o < u € p(A)

(1.5) R(u,A)u(O)=A°° “Hty(t)dt (see [Nel, 4.6]).

Next we discuss the “rescaling” of integrated semigroups (see also [dL]).

Proposition 1.3. Let k € Ny and r € R. If A generates an ezponentially
bounded, k-times integrated semigroup, then A - rl generates an ezponentially
bounded, k-times integrated semigroup.

Proof. Let S(:) be of type w. There exists a polynomial p(-) of degree k — 1
k oo
such that Z(f)r’ﬁ"i = / e~ #tp(t)dt, (u > 0). Define a strongly continuous
0

Jj=1
and exponentially bounded function S.(-):[0,00) — L(E) by

S.(t) == e~ "S(t) + /Otp(t — 8)e™"°S(s)ds (t > 0).

Let u > max(0,w — r). It follows from Fubini’s Theorem that

/ e H S, (t)dt = / e~ FIItS(8)dt + / RIS (1) dt / e " p(s)ds
0 0 0 0

k
= (1 + }:(?)rju‘j) (b +7)"*R(u+r, A)

i=1
=(1+r/p*(u+r)*Rp+rA)=p " Rp,A-rI). =

2. Interpolation of semigroups

We first prove Theorem 0.1 for £ = 1; i.e.,, we consider interpolation
spaces between the given Banach space F' and the domain of the C,-semigroup
generator B. For later purposes it is convenient to consider not only generators
of C,-semigroups, but also generators of integrated semigroups. Thus, for k=1,
Theorem 0.1 is the special case of the following theorem for m = 0.
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Theorem 2.1. Let m € Ny and let B generate an m -times integrated semi-
group T(-}) on a Banach space F. Assume E is a Banach space such that
[D(B)] — E — F. Then Bg generates an (m + 1)-times integrated semi-
group Sg(-) on E. Moreover, if T(-) is ezponentially bounded, then Sg(-) is
ezponentially bounded.

We will use the following lemma, which is easy to prove.

Lemma 2.2. Let A be an operator on E and let B be an operator on F such
that E — F. Assume that there exists u € p(B) such that R(p,B)E C E.
Then A = Bg if and only +f p € p(A) and R(u,A) = R(u,B)g .

Proof of Theorem 2.1. Let T'(-):{0,00) — L(F) be the m-times integrated
semigroup generated by B. Define S(t) := fot T(s)ds € L(F) (t > 0). By (1.2),
S(t)F < D{(B) and so S(t)E C E for t > 0. Set Sg(t) := S(t)r € L(E). By
(1.2), BS(t) = T(t) — (t™/mN)I. It follows that S(-)z € C([0,00),[D(B)]) for
all z € F. Consequently, Sg(-):{0,00) — L(E) is strongly continuous.

We show that f(; Sg(s)ds is exponentially bounded (in L(E)). By
Proposition 1.1, there exist M,w > 0 such that |S(t)|z ) < Me** (¢t > 0). Let
z € E. Then we have fot SE(s)zds = fOtS(s):cds € D(B) and Bfot SE(s)ds =
S(t)z — (t™*!/(m +1)!)z. Since [D(B)] — E < F we obtain

/t S(s)zds

0

= const - ( / S(s)zds
0

= const - ( /t S(s)zds
0

M
< const - (Ee“’t Iz p + Me™t |z| p + (t™F /(m 4 1)! ]xIF) .

/Ot Se(s)zds

< const -
E

B

. + ,B /Ot S(s)zds F)

+ |S(t)z — (™ /(m + 1)!)z|F>
F

Consequently, sup,zole‘“” fot SE(s)zds‘E < oo, (z € E). By the uniform
boundedness principle, [fot SE(s)ds‘ﬁ(E) < Ce*t, (t > 0) for C suitable. Sim-
ilarily, one shows that IT()gry < Me™, (t > 0) implies that ISe®)epy <
Cevt,

Since R(p,B)E C E for p € p(B), one has p(B) C p(Bg) and
R(u, Bg) = R(p,B)g for all p € p(B). For > w define

oo

R(p) = u™H! /0 ¢S g(t)dt € L(E).

Integrating by parts one obtains
R(p)z = p™ / e MT(t)zdt = R(n, B)z = R(u, Bp)z (z € E,pu > w).
0

By definition, this means that By generates the (m + 1)-times integrated semi-
group Sg(-) on E. ) u
1



ARENDT, NEUBRANDER, SCHLOTTERBECK

Next we prove statement (a) of Theorem 0.1 for arbitrary k. We will
frequently use the following fact. Let B be a closed operator and k € N. If
1 € p(B), then z — |(u] — B)*z| defines an equivalent norm on [D(BF)].

