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0. Introduction. Consider a diffusion equation of the form 

f ut(t,x) = Au(t,x) - V(x)u(t,x) (t > 0,x € R") 

1 « ( 0 , x ) = / ( x ) , 
(0.1) 

where the absorption term V e L / ^ R * ) is positive. In a previous article [2] we 
studied asymptotic stability of the solutions of (0.1). Here we investigate how big 
the absorption has to be in order that the equation (0.1) is exponentially stable in 
Lv-norm; i.e., given 1 < p < oo, there exist M > 0, € > 0 such that 

\\u(t,-)\\LP < Me-£t\\f\\L, (t> 0) 

for all / <E Z,P(R^). This property does not depend on p. It does depend on the size 
of V in a very specific way which we will describe in the following. We distinguish 
two cases. 

In Section 1 potentials in L1 + L°° are considered. Let Q denote the set of all 
open subsets G of RN which contain arbitrarily large balls. Then the equation (0.1) 
is exponentially stable if and only if 

/ V(x)dx = oo for all G € Q 
Jc 

(0.2) 

Arbitrary positive potentials in ^ ( R * ) are considered in Section 3. It is no 
ionger possible to describe exponential stability by the behavior of V on large balls 
(unless N = 1). We replace Q by the class O of all open sets fi in R" for which the 
heat equation in L2(Q) with Dirichlet boundary conditions 

ut(t,x)=Au(t,x) (t> 0,xeQ)\ 

ti(t,-)€^(n) (t> 0); (°-3) 

u(0 ,x) = / ( x ) 
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is not exponentially stable. Formulated in a different way, an open set ft C RN is 
in O if and only if Poincare's inequality fails in #o(f2) (see also Section 2). One 
always has Q C O, but Q ^ O if N > 2. In Section 3 we show that 

f Vdx = oo for all Q G O (0.4) 
Ja 

is a necessary condition for exponential stability of (0.1). We give an example of 
an absorption term V £ L}^ such that (0.2) is satisfied but fn V dx = 0 for one 
set fl in O. Thus condition (0.2) is no longer sufficient for exponential stability if 
V $ Ll + L°°. 

All proofs given here are of analytic nature. Parallel to this work the second 
author studies the problem by probabilistic methods [3]. In particular, it is proved 
in [3] that condition (0.4) is also sufficient for exponential stability. 

The above formulation of the problem is the most intuitive. As is well-known 
(see Kato [8] and Voigt [13]) the problem is governed by a semigroup S — (S(t))t>o 
on LP(RN) with generator A - V. This semigroup is frequently called a Schrodinger 
semigroup even though it governs the heat equation with absorption (0.1), whereas 
the Schrodinger equation is governed by (S(it))len (p = 2). We refer to Simon's 
survey article [12] for further information about Schrodinger semigroups and their 
relation to quantum mechanics. The fact that (0.1) is exponentially stable can be 
reformulated by saying that the type of S is negative (see Section 1). 

1. Potentials in L> + L°°. Let 1 < p < oo. By Tp = (Tp(t))t>0 we denote the 
Gaussian semigroup on LP(RN) given by 

(Tp(t)f)(x) = (47rf)-N/2 J/(y)exp(-(x — y)2/At)dy. 

Note that Tp is a C0-semigroup for 1 < p < oo and T^ is weak*-continuous as the 
adjoint semigroup of T^ By Ap we denote the generator of TP, i.e., D(Ap) — {/ £ 
LP : A / £ A p / = A / (in the sense of distributions). 

