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VECTOR-VALUED TAUBERIAN THEOREMS
AND ASYMPTOTIC BEHAVIOR

OF LINEAR VOLTERRA EQUATIONS*
WOLFGANG ARENDTt AND JAN PROSS$

Abstract. The asymptotic behavior of the solutions of linear Volterra equations in a Banach
space X of the form

(.) u(t) f(t) + a(t T)Au(r)d(T), >_ 0

is studied, in particular that of the resolvent S(t) for (.); here a E Loc(+) and A is a closed linear
operator in X with dense domain. A complete characterization of the existence of limt-0 S(t)x Px
for all x E X in the sense of Abel is obtained, and the nature of the ergodic limit P is studied. By
means of vector-valued Tauberian theorems for the Laplace transform, a general result on convergence
of S(t) in the strong sense is derived. Several examples are given which illustrate this result, and
also an application to the theory of linear viscoelasticity is presented.
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1. Introduction. Let X be a Banach space, a E Loc(]R+), A a closed linear
operator in X with dense domain D(A), and consider the abstract linear Volterra
equation in X

(1.1) u(t) f(t) + a(t- T)Au(T)dT, t O,

where f: R+ - Z is continuous, R+ [0, c). XA denotes the Banach space D(A)
equipped with the graph norm ].IA of A. A function u E C(R+; XA) satisfying (1.1)
on + is called a strong solution of (1.1), while u C(li(+; X) is a mild solution of
(1.1) if a u e C(R+; XA) holds and

(1.2) u(t) f(t) + A a(t- T)U(T)dr, t >_ 0,

is satisfied on +. A family {S(t)}t>o c B(X) of bounded linear operators in X is
called a resolvent for (1.1) if S(t) commutes with A and satisfies the resolvent equation

(1.a) S(t) + a(t- r)AS(r)xdr, t >_ O, z e D(A).

Once a resolvent S(t) for (1.1) is known to exist, it is unique, and the solution of (1.1)
is represented by the variation of parameters formula

(1.4) u(t) - S(t )f(T)dT, t >__ 0,
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whenever u is a mild solution of (1.1), then S f E CI(R+;X) and u is represented
by (1.4).

By now the question of existence of a resolvent for (1.1) has been settled for many
different classes of pairs (a, A); for a general exposition of the theory, we refer to Priiss
[33]. Here we always assume the existence of a resolvent S(t) for (1.1) which is in
addition of subexponential growth, i.e., which satisfies

(1.5)
1

lim log IS(t)l < o.
t t

It is the purpose of this paper to study the asymptotic behavior of the solutions of
(1.1), in particular that of the resolvent S(t) itself. More precisely, the existence of the
limits limt__. u(t) u(cx) and limt S(t) P in various senses are investigated,
and the nature of the limits u(oc) and P are discussed.

Our approach is based on the theory of vector-valued Laplace transforms. A
well-known Abelian theorem shows that if limt_ S(t)x Px for all x E X, then

(1.6) H(A)- (A) S(t)e-tdt, Re A > 0,

satisfies

(1.7) A- lim S(t)x:= lim AH(A)x=Px for allxeX.
t--*cx X---O+

Therefore it is natural to study first the existence of the Abelian limit P of S(t) as well
as its properties. This will be done in 4, where we also apply some elementary vector-
valued Tauberian theorems to deduce the convergence of S(t) in the ordinary sense
from existence of the ergodic limit P B(X); for that, several strong assumptions on

S(t) are needed. Once the Abelian limit P B(X) of S(t) is known to exist, it follows
easily that A-limt_. u(t) u(cx) also exists whenever f(t) admits an Abelian limit
f(cx3) and then u(cx)= Pf(oc) holds.

The main result of this paper, the General Convergence Theorem stated and
proved in 5, gives sufficient conditions for the strong convergence of S(t) to its ergodic
limit P as t - c. For the special case a(t) 1 and A the generator of a bounded C0-
semigroup T(t) in X, we have S(t) T(t) and the result reduces to a stability theorem
for C0-semigroups obtained recently by Arendt and Batty [2] and independently by
Lyubich and Phong [28]; cf. also 7. The proof of the General Convergence Theorem
relies on the complex Tauberian theory for the vector-valued Laplace transform. In
fact, it is very much inspired by the proof of Arendt and Batty [2] for the semigroup
case. However, due to the more complicated structure of the Laplace transform H(A)
of the resolvent S(t) for (1.1), i.e.,

1
(I- 5(A)A) -1 Re A > 0,(1.S) H(A) X

the Tauberian arguments involved are more delicate and differ from those employed
in the proof of Arendt and Batty [2].

Since Abelian and Tauberian theorems for the vector-valued Laplace transform
are at the heart of our approach, and since there is no coherent presentation of this
material available in the literature, we have included two sections on this matter.
Section 2 contains the basic Abelian theorem, as well as the vector-valued extension
of the classical real Tauberian theorems due to Hardy-Littlewood, Wiener, Pitt, and
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Karamata; cf. Doetsch [15] and Widder [42] for their classical statements. Complex
Tauberian theorems are presented in 3. Here a condition on the Laplace transform
] of f is given which implies convergence of f(t) (t -. ). A first result of this
type had been given in 1938 by Ingham [20], but recently a simple new technique of
proof due to Newman [30] has led to considerable extensions; see Korevaar [25], Allan,
O’Farrell, and aansford [1], Arendt and Batty [2], Ransford [34], and Batty [3].

Section 6 is devoted to an elaboration of several examples and special cases of the
theory developed in 3-5. In particular, several classes of kernels are presented, for
which the assumptions of the General Convergence Theorem reduce to boundedness
of S(t) (which is necessary for the existence of the strong limit of S(t) anyway) and
to a spectral condition that cannot be relaxed (and to some extent is also necessary).
In 7, we apply our results to the theory of linear viscoelasticity. Here we show that
if A generates a uniformly bounded cosine family and a(t) is of the form

(1.9) a(t) ao + at + a(T)dT, t >_ 0

with ao, ao >_ O, a(t) >_ 0 nonincreasing, log a(t) convex, and limt_ a(t) O,
then S(t) converges strongly as t -- c if in addition N(A) +/- N(A’) {0} and
a(t) at hold. This result shows that any viscoelastic fluid in a smooth domain
t c IRa with compact boundary is asymptotically stable in the strong sense, whether
Ft is bounded or not. It has been shown in Priiss [32] that viscoelastic fluids are
uniformly asymptotically stable if and only if A PA is invertible. This is always
true for bounded domains Ft, but it is in general not the case for unbounded domains;
cf. 7 for these concepts and further discussion.

2. Abelian and real Tauberian theorems. Throughout this section, (X,
is a Banach space and f e no([0, c), X) is such that

f(,X) e-XtI(t)dt := lim e-atf(t)dt

exists for Re > 0 (this is equivalent to supt_>0 e-)’t f2 f(s)dsl < o for all > 0).
DEFINITION 2.1. Let f X. The function f converges to f in the sense of

Cesaro (t ---, o) if 6’- limt__., f(t)"= limt__,(1/t) fo f(s)ds f, and f converges
to f in the sense of Abel (t o) if A limt.__, f(t) := lim)0+ )f(,X) f.

The following Abelian theorem is easy to prove (see [19, Thm. 18.2.1]). It will be
convenient to introduce F(t) f J’(s)ds as an auxiliary function.

TOaEM 2.2. Let f, F X.
(a) /f limt__, f(t) f, then 6" limt__, f(t) f.
(b) If 6" limt__, I(t) f, then A limt__, J’(t)
(c) If limt F(t) F, then lim)__,0+
Note that (c) is a special case of (b) since f()) (F’)/(,) )_() (, > 0).
A result if called a Tberin theorem if a condition on f is given under which

the converse implications of (a), (b), or (c) are valid. Such theorems are presented in
sections A, B, C, D, and E respectively. Most of these results are well known at least
in the numerical case. We include proofs here for the sake of completeness.

Our main objective is to find conditions under which Abelian convergence implies
convergence (see D).
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A. Conditions under which C-limt_, f(t) f implies limt_ f(t) f.
A vector-valued function f is called feebly oscillating (when t -- oc) if

lim If(t) f(s)l- 0
t/s--*l

(cf. [19, Def. 18.3.1], [43, Def. 8.4]).
Example 2.3. Assume that tlY(t)l < M for t >_ ’, where T > 0. Then F is feebly

oscillating. In fact, IF(t) F(s)l <_ ft lf()[(d/) <_ M og(t/s) for t _> _> ’.

THEOREM 2.4. Assume that f is feebly oscillating and let f X. If C-
limt__, y(t)= y, then limt__, f(t)= f.

Proof. We can suppose that f 0. Let e > 0. There exist > 0, to > 0
such that If(s) f(t)l < e whenever s, t > to, s e It 5t, t + 5t]. Hence If(t)
(1/25t)/.t(1+5) ft(l+5)t(-) f(s)dsl I(1/25t) t(-) (f(t) f(s))ds[ <_ if t _> to. Since

1 ft(+)
t--.lim ]t(-) f(s)ds O,

we conclude limt__. f(t) O. I-!

B. Conditions under which A-limt_ f(t) f implies C-limt_. f(t)
f. The following result is a particular case of [19, Thins. 18.3.3, 18.3.2].

THEOrtEM 2.5. Let f X. Assume that f L([T, cx); X) for some T >_ O. If
A lim_. f(t) f then C- limt_. f(t) f.

Proof. 1. We first assume that T 0. For/ > 0 let ez(t) =/e-(t > 0). Then
span {e"/ > 0} is dense in L[0,) (in fact, if g
fl(fl) for all > 0, then g 0 almost everywhere by uniqueness theorem for Laplace
transforms). By hypothesis lima_. f e-Sf(cs)ds lim),_0+ f e-sf(s/A)ds
lira),_.0+ Af e-Sf(s)ds f. Hence

fo fo Cs)ds f (ef, :)lirn(e, f(a.)) lirn e-SS(as)ds lirn
for all/ > 0. It follows that lim,_.(h, f(a.)) ff h(t)dt for all h E/[0,x).
Letting h X[0,] we obtain lima_ 1/af S(s)ds
(h, f(,.)) f.

2. If T > 0 the result follows by applying 1. to g(t) f(t
Another result of this type involves an order condition. We assume in the following

theorem that X is an ordered Banach space with normal cone X+ (i.e., X+ is a closed
convex cone such that X+ q (-X+) {0} and X_ X_ X’ where X_ denotes the
dual cone; see [5] for details). For example, X may be a Banach lattice.

THEOREM 2.6. Assume that f(t) >_ 0 (i.e., f(t) X+) for t >_ O. If A-
limt_ f(t) f, then C limt_. f(t) f.

Zaramata’sproof of this result (see [43, Thm. 8.5.3]) goes through in the vector-
valued case described above. A very short and elegant proof in the scalar case is given
by ZSnig [24].

(:3. Conditions under which lim_.0+ ](A) F implies limt_. F(t) F.
The following theorem is due to Hardy and Littlewood in the numerical case; see [43,
Thm. 8.4.3].

THEOREM 2.7. Let F E X. Assume that for some T > 0

(2.1) M sup tlf(t)l < c.
t>"
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If lim__,0+ ]() F, then limt__, F(t) F.
Proof. 1. We first assume that T 0. For t > 0 we have

IF(t) ]( )1 /(s)[1 e-8/t]ds f(s)e-/tdsl

_< ( [1 -/]/-e + -l-/el

_< [ p t[ -/]/ + --e]

_< [ p (--/+ --el
0<xl

Since limt_ ](1/t) F, it follows that F is bounded. But A- limt_, F(t)
lim_+0+ ](A) F. So it follows from Theorem 2.5 that C- limt__, F(t) F.
The function F is slowly oscillating (see Example 2.3). Hence limt_, F(t) F by
Theorem 2.4.

2. If T > 0 the result follows from 1. by considering f(t + T) instead of f(t). ]

D. Conditions under which A- limt__, f(t) f implies limt__, f(t)
f. Since /P(A) ](A), any Tauberian theorem of type D yields one of type C.
Conversely, if f E CI([T, cx),X) we can apply a result of type C to the function
f’(t + T) and obtain a Tauberian theorem of type D.