Proof of Theorem 0.1. We show that R(u,B)E C E for all x € p(B). Let
1, o € p(B). Iterating the resolvent equation
R(u, B) = R(po, B) + (1o — 1) R(po, B)R(p, B) yields
k—1
(21)  R(n,B) = (po—p)""R(po, BY +(po — #)* ' R(pso, B)* " R(u, B).
3=1
By assumption or by R(ug, B)F C D(B) (for k = 1), we have R(uo, B)E C E
and R(uo, B)*"'R(u, B)E C D(B*) C E. This proves the claim.

Let B generate a Cp-semigroup T'(-) with |T'(t)] < Me™ (t > 0)
for some M,w > 0. Considering B — rI if necessary instead of B, we can
assume that 0 € p(B) (see Proposition 1.3). The exponentially bounded, k-times
semigroup generated by B is given by S(t) := fot((t — )1 /(k— )NT(s)ds. Tt
follows from (1.1) that

k—1
(2.2) S(t) = B“kT(t) _ Z(ti/i!)B_k.H"

=0

Consequently, S(t)E C E, Sg(t) := S(t)g € L(F) and Sg(-):{0,00) — L(E) is

strongly continuous. One obtains from (2.2) that

k-1
Se(t)ely < Y (/i) [B7 |, g lol g + |BT*T ()|
1=0
< const - (! |z|z + IB_kT(t)z‘|Bk) < const - e** |z|; + const - |T(t)z| -

< const - €** |z} 5 + const - €** |z| < const - e |z|.

Hence, by the uniform boundedness principle, Sg() is exponentially bounded.
Now one proceeds as in the proof of Theorem 2.1. ]

We show by an example that in case k > 1 the hypothesis of E being
invariant under the resolvent cannot be omitted in Theorem 0.1 (a).

Example 2.3. Let B generate a Cy-semigroup on a Banach space F. Assume
that D(B) # F. Let w € F\D(B) and E := D(B?*)+R.w. Then FE is a Banach
space for the norm |z + cw|g := |z|ge + |cw|p. Clearly, [D(B?)] — E — F.
But Bg does not generate a k-times integrated semigroup for any k € N.
In fact, assume that there exists u € p(Bg) N p(B). Then R(u,B)E C E.
So there are x € D(B?), ¢ € R such that R(u,B)w = = + cw. Hence
cw = R(p, B)w — = € D(B). Thus ¢ = 0. But then R(u, B)w = z € D(B?).
This implies w € D(B), which is a contradiction. "

Next we will prove statement (b) of Theorem 0.1. For that we need the
following two lemmas.

Lemma 2.4. Let S(-) be an ezponentially bounded, (k + 1)-times integrated
semigroup on F with generator B. Then B generates a k-times integrated
semigroup if and only if S(-)z € C([0,00),[D(B)]) for all z € F.
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Proof. Assume that S(:)z € C([0,00),[D(B)]) for all z € F . By (1.2),
T(-)z := d/dtS(-)z € C([0,00), E) for all £ € F. Hence

0 oo
R(u, B) = p+t? / e HES(t)dt = p* / e M (t)dt
[¢] 0

for p large. By definition, B generates the k-times integrated semigroup T(-).
The converse follows from (1.2). |

Lemma 2.5. Let S(-) be an ezponentially bounded, k-times integrated semi-
group on F with generator B. Assume that D(B) # F in the case k = 0 and
that B does not generate a {k — 1) -itmes integrated semigroup in the case k > 0.
Then there exists a Banach space E such that [D(B)] « E — F and such that

Bpg generates an ezponentially bounded (k + 1) -times integrated semigroup but
not a k-times integrated semigroup on E.