Let 0 < V G L |o c(Rn) . We define Ap - V for 1 < p < oo as follows: let 
D(Amin) = (the test functions on and Aminf = A f - V f . Then Amin is 
closable in LP{Rn) and we set Ap - V := ,4,™ in LP{RN). Then Ap - V generates 
a holomorphic semigroup Sp = (Sp(t))t>0 on L?{RN) which we denote occasionally 
by Sp{t) =et^--v\ Then 

0 < Sp(t) < Tp(t) (t > 0) 

in the sense of positive operators; i.e., 0 < / e L p implies 0 < Sp{t)f < Tp(t)f. The 
semigroups Sp interpolate; i.e., 

Sp(t)f = Sq(t)f (f £ If nLq, t>0) (1-1) 

for 1 < p,q < oo, if one sets 500(<) = S^t)'. The adjoint operator of Ai - V is 
denoted by A ^ - V. We refer to T. Kato [8] and J. Voigt [14] for all this. 

If U = (W(i))t>o is a C0-semigroup with generator A we denote by 

u(A) = M{w G R : supt>0 c-wt|lW(t)|| < oo} 
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the growth bound (or type) of U and by 

s(A) =sup{Re\ : A e a (A)} 

the spectral bound of A. One always has s(i4) < v(A). The semigroup U or its 
generator A is called exponentially stable if w(A) < 0. This is the case if and only if 
||W(0ll < 1 for some t > 0. 

Definition 1.1. Let G C We say that G contains arbitrarily large balls if for 
any r > 0 there exists x e RN such that the ball B(x, r) := {y e R N : \x - y\ < r} 
is included in G. By Q we denote the set of all open subsets of R N which contain 
arbitrarily large balls. 

Theorem 1.2. Let 0 < V € Ll + L°°. The following are equivalent: 

(i) s( Ap - V) < 0 for some p e [1, oo); 
(ii) ||Sp(0ll < 1 for allt>0,pe [1, oo); 

(iii) fG Vdx = oo for all G eg. 

Remark 1.3. It is known that s(Ap - V) = w(Ap - V) for all p e [l,oo); see 
Simon [11], Hempel-Voigt [7] and Voigt [13]. We will not use this fact for the proof 
of Theorem 1.2. 

Proposit ion 1.4. Let 0 < V € L\oc(Rn). The following are equivalent: 

(i) There exist r > 0, c > 0 such that fB{x%r) V(y) dy > c for all xeRN. 

(ii) There exists c > 0 such that JG V(y) dy > c for all G eQ. 

(iii) liminf fa, ,V(x)dx > 0 whenever xn e RN, rn > 0 such that v ' n—»oo Jo{xn,rn) v ^ 
lim rn = oo. 

n—»oo 
(iv) fG V(x) dx = oo for all GeQ. 

Proof: (i) => (iv). Assume (i) and let G e G- For n e N there exist xx, • • • , xn e RN 

n 
such that B(xu r) D B(xj, r) = 0 if i ^ j and | J B(xitr) C G. Hence 

i= 1 

f Vdx >Y] [ V d x > n'c-
JG i=1 JB{xi,r) 

Consequently, JG Vdx = oo. 
(iv) => (ii) trivial. 
(ii) (iii). If (iii) is false, then there exist x„ € RN and r„ — oo such that 

/ f i ( x n , r n ) V dx < 2~n. Let Gm = | J B(xn,rn) e Q. Then JGm Vdx < 2 — . So (ii) 
n>m 

does not hold. 
(iii) (i) this is clear. • 
Spectral bound and growth bound can be easily described for operators associated 

with forms. 
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Let if be a Hilbert space and a a positive, symmetric closed form with dense 
domain D(a). Let A be the operator associated with a, i.e., 

D(A) = {u € D(a) : there exists v G H such that a(u, y?) = (v \ (p)H 

for all <p € I>(a)}, 
An = v. 

Then A is self-adjoint and form positive, so —A generates a Co-semigroup U of 
self-adjoint operators. Moreover, D(A) is dense in the Hilbert space (D(a)11| • ||0), 
where 

IMI l=((u\u)H+a(u,u))i. 

