Domination of Uniformly Continuous Semigroups

W. ARENDT

Equipe de Mathématiques, Université de Franche-Comté, 25030 Besançon Cedex, France

and

J. VOIGT Fachbereich Mathematik der Universität, 2900 Oldenburg, Germany

(Reveived: 27 April 1992)

Abstract. We prove that a bounded operator on a Banach lattice, satisfying a growth condition, is regular. Also, we prove that the generator of a C_0 -semigroup on such a lattice for which such an operator exists is bounded.

Mathematics Subject Classifications (1991): 47D03, 46A40

Key words: domination of operators, uniformly continuous semigroups

Introduction

The aim of this note is to prove the following theorem.

THEOREM 0.1 Let $T = (T(t))_{t\geq 0}$ be a C_0 -semigroup on a real or complex Banach lattice E. Assume that $B \in \mathcal{L}(E)$ is a bounded operator such that

 $|e^{tB}x| \le T(t)|x| \qquad (t \ge 0, \quad x \in E).$ $\tag{1}$

Then B is a regular operator. Moreover, the generator A of T is bounded.

Here a bounded operator B is called *regular* if B is dominated by a positive operator $C \in \mathcal{L}(E)$ (i.e. $|Bx| \leq C|x|$ $(x \in E)$). If E is order complete, then every regular operator B possesses a *modulus*; i.e. there exists a smallest positive operator |B| dominating B (see Schaefer [9]).

In analogy one may ask whether a given C_0 -semigroup S which is dominated by a positive C_0 -semigroup possesses a *modulus semigroup*, i.e. a smallest positive semigroup $S^{\#}$ dominating S. This question is treated by Derndinger [6], Becker-Greiner [4] and Charissiadis [5] (see also Nagel [7, C-II]). With the help of a result of Derndinger [6] (see also [7, C-II, Thm. 4.17]) from the above theorem one obtains a positive answer for uniformly continuous semigroups. COROLLARY 0.2 Assume that E is order complete. Let $B \in \mathcal{L}(E)$ and assume that there exists a C_0 -semigroup T satisfying (1).

Then

$$|e^{tB}x| \le e^{tB^{*}}|x| \le T(t)|x| \qquad (t \ge 0, \quad x \in E),$$
(2)

where $B^{\#} = \operatorname{Re} B_0 + |B_1|$ with $B_0 \in Z(E)$, $B_1 \in Z(E)^{\perp}$ such that $B = B_0 + B_1$.

Here Z(E) denotes the center of E (see Zaanen [11] or Aliprantis–Burkinshaw [1] where Z(E) is denoted by Orth(E)). Note that Z(E) is a band in $\mathcal{L}^{r}(E)$ so that the decomposition of B is unique.

The proof of the theorem is based on perturbation arguments (cf. [2]). For further relations between perturbation and domination we refer to [3] and Rhandi [8].

The Proofs

Let A be the generator of a C_0 -semigroup $T = (T(t))_{t\geq 0}$ on a Banach lattice E. Denote by $\omega(A)$ the type of T. Then $(\omega(A), \infty) \subset \rho(A)$. If T is positive, then

$$(\lambda - A)^{-1} \ge (\mu - A)^{-1} \ge 0$$
 whenever $\omega(A) < \lambda < \mu$. (3)

Conversely, if $(\lambda - A)^{-1} \ge 0$ for all $\lambda \ge w$ and some $w > \omega(A)$, then T is positive. For $\alpha > 0$ the operator αA generates the C_0 -semigroup T_{α} given by $T_{\alpha}(t) = T(\alpha t)$. Note that T_{α} is positive if and only if T is positive.

The following is an easy consequence of the Trotter-Kato theorem.

LEMMA 0.3 Let $B_n \in \mathcal{L}(E)$ $(n \in \mathbb{N} \cup \{\infty\})$ such that $\lim_{n \to \infty} B_n = B_{\infty}$ in the operator norm. Denote by S_n the semigroup generated by $A + B_n$. Then $\lim_{n\to\infty} S_n(t) = S_{\infty}(t)$ strongly for all $t \ge 0$.

We will use the following result due to Derndinger [6] (see also [7, C-II, Lemma 4.18]).

PROPOSITION 0.4 Let A be the generator of a positive C_0 -semigroup on E. If $A \ge 0$ (i.e. $Ax \ge 0$ for all $0 \le x \in D(A)$), then A is bounded.

The following generalization of Proposition 0.4 is the key step in the proof of the theorem.

PROPOSITION 0.5 Let A be the generator of a positive semigroup and let $B \in \mathcal{L}(E)$ be a real bounded operator. If $A - B \ge 0$, then A is bounded and therefore regular (cf. [7, C-II, Thm. 1.11], [10]).