Following an idea of Batty [3] we apply instead Tauberian theorems of type C to
the function f defined by

(2.2) f(t) (f(t + ) f(t))/5 (t > O)

for some 5 > 0. The following implications hold.
LEMMA 2.8. Let f X, 5 > O.

ft+6Proof. Since [(1/5) , f(s)ds-fl--1(1/5) , (f(s)-f)dsl < sup>_t If(s)-
fl, (i) implies (ii), and (ii) is equivalent to (iii) since f 5(s)ds (1/) , f()d-
(1/5) f y()d.
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By Theorem 2.2(c), (iii) implies (iv). Since

1 (e), 1)A](A)- e f0 e-8(2.3) ](A) f(s)ds,

(iv) is equivalent to (v). Cl

Let f E X. We say, f is B-convergent to f, or simply write B-limt_ f(t)
f, if (ii) of Lemma 2.8 holds for all 5 > 0. A vector-valued function f is called
slowly oscillating (when t - c) if

lim If(t) f(8)l 0.
t--s--*O

PROPOSITION 2.9. Let foo X.
(a) If B limt__.o f(t) foo, then A limt-,o f(t)
(b) If limt-,oo f(t) foo, then B limt--.oo f(t)
(c) If f is slowly oscillating then B- limt-.oo f(t) foo implies limt-,o f(t)

Proof. (a) and (b) follow from Lemma 2.8. Assume that B- limt_,o f(t) foo.
Then

1
lim If(t)- f[ < lim If(t)- - Jtt-, -t-

f(s)dsI

lim I0 Jt tt<s<t+5t
(f(t)- f(s))ds < lim sup If(t)- f(s)l.

Hence if f is slowly oscillating, we obtain limt_.olf(t)- fol 0 by letting 5 t 0.

Every feebly oscillating function is slowly oscillating (this is obvious from the
definitions); moreover, f is slowly oscillating whenever there exists T _> 0 such that

f g + h, where g UC([r, oc); X) (the space of all uniformly continuous functions
on [r, oc) with values in X), and h e L([T, oo); X) converges to zero as t --, oc.

Remark. In order that B- limt-.o f(t) foo it suffices that (ii) holds for all
5 (0, 50) for some 50 > 0. In fact, if (ii) holds for di > 0 and > 0 it does so for
5+.

Now we are able to deduce from Theorem 2.7 the following Tauberian theorem of
type D.

THEOREM 2.10. Let f X. Assume that for some > 0

(2.4) lim sup tly(t)- f(s)l <
t--+x t<s<t+5

If A limt_, f(t) f then limt_ f(t) f.
Proof. Assumption (2.4) implies that f satisfies (2.1) for 5 > 0 small enough and

also that f is slowly oscillating. Since A limt_ f(t) f, it follows that (iv) of
Lemma 2.8 is satisfied. We conclude (iii) from Theorem 2.7 so that B-limt_, f(t)
foo. Hence limt-,o f(t) =fo by Proposition 2.9.

Note that (2.4) is satisfied whenever f e CI([T, oc), X) and Itf’(t)l < M for t >_ T;
in fact, If(t) f(s)l f f’(r)drl <- Mlog(s/t) < M(s t)/t for t < s.

Applying Theorem 2.10 to F we obtain an improvement of Theorem 2.7.
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COROLLARY 2.11. Let F E X. Assume that for some 5 > cx

t+5

(2.5) lim rlf(r)ldr < oc.
t---oO d

If lim;_0+ ](i) F, then lim F(t) F.
Proof. We have

lim sup tlF(t F(s)l < limt If(s)lds

Jim slf()lds < .
tj

Hence F satisfies (2.4) and the conclusion follows from Theorem 2.10.
E. Power series. Let p(z) zn=0 an be a power series, where a X, which

converges for Izl < x, Defining y Lo([0, ); X) by

(2.6) y(t) a if t E In, n + 1)

the preceding results yield Tauberian theorems for p. In fact,

(2.7) ](A) (1- e-)/ E ane-;n (Re) > 0).
n--0

From Theorem 2.7 Hardy’s theorem can be obtained.
THEOREM 2.12. Assume that sup{alan n No} < cx, and let b X. If

limzT1 p(z) b, then ’n=oan =bo.
The special case when limn_ nan 0 had been proven by Tauber [38] (in the

scalar case) and was the starting point of Tauberian theory.
In the case of power series, theorems of type C and D are equivalent. In fact,

let bn nk=Oak, or equivalently, a0 b0, an bn- b-I (n 1,2...). Then
q(z) n=o bnzn has the same radius of convergence as p(z). The formula for the
Cauchy product yields

that is,

z_lEaz=Ez’Eazk:Ebz
k=0 k=0 k=0 k=0

(Izt < 1);

E akzk (1 z) E bkzk (Izl < 1).
k=0 k=0

Thus A- limn_ b := limzrl(1- z)k=obkZk limzT -k=oakZk whenever one
of the limits exists. So we obtain the following.

CortOLLArtY 2.13. Let b, X be such that sup{nlbn bn-ll n N} < x. If
A- limn_. bn b, then limn_. bn b.

3. Complex Tauberian theorems. We assume throughout this section that
f e Loc([0, o); X) is such that

f()) lira e-tf(t)dt=: e-tf(t)dt
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exists for Re A > 0. In this section we consider conditions on ] (rather than on f) in
order to establish Tauberian theorems. The following theorem (of type C, see 2) is
a variant of [2, Thm. 4.1].

THEOREM 3.1. Let f E X. Assume that f next(IT, (:x:));X) .for some T >_ 0
and that (]()- F)/A has a continuous extension to .+\iE, where E C 1 is a
closed null set and ,0 E. If for all R > 0

(3.1) M(R) := sup,e sup f0tt>0 exp(-is)f(s)dsl < c,

then limt__, F(t) F.
Here and in the sequel we let F(t) f f(s)ds, C+ {A e C" Re A > 0}, and

+ the closure of (2+. Note that the hypothesis implies that ](A) has a continuous
extension to (2+\iE and that ](0) F. In particular, A- limt_ F(t) F.

The proof of [2, Thm. 4.1] works for Theorem 3.1 as well if the basic estimate
Lemma 5.2 which will be proved in 5 is used instead of [2, Lemma 3.1].

For E Theorem 3.1 is a version of a theorem due to Ingham [20]. A very
short and elegant proof based on an ingenious contour argument due to Newman [30]
is given by Korevaar [25]. In [2] the technique of Newman and Korevaar has been
extended in order to treat singularities in i R. Whereas in [2] it is assumed that ] has
a holomorphic extension to C+\iE, our slightly more general version is more natural
in view of the applications to Volterra equations we have in mind (see 5).

We give several comments on Theorem 3.1, starting with the case when E .
Remark 3.2. Quantitative estimates. Korevaar’s argument actually yields the

following more precise result. Assume that f e L([T, cx); X) for some T > 0 and
that F e X such that (](A)- F)/A has a continuous extension to C+ t_J i[-R, R]
where R > 0. Then

lira IF(t) F < 2
lim If(t)l.

t---+cx

Proof. In fact, Korevaar shows (a special case of Lemma 5.2 below)

2
(3.3) lim IF(t)- F < sup

t---,x3 t>0

Applying this to g(t) f(t + s) with s _> -, we have t)(A) e8 [](/) f e-rf(r)dr]
(Re A > 0) so that (t)(A) -G)/A has a continuous extension to C+ t_J i[-R, R] with
Go F f f(r)dr. Hence, by (3.3)

lim IF(t) FI-- lim
t----o t---c d 0

f(r)dr- F lim IG(t)- G[ < sup
2

t- t> lf(t)l.
Letting s --, cx yields (3.2). [:]

Quantitative estimates in the case E 0 are given in Batty [3].
Remark 3.3. Convergence of the Laplace integral at regular points. Assume that

limt_ If(t)l 0. If f has a holomorphic extension to C+ t_J U, where U is a neigh-
borhood of it/ iR, then

(3.4) ](i) e-inSf(s)ds lim e-iVf(s)ds.
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To see this, it suffices to replace f(t) in (3.2) by e-itf(t).
Remark 3.4. Riesz’s theorem on power series [40, Thm. 7.3]. Let an E X be such

that limn_ lanl 0 and let p(z) -n=O anZn (Izl < 1). If p has a holomorphic
extension to D U U (D {z e C: Izl < 1}) where U is an open neighborhood of

N
z0 e F := {z e C’lzl 1}, then p(zo) limg- -]n=o anz. This is obtained by
applying (3.4) to the function f defined by (2.6).

Next we establish a complex Tauberian theorem of type D. The following is a
variant of [3, Cor. 2.6].

THEOREM 3.5. Assume that f is slowly oscillating, let f X, and suppose that
]())- (f/) has a continuous extension to +\iE, where E C is a closed null
set such that 0 E. If.for all R > O,

(3.5) M(R) "= sup sup
rl’

eE[-,] >0
exp(-irls)f(s)ds <

then limt--,oo f(t)
Remark. The assumption implies that A limt--,oo f(t)
Proof. The function f5 defined by (2.2) is eventually bounded for 5 > 0 sufficiently

small. Let c := fo (1/5) f: f(s)ds. Then by (2.3),

ex f0 eXf
c1)](/)- -- (s)ds- X

[ 1 (e)+

f(s)ds f(s)ds.

Since the functions (1/di/)(ex 1), [(1/5/)(e)’ 1)- 1]//, and (e-)’s 1)// are

entire, it follows that (](A) -c)/A has a continuous extension to +\iE. Moreover,

exp(-ils)f s ds --1 exp(--i?8)(/(8 + ) --/(s)ds

+t

fOO
< 3-IM(R) for all r/ E fq [-R, R].

It follows from Theorem 3.1 that limt_ f fh(s)ds c. Hence B-limt_/(t) f
by Lemma 2.8. It follows from Proposition 2.9(c) that limt_ f(t) f. D

Remark 3.6. (a) If in Theorem 3.5, instead of f slowly oscillating, we merely
assume that f e Lcx([T, cx:)); X) for all di > 0, then we obtain B limt_ f(t) f

(b) However, if f is not slowly oscillating, then f does not converge in general,
even if f is bounded. An example is the function f(t) T(t)y from [2, proof of Ex.
2.5]. The function f is bounded and ] has a holomorphic extension to +. However,
f(t) does not converge for t -- oc.

Next we consider the case where 0 E. For simplicity we assume f 0. We
let Lip([T, oc), X) {f: IT, CX)) - X: f is Lipschitz continuous }.
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THEOREM 3.7. Assume that f E LiP(IT, oc);X), for some T > O. Suppose that
]() has a continuous extension to +\iE, where E is a closed null set, 0 e E, and
that for each R >_ 0

(3.6) M(R) :-- sup sup
neEn[-R,R] t>0

exp(-irls)f(s)ds

Then limt-o f(t) O.
Remark. Since 0 E, condition (3.6) implies that C- limt_o f(t) O.
Proof. We first show that f n([T, Oc);X). There exists L _> 0 such that

If(t)-f(s)l <_ nlt-s for alls, t >_T. Let q e X’, I1 <- 1. Then, by the Taylor
expansion for F(t) f f(r)dr in s > T, we have

<F(s + 1), > <F(s), q> + <f(s), ) + fs
s+l d

(s + 1 r)-r (f(r), q)dr.

Hence

I(f(a), )1 - I(F(s + 1), (P)I + I(F(a), )1 +
d

( + 1 r)l(f(r), )ldr
L_< 2M(0) + L (s + 1 -r)dr <_ 2M(0) + -.

,/8

Fix # e R\E and define g(t) eider(t). Then g e Lip([T, Oc);X) and (A)
](/k- i/z)(ae ,k > 0). Hence (,k) has a continuous extension to +\iE’ where E’=
E + #. Moreover, for l’= r + # e E’fq [-R,R] we have f exp(-il’s)g(s)dsl

f exp(-ils)f(s)dsl < M(R + I#1) for all t _> 0. Since 0 E’, the assertion follows
from Theorem 3.5.

Applying Theorem 3.5 to power series we obtain a variant of a result due to Allan,
O’Farrell, and Ransford [1]. We let D- {z e C’lzl < 1}, and F {z e C’lzl- 1}.

THEOREM 3.8. Let bn e X be such that sup{Ibn n e No} < oc and set
p(z) -]n__o bnz for Izl < 1. Assume that p has a continuous extension to D\F,
where F C F is a closed null set.

If SUpze. suPNeN
Nn=0 bnzn < oc then limn_.o bn O.