It can easily be seen from the spectral theorem that 

s(-A) = l j ( - A ) = M{(Au \ u ) H : u e D(A), \\u\\H = 1} 
= inf{a(ti,u) : u € D(a), \\u\\H = 1} 
= i n f { a ( u , « ) : t i € A I N i f = 1} 

for any form-core D of a. 
The operator A2 — V (V G L,1oc(lRAr)) is associated with the closure of the form 

b on L2(RN) given by 

b(u,v) = [ VuVv 4- [ Vuv, D(b) = C?°(RN) =: 2>(RN), 
jrn yRN 

Hence 

-S(A2 - V) = inf { J(Vu)2 + J Vu2 : U • 2>(RN), ||U||L. = L}. (1.2) 

Lemma 1.5. Let xn 6 rn > 0, and lim rn = 00. Then there exists a sequence «—• 00 
(vn) C C£°(RN) such that suppvn C £(xn ,r„), ||vn|Ua = 1, lim ||Vv„||L2(rn)n = 
0 and lim IKH^ = 0 . n—*oo 

Proof: Let u G 2>(£(0,1)) such that fu2dx = 1. Let = n'N/2u(n~lx). 
Then wn e 2>(£(0,n)), ||wn||L. = 1, I K I U ^ 0 and 

J(Vwn)2dx^ 0 (N —> 00). 

By a translation one obtains vn € V(B(xn>rn)) with the desired properties. • 
Proof of Theorem 1.2: (i) =» (iii). Let p e [1,00) such that s(AP - V) < 0. Let 
A > s(AP - V), ± + 1 = 1. Since A2 - V is selfadjoint, it follows that A € p(A9 -
V) and R(A, A„ - V) = R{A, AP - V)' > 0. Furthermore, from the interpolation 
property (1.1), it follows that R(A, Aq - V) and R(A, AP - V) coincide on LTlL' . 
With the help of the Riesz-Thorin theorem one concludes that A G g( A2 - V) and 
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R(\.±z-V) > 0. Since A > s ( \ - V) was arbitrary we obtain that < 0 
(see ;9. C-III Theorem l.lj). 

It follows from (1.2) that 

C .= inf | | ( V a ) 2 + J Vu2 : u € P(R*), Jti2 = l } > 0. 

Let G ^Q. Choosing un e l?(RiV) as in Lemma 1-5, we obtain 

0 < C < I (VvnV+ I Vri < I (VtO'+- I V-UtJ* C< [ (Vvn)2+ f Vii< f (Vt/n)J +• f V 
J (j J G ** G «/ G 

/ (Vt?n)2 = 0 
JG 

Since 
l im 

and 
lim | | r n | | ^ = 0 

n—̂30 
it follows that 

f V = oc. JG 

(iii) => (ii). Let 0 < V € Ll + I 3 0 such that 

I V = oc for all G € 
JG 

Since 
0 < < e * * * - ^ 

if 0 < V2 < vu we can assume that V € L°°{R*)- By the xmtkm erf crtnfffcHTts 
formula we have 

5 ^ ( 0 1 = ^ ( 4 ) 1 - f Trtcit - 3)VSocialds = 1 - I Taolt-syVSvti*) 1 * 
Jo 

Iterating this once yields 

Sx(i)l = 1 - j\^{s)Vds + j*T^t - M)v£Ta.(M-r)VSim(r)l4rdM. (L3) 

Let i > 0. We can assume that || V|U < f (h» fact, otherwise w reptaee V by 
AV where A e (0 1). Since < (* > 0), U ^ ^ l l < I 

| < Li. 
Since 5^(^)1 < = 1 and V < HVIU1. we hare 

f T ^ ( t - s ) V f T00(a-r)VS00(r)l<fc'«k 
-/O JO 

< ! l ^ l l « f Q T x { t - s ) V jf Tads - r)ldrd» 

= I|V!U fsT»(t-,)Vd» = WU f(t-»yio.{»)Vd* 
Jo 

< l^lloot PTacisWdS. 
J 0 
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Using (1.3) we obtain 