Proof. By Proposition 0.4 it suffices to show that the semigroup generated by A-B is positive. For $\alpha \ge 0$ the operator $A_{\alpha} = A + \alpha(A-B) = (1+\alpha)A - \alpha B$ generates a C_0 -semigroup S_{α} . Let $M = \{\alpha \ge 0: S_{\alpha} \text{ is positive }\}$. We claim that $M = [0, \infty)$.

a) Let $\alpha \in M$. Then there exists $\varepsilon > 0$ such that $[\alpha, \alpha + \varepsilon) \subset M$. In fact, let $\lambda > \omega(A_{\alpha})$. Let C = A - B and $\varepsilon = ||CR(\lambda, A_{\alpha})||^{-1}$. Then by (3), for $0 < \delta < \varepsilon$ and $\mu \ge \lambda$, $||\delta CR(\mu, A_{\alpha})|| < 1$ and so $(I - \delta CR(\mu, A_{\alpha}))^{-1} = \sum_{n=0}^{\infty} (\delta CR(\mu, A_{\alpha}))^n \ge 0$ (where $R(\mu, A_{\alpha}) = (\mu - A_{\alpha})^{-1}$). Since $(\mu - A_{\alpha+\delta}) = (\mu - A_{\alpha} - \delta C) = (I - \delta C(\mu - A_{\alpha})^{-1})(\mu - A_{\alpha})$, it follows that $R(\mu, A_{\alpha+\delta}) = R(\mu, A_{\alpha})(I - \delta CR(\mu, A_{\alpha}))^{-1} \ge 0$ for all $\mu \ge \lambda$, $\delta \in (0, \varepsilon)$. Consequently $\alpha + \delta \in M$ for $\delta \in (0, \varepsilon)$.

b) Assume that $\gamma := \sup\{\alpha \ge 0: [0, \alpha) \subset M\} < \infty$. Note that for $\alpha \ge 0$ the semigroup S_{α} is positive if and only if the semigroup generated by $\frac{1}{1+\alpha}A_{\alpha} = A - \frac{\alpha}{1+\alpha}B$ is positive. Letting $\alpha \uparrow \gamma$ it follows from Lemma 0.3 that S_{γ} is positive. Now a) leads to a contradiction. We have shown that $A_{\alpha} = (1+\alpha)A - \alpha B$ generates a positive semigroup for all $\alpha \ge 0$. Consequently, the semigroup generated by $A - \frac{\alpha}{1+\alpha}B = \frac{1}{1+\alpha}A_{\alpha}$ is positive as well. Letting $\alpha \to \infty$ it follows from Lemma 0.3 that A - B generates a positive semigroup. Q.E.D.

Proof of the Theorem. Since $|e^{tB}x| \leq T(t)x$ $(x \in E_+)$ by assumption, it follows that

$$(\operatorname{Re} B)x = \lim_{t\downarrow 0} \frac{\operatorname{Re}(e^{tB}x) - x}{t} \le \lim_{t\downarrow 0} \frac{T(t)x - x}{t} = Ax$$

for all $0 \le x \in D(A)_+$. Hence $A - \operatorname{Re} B \ge 0$. This finishes the proof in the real case. If E is complex we merely conclude that $\operatorname{Re} B$ is regular. In order to show that $\operatorname{Im} B$ is regular we first assume that E is order complete. Then by [10] the band projection from $\mathcal{L}^r(E)$ onto Z(E) has a contractive extension $\mathcal{P}: \overline{\mathcal{L}^r(E)} \to Z(E)$ (where the closure is understood in $\mathcal{L}(E)$). Since $|M| \le ||M||I$ for all $M \in Z(E)$ one has

$$|\mathcal{P}C| \le ||C||I \qquad (C \in \mathcal{L}^{\overline{r}(E)}). \tag{4}$$

Denote by \mathcal{J} the identity mapping on $\mathcal{L}(E)$. Since $e^{tB} \in \mathcal{L}^r(E)$ (t > 0), it follows that $B \in \overline{\mathcal{L}^r(E)}$. We already know that A is bounded. Since $\mathcal{J} - \mathcal{P}$ is positive on $\mathcal{L}^r(E)$, it follows from (1) that

$$|(\mathcal{J} - \mathcal{P})e^{tB}| \le (\mathcal{J} - \mathcal{P})|e^{tB}| \le (\mathcal{J} - \mathcal{P})e^{tA} \qquad (t \ge 0).$$

Since $(\mathcal{J} - \mathcal{P})I = 0$, it follows for $x \in E_+$ that

$$\begin{aligned} |(\mathcal{J} - \mathcal{P})Bx| &= \lim_{t \to 0} t^{-1} |(\mathcal{J} - \mathcal{P})e^{tB}x| \\ &\leq \lim_{t \to 0} t^{-1} (\mathcal{J} - \mathcal{P})e^{tA}x \\ &= (\mathcal{J} - \mathcal{P})Ax \leq (A + ||A||)x. \end{aligned}$$

Hence $B - \mathcal{P}B$ is regular, and so B is regular. Moreover, $(\mathcal{J} - \mathcal{P})(\operatorname{Im} B) = \operatorname{Im}((\mathcal{J} - \mathcal{P})B) \leq A + ||A||I$. Since by (4) $\mathcal{P}(\operatorname{Im} B) \leq ||\operatorname{Im} B||I \leq ||B||I$, it follows that

$$\operatorname{Im} B \le A + (\|A\| + \|B\|)I.$$
(5)

Now assume that E is arbitrary. Since A is bounded and E' is order complete, applying the preceeding to A' and B' one obtains

 $\operatorname{Im} B' \le A' + (\|A'\| + \|B'\|)I.$

Hence (5) holds for A and B as well. Consequently, Im B is regular. Q.E.D.