Remark. The hypothesis of the theorem directly implies A- lim,_ bn 0 if
1 F and C limn--.o bn limn-o 1In -]k=0 bk 0 if 1 F.

Proof. Replacing b by bw-n for some w F\F if necessary, we may assume
that 1 F. Let f(t) bn for t e In, Tt -- 1). Then ](A) [(1 e-X)/A] n__o bne-)n
has a continuous extension to C+\iE where E {/ R" e-in E F}. Moreover, for
t e In, n+ 1)we have f exp(-ils)f(s)ds -:o bm exp(-ilm)(1-exp(-i))/i+
bn exp(-ion)(1- exp(-ir/(t- n)))/il, so that (3.5) is satisfied (since 0 E). It
follows from Theorem 3.5 and Remark 3.6 that limn-o bn limn--. f+ f(s)ds
B limt-o f(t) 0.

It is implied by Riesz’s theorem (Remark 3.4) that in the situation of Theorem
3.8 we have p(z) -n=o bnz for all regular z e F (and this is precisely what is
shown in [1], assuming that p has a holomorphic extension to D\F).

An immediate consequence of Theorem 3.8 is the Katznelson-Tzafriri theorem
(which actually was the motivation of the work by Allan, O’Farrell, and Ransford
[1]).
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THEOREM 3.9. (Katznelson-Tzafrifi [22].) Let T e .(X) such that supn>0
oc and a(T) N F c {1}. Then limn-o I(T- I)TnI O.

Proof. Let p(z) -n__o(T- I)Tnzn (T- I)(I- zT)-1, Izl < 1. Since

SUPn>
Nn=o(I T)TI SUpg>0 II TN+I < C, the hypotheses of Theorem 3.8

are satisfied for bn (I- T)Tn and F {1}.
We are going to prove a continuous version of the Katznelson-Tzafriri theorem.

Formally, it is expected that (T)n>O has to be replaced by (T(t))t>o and T- I
(T(1)- I)/1 by A, the generator of (T(t))t>o. We make this more precise. A C0-
semigroup (T(t))t>o on X is called eventually differentiable if there exists T > 0 such
that T(T)X C D(A). Note that then T(t)Z C D(A) and AT(t) e (Z) for all t _> T.

THEOREM 3.10. Let (T(t))t>o be a bounded, eventually differentiable semigroup
with generator A. The following are equivalent.

(i) limt-o IAT(t)I O;
(ii) a(A) i C {0}.
Proof. Let M =sup,>o IT(t)[. Assume that (ii) holds and that T > 0 such that

T(T)X C D(A). Then T(t-)X C D(A2) for all t _> 2T. Let f’[0, oc) --. :(X) be given
by F(t) AT(t + 2T). Then

If(t) f(s)l -rf(r)dr A2T(r + 2T)dr

r(r)A2r(2T)dr <_ MIA2T(2T)lls- tl, s,t >_ O,

so that f is Lipschitz continuous. Moreover, ](A) R(A, A)AT(2T) has a continuous

extension to (+\{0}. Since f f(s)ds[ IT(t + 2-)- T(t)l <_ 2M (t >_ 0), it follows
from Theorem 3.7 that limt-o IAT(t)I limto If(t)l O.

Conversely, assume that (i) holds. (a) We show that Ae
whenever A e a(A)N iI. In fact, let A e a(A) iR; then A e ap(A)U at(A) since
A is a boundary point of p(A). Hence, there exist x e D(A), IXnl 1 such that
limt__, I(A A)xn 0. Consequently,

(Aet AT(t))x A(et T(t))x + T(t)(A- A)x

+ r(tl( - --, o,

--, Whu e t _>
(b) Let r ell{ be such that ir e a(A). Then by (a), irleint e a(AT(t)) for t >_ T.

Consequently, 1/1 [ileivt <_ [AT(t)I - 0 as t - cx, i.e.,
As another application of Theorem 3.7 we obtain the following result which in

some sense is complementary to Theorem 3.10.
THEOREM 3.11. Let U(t) be Co-group with generator A and suppose that

suPt>0 IU(t)x < c for all x D n>on(An). If a(A)N i] c {0}, then
U(t) I for all t e I.

Proof. Let x e Do and f(t) AU(t)x U(t)Ax. Then f is Lipschitz continuous

since If(t)-f(s)l ft (d/dr)U(r)Axdr If: U(r)A2xdrl <- It-HI supr>0 [V(r)A2xl,
and f f(s)dr IU(t)x-xl is bounded for t >_ 0. For Re A > 0 we have ](A) e D(A)
and (A- A)f(A) Ax. Hence ](A) (A- A)-Ax whenever A e (A), Re A > 0.
This shows that ](A) has a continuous extension to (+\{0}. It follows from Theorem
3.7 that limt_,o U(t)Ax limt_o f(t) O.
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So far we have shown that limt_ U(t)Ax 0 for all x E D. We will deduce
from this that Ax 0 for all x E D and hence A 0 sinceD is a core. In fact, D
is a Frchet space for the topology defined by the norms pn(X)
n N U {0}. We show that there exists k N such that

(a.7) Iu(,)l <_ kp()

for all x D, t R. If this is false, there exist x, D, tm such that
pm(Xm) 1 and IU(tm)Xml _> m, m N. Let Yk {x n lU(t)xl <_ kpk(x) for
all t R}. Then Yk is closed in D and [gk>oYk D. So by Baire’s theorem there
exists k E N such that Yk has a nonempty interior; i.e., we find a D, e > 0, g _> k
such that pt(a- x)

_
implies IU(t)xl

_
kpk(x) for all t ]R. Consequently,

m. elp(x,) IU(t,)al <_ elp(x,)lU(t,)x,l IU(t,)al <_ IU(t,)(a- elp(x,)x,l

<_ k(a (/())) <_ k(() + ()/(x))
<_ k(p() + ) since _> k,

hence,

. < (x)[k((a) + ) + IU(t)al] < (x)[k((a) + ) +
[k(() + ) + IV(t)al] or . > .

But (U(t,)a)m>O is bounded in X, a contradiction. So (3.7) is proved.
Let x D. Then by (3.7)

IAxl IU(-t)U(t)Ax <_ kpk(U(t)Ax)

k{IU(t)Ax + IU(t)A2x[ +... + [U(t)Ak+lxl} -- 0

Hence Ax 0 for all x Do. [:]

4. Real ergodic theorems for Volterra equations. Throughout the remain-
der of the paper, we make the assumptions of the Introduction. In particular, (S(t))t>o
denotes the resolvent governing (1.1). Recall that we assume

t>0

for all > 0. By () f e-S(t)dt, Re A > 0, we denote the Laplace transform
of S(t). In addition, we assume that the (complex-valued) kernel a e Loc(R+) is
Laplace transformable, i.e., there exists a >_ 0 such that f e-tla(t)ldt < oc. We
let 5() f e-ta(t)dt (Re A >_ a). If (1.3) holds, then the closedness of A implies

(4.1) a(t- s)S(s)x ds e D(A) and S(t)x x + A a(t- s)S(s)x ds

for all x X. Moreover, due to the assumptions above we have the following propo-
sition.

PROPOSITION 4.1. (a) 5(A) has a meromorphic extension to C+.
(b) 5) 0 on C+ if A is unbounded.
(c) S’() (I- 5()A)-1 for all C+ such that is not a pole of 5.
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We refer to [33] for the proof of (4.1) and Proposition 4.1.
COROLLARY 4.2. If has a pole in C+, then R(A) is closed and X N(A) (9

It(A).
Remark. Here R(A) :-- (Ax x e D(A)} denotes the range and N(A) :- (x e

D(A) Ax 0} the kernel of A.
Proof. Assume that A0 e C+ is a pole of of order n; then 1/&(A) maps a

neighborhood of A0 onto a neighborhood of zero. It follows from Proposition 4.1(c)
that there exists > 0 such that V := {z E C 0 < Izl < e} c (A). Moreover,
1((1/5()) A)-ll 15()()1

_
const 15()1 near 0. Hence I(z- A)-ll

const/Iz (z E V). Thus zero is at most a pole of order 1 of (z- A) -1. Now the claim
follows from [41, Chap. VIII.8]. [3

In order to study the asymptotic behavior of the resolvent, we use the following
terminology.

DEFINITION 4.3. The resolvent S is called (a) uniformly (strongly, weakly) Abel-
ergodic if lim-*0+ A(A) P exists in the uniform (respectively, strong, weak) oper-
ator topology;

(b) uniformly (strongly, weakly) Cesaro-ergodic if limt-* lit f S(s)ds P exists
uniformly (respectively, strongly, weakly);

(c) uniformly (strongly, weakly) ergodic if limt-* S(t) P exists uniformly (re-
spectively, strongly, weakly).

Notation. We shall use the abbreviation (i,J)-ergodic where i runs through the
symbols u, s, w with obvious meaning, and J runs through A, C, E. Then the
following implication scheme holds.

(u,A) (u,C)= (u,E)

(s,A) = (s,C)= (s,E)

(w,A) (w,C)= (w,E)

Our goal is to characterize (i, J) ergodicity of S(t) in terms of the operator A and the
kernel a; or, at Ieast, to find sufficient conditions. We need the following.

PROPOSITION 4.4. Let B be a densely defined linear operator on X, #n C such
that limn-* Itnl-- OO, 1/n )(B) and SUps>0 I(I- #nB)-ll < oo. Then

(a) N(B) R(B) {0}.
(b) The following are equivalent.

(i) limn_.(I- ttnB) -1 P exists strongly;
(ii) lima_. (I #nB)-I p exists weakly;
(iii) N(B) @ R(B) X;
(iv) N(B) +/- 3 N(B’) {0}.

If this is the case, then P is the projection onto N(B) along R(B).
(c) If X is reflexive, the equivalent conditions of (b) are automatically satisfied.
(d) Assume that the equivalent conditions of (b) hold. Then the following are

equivalent.
(i) R(B) is closed;
(ii) limn-*(I- #nB)-1 P in/:(X);
(iii) limn-*(I- ttnB) -2 P in (X).

This result is well known; we refer to [41, Chap. VIII.4] and [19, Chap. XVIII]. We
add the analogous properties of (I- #nB)-1 at zero.
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PROPOSITION 4.5. Let B be an operator on X, 0 #, E C such that 1/Iz,
a(B), limn--,oo #n 0 and SUPn>0 I(I #,B)-ll < oo.

(a) The following are equivalent.
(i) D(B) is dense in X;
(ii) limn--,o(I- #nB)-1= I strongly;
(iii) limn--,o (I #nB)-I I weakly.

(b) The following are equivalent.
(i) D(B) X;
(ii) limn-,o(I- #nB)-1 I in

(iii) lim,__,o(I- lznB) -2 I in (X).
For the proof we refer to [19, Chap. XVIII].
Strong and weak Abel ergodicity of the resolvent S(T) of (1.1) are characterized

as follows.
THEOREM 4.6. The following are equivalent.
(i) S(t) is strongly Abel ergodic.
(ii) S(t) is weakly Abel ergodic.
(iii) (a)I/k(A)l is bounded on (0, 1];

(b) lima_o+ &(A) =: a(0) exists in C to {oo};
(c) N(A) +/- N(A’) {0} if a(O) oo.

Moreover, if these equivalent conditions are satisfied, then lima_,o A(A)
(I- a(0)A) -1 in Z:(X) if 0 a(0) e e, lima_o+ A(A) I stron91y if a(O) O,
and lima_o A(;k) P stron9ly if &(O) oo, where P denotes the projection onto
N(A) alon9 R(A). If X is reflexive, then (e) in (iii)^can be omitted.

Proof. (iX) = (iii). Assume that w- lim__,o+ AS(A)x
w lima_,o+(I- a()A)-lz Pz for al z X. Then

(4.2) sup [(I- a()A)-[ < oo.

Choose a sequence /n 0 such that #n 5(An) # C tO (oo}. We distinguish
three cases.

Case 1. 0 < I#ol < oo.
Then, by (4.2), #2 e (A) and P (I- #A)-1 lim,__,(I- #,A)- in (Z).

Case 2. #oo O.
Then limn-oo(I- #HA)-1 I strongly by Proposition 4.5.