S o o ( t ) i < i - f r M V d s + tWvWv, f r ^ v d s . 
Jo Jo 

Thus 

Soo(t)l < 1 - (1 - tllVlloo) / T M V d s . (1.4) 
Jo 

Now 

(Too(5)V)(x) - / p.(x-y)V(y)dy, 
J R " 

where p, (z) = (4irs)~N^ exp(-*2 /4s) . By hypothesis, there exist c > 0, r > 0 such 
that 

/ V(y)dy>c for all i € R * 
JB(x, r) 

(see Proposition 1.4). Let e = inf pa(z) > 0. Then 
0<»<t 

(Too(s)V)(x) > e • c ( i e R N , 0 < « < « ) • 

Hence 

/ (Toot^VOfa!) ds>te c for all at (E R^. Jo 
It follows from (1.4) that (5o c(t) l)(x) < 1 - (1 - t||V||oo)tec (x G R*) and so 
\\Si{t)\\ = 11500(1)11 = ||Soo(t)l!|L« < 1. Moreover, from the Riesz-Thorin theorem, 
it follows that ||SP(t)|| < 1 for all p G [l,oo]. So (ii) is proved. The implication (ii) 
=> (i) is obvious. • 

Theorem 1.6. Let fi C R^ be open. The following are equivalent: 

(i) fl almost contains large balls {i.e., there exist x n G RN, r n —• oo such that 
mea(B(xn, rn)\Q) —• 0 (n oo)). 

(ii) There exist xn e RN, rn > 0 such that rn oo (n oo) and 
supmes (B(xn,rn)\Q) < oo. 
neN 

(iii) s(A - kln*) = 0 for all Jt • N. 
(iv) fl(A - V) = 0 for all 0 < V € L1 + L°° satisfying fn Vdx < oo. 

Here s(A - V) = s(Ap - V), which is independent ofp € [1, oo] (see Remark 1.3). 

Proof: (i) (ii) this is trivial. 
(ii) => (iv). By hypothesis there exist balls B(xn,rn) such that lim r„ = oo, 

n—»oo 
sup mes (B(xn , r n \ f l ) =: M < oo. Using Lemma 1.5 we find vn G V(RN) satisfying 
n€N 
suppv„ C B(xn,rn), K l l i a = 1, lim ||Vvn||(^a\Af = 0, and lim ||vn||oo = 0-
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Let 0 < Vi e L\ 0 < Voo € L°° such that V = Vx + V^ and suppose that 
juVdx < oo. Then 

limsup ( / ( V u „ ) 2 + J V v 2 ) = limsup j v v 2 

n—«oo V J ' n—>oo J 

< limsup ( / + l i m s u p ( / Vj) + limsup [ (V«,v
2) 

n—'OO v JQ ' n—>00 V jQc / n—>oo Jnc 

<11 Voolloolimsup||vn||^ mes (B(x„,rn)\fi) = 0. 
n—»oo 

Hence s(A - V) = 0 by (1.2). 
(iv) (iii) this is trivial. 
(iii) (i). If (i) does not hold, then for any sequence of balls B(x„,r„) with 

lim rn — oo one has liminf mes (B(xn , rn) \ f2) > 0. Hence 
n—>oo n—too 

liminf A; / l f i e d x > 0 (k > 0). 
JB{X n,rn) 

By Proposition 1.4 and Theorem 1.2 this implies s(A - fclfie) < 0 for all A; > 0. • 

Definition 1.7. Let c > 0. A measurable set E C RN satisfies inequality M(c) if 

[ u2 <c||u|| i3(RW)||Vu||L2(RN)N (M(c)) 
Je 

for all u e 2?(Rn). By M we denote the set of all measurable subsets E of RN for 
which there exists c > 0 such that M(c) holds. 

A set of the form 

{x = (!,,••• )iN)GRJV:a<xJ<6}, 

where -oo < a < b < oo and j e {1, • • • , N) or a rotation and translation of such 
a set is called a strip of width b — a. 