REMARK 0.6 By sligth modifications of the proof one obtains the following more general result. Let A be a densely defined operator such that for some $w \in \mathbf{R}$, $[w, \infty) \subset \rho(A)$ and

 $\sup\{\|\lambda R(\lambda,A)\|: \lambda \ge w\} < \infty.$

Assume that $B \in \mathcal{L}(E)$ such that $[w, \infty) \subset \rho(B)$ and

 $R(\lambda, B)x \le R(\lambda, A)x$ $(\lambda \ge w, x \in E).$

Then B is regular and A is bounded.

We conclude with pointing out two open questions. In the first we formulate a generalization of the theorem presented above.

QUESTION 1 Let $B \in \mathcal{L}(E)$ and assume that e^{tB} is regular for all $t \ge 0$. Does it follow that B is regular?

The second concerns the possibility of generalizing Proposition 0.4 and 0.5.

QUESTION 2 Let A be the generator of a C_0 -semigroup S. Assume that a) $D(A)_+$ is dense in E_+ ; and b) $Ax \ge 0$ for all $x \in D(A)_+$. Does it follow that T is positive?

If A generates a positive C_0 -semigroup, then a) is satisfied. In fact, if $x \in E_+$, then $x = \lim_{\lambda \to \infty} \lambda R(\lambda, A) x \in \overline{D(A)_+}$.

However, as the following example shows, there exists a generator B of a C_0 -semigroup such that $D(B)_+ = \{0\}$. Thus condition b) is trivially satisfied and does not imply positivity without additional conditions.

EXAMPLE 0.7 Let $E = L^p(0, 1)$ $(1 \le p < \infty)$ and let A be the generator of the right shift semigroup, i.e. A is given by $D(A) = \{f: [0, 1] \to \mathbb{R} \text{ absolutely} \text{ continuous, } f' \in E, f(1) = 0\}, Af = -f'. Let <math>\Omega \subset (0, 1)$ be measurable such that $\text{meas}(\Omega \cap (a, b)) > 0$ and $\text{meas}(\Omega^c \cap (a, b)) > 0$ for all intervals $\emptyset \neq (a, b) \subset (0, 1)$. Let $\mathcal{J}: E \to E$ be given by $\mathcal{J}f = 1_{\Omega}f - 1_{\Omega^c}f$. Then \mathcal{J} is an isometric isomorphism and $\mathcal{J}^{-1} = \mathcal{J}$. Let B be the generator of the semigroup $T = (\mathcal{JU}(t)\mathcal{J})_{t\ge 0}$. Then $D(B)_+ = \{0\}$. In fact, let $0 \le f \in D(B)$. Then $\mathcal{J}f \in D(A)$. Thus $\mathcal{J}f$ is continuous and $\mathcal{J}f \ge 0$ on Ω and ≤ 0 on Ω^c . Consequently, $\mathcal{J}f = 0$.

Acknowledgement

The authors are grateful to H. Raubenheimer for several stimulating discussions on this subject.

References

- 1. C. Aliprantis, O. Burkinshaw, Positive operators, Acad. Press, London, 1985.
- 2. W. Arendt, Resolvent positive operators and integrated semigroups, Semesterbericht Funktionalanalysis Tübingen Band 6 (1984), pp. 73-101.
- 3. W. Arendt, A. Rhandi, Perturbation of positive semigroups, Archiv der Mathematik, to appear.
- 4. I. Becker, G. Greiner, On the modulus of one-parameter semigroups, Semigroup Forum 34 (1986), pp. 185-201.
- 5. P. Charissiadis, On the modulus of semigroups generated by operator matrices, Semesterbericht Funktionalanalysis Tübingen Band 17 (1989/90), pp. 1-9.
- 6. R. Derndinger, Betragshalbgruppen normstetiger Operator-halbgruppen, Arch. Math. 42 (1984), pp. 371-375.
- 7. R. Nagel (ed.), One-parameter semigroups of positive operators, Lecture Notes in Mathematics 1184, Springer, Berlin, 1986.
- 8. A. Rhandi, Perturbations positives des équations d'évolution et applications, Thèse. Besançon (1990).
- 9. H.H. Schaeffer, Banach lattices and positive operators, Springer, Berlin, 1974.
- 10. J. Voigt, The projection onto the center of operators in a Banach lattice, Math. Z. 199 (1988), pp. 115-117.
- 11. A.C. Zaanen, Riesz spaces II, North-Holland, Amsterdam, 1983.