Case 3. # oo.
It follows from Proposition 4.4 and 4.5, that (I- #HA)-1 - P strongly, where P

is the projection onto N(A) along R(A).
Now suppose that there exists another sequence 0 such that (/k) -- #/z,/z (2 (3 {oo}. Since A - 0, the limit operators P and P’ are different. But this

is impossible since P lim__,0+ () P’. This shows that &(0) := lima__,0+ ()
exists in (2 tO {oo}. We have proved (iii). It follows from Propositions 4.,4 and 4.5 that
(iii) implies (i). vl

From the preceding proof, we also obtain the following characterization of uniform
Abel ergodicity.

THEOREM 4.7. S(t) is uniformly Abel ergodic if and only if the following four
conditions hold.

(a) ](/)1 is bounded on (0, 1];
(b) lim;_0+ &(A.) =: &(0) exists in C tO {oo};
(c) if &(O) oo then R(A) is closed and Z N(A) @ R(A);
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(d) &(0) 0 if A is unbounded.
COROLLARY 4.8. Suppose that (o- A)-1 is compact for some o E (A). We

assume that (0) 0 if A is unbounded. If S(t) is (w, A)-ergodic, then S(t) is (u, A)-
ergodic.

Proof. This follows from Theorem 4.7 and Theorem 4.6 since R(A) is closed
because of the compactness of (A0 A)-1.

It is instructive to classify Abel ergodicity by the limits of 5(A) as A - 0+.
Assume that (0) -lim_0+ &() e C U (} exists.

Case 1. (0)- O. Then
(a) S(t) is (u, A)-ergodic iff A is bounded; and
(b) S(t) is (s, A)-ergodic iff (I- 5(A)A) -1 is bounded for A -, 0+.

The ergodic limit then is P I.
Case 2. a(0) 0, oc. Then S(t) is (u,A)-ergodic iff it is (s,A)-ergodic iff

(I- (A)A)-1 is bounded for A--, 0+ iff a(0) -1 e p(A).
The ergodic limit then is P (I- (0)A)-.

Case 3. (0)= cx. Then
(a) S(t)is (u, A)-ergodic iff lim-,0+l(I-(A)A)-ll < oo, N(A)-L N(A’) {0}

and R(A) is closed;
(b) S(t)is (s, A)-ergodic iff lim,x_0+l(I-(A)A)-ll

{o}.
The ergodic limit P is then the projection onto N(A) along R(A).

In particular, we obtain the following necessary conditions.
COROLLARY 4.9. If A limt-_,o S(t) 0 strongly, then lim__,0+ () oc and

0 ap(A)U ap(A’).
Proof. For the second assertion observe that Ax 0 implies S(t)x x (t >_ O)

and so x 0. This shows N(A) 0. Hence N(A’) N(A) +/- V N(A’) {0}. Thus
0 ap(A) U ap(A’).

Next, we consider Cesaro ergodicity.
THEOREM 4.10. (a) If S(t) is bounded and (w,A)-ergodic, then S(t) is (s,C)-

ergodic.
(b) Suppose that X is an ordered Banach space with normal and generating cone.

If S(t) >_ 0 (t >_ O) and S(t) is (w, A)-ergodic, then S(t) is (s, C)-ergodic.
Proof. This follows from Theorem 2.5 and 2.6.
Finally, we consider ergodicity of S(t). We say that S(t) is a bounded analytic

resolvent if there exists a bounded, analytic extension of S to a sector E(O) {z
[arg z[ < 0} for some 0 e (0, r/2).

Remark 4.11. Equation (1.1) is governed by a bounded analytic resolvent if and
only if the following conditions are satisfied for some 0 (0, r/2).

(a) & admits a meromorphic extension to E(0 + r/2).
(b) (A) 0 if A is unbounded and I/(A) o(A) for all A E E(0 + r/2) with
# 0.
(c) I(I a()A)-ll is bounded on E(0 + r/2).
We refer to [33] for a proof.
In the semigroup case (a(t) =_ 1) the notion of bounded analytic resolvent coincides

with that of a bounded analytic semigroup.
PROPOSITION 4.12. Assume that S is a bounded analytic resolvent. Then there

exists M > 0 such that

tlS’(t)l <_M for allt >O
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(see [33, Cor. 2.1] for a proof).
THEOREM 4.13. Assume that S(t) is a bounded analytic resolvent. If S(t) is

weakly Abel ergodic, then S(t) is strongly ergodic. Moreover, S(t) is even uniformly
ergodic, if in addition (o A)-1 is compact .for some o E o(A).

Proof. It follows from Theorem 4.6 that S(t) is (s,A)-ergodic, and by Corol-
lary 4.8 that S is (u,A)-ergodic if (A0 A)-1 is compact for some A0 E 0(A). Let
f(t) S(t) (t >_ 0). Then f" (0, oc) (X)is analytic and bounded, hence
f e L([0, cx));(X)). Moreover, limt_otlf’(t)l < oc (by Proposition 4.12). So the
claim follows from Theorem 2.10. D

Example 4.14. Consider the kernel a(t) t-/F(a) where c e (0, 2] and assume
that (1.1) is well posed. For a 1 this means that A generates a C0-semigroup, for
a 2, that A generates a cosine function. We assume again that supt>0 le-tS(t)l <
oc for all A > 0. Since 5(A) A-a, it follows that E(a) C (A). Moreover,
lim_0+ 5(A) oc and () (I-A-A)- Aa(A-A)-. Thus Abel ergodicity
is the same for all a (0, 2]"

(a) S(t) is (s, A)-ergodic iff sup,e(0,] I#(#-A)-ll < oc and N(A’)VN(A) +/- {0}.
(b) S(t) is (u, A)-ergodic iff (a) holds and R(A) is closed.
In order to characterize strong ergodicity we assume a < 2 and E(O) c y(A),

Iu(/z- A)-I _< M on E(O) for some 0 e (a,r/2, r). Then (1.1) is governed by a
bounded analytic resolvent (Remark 4.11). If N(A’)N N(A) +/- {0}, it follows from
Theorem 4.13 that limt_ S(t) P strongly, where P is the projection onto N(A)
along R(A).

Finally, we consider Volterra equations on L L (f, E, #), where (f, , #)
denotes a positive measure space; this Banach space plays an exceptional role.

THEOREM 4.15. If X L, then the well-posedness of (1.1) implies that A is
bounded.

Remark. Conversely, if A is bounded, then (1.1) is well posed for every kernel.
Theorem 4.15 is due to Lotz [26] in the case a(t) 1, where A is the generator of

a C0-semigroup (see also [29, A-II.3]); for the special case of contraction semigroups
it was obtained independently by Coulhon [11]; and for positive semigroups it is due
to Kishimoto and Robinson [23].

The reasons for the phenomenon expressed in Theorem 4.15 are two properties of
X L, namely,

(DP) xn --* 0 in (X,a(X,X’)) and xn --. 0 in (X’,a(X’,X"))
imply (xn, Xn) - 0

and

(G) x -- 0 in (X’,a(X’,X)) implies xn --- 0 in (X’,a(X’,X"))

(see [36, Chaps. II.9.7 and II.10.4]). The first property is called the Dunford-Pettis
property; a space satisfying the second is called a Grothendieck space. For further
details on the background in geometry of Banach spaces, we refer to [26] (see also

The key of the proof of Theorem 4.5 is the following result due to Lotz [26, Thm.
2].

LEMMA 4.16. Let X satisfy (G) and (DP). Suppose Tn (X) is such that
limn--, Tn 0 strongly and limn--,o Tn 0 strongly. Then limn--,o ITn21 0.
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Using this lemma we obtain the following general result which contains Theorem
4.15 as a special case.

THEOtEM 4.17. Assume that X satisfies (G) and (DP). Let B be an operator on
X and (ttn) be a sequence in C\{0} such that 1/#n (B), SUPn>0 I(I-ttnB)-l
and lim I#1 0. If D(B) X, then B is bounded.

Proof. Let J (1 #nB)-. Then limn- Jn I strongly by Proposition 4.5.
Hence, a(X’,X) limn-. and so by (G), a(X’,X")- limn_.x Jx x
for all x E Xp. It follows from Proposition 4.5 that limn- J I strongly. Now we
deduce from Proposition 4.16 that limn_ I(Jn I)21 0 which implies D(S) X
by Proposition 4.5.

Next we consider ergodicity of (1.1) in L.
THEOREM 4.18. If X L and S(t) is weakly Abel ergodic, then S(t) is uni-

formly Abel ergodic.
Remark. Since by our general assumption (1.1) is well posed, A is bounded in the

situation of Theorem 4.18 (by Theorem 4.15).
We first show the following.
THEOREM 4.19. Assume that X satisfies (G) and (DP). Let B be an operator

on Z such that 1/# e Q(B) for a sequence (#n) C C such that lim_ [#1- c. If
limn_,o(I #nB)-I p weakly, then limn-_, (I nB)-I p in (X).

Proof. By Proposition 4.4 we have Z N(B)@ R(B). We can assume N(B) 0
and P 0. Moreover, since J :- (I- tnB)-1 0 strongly, it follows that Jhx --,0

for a(X’, X) and so by (G) for a(X’, X") for all x’ e X’. It follows from Proposition
4.4 that lim_, J I strongly. Thus limn_ [Jn21 0 by Lemma 4.16. This implies
R(B)- Z by Proposition 4.4(d).

Proof of Theorem 4.18. Assume that S(t) is (w, A)-ergodic on L. If &(0) e C,
then S(t) is (u,A)-ergodic by Theorem 4.7 (note that A is bounded). If &(0)
then S is (u, A)-ergodic by Theorem 4.19.

Remark. Lotz [26] investigates ergodic properties of discrete semigroups (Tn)n>0
where T is a bounded linear operator on L.

5. A general convergence theorem for Volterra equations. This section
contains the main theorem which is based on the complex methods introduced in 3.

We assume throughout that a is a kernel as described in 4, A is a linear closed
densely defined operator and that the Volterra equation (1.1) is well posed and gov-
erned by the resolvent S(t), which is bounded.

Then we know in particular that & has a meromorphic extension to C+. For later
purposes (6 and 7) we set

(5.1)
Q(a) (i#" # e R, 5 has a continuous extension to C+ U i[# e,

with values in C U (oc} for some

and still denote by 5 the continuous extension of & to C+ J 0(a).
In this section, though, we assume throughout that

e(a) is.

Moreover, we assume that S(t) is strongly Abel ergodic, and set

(5.3) lim () Q
A--O+
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Remark. Since by assumption S(t) is bounded, this is automatically satisfied if
X is reflexive (see Thm. 4.4).

From Theorem 4.6, we know the following. If 5(0) E C, then Q (I- 5(0)A)-1;
if 5(0) c, then X N(A)@ R(A) and Q P, the projection onto N(A) along
R(A). The following "resolvent set (a, A) of (a, A)" plays an important role.

o(a,A) {iT iR" there exists e > 0 such that 1/2[(1 -5(A)A)- -Q]

has a strongly continuous extension to C+ U i[r/- e, r/+ e] }.
Now we are able to formulate the General Convergence Theorem. It is valid for
arbitrary kernels (satisfying (5.2)). In the forthcoming sections it will be shown that,
for many interesting classes of kernels, hypotheses (H2) and (H3) are automatically
satisfied so that (H1) remains to be verified in order to conclude that S(t) is strongly
ergodic. Note that in the reflexive case (H1) reduces to a condition on the spectral
behavior of (a, A) on iR: the singular set iS has to be countable and 1/5(i)

_
rp(A)

whenever E such that 5(i) : 0, cx (by ap(A’) we denote the point spectrum of
the adjoint A of A).

THEOREM 5.1. Assume (5.2), (5.3), and suppose the following three hypotheses
are satisfied.

(H1)

(H2)

The singular set iE "= iR\o(a, A) is countable and #
implies R(I- 5(i#)A) X; # E\{0}, 5(itt)
R(A).

For all # e E there exists C(#) >_ 1 such that fe-i8(a * S(s)-
(i#)S(s))Axds <_ C(#)IXlA for all x D(A) if &(i#) C, and

f e-i’sS(s)Ax dsl <- C(#)IXlA for all x

(H3) There exist T >_ 0, M > 0 such that Is’(t)xl <_ MlXlA (x D(A), t _> T),
and IS(t)l <_ M (t >_ 0)

Then limt__, S(t)x Qx for all x e X, where Q (I- 5(0)A)- if (0) e C,
and Q is the projection onto N(A) along R(A) if (0)

We start with the following estimate which is a variant of [2, Lemma 3.1].
LEMMA 5.2. Let f: [0, cx) --, X be measurable, ]f(t)l <_ Mo (t >_ 0). Let R > O.