Proposition 1.8. Let S be a strip of width c > 0, then S satisfies M(c). 

Proof: (a)*1* Let u G 2?(R). Then 

u(x)2 = f {u(y?)'dy = 2 f uu'dy, 
J-oo J-oo 

^ ,00 roc 
U(x)2 = -J (u2)'dy = -2 J uu'dy. 

Hence 

/

x fOO r+oo 

uu'dy- uu'dy < \uu'\dy < | M I L * ( R ) U U I I L ' ( R ) -
-oo Jx J-oc ( t )This proof is due to Ph. B&iilan and replaces a more complicated one of the authors. 
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Consequently, 

[ u(x)2dx <{b- a)||U||L*(M)I|U'IIL'(M), 
J a 

which finishes the proof for TV = 1. 
(b) Let TV > 1 and assume (without loss of generality) that E = {x : a < x\ < b}. 

Then by (a) 

jhu{xux')2dxx<{b-a)(J^ 

for all xf • R n _ 1 . Integration with respect to x' yields with the help of the Cauchy-
Schwarz inequality 

f du 

J u2dx < (b — a) - | | U | | L A ( R N ) • | | I I L 3 ( R N ) < ( * > ~ A)IMLL3(R") • I | V U | | L 2 ( R N ) N . 

Corollary 1.9. Let Sj be a strip of width Cj ( j G N). IfJ^JLi Cj < oo, then 
n = | J S j € M . 

je N 

Theorem 1.2 shows that the size of V for large x is responsible for exponential 
stability. This is made more precise in the next result which shows that the part of 
V on a strip does not matter. 

Theorem 1.10. Let 0 < V € L1 + L°° such that s(A2 - V) < 0. If E e M, then 
s(A2 - V • lEc) < 0, where Ec = RN\E. 

Proof: By hypothesis 

0 < A = in f { J(Vu)2 + jvu2: Ju2 = 1, u G P ( R N ) j . 

As a consequence of Theorem 1.2 s(A2 - V) < 0 if and only if s (A 2 - V - Vi) < 0, 
where 0 < Vi € Ll(RN). So we can assume that V m L°°(RN). Let u e V(RN) such 
that fu2 = 1. If 

then 
J (Vu)2 + J V w > 

If not, then using inequality M(c) we have 

\ < JEVu2 < IIVIU -Ju2 < IIVIU • c• ( ^ N ( V u ) 2 ) i • 

Hence 
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2. Poincar^ sets. Let ft c R N be an open set. By An we denote the Dirichlet-
Laplacian on L 2 ( f t ) ; i.e., A n is defined by D(AQ) = {u • : AU G £ 2 ( f t ) } 
(where Au is understood in the sense of distributions), AQU = AU (u e D(An)). 
The operator An is associated with the form a : i/o(ft) x /f,}(ft) R given by 

a(u,v)= 
J N 

VuVvdx. 
J n 

Hence 

An : = -u;(An) = - s (An) 

= inf { J (Vtt)2dx : u G J u2 = l} 
= inf { J (Vtt)2dx : u G 2>(ft), J u2 = l } (cf. Section 1). 

Note that 

An [ u2dx< [ (Vu)2dx (ueH^{n)) (2.1) 
Jo J n 

(Poincare's inequality). If ft is bounded, then An is the smallest eigenvalue of - A n . 

Definition 2.1. An open subset ft of R N is a Poincari set if s(An) < 0. By V we 
denote the set of all open Poincar6 sets in RN . 

It is immediately clear from the definitions that an open set ft is in V whenever 
it is in M. 

Proposition 2.2. Let ft C be open. Consider the following assertions: 
(i) ft contains arbitrarily large balls. 

(ii) 
(iii) ft almost contains large balls. 

Then (i) => (ii) => (iii). 