Proof. By Lemma 2.4, there is w € F such that S(-)w ¢ C([0,00), [D(B)}).

y (1.3), w ¢ D(B) so that E := [D(B)] + Raw is a direct sum. Define
|z + cw|g := |z|g + |cw|p. Then [D(B)] — E < F. By Theorem 2.1, Bg
generates a (k+1)-times integrated semigroup on E. Suppose that Bg generates
a k-times integrated semigroup Sg(-) on E. Then

p [ e gt = R, Bely = R(w, By = /0 €S (t)ydt
0
(y € E, p large). So it follows from the uniqueness theorem for Laplace trans-
forms that Sg(-)y = S(-)y for all y € E. Consequently S(-)y E C([0, <), E)
for all y € E. In particular, there exists Si(-)w € C([0,00),[D(B)]) and
c(-) € C([0,00)) such that S(-)w = S1(-)w + ¢(-)w. Hence h(-) := [ (S(s)w ~

c(s)w)ds € C(|0,00),[D(B)]). By (1.2) fo (s)wds € D(B) for t > 0. Hence
(fo s)ds)w € D(B) for all t > 0. Smce w ¢ D(B), we conclude c(-) = 0. But
then S( Jw = 81 )w € C}0,00),[D(B)]). This contradicts Lemma 2.4. =

Proof of Theorem 0.1(b). Let B be the generator of a Cy-semigroup T'(-)
ou a Banach space F' with D(B) # F. By Lemma 2.5, there exists a Banach
space E; such that [D(B)] — E; — Ej := F and such that the part By of B
in E; generates an exponentially bounded, 1-times integrated semigroup, but
not a 0-times integrated semigroup. By Lemma 2.5, there exists a Banach space
E; such that [D{B;)] — E; — E; and such that the part B, of By in E,
generates an exponentially bounded, 2-times integrated semigroup, but not a 1-
times integrated semigroup. Then Bj is the part of B in E;. Hence we found a
Banach space E, such that [D(B?)] < E; < F and such that the part of B in
E, generates an exponentially bounded, 2-times integrated semigroup, but not a
1-times integrated semigroup. Proceeding in this manner one obtains inductively
Banach spaces Ey such that [D(B*)] — Ej — F and such that the part of B
in E; generates an exponentially bounded k-times integrated semigroup, but
not a (k — 1)-times integrated semigroup. ]

3. Extrapolation of integrated semigroups

In this section we prove Theorem 0.2 and Corollary 0.3. Let k € N and
S(-) be a k-times integrated semigroup on E of type w > 0 with generator A.

Let pp > a > w be fixed. Define F to be the completion of E with respect to
the norm

(3.1) 2| p i = sup le=*T'(¢)R(po, A)*x| 5,
- 33
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where T'(:) is given by (1.1). Since a > 0, it follows that |z|z < const . |z|g
(r € E). Thus E <4 F. Next we show that

(3:2) |(p— )R(p, A)z|p < |z]p (k> o,z € E).
Let y € D(A*) and ¢ > 0. Then u{s) := T(t+s)R{po, A)y, (s > 0) is a solution
of CP(A) for the initial value z = T(¢)R(u, A)y.

It follows from (1.5) that R(uo, A)R(s, A)T(t)y = R(po, A) [~ e **T(t + s)yds
(p > o). Hence

(33) R ATOy = [ e T(t+o)yds (4> o)
0
for all y € D(AF). Let z € E and p > a. Using (3.3) one obtains

le=**T(t)R(po, A)* R(1, Az, =

e o]
e'“'/ e~ T(t + 8)R(po, A)*zds
0 E

/ e~ (B—Dsema(t+T(t 4 YR(pp, A)Fzds
A E

< [ e sl = fol /(s - ).
0

Since t > 0 is arbitrary this implies (3.2). It follows from (3.2) that R(u, A) has
a unique extension R(p) € L(F) satisfying

(3.4) (u~)B(p)lgr <1 (1> a)
Then {R(p): p > o} is a pseudo resolvent on F'. We show that
(3.5) limyoo [pR(p)y —ylp =0  (y € F).

Because of (3.4) and density it sufficies to show (3.5) for y € E. Let = =
R(pup, A)*y. Then, by (3.3),

|uR(u)y - ylp = sup le=**(uR(p, A)T(t)z - T(t)z)|

= sup
>0

et /00 pe H(T(t+ s)x — T(t)z)ds
0

E

Let ¢ > 0. Since S(-) is of type w > 0 there exists M > 0 such that

IT(t + 8)z — T(t)z] < Me*(*+%) for all s,t > 0. Since a > w, there exists
g > 0 such that

(3.6) sup
. t2¢

< const - - W79/ (yy — w) < €/2

/ ~ e (T(t + 8)z — T(t)z)ds
0

E

for all # > a. Since T(-) is uniformly continuous on compact intervals, there
exists § > 0 such that |T(t + s)z — T(t)z|p < /2 for t € [0,4],s € [0,5]. Hence

(3.7 sup
0<t<q

<ef2 (> a).