Assume that ]()/) (which is defined for Re/k > 0) has a continuous extension to
n(2+ U i([-R,R]\ [.Jj= (j -j,j + j)) where j e l, j > 0 such that the intervals

n(j ej, j + ej) (j 1... n) are pairwise disjoint and 0 Jj=
(-R, R). Furthermore, suppose that for j 1,..., n there exist
such that

Mj sup exp(-ijs)f(s)dsl < oc (j 1...n).
t>O

Then,

2Mo
n n n

(5.5) lim f(s)dsl < Haj + 12E Mjbj H bjk
j--=l j--1 t:=l
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where

aj=(l/ej )J(-9)
(5.6) bk (1 -t- e(l kl- ej)-2)( (5)-1 (k - j);

j (hj(ljl- (5j)-1(32" (532") -1"

Proof. We modify the proof of [2, Lemma 3.1] in the following way, keeping the
notation used there (cf. also [25, 2.2]). The paths -j are replaced by straight lines on
the imaginary axis (j 0,..., n). Applying (a slight extension of) Cauchy’s theorem
to g() ](,), we have 0 -(1/27ri) f. h(z)(g(z)/z)etZdz. Moreover, gt being entire
implies

and

fo f(s)ds gt(O)
=R

h(z)gt (z)e
dz
z

h(z)g(z)ez dz.
z

Summing up, we obtain

f(s)ds
1 dz

2ri
h(z)(g(z) g(z))et-

z
Rez>0

+E27ri’1 / h(z)(gt(z) g(z))etdz
j=l Iz-i,j

Rez >0

i h(z)g(z)e dz 1 )e dz
+

.= z z
=Rez 0

f+
2i

h(z)gt(z)et dz
z

j=l e<o

Now the third term converges to zero (t ) by the Riemann-Lebesgue lemma; the
other estimates are given in [2, Lemma 3.1].

We put Lemma 5.2 in a different form (corresponding to Tauberian theorems of
type D) keeping the definition (5.6) throughout this section.

LEMMA 5.3. Let e Lo([0, ),X) CI([T, ),X) where T 0. Assume that
() has a continuous extension to K := C+ U i([-R,R]Uj=I(j
where R, ey > 0 such that the intervals ( -ey, + e) are pairwise disjoint
(j ...) ad O C U=[- e, +ei] c (-R, R) Suppose that

N0 "= sup l’(t)l + (T){

and

N := sup e-i’*o’(s)dsl + Ig(T)[ < forj 1,...,n.



TAUBERIAN THEOREMS AND ASYMPTOTIC BEHAVIOR 431

Then,

lim I(t)l < 2No " "
t---, --R-- H aJ + 12E Njej 1-I bj"

Proof. (a) We assume that T 0. Let f(t) q’(t)+ qa(0)exp(-t). Then
]()/ qb(A)- q(0)/(1 + A) has a continuous extension to g. Moreover, If(t)l <
Iqa’(t)l + Iq(0)l < No (t > 0) and f exp(-irlys)f(s)dsl f exp(-iys)q’(s)ds
qa(O) f exp(-iys)exp(-s)ds < Ny (t > 0), j 1...n. Since f f(s)ds q(t)-
q(0) exp(-t) one has limt_lq(t)l limt--.ol f f(s)dsl. So the claim follows from
Lemma 5.2.

(b) If T > 0 is arbitrary we apply (a) to b(t) q(t + T).
Proof of Theorem 5.1. Since S(t)x x on N(A) we can assume that P Q 0 in

the case when (0) cx. Choose 0 6 0(A) and let L (0-A)-1. Let 0 < #0 6 ]\E
be fixed. Let R > #0 such that +/-R E. We set E0 E fq [#0 R, #0 + R]. For every
ordinal a, we define inductively subsets Ea of E in the following way. Suppose that

E has been defined for all/ < a. We let E be the set of all cluster points of
if c has a predecessor a 1, and E <E if not.

For/z E, p - 0 we define

1- &(ilz)Ai# if I (i )1 < 1

(1 )a(i#)
A i#/C(#) if la(i)l > 1,

where C(#) is the constant from hypothesis (H2), and

B(0)-
A

1 &(0)A

if (0) oo

if (0) e C.

We shall prove the following.
Inductive statement. If #y E, ey > 0 (j 1,..., n) such that

are pairwise disjoint,

n

j=l

n

and #0 U [#Y J’#J + eJ] C (#0 R,#0 + R),
j=l

then

lim ](S(t) Q)LUxl < 2NolUxl " "
R IX ay + 12E CIUyxIY H byk

j=l j=l tc=x

for all x e D(An), where

n

j=l

By B(#y);
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the constants aj, 5j, bk are given by (5.6), and Co, No are constants which will be
defined below and do not depend on #,

It is part of the inductive statement that

(5.8) t-lim I(S(t) Q)Lxl _< _._ lx12No
for all x E X if E q} (which is (5.7) with the convention that the empty product is
1 and the empty sum zero).

Once the inductive statement h been established, the theorem is proved
follows. Since E is compact and countable, E is either empty or contains isolated
points, so that Ea or E+ E. Thus it follows that for some a (at most w),
E . Hence, (5.8) holds. We can choose 0 < R E-E arbitrarily large. Thus
limt ](S(t)- Q)Lx 0 for all x e X. Since R(L) D(A) is dense in X and S(t)
is bounded the claim follows.

It remains to prove the inductive statement.
(1) a 0. Let E0, ei > 0 such that

n n

Eo C ( e, + ) and o [ ej, + ] C (o R, o + R),
j=l j=l

according to the statement. Let y e X and set (t) e-i’t(S(t)- Q)ny (t 0).
We verify that satisfies the hypotheses of Lemma 5.3 (after specification of y).

For Re A > 0 we have

1 1
((1 a(a + i,0)g) -1 Q)Lu.(A) ( + i,o)ny

i,o + A
Qny

A +
Set yj j 0 (j 1,... ,n). Then 0 Uj[yj Q,y + e] c (-R,R) and

nh a continuous extension to C+ U i([-R, R] j=l( Q, + ej ).
Setting CL ln] + IALI we have ILylA CLlyl. We have

v’(t) -i,o exp(-i,ot)(s(t) Q)Lu +  xp(-i,ot)S’(t)nu.

Using (H3), we obtain

l ’(t)l + Iv( )l g0lul (t k

with N0 ,0(M + IQI)]L + MCL + (M +
Now let y Ux BjUjx where x e D(An), and observe that ljl l,j-0] R,

hence pjl E R + 0. Moreover, since C() k 1, it follows from the definition of B()
that

(5.10) IB()LI

_
IICL (0 # e E);

in particular,

(5.11) IBiLI <_ (R + po)CL if#j-0.

Due to (1.1), hypothesis (H2) implies

e-i"SS(s)(1 &(i#)A)x ds <_ (x e D(A))
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if # E\{0} and &(i#) C. Consequently, it follows from (H2) that

(5.12) e-i"SS(s)B(tt)yds <_ IttllylA (y e D(A), tte E\(0}).

We estimate f: e-i’ s’(s)ds.
Case 1. #j 0, i.e., j #j #o -#o.

-i#o exp(-ittjs)(S(s) Q)Lyds + exp(-ittjs)S’(s)Lyds

-i#o exp(-i#s)(S(s) Q)Ly ds + exp(-i#t)S(t)Ly

exp(--i#T)S(T)Ly + i#j exp(-ijs)S(s)Ly ds

i(#j #o) exp(-i#js)S(s)Ly ds + #O(exp(--i#jT) --exp(-i#jt))QLy

+ exp(-i#ot)S(t)Ly exp(--i#jT)S(T)ny

Hence,

T

-i(tti #o) exp(-i#is)S(s)Ly ds.

+RTM(R +
by (5.12), (5.10), and (5.11). Setting

C1 := R(R + tto)CL + 2#olQICL + 2M(R + ]to)CL + RTM(R + #o)CL,
we obtain

(5.13) exp(-is)’(s)ds CIUxI.
Case 2. pj 0; that is, j =-o. Then,

e-i’’(s)ds -io (S(s) Q)Lyds + S’(s)Lyds

-ipo (S(s) Q)y ds + S(t)Ly S(T)Ly + ipo (S(s) Q)Ly ds.
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We must distinguish two cases. (a) If 5(0) (x), then Q 0 and Bj A, y AUjx.
Then,

exp(-ir5s)’(s)ds _< #o S(s)ALUix ds / 2MIALUjxl + #o’MIALUjxl

<_ #oC(O)ILUjxlA + 2MCL]Ujxl + #oTMCL]Ujxl

by (H2). Hence, If: exp(-i?is)’(s)dsl
2MCL + #oTMCL) if 0 e E and 5(0)

(b) Ifh(0) e (2, then Q (I-5(0)A)-1, Bi Q-l, y Q-1Ujx and so

(S(s)- Q)Ly (S(s)Q-- I)LVjx (S(s)(I- &(0)A)- I)LVjx S(s)nVjx-
LUx h(O)S(s)ALUjx A(a S)(s)LUjx h(O)S(s)ALUjx by (4.1). Thus,

exp(-ir/js)’(s)ds _< #o t((a S)(s) 5(O)S(s))ALUjx ds + 2MIQ-LUjxl

+#oT(M + IQI)IQ-1LUjxl

<_ #oC(O)ILUjxlA + 2MI(I 5(O)A)LIIUjx + #oT(M + IQI)I(I a(O)A)LIIUyxl

by (H2). Hence, If: exp(-ijs):’(s)ds <_ C2[Ujx[ (t >_ T) if we set

Ce ttoC(O)CL + 2MI(I 5(O)A)LI + #oT(M + IQI) + #o(M + IQI)I(I 5(O)A)LI

in the case 0 E E, 5(0) E C. So far, we have proved that

ifwe put C2 0 in the case where 0 g and C3 m{C, C2} (see (5.13)). Finally,
we let

MCL
C4 (M + IQI)(-

o
C5 (M + IQI)(R + tto)CL

C6 max{C4, C5}.

if 0 e E, &(0) oc

if 0 E,a(0) e C

if0E

Then [(T)[ _< C61Ux] (j 1... n). In fact, if # 0, then

if/zi 0 and (0) oc, then Q 0, B A, y AUjx, and so 199(T)[ _< M[LAUjxl <_
MCLIUyxl C4[Ujxl; if #j 0 and (0) e C, then Q (I- (0)A)-1, y Q-1Uix
and so

}:(T)I <_ (M + IQI)I(I- 5(O)A)LIIUjx C41UxI.
Letting Co :-- max{C3, C6}, we finally have

f* v’()xp(-v)d + Iv()l < ColVl



TAUBERIAN THEOREMS AND ASYMPTOTIC BEHAVIOR 435

(j 1,..., n). In view of (5.9), now the claim (5.7) follows from Lemma 5.3. This
proves the inductive statement for c 0.

(2) Let c be an ordinal greater than zero and assume that the inductive statement
holds for all ordinals fl < c. We show the statement to hold for a. Let (uj Q, #j +ej)
(j 1,..., n) be disjoint intervals such that 0 1[-e, +Q] c (0- R,0+
R) and E c := U1(j e, + ).

Case 1. - 1 does not exist. Then E <aE. Since is open and E0
compact, it follows that E C for some < . So (5.7) follows trivially from the
inductive hypothesis.

Case 2. - 1 exists. Since E is the set of all accumulation points of E_,
E_E is finite, say Ea_IE (+,..., nTp)" Let e; > 0, j n + 1,..., n +p
be small enough so that 0

np.U;=[y-e;,j +e;] C (p0-R,0+R). Since
nTpE_ C j= (p; -e;, p; + e;), we conclude from the inductive hypothesis for - 1

that

lim IS(t) Q)LVyl <_
n+p n+p n+p

2N[VYl H aj + 12E CIVylhJ H bjkR
j--1 j--1 k=l

for all y E D(An+P), where

n-i-p n+p

v II II
j--1 =1

(j= 1...n+p).