Proof: (i) => (ii) follows from Lemma 1.5. 
(ii) => (iii) Suppose that ft does not almost contain large balls. Then by Theorem 

1.6 s(A - klnc) < 0 for some fc G N. Thus 

0 < ~s( A - kl n 0 - inf { J ^ V u ) 2 + kj^u2:ue V(RN), u2dx = l } 

< inf [ J (Vtx)2 : tx G 2>(ft), J u 2 = l } 

= s { An). • 

The next proposition shows that (i) (ii) if N = 1. We will see that (ii) & (i) if 
N >2. For any N > 1, (iii) & (ii). In fact, ft = {(xi, . • • G RN : $ Z) G P, 
but ft almost contains large balls. 
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Proposit ion 2.3. Let ft C R be open. Then ft is a Poincare set if and only if 

£ := sup{6 - a : (a, b) C ft} < oo. 

3 
In that case An = jt-

2 
Proof: If ft = ((),<)> then it is easy to see that An = jr (with eigenfunction 
sin jx) using translation A(0)6) = . So assume that b - a < £ whenever 
(a, 6) C ft. Let u € £>(ft). Then u = Uj, where uj € P(flj,6j)» C ft, 
( f l j ,6 j ) n ( f l i iW = ^ (* ^ J); M = 1,.. -n. Hence 

^.2 r n n n fbj f 

Thus An > ji* • 

In order to show that (ii) (i) in Proposition 3.2 if N > 2 we need the following 
lemma. 
Lemma 2.4. Let N > 2, x e RN . Let e > 0. Then there exists r\ G £>(RN) such 
that ||t/||hi < £ and rj(y) = 1 for y € i?(x,r) and for some r > 0 and r}(y) = 0 for 
Proof: We can assume x = 0. 

a) N > 3. Choose ip € £>(RN) such that ip(y) = 1 for \y\ < 1 and ip(y) = 0 for 
\y\ > 2. Then for n € N, rpn(y) = ip(ny) defines a function satisfying ipn(y) = 1 for 
| y | < i ^ n ( y ) - 0 f o r | y | > l 

So lim llV'nll//! = 0 and the proof is finished in that case. 

b) N = 2. Let V e C°°(R2\{0}) such that rp(x) > 0 (x € R2), ^ ( i ) = 0 for 
\x\ > i and = ( l o g ^ ) 1 / 4 for 0 < |z| < Then t/> € Hl(R2) (cf. [4, IX 
Remark 17, p. 170]). 

Let Vn(x) = inf{V(x),n}. Then t/>„ e Hl(RN)- in fact, fg* = )<»]!£ 8111(1 

so ||V„||HI < M J P (cf. [5, IV §7 Prop. 6]). 
There exist r„ e (0, ±) such that ipn(x) = n for | i | < 2rn. Let pn € 2?(R2) such 

that fR3 pn(y)dy = 1 and pn(y) = 0 if |y| > rn . Then rj„ = ±p„ * Vn € 
and T]n(x) = 1 for | i | < r„. Moreover, | M „ i ( r 3 ) < ±\\i>n\\Hi < ±||t/>||«i -» 0 
(n —» oo). • 

Example 2.5. (the Swiss cheese): Let N > 2. For z e Z " let rx > 0 such that 
lim rz= 0. Define fi = R N \ I I B(z, rt). Then fi 4 V. 

z—»oo ^ 

Remark. However, ft does not contain large balls. So (ii) (i) in Proposition 2.2 
if N > 2. 
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Proof: Let e > 0. We have to show that there exists xp G 2>(ft), V ^ 0, such that 

There exists ip G V(RN) such that \\tp\\La = 1, ||V<^||(z,a)N < ey and the same 
remains true if ip is replaced by <px given by <px(y) = <p(x - y) (x,y G R*). So it 
suffices to show that 

There exists c > 0 such that \\r)(px\\Hi < c\\r)\\Hi for all rj • V(RN), x G R*. 
Let A; G N such that suppy? c B(0tk), There exists £ G N such that for any 

xeRN there are at most £ numbers 2 G ZN such that B(x, k) O B(z, rz) ^ 0. 
Let 6 > 0 be arbitrary. We observe that lim|x|_»oo max{r, : B(x, k) O B(z , r x ) ^ 