5
e_‘“/o pe B (T(t + s)z — T(t)z)ds .
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Since S(-) is of type w,

sup

e“‘"/ pe P (T(t + s)z — T(t)x)ds| < const-p-el¥=#8/(y~w) -0
0<t<q é

E

for u — co. This together with (3.6}, (3.7) shows that ”li_.ngo |LR(p)y —ylp <e.

Since £ > 0 is arbitrary, (3.5) is proved.

It follows from (3.5) that KerR(u) = {0}, (i > 0; observe that KerR(u)
is independent of p > a because of the resolvent equation). Hence there exists
an operator B on F such that (a,00) C p(A) and R(p) = R(u,B) for p > a
(see the proof of Theorem 1.9.3 in {Pa]). Because of {3.5) the domain of B is
dense in F'. It follows from (3.4) and the Hille-Yosida Theorem that B generates
a Cg-semigroups of type a on F.

Since by construction R(u, B)E C E and R(g,B)g = R{u, A) (¢ > o),
it follows by Lemma 2.2 that A = Bg. Taking ¢ = 0 in (3.1) one obtains

(3.8) |R(no, A)*y|, <lvlp (v € E).

Let z € D(B*) and y € F with z = R(ug, B)*y. Then there exist y,, € E such
that y, — y in F. By (3.8), R(pg, A)*y. is a Cauchy seqence in E. Hence
t = F — limR(yo, B)*y, = E — limR(po, A)*y,, € E. This implies D(B*) C E
and IR(ug,B)"y|E < |yl for all y € F. Consequently |z|; < ’(MO —B)kmlp
for all z € D(B*). This shows that [D(B*] — E.

We have proved part a) of Theorem 0.2. Before giving the proof of
part b) we observe that G := [D(B*)] is a Banach space with the norm |z|g :=
I(#o - B )kml p (which is equivalent to the graph norm). Since A = Bg, it follows
Ag = By (the part of B in [D({B*)]). Moreover, R(ug, B)* is an isometric
isomorphism from F onto G which coincides with R(ug, A)* on E. Since E is

dense in F, it follows that D(A*) = R(uq, B)*F is dense in G. For = € D(A¥)
the norm is given by

3.9 x|~ = sup [e T ()| ..,
(3.9) |zl g tzg| (t) |E

where T'(-) is given by (1.1). Now we prove the maximality assertion (b). Assume
that W < E such that Aw generates a Cy-semigroup Tw (-) of type o on W.
Then D(A%,) C D(A*) and for z € D(A%,) one has (by (3.5) for t = 0)

o0

/ " e Ty (s)ads = R(u Aw)z = R, Az = / e T(s)eds (1> a).
0 0

So the uniqueness of the Laplace transform implies that T'(-)x = Ty (-)z. Con-
sequently, |z|, := sup |e'°‘tT(t):z|E < const - sup |e"°tTW(t):c]W < const - |z,
£20 >0

for all z € D(A¥%,) since T (-) is of type a. This implies that
W = W-closure of D(A¥,) <  G-closure of D(A*) =@G. [ |

Remark 3.1. a) In the situation of Theorem 0.2 one has p(A) = p(B). In
fact, by the construction itself it follows that R(u, B)E C E for yu > a. Hence
p(B) C p(A) Theorem 0.1. Conversely, assume that u € p(A4). Then it follows

from (3.1) that R(u, A) has a continuous extension R(y) to F. It is easy to see
that R(p) = R(u, B).
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b) One might define the norm ||, on D(A¥) directly by formula (3.9), and
then define the space G as the completion of (D(A*),|-|;). Doing so, one has
to prove that G can be identified with a subspace of E. It is this point which
was missed in [Ke] and [Nel]. The proofs given there can be “repaired” if one
replaces the operators T'(t) by their closures {uo—A)*T(t)R(po, A)* with domain
{z € E : T(t)R(uo, A)*z € D(A*)}. However, these proofs a far more technical
than the one given above.

Proof of Corollary 0.3. The implications (a) — (c) follow from Theorem
0.2. Choosing G := [D(B*)] in (c) one sees that (c) — (b). If (b) holds, then,
for every initial value =z € D(A**!) C D(Ag), there exists a unique solution

u(-,z) € C1([0,00), E) C C*([0,0), E)
of CP(A) with u(t,z) € D(Ag) C D(A) and
lu(t, z)] < const - |u(t,z)|g < const - €**|z|5 < const - € |z 4 .

With this, statement (a) follows from Theorem 4.2 in [Nel]. m
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