Letting ej 0 for j n + 1,-.-, n + p, we obtain

n n n

(5.14) lim I(S(t) Q)LVy <_ 2(No/R)IVy H aj + 12E C]VYIJ H bk.
j=l j=l k=l

n+p
Letting W 1-I

j=n+l

n n

B, U H B, Uj 1-I Bk, we can rewrite (5.14) as
j=l

n

lim I(S(t) Q)LUWy <_ 2(No/R)IUWy[ H ay

(5.15)
j=l

n n

+1: ColU W le II
j=l =

(y e D(An+p)).

Now the operators Bi(j n + 1,..., n + p) commute and have dense range by (H1).
This implies that WD(An+p

+ IAxl for x e D(An). Thus, given x e D(A) we find Ym e D(An+p) such
that limm_ IWym XlA O, hence lim,__, UWym Vx in (D(A), IA). Setting
Y Ym in (5.15), we obtain (5.7) by letting m --, x). This completes the proof of
Theorem 5.1.

6. Some examples and illustrations. In this section we want to discuss sev-
eral examples of kernels a(t) and operators A to which the General Convergence The-
orem applies and also to present conditions on the kernel a(t) such that assumptions
(H2) and (H3)of Theorem 6.1 are satisfied.
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We begin with the semigroup case a(t) =_ 1, t >_ O. Then the resolvent S(t)
satisfying

(6.1) S(t) I + A a(T)S(t T)dT, t >_ O,

is the semigroup generated by A, i.e., S(t) eAt. Therefore the relation S’(t)x
S(t)Ax shows that (H3) is trivially satisfied whenever the semigroup is bounded. To
verify (H2), observe that 8(A) I/A; hence, 8(0) cx and 8(i#) C otherwise. For
# 0 we obtain

S(T)Ax dT S’(T)X dT S(t)x x, t > O,

and so (H2) is valid for # 0. If # 0 we get, via an integration by parts,

e-i’ ((a S)(T) a(i#)S(T))Ax dT= e-’ S(s)ds S(T) Ax dT

1=-"(x- S(t));

hence, (H2) is valid for all # e . Since E a(A) i, (H1) becomes (ap(A)U
ap(A’)) i c {0} and N(A)Z N(A’) {0}. Thus, the General Convergence
Theorem reduces for the ce a(t) 1 to the following version of the stability theorem
of Arendt and Batty [2], and Lyubich and Phong [28].

COROLLARY 6.1. Suppose A generates a bounded Co-semigroup in X, let a(A)
i be countable, ap(A’) i c {0}, and assume N(A) N(A’) {0}. Then
limt S(t)x Px for each x e X, where P denotes the projection onto N(A) along
R(A).

Next we show that condition (H2) for 0 is satisfied for a large cls of kernels,
provided the resolvent S(t) is known to be bounded. We denote by BV(+) the space
of all functions a" of bounded variation, which are left-continuous and such
that a(t) 0 for t G 0.

PROPOSITION 6.2. Suppose that the resolvent S(t) of (1.1) is bounded, let a(t) be
of the form

t > o,
k--0

where

ao, tao E LI(IR+) and for k 1,...,n,

(k-l) 0(6.3) ak e Wlko;’t(R+), ak e BY(R+), tlda(kk-)(t)l

Then o(a) iR\{0}, a(i#) e C for all # e IR\{0}, and for each # e IR\{0} there is
constant c(tt) such that
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If n 0 the assertions also hold for # O.
Proof. Adding suitable constants to the functions of bounded variation bk(t)

a(k-1)
k (t), we may assume a )(0) 0 for all0 <_ i <_ k-2 <_ n-2. Let b0(t)
f aO(T)dT. The familiar formula

dbk(A)-- (da(kk-1))^(A)-- Akhk(A), Re A > 0, k- 1,...,n,

by (6.2) yields the representation

n

(6.5) 5(A) E bk(A)A-k’ Re A > 0.
k=O

Since bk e BV(IR+), k 0,..., n, (6.5) shows that &(A) admits a continuous extension
at least to C+\{0}; hence, we obtain 0(a) D i]R\{0} and 5(A) e C for all A e C+\{0}.
Integrating by parts k times leads to

hence, summation over k gives

e-i"r[(a S)(T) (z(i#)S(T)]Ax dT

k=O
(6.6) n k-1

-e-"tE E(a(k) S)(t)(i#)-d-lAx
k=l j=0

n

E(i#)-k(T(t) e-tR(t))Ax,
k=O

where

(6.7)

and

Tk(t) e-i"’[(dbk S)(T) d"bk(i#)S(T)]dT

n

(6.8) Rk(t) E(ak-l)
* S)(t), Ro(t) O.

To estimate Tk(t), we write

Tk(t) e-i"" dbk(T- s)S(s)dT- e-"’bk(i#)S(T)dT

S(s)e-i" dbk(T s)e-i"(’-) bk(i#) ds,

S(s)e-i" dbk(r)e-i" ds.
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Hence,

ITk(t)l <_ M Idbk(T)lds M dsldbk(T)l + dsldbk(T)l

M t Idbk(T)l / TIdb(T)I <_ M Tldbk(r)l Mk <

where M SUPr>0 ]S(T)I. To derive a bound on the Rk(t), we expand (ak * S)(t) into
a Taylor series up to order k,

k-1 hJ ft
t+h

( s)(t + h) -( s)(t) (g> s)(t). + ( s)()
j=0

(t + h- r)k-1
(k- 1)!

d7.

Summing over k, we obtain with (6.1)

n k hi_
S(t + h)x S(t)x EE(a(kj-1) * SAx)(t)

(j 1)
k=l j=l - ft+h (t + h- T)k--1+E (dbk * SAx)(T) (k 11’k=O d

dT.

Since S(t) is bounded and bk E BV(I+) the polynomials

)hi-1 a(kJ-1),SAx Rj_I(t)Ax
hi-1

Pt(h)x
(j- 1)! (j- 1)’"= k=j j=l

are bounded, uniformly for 0 <_ h <_ 1, t >_ 0; but this implies the existence of a
constant C > 0 such that

(6.9) IRk(t)Ax] <_ CIXIA, x e D(A), k- 1,...,n.

The proof is now complete. S
A special case of Proposition 6.2 will be used in 7, namely, the following.
COROLLARY 6.3. Suppose that the resolvent S(t) for (1.1) is bounded; let a(t) be

of the form

(6.10) a(t) bo + bt + bl (s)ds, t > 0,

where bo, b >_ 0 are constants and bl Loc(R+) is nonnegative, nonincreasing, and
convex. Then o(a) D i1\{0}, 5(i#) C for all # R\{0} and (6.4) holds for each
e \(o}.

Proof. We may assume limt__, bl (t) --0, changing b otherwise. Let to > 0 and

bl(t) bl (to) for t _< to,
cl (t)

0 for t _> to,
0 for t <_ to,

c3(t)
bl(to)-bl(t) fort>to,
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and define co(t) O,

a (t) bo + c(T)d, t > O,

a2(t) (bo + b(to))t, t > O,

a3(t) c3(7)dT, t > O.

Obviously, a(t) al (t) -- a2(t) + a3(t), a BV(I+) and da bob + c (t)dt has all
1,1moments since its support is compact; a2 Wo (+), a2 b + b(to) BV(+)

12,1and da (b + b(to))5 also h all moments, a3 belongs to "’loc (+) since b
is nonincreing and convex, and a3(t) -d3(t) for t > t0, a3(t) 0, for t < t0;
moreover, by convexity, -d3(t) is nonincreing for t > t0 and nonnegative, hence
53 e BV(+)L(+) and in particular da admits a finite first momem, since
is nondecreing, integration by parts shows.

The argument at the end of the proof of Proposition 6.2 also yields (H3), i.e.,
boundness of S’(t)x, whenever S(t) is bounded nd a(t) is of the form (6.2), (6.3)
with a0 0. More precisely, we have the following.

PROPOSITION 6.4. Suppose the resolvent S(t) for (1.1) is bounded; let a(t) be of
the form

n

t > O,

where

Tzk ,1 a(kke e

Then there is a constant C > O, such that

(6.13) [S’(t)x[ <_ Clxln for all x e D(A),

k-l,...,n.

t>O.

Proof. Equation (6.1) yields for x e D(A)
n

S’(t)x E(hk SAx)(t) + (dal SAx)(t) R2(t)Ax + (de1 SAx)(t), t > O,
k--2

where R2(t) is given by (6.8). Since a e BV(I+), estimate (6.9) yields the assertion.
Observe that for the proof of (6.9) no moment condition was used.

For the applications in 7 we shall need the following special case of Proposition
6.4.

COROLLARY 6.5. Suppose the resolvent S(t) for (6.1) is bounded; let a(t) be of
the form

(6.14) a(t) bo + bt + b(v)dT, t > O,

where bo, b >_ 0 and b Lo(l+) is nonnegative and nonincreasing. Then there is
a constant C > 0 such that

(6.15) IS’(t)xl <_ ClXlA for all x e D(A), t > O.
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Proof. We may assume limt_ bl(t) O. Define

al (t) bo -- el (T)dT, a2(t) (box) q- bl (t0))t C3(T)dT,

where Cl(t) and c3(t) are defined as in the proof of Corollary 6.3. Then al E BV(N+)
and 2 b + bl(t0)- c3(t) e BV(N+); hence Proposition 6.4 applies and yields
(6.15). [:]

Observe that in Proposition 6.4 we have to assume that the non-BV part of
co(t) of a(t) in decomposition (6.2) is absent. This clearly restricts its applicability;
however, in case a0 0, Estimate (6.13) cannot be expected. In general, S(t)x need
not be differentiable at all. In this case, we must use the structure of co(t) and A
directly to obtain a bound on S(t).

The verification of (H2) for # 0 is more difficult. If n 0 in Proposition 6.2
then o(a) iN, (i#) C for all # and (6.4) remains valid for # 0 as the proof
given there shows (in fact, no integration by parts is needed). On the other hand,
if n >_ 1 then generically (0) as (6.5) shows (only one of the dbk(O) bk(oc),
k- 1,..., n must be nonzero for (0) -x)); then we have to prove that

(6.16) U(t)Ax S(T)Ax dT, t > O,

is bounded by the graph norm [XlA of x. Since by (6.1) we obtain the relations

1 1O(A)Ax- ,5(,------((S- I)x)^(A) A25(A()^(A)x
for the Laplace transform of U(t)Ax, we see that U(t)Ax will be bounded if there
is k BV(N+), such that d"k(A) (5(,))-1, or if there is g BV(N+) such that
d"(A) (A25(A))-I and S’(t)x is bounded. It should be clear that more information
on the kernel a(t) must be available in order to achieve this, rather than just an
expansion of the form (6.2) and (6.3). In 7 it will be shown how this can be done.
Let us summarize.

PROPOSITION 6.6. Suppose that the resolvent S(t) for (1.1) is bounded, and
assume either of the following. (a) There is k 6 BV(g{+) such that (Ag(A)) -1 d"k(A),
) > O, i.e.,

(k a)(t) t, t > O.

(b) There is f e BV(R+) such that (,2a())-I ’(), > 0, i.e.,

( a)(t) t2/2, t > O,

and, in addition, suppose that (6.13) holds.
Then 0 o(a), (0) cx, and there is a constant C > 0 such that

(6.17) S(T)Ax dT! for all x D(A), t>_0.

Consider now the cosine case, i.e., a(t) =_ t and A generating a bounded strongly
continuous cosine family C(t). Then we have S(t) C(t), t >_ O, a(t) is of the
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form (6.2), (6.3) and also of the form (6.11), (6.12). Since A2h(A) 1 ’g(A)
with l(A) 1 for t > 0, Propositions 6.2, 6.4, and 6.6 imply that (H2) and (H3) of
the General Convergence Theorem are satisfied. Since a(A) C (-, 0] (H1) becomes
a(A) countable and ap(A’) c {0}, N(A) +/- N(A’) {0}. Thus we have the following.

COROLLARY 6.7. Suppose A generates a bounded, strongly continuous cosine
family C(t) in X, assume a(A) is at most countable, ap(A’) c {0} and N(A)-L f3

N(A’) {0}. Then limt-o C(t)x Px for all x e X, where P denotes the projection
onto N(A) along R(A).

We conclude this section with an example which is such that none of the results
of this section can be applied, although (nl), (H2), and (S3) hold, and so the General
Convergence Theorem can still be used.