0} = 0. So by Lemma 2.4, fixing x with |x| sufficiently large, there exists r\ • Z>(R*) 
such that ||T7||//I < 6 and TJ = 1 on B(zyrx) whenever B{z,rx) O B(x, k) ^ 0. Since 
s u p p ^ c B(xtk)y it follows that xft = tpx - r)ipx G I>(ft) and ||V> - VzWh1 ~ 
WWxWm < C\\T)\\HI < c6. • 

Remark 2.6. Lemma 2.4 implies that for N > 2, tfo(ft) = H&{Q\{a}) for any open 
set ft c R" and a G ft (cf. [4, IX.4 Remark 18, p. 171]). In fact, let <p G 2>(ft). For 
£ > 0 there exists rj 6 V(RN) such that rj = 1 in a neighborhood of a and ||»j||/fi(n) < 
€. So<p(l-ri) G X>(ft\{a})and \\<p-<p(l-Tj)\\Hi = < const \\ri\\Hi < conste, 
where the constant does not depend on 77. So the completion of Z>(ft\{a}) and 2>(ft) 
with respect to H1 are the same. 

3. Potentials in Lf (Rw). In this section we investigate exponential stability 
of heatflow with arbitrary positive absorption in / ^ ( R * ) . The following theorem 
is the main result. A necessary condition is established which is stronger then 
condition (iii) of Theorem 1.2. 

Theorem 3.1. Let 0 < V • L,1
oc(R"). If s(A - V) < 0, then 

for every open set Q cRN which is not a Poincari set 

Remark. Here s{A - V) = s(AP - V) = UJ(Ap - V) which is independent of 
p £ [1, 00). 

Theorem 3.1 in conjunction with Example 2.5 shows that the characterization 
given in Section 1 (Theorem 1.2) is no longer valid if V $ L1 + L°°. In fact, suppose 
that N >2 and let ft c R * be the Swiss cheese of Example 2.5. Then ft i V. Let 
0 < V e L}oc(R") such that Vjn = 0. It follows from Theorem 3.1 that s(A-V) = 0. 
However, choosing V such that Vjn = 0 but JH Vdx = 1 for every "hole" H C R"\ f t 
we have JG Vdx = 00 for all G in Q. 

For the proof of Theorem 3.1 we need some preparation. If fti,ft2 G V, then, 
in general, ft2 u ft2 t V (for example, R = fti U ft2 £ P for fti = R\2Z G V and 

= R\2Z + 1 G V). However, letting B6 = {x G R" : dist (x, B) < 6} for B c R", 
<5 > 0, the following holds. 

in f { | |^ - $ II*, : $ G P(ft), x G R^} = 0. (2.2) 
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Proposition 3.2. LetQeV and let B c RN be open such that B6 e M for some 
6> 0. Then QuBeV. 

Proof: Assume that ft U B $ V. Then there exist un G X>(ft U B) such that 

J u2 =1, Jim J ( V u n ) 2 d x = 0. 

Let 6 > 0 such that B6 G M and choose ip G C°°(RN) such that tp = 1 on 
RN\B6 and = 0 on BE for some E > 0 and sup |V<?(x)|2 < oo (one may take 

x€Rn 

(p = 1 - 1 Bs/2 * p, where p G V{B{0,6/2)) such that / p = 1). Then, since B6 G M, 

I u2
n< const||VUTI||L3(RN)N -^0 (n -> oo). 

Jb* 

Hence 
lim n—»o< 

Note that tpun G X>(ft). Since ft G V we obtain, 

[ u2
n = / (v^n)2 < / ( v ^ ) 2 < const [ (V(vttin))2 

./n ./n 

< 2const I [(V<?)2u2 + v>2(Vufl)2] 
./n 

< 2const ||(Vv?)2||oo I «2 + 2const ||v?2||oo / (Vu„)2 —• 0 (n -> oo). 