Example 6.8. Let X be a Hilbert space, A a dissipative operator in X such that
(A) D i, and let a(t) cos(t), t > 0. We claim that the resolvent S(t) of (1.1)
satisfies

(6.18) lim S(t)x x for all x X.

To prove this we will apply the General Convergence Theorem of 5. Observe first
that 5(A) A(A2 + 1)-1; hence a(t) is not of the form (6.2), (6.3) in view of the poles
A i of (A). For the Laplace transform of S(t), we obtain

(6.19) A;(A)=(A+I/A)(A+I/A-A)-1, ReA>_0, A-0,

which exists on C+\{0}, since A is dissipative and o(A) D i]R, and the function
99(A) A + 1/A maps C+\{0} onto C+. Furthermore, (6.19) yields

(6.20) AS()x-- lim r(r-A)-lx-x for allxeX.lim
A--*0+ r--c

The set of singularities E of (a, A) consists only of the point zero and so we only
have to prove that S(t), S’(t)A-1, and V(t) 1 (a, S)(t) are bounded (existence
of S(t) follows, e.g., from the paper of Grimmer and Prfiss [18] since a(0+) > 0 and
a(t) is smooth). Let x e D(A) and put u(t) V(t)x; then it is easy to see that u(t)
satisfies

(6.21) u" An’- u + x, u(O) u’(O) O.

Take the inner product of (6.21) with u’(t) and integrate to the result

[u’(t)l 2 + In(t) xl 2 <_ Ix[ 2 + 2 (Au’(s), u’(s))ds <_ ]xl 2,

since A is dissipative and u(0) u’(0) 0. But this means

(6.22) I(a * S)(t)xl + IV(t)x xl < Ix[, t>O,

i.e., V(t) and (a,S)(t) are both bounded. Similarly, u(t) S(t)x, x e D(A2) satisfies
(6.21) with initial values u(0) x and u’(0) Ax; therefore, the same argument yields

(6.23) IS’(t)xl + IS(t)x- xl2 < [Ax[ 2, t > 0,

i.e., S’(t)A-1 is bounded by 1 and so S(t) S’(t)A-1 + V(t) is bounded as well.
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7. Applications to viscoelasticity. Let t C ]n be a domain with compact
and smooth boundary0 that is occupied by a linear incompressible viscoelastic fluid.
Assuming the fluid at rest for t >_ 0, its velocity field u(t, x) is governed for t > 0 by
the following problem

V (t, x) + g(t, z)

(7.1)
(V o u) (t, x) 0 forxE, t>0,

u(t,x)=O forxE0, t>0,

u(O,x) so(x) for x e .
Here p(t, x) denotes the (also unknown) hydrostatic pressure; g(t, x) a (given) external
force field, so(x) the (given) initial velocity field (induced by a i-perturbation at time
t 0); A, V, Vo designate the Laplacian, gradient, divergence with respect to the
x-variables, respectively. The stress relaxation modulus da(t) of a linear viscoelastic
material is of the general form

(7.2) a(t) ao + at + al (s)ds, t >_ 0,

where a0,a _> 0 are constants, and al (t) >_ 0 is nonincreasing and of positive type,
limt_. al (t) 0; for a viscoelastic fluid we even have a 0 and al LI(]+).

For the derivation of (7.1), the properties of the kernel da(t), and more on the
physical background of viscoelasticity, we refer to the monographs of Christensen [9],
Renardy, Hrusa, and iohel [35], and Pipkin [31].

Equation (7.1) can be rewritten as an abstract Volterra equation in a Banach
space X of the form (1.1), i.e.,

(7.3) u(t) a(t- T)Au(T)dT + f(t), t >_ O,

where A denotes a closed linear operator in X with dense domain D(A) and f
C(+, X). In fact, we may choose X L(t; n), the space of all divergence-free L2-

vector fields, A PA, the Stokes operator with D(A) W2,2(; n)NW’2 (; n)N
X (P denotes the Selmholtz projection in L2(gt; R)) and f: 1+ - X is defined by
f(t) Uo + f g(s)ds. It is well known that the Stokes operator is self-adjoint and
negative semidefinite, and hence gives rise to a bounded cosine family in X.

For the Helmholtz projection and the properties of the Stokes operator mentioned
above, as well as others, we refer to the paper by Giga and Sohr [17], and to the
monograph of Temam [39].

Existence of the resolvent in the general case relevant for the theory of viscoelas-
ticity was first obtained in a Hilbert space setting by Carr and Hannsgen [7].

PROPOSITION 7.1. Let X be a Hilbert space, A self-adjoint and negative semidef-
inite and let a(t) be of the form (7.2) with ao,a >_ O, a (t) >_ 0 nonincreasing and of
positive type with a e noc(R+) and lim__. a (t) O. Then (7.3) admits a resolvent
S(t) such that IS(t) <- 1 on R+.

Actually, Cart and Hannsgen assumed in addition that a (t) is convex; however,
for existence this is not needed. The proof of Proposition 7.1 relies on the spectral de-
composition of self-adjoint operators in Hilbert spaces and estimates on the solutions



TAUBERIAN THEOREMS AND ASYMPTOTIC BEHAVIOR 443

s(t; #) of the scalar equations

(7.4) s(t) + It a(t T)S(T)dT 1, t >_ O, It >_ O.

A different approach was introduced in Priiss [32].
PROPOSITION 7.2. Let X be a Banach space, A the generator of a bounded cosine

family C(t) in X, a(t) of the form (7.2) with ao, ao >_ O, ale Loc(+), a(t) >_ 0
nonincreasing and log a (t) convex, lim,__.o a (t) 0. Then (7.3) is governed by a
bounded resolvent S(t).

The proof of this result is based on the complete monotonicity of the functions
h(A, T) exp(-T/&(A)I/2)/(A&(A) 1/2) with respect to A > 0, for each fixed T >_ 0, on
the representation formula

(7.5) (A) C(-)h(A, T)dT, A > O,

and on the generation theorem for resolvents due to Da Prato and Iannelli [13] and
Grimmer and Priiss [18].

Here we are interested in the asymptotic behavior of the resolvent S(t). Before
we quote some known results, let us introduce the following definition.

DEFINITION 7.3. Suppose (7.3) admits a resolvent S(t).
(i) Equation (7.3) is called uniformly asymptotically stable if there is

C0(K+) such that IS(t)[ <_ (t) on I+.
(ii) Equation (7.3) is called asymptotically stable if S(t)x - 0 as t o for each

xEX.
Carr and Hannsgen [7] obtained the following result.
THEOREM 7.4. Let the assumptions of Proposition 7.1 be satisfied, and assume

in addition that a C(O, o) and that-/l(t) is nonincreasing and convex. If A is
invertible and a(t) aot, then (7.3) is uniformly asymptotically stable.

Observe that A must necessarily be invertible if (7.3) is uniformly asymptotically
stable. In fact, if 0 e a(A), then lIt(It- A)-[ >_ 1 for each It e (A); on the other
hand, S(.)x e L(I+,X) for each x e X implies that (A) (l/A)(/- &(A)A)-1
is uniformly bounded for Re A _> 0, i.e., M _> [(A)[ _> 1/[A[ which is impossible.
Also a(t) aot is necessary for uniform asymptotic stability, since otherwise S(t)
C(v/-d-t where C(t) denotes the cosine family generated by A; but cosine families
are never integrable.

There is a similar result for the situation of Proposition 7.2; see Priiss [32].
THEOREM 7.5. Let the assumptions of Proposition 7.2 be satisfied. Then (7.3) is

uniformly asymptotically stable if and only if a(t) aot and A is invertible.
In the case A PA, the Stokes operator in L(;n), A is invertible if the

domain f C In is bounded; thus Theorems 7.4 and 7.5 show that viscoelastic fluids
with (sufficiently) convex stress relaxation moduli are always uniformly asymptotically
stable, unless they are purely elastic, i.e., da(t) adt.

However, for unbounded domains gt, the operator A pA will in general not be
invertible and so (7.3) is not uniformly asymptotically stable. As a consequence of
our General Convergence Theorem and the results in 7, in this situation (7.3) will
still be asymptotically stable, as the next theorems show.

THEOREM 7.6. Let the assumption of Proposition 7.2 be satisfied, and assume in
addition a(t) aot and N(A) +/- N(A’) {0}. Then limt--.o S(t)x Px for each
x e X, where P denotes the projection onto N(A) along R(A).
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Proof. (a) By Proposition 7.2 there is a resolvent S(t) for (7.3) which is bounded
on +. Since log-convex functions are convex, we see that Corollaries 6.3 and 6.5
apply; hence, )(a) il\{0} and (H2) holds for # = 0, and also (H3) is satisfied.

(b) We next compute the set E of singularities of (A). Since A generates a
bounded cosine family, we have a(A) c (-cx), 0]. Convex functions are of positive
type; hence, (A) (-x), 0] for Re A > 0. Therefore, E C {0} will follow if we show
that Im 5(i#) 0 for # e ]1(, # 0. Since tal (t) <_ f al(T)dT -- 0 as t --. O, via an
integration by parts, we obtain with it > 0,

(7.6) itIm 5(iit) a0 + Re 51(iit) ao + it- (-4(t))sin(itt)dt >_ 0,

since al(t) is nondecreasing and convex (hence also absolutely continuous on (0,
Equality in (7.6) can only hold in case a0 0, and -5 (t) is constant on each of the
intervals (2krit-; 2(k + 1)tit-1); but this cannot happen since a (t) is log-convex by
assumption and is nontrivial, for otherwise, a(t) =_ at. Thus, E C {0} holds.

(c) We next show 0 E (a) and (H2) for it 0. This will be done with the help
of the following result.

LEMMA 7.7. Let a(t) satisfy the assumptions of Proposition, 7.2 and define g(A)
5(/k) -/2 for Re/k >_ 0. Then there are k, BV(+) such that

g(A) d(A) d(A)g(A)/A, Re A >_ 0.(7.7) dk(A)
1 + g(A)’

The proof of Lemma 7.7 is based on Bernstein’s theorem and the Wiener-Levy
theorem; see Priiss [32, pp. 341-342].

Observe that Lemma 7.7 yields 0 e g(a) and 5(0) x, since k(A) is continuous

on +, 5() (1/dk() 1)2 and lim_0+ 5() 5(0) cx).

Now let U(t) f S(T)dT; then for x e D(A), we have

(UAx)^(A) A-g(A)Ax A-2(I- 5(A)A)-IAx A-2g(A)2(g(A)2 A)-IAx

and

(S I)^(A)x 5(A)A,k-I(I 5(A)A) -1 A-1A(g(A)2 A)-lx,

as well as

(S’)^(A)x Ag(A)x x 5(A)A(I- 5(A)A)-x A(g(A)2 A)-x.

These relations and the identity

A-2g(A)2 A-//’/(A)(1 + ’k(A)) + ’t!(A)2, Re

yield

(A)Ax d(A)2(g’)^(A)x + ’(A) (1 + k(A))(S I)A(A)x;

hence,

U(t)Ax (dg d S’)(t)x + (dg + d dk) (S I)(t)x.
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Since the measures d and dk are bounded, we obtain from the boundedness of
S(t) and S’(t) on D(A) the desired bound on U(t)Ax, i.e., (H2) holds.

(d) Finally, the assumption N(A)+/- N N(A’) {0} implies A(A) --* P strongly
as A --* 0+ by Theorem 4.6; hence, the General Convergence Theorem applies and
the proof is complete.

The proof of Theorem 7.6 shows that boundedness of U(t)Ax is the difficult thing
to prove. This turns out to be even more difficult in the situation of Proposition 7.1,
where the assumptions on al(t) are weaker so that, in general, Bernstein’s theorem
can no longer be employed. We want to discuss this case now in some detail. So
suppose that X is a Hilbert space, A negative semidefinite, and let a(t) be of the form
(7.2) with a0, ao >_ 0, ale Loc(N+) nonnegative, nonincreasing of positive type, and
limt-o al (t) 0; let us exclude the cosine case a(t) aot which has already been
discussed in 6.

Proposition 7.1 shows the existence and boundedness of the resolvent S(t), Corol-
lary 6.5 yields the boundedness of S’(t) on D(A): That is, (H3) holds, and since

lim_0+ &() &(0) c, we obtain lim_0+ S()x Px for all x E X where
P denotes the orthogonal projection onto N(A). By means of the decomposition
al(t) a2(t) + a3(t), where

a2(t) (al(t) al (to))+, and a3(t) min(al (t), al (to))

for t > 0, a2(t) a3(t) 0 for t <_ 0 as before, we obtain

(7.9) a(A) + a la + + Re >_ 0,

and therefore, o(a) D iN\{0}, a(i#) e C for all # e , # 0.
Since al (t) is nonincreasing, it follows that for # 0

#2Re a(i) -a +/tim al(iit) 0

and even strictly if al(t) is also continuous on (0, cx) or in case a > 0. On the other
hand, we have for it 0

-itIm a(iit) a0 + Re &l (iit) >_ 0,

since al(t) is of positive type and even strictly if a0 > 0. Therefore, we have

E0 E\{0) {it e 1\{0} Re al(iit) --a0, a(iit) -1 e a(A) or a(iit) 0)

Thus, the spectral assumption (H1) reduces to

(7.10) E0 is at most countable, and it e E0 implies a(iit) -1 ap(A).

Observe that E0 0 if a0 > 0 or if Re gl (iit) 0 for all it 0.
By Proposition 6.2 and Corollary 6.3, it is also not difficult to verify (H2) for

it E E0; in fact, either f tdal (t) < oe or al convex will be sufficient; note, however,
that the former is equivalent to al LI(I[+) since al(t) _> 0 is nonincreasing.

We turn now to the question whether 0 e 0(a) and whether U(t)Ax f) S(T)Ax dT
is bounded on D(A). The first two cases will be a consequence of Proposition 6.6.

Case 1. a > 0 (a "solid"). This one is easy. In fact, if a > 0, then
gl(A) (;2a(A)) -1 is bounded and completely monotonic for A > 0, since al(t)
is nonincreasing. Therefore, by Bernstein’s theorem there is a function BV(II+)
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such that gl () J() for t > 0. Proposition 6.6 then implies 0 e (a), 5(0)
and boundedness of U(t)Ax on D(A).

Case 2. a -O, ao > O, al E LI(R+) "viscous fluid"). Here we use

g2(A)
)&(A) a0 + 51 (A) a0 1

a0 -- (1 (/)
Re > 0.

Since al ( L(I+) is of positive type, Re a (,) >_ 0 for Re A _> 0, and so a0 + al (,)
does not vanish on +. By the Paley-Wiener theorem there is a function r L1 (R+)
such that

Re )>_0,

and so assumption (a) of Proposition 6.6 is satisfied; therefore, 0
and U(t)Ax is bounded on D(A).

Case 3. a ao O, a L(]I(+) (a "rigid fluid"). We assume in addition
that a is absolutely continuous on (0, oo) in this case. As before, decompose a (t)
a2(t)+a3(t), where a2, a3 are as in (7.8) and to > 0 is small enough for a3(04-)
al (to) > 0. Since

S(t)x- x (a UAx)(t)

and

S’(t)x (a2 * SAx)(t) (da3 UAx)(t) aU(t)Ax + (&3 * UAx)(t),

we obtain

(A)Ax ( + 5() + (53)A(A))-(S(t)x x + S’(t)x (a2 * SAx)(t))A(A).

By boundedness of S(t)x, S’(t)x, and S(t)Ax on D(A), and since a2 e L(R+), it is
sufficient to show that

g3()--- (" + 1()+ (3)h())-1 ( + ())--1 --1 (1 (A)
(A) )

is the Laplace transform of a bounded measure.
By sumption, Re a(A) 0 for Re A > 0 and a(0) f ai ()d > 0; on the

other hand, since a3(t) 0 on (0, ), and equality only
holds for A 0. Therefore, (A) a(A) + (a3)(A) - for Re A 0, and so by
the Paley-Wiener theorem there is a function r L (+), such that

g3(A) ,-(1 (A))) k(), Re A 0,

where k(t) -(1- f r(T)dT) belongs to BV(R+). Thus, U(t)Ax is bounded on

D(A), 0 e (a), and a(0) follow in this ce eily from (7.9).
Case 4. a O, a LI(R+). If a is not imegrable then we cannot apply the

Paley-Wiener theorem directly to show that the functions gd(A) in Case 2 and Case
3 above are Laplace transforms of bounded meures. However, it is enough to know
that for every > 0 there is r L(R+) such that

a(A) Re A 0,+
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holds. Obviously, this is enough in case a0 > 0; put a a0 to see this. If a0 0,
rewrite g3(A) as

93(A)--(-I(l-(A)+(a3)^(A)ka(A))i-(a3)^(A)dk (A)
=

where dka(A) (a + al()))-1 o-1(1- ?a()), and apply Paley-Wiener to this
representation.

Shea and Wainger [37] have shown that if in addition el(t) is convex such r e
LI(+) exist; see also Jordan, Staffans, and Wheeler [21]. It is clear that then we
also have 0 E o(a).

We summarize this in the following theorem.
THEOREM 7.8. Let the assumptions of Proposition 7.1 be satisfied. In addition

we assume that one of the following conditions is satisfied: (a) ao > 0;
(b) al E LI(+), and either a is absolutely continuous on (0, oc) or ao > O;

(t) o. (o,
Moreover, suppose that the spectral condition (7.10) is satisfied. Then limt_o S(t)x
Px for each x X, where P denotes the orthogonal projection onto N(A).

Finally, we want to mention that for al convex, Re (i/z) 0 if-/ (t) is constant
on each of the intervals (2kr#-,2(k + 1)zr#-l); in particular, E0 } if-/l(t) is
nonincreasing and continuous on (0, c).

8. Acknowledgment. It is a pleasure for the second author to thank the Equipe
de Math6matiques de Besanqon for its kind hospitality during his visits.

REFERENCES

[1] G. R. ALLAN, A. G. O’FAItItELL, AND T. J. RANSFOID, A Tauberian theorem arising in
operator theory, Bull. London Math. Soc., 19 (1987), pp. 537-545.

[2] W. ARENDT AND C. J. g. BATTY, Tauberian theorems and stability of one-parameter semi-

groups, Trans. Amer. Math. Soc., 306 (1988), pp. 837-852.
[3] C. J. K. BATTY, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math.

Soc., 322 (1990), pp. 783-804.
[4] C. J. g. BATTY AND V. Q. PHONG, Stability of individual elements under one-parameter

semigroups, Trans. Amer. Math. Soc., 322 (1990), pp. 805-818.
[5] C. J. K. BATTY AND D. ROBINSON, ..Positive one-parameter semi-groups on ordered spaces,

Acta Appl. Math., 2 (1984), pp. 221-296.
[6] W. BOttCHERS AND H. SOHP, On the semigroup of the Stokes operator for exterior domains,

Math. Z., 196 (1987), pp. 415-425.
[7] R. W. CARR AND K. B. HANNSGEN, A nonhomogeneous integrodifferential equation in Hilbert

space, SIAM J. Math. Anal., 10 (1979), pp. 961-984.
[8] S. D. CHATTERJI, Tauber’s theorem--a few historical remarks, Jahrb. 0berblicke Math.,

(1984), pp. 167-175.
[9] R. M. CHRISTENSEN, Theory of Viscoelasticity, Academic Press, New York, 1971.

[10] PH. CLMENT AND J. A. NOHEL, Asymptotic behavior of solutions of Volterra equations with
completely positive kernels, SIAM J. Math. Anal., 12 (1981), pp. 514-535.

[11] T. COULHON, Suites d’opdrateurs Bur un espace C(K) de Grothendieck, C. R. Acad. Sci. Paris
S6r. Math. 298, (1984), pp. 13-15.

[12] T. COULHON, Semi-groupes d’opdrateurs et suites de contractions Bur les espaces L et C(K),
Thse, Universit6 de Paris 6, Paris (1984).

[13] G. DA PRATO AND M. IANNELLI, Linear integrodifferential equations in Banach spaces, Rend.
Sem. Math. Univ. Padova, C2 (1980), pp. 207-219.

[14] R. DERNDINGER, R. NAGEL, AND G. PALM, Ergodic theory in the perspective of functional
analysis, Lecture Notes, Tiibingen, Germany, 1987.



448 WOLFGANG ARENDT AND JAN PROSS

[15] G. DOETSCH, Handbuch der Laplace-Transformation, Band 1, Birkhiuser, Basel, 1971.
[16] J. ESTERLE, E. STROUSE, AND F. ZOUAKIA, Stabilitd asymptotique de certains semigroupes

d’opdrateurs, J. Operator Theory, to appear.
[17] Y. GI(A AND H. SOUR, On the Stokes operator in exterior domains, J. Fac. Sci. Sec. IA, 36

(1989), pp. 103-130.
[18] R. GRIMMER AND J. PRISS, On linear Volterra equations in Banach spaces, Comput. Math.

Appl., 11 (1985), pp. 189-205.
[19] E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq.

Publ. 31, Providence, RI, 1957.
[20] A. E. INGHAM, On Wiener’s method in Tauberian theorems, Proc. London Math. Soc. (2), 38

(933), pp. aLE-as0.
[21] C. G. JORDAN, O. J. STAFFANS, AND R. L. WHEELER, Local analyticity on weighted spaces

and applications to stability problems for Volterra equations, Trans. Amer. Math. Soc., 274
(1982), pp. 749-782.

[22] Y. KATZNELSON AND L. TZAFRIRI, On power bounded operators, J. Funct. Anal., 86 (1986),
pp. 313-328.

[23] A. KISHIMOTO AND D. W. ROBINSON, Subordinate semigroups and order properties, J. Austral.
Math. Soc. Ser. A, 31 (1981), pp. 59-76.

[24] H. KLNIG, Neuer Beweis Pines klassischen Tauber-Satzes, Arch. Math., XI (1960), pp. 278-
279.

[25] J. KOREVAAR, On Newman’s quick way to the prime number theorem, Math. Intelligencer, 4
(1982), pp. 108-115.

[26] H. P. LOTZ, Uniform convergence of operators on L and similar spaces, Math. Z., 190
(1985), pp. 207-220.

[27] H. P. LOTZ Tauberian theorems for opera,ors on L and similar spaces. Functional analysis.
Functional analysis, surveys and recent results III, K. D. Bierstedt and B. Fuchssteiner,
eds., North Holland, Amsterdam, 1984.

[28] Y. I. LYUBICH AND V. Q. PHONG, Asymptotic stability of linear differential equations in
Banach spaces, Studia Math., 88 (1988), pp. 37-42.

[29] R. NAGEL, One-parameter Semigroups of Positive Operators. Lecture Notes in Math. 1184,
Springer-Verlag, Berlin, 1986.

[30] D. J. NEWMAN, Simple analytic proof of the prime number theorem, Amer. Math. Monthly
87 (1980), pp. 693-696.

[31] J. PIPKIN, Lectures on Viscoelasticity Theory, Springer-Verlag, Berlin, 1972.
[32] J. PR0SS, Positivity and regularity of hyperbolic Volterra equations in Banach spaces, Math.

Ann., 279 (1987), pp. 317-344.
[33] J. PRiSS, Linear Evolutionary Integral Equations in Banach Spaces and Applications,

Birkhuser Verlag, Basel, to be published.
[34] T. J. RANSFORD, Some quantitative Tauberian theorems for power series. Bull. London Math.

Soc., 20 (1988), pp. 37-44.
[35] M. RENARDY, W. J. HIUSA, AND J. A. NOHEL, Mathematical Problems in Viscoelasticity,

Longman, Harlow, Essex, 1987.
[36] M. M. SCHAEFER, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974.
[37] D. F. SHEA AND S. WAINGER, Variants of the Wiener-Levy theorem, with applications to

problems for some Volterra integral equations, Amer. J. Math., 97 (1975), pp. 312-343.
[38] A. TAUBER, Ein satz aus der Theorie der unendlichen Reihen, Monatsh. Math., 8 (1897), pp.

273-277.
[39] R. TEMAM, The Navier-Stokes Equation, North Holland, Amsterdam, 1975.
[40] E. C. TITCHMARSH, The Theory of Functions, Oxford University Press, Oxford, 1932.

[41] K. YOSIDA, Functional Analysis, Springer-Verlag, Berlin, 1980.
[42] W. VON WAHL, The Equations of Navier-Stokes and Abstract Parabolic Equations, Vieweg,

Braunschweig, Germany, 1985.
[43] D. V. WIDDER, An Introduction to Transform Theory, Academic Press, New York, 1971.