This is a contradiction since 

lim [ u2 = 1. • 

Corollary 3.3. LetSl eV and let Q cRN be open. If ft is contained in a strip, 
then ft U ft G 

Lemma 3.4. Lei ft C RN 6e open suc/i that Sl^V. Then there exist bounded open 
sets fincfi such that ftn is of class C°°, dist(Qn,Slj) > 1 for j = 1 , . . . ,n - 1, 
n G N and limn_»oo s(Ann) = 0. 

Consequently, there exist un G /fo(ftn) s u c h that ||un||j^(n„) = 1> ̂ Un — 
with Xn = -s(AnJ. Moreover, un G L°°(ft„) and sup ||«B||oo < 

Proof: Let £„ j 0. There exists v G Z>(ft) such that 

Jv2 = 1, j{Vv)2<ex. 

Let ftx = {x G ft : v(x) ^ 0}. Then fti is a bounded open set of class C°° such that 
Ai < €i. 

JN\B* 
< = 1. 
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Assume that n G N and Hi , . . . , are constructed such that Sl„ is bounded open 
of class C°°, dist (ft,, fy) > 1 for i, j G {1 , . . . i ^ j and Aj < ej, j = 1 , . . . n. 
Let 

n 
K = | x G Rn : dist (x, IJ l } . 

3=1 

Then K is compact. So it follows from Corollary 3.3 that ft = J7\K $ V. Conse-
quently, there exists v G T>(Q) such that 

Jv2 = 1, J(Vv)2<en+1. 

Let fin+i = {x : v(x) ^ 0}. Then fin+i is & bounded open set of class C°° and 
dist ( f i n + 1 , Q,j) > 1 for j — 1 . . . n. We have proved the first assertion. 

Since Ann has compact resolvent, there exist un G D(Ann) such that 

Au„ - -Antin, ||Un||t3 = 1. 

It remains to show that sup ||un||oo < oo. Let 
nCN 

0 = U n i 
J=I 

and Jt > f . Then u„ G D(A&) and | |A5un | | = A™ (m = 0 , . . . ,*). Hence (un)n€N 
is bounded in B(A^) for the graph norm. But D(A&) ^ N2k(0) ^ L°°(0), see 
[4, Theoreme IX.25 and Corollary IX.15]. • 

Proof of Theorem 3.1: Assume that there exists O CRN open such that O <£ V 
and fQV < oo. By Lemma 3.4 there exist open sets ftn C O such that n„ nf2m = 0 
for n ^ m and there exist u„ G D L°° such that 

Ju2
n = 1, J ( V t i n ) 2 - 0 (n —» oo) 

and M := supu6PI ||«„||oo < 0 0 • Consequently, 

/ ( V U n ) * + jvu2
n< J(Vun)2 + M2J^ V ^ O (n —• oo) 

since 

T [ v < f V < 00. 

Hence s(A2 - V) = 0 by (1.2). • 

If N = 1, then Theorem 1.2 also holds for general potentials. 
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Theorem 3.5. Let N = I and 0 < V € -Lj^R). The following are equivalent 

(i) s( A - V) < 0. 

(ii) There exist k e N, a > 0 such that Vdy>a for all x <E R. 
(iii) JGVdy = oo /or ail G eQ. 

Proof: (i) => (iii) follows from Theorem 3.1. 
(iii) => (ii). If (ii) does not hold, there exist xn e R such that 

flrv+n rx„+n 
/ Vdy < 2~n (n e N). 

Jx„-n 

Then 
G= U ( i « - n , i n + n ) e 5 

n e N 

but 
/ V d y < l . 

JG 

(ii) => (i). There exist k e N and a > 0 such that 

Wn+i )k 
/ > a for all n € Z. 

Jnk 

f (n+l)fc 

>nk 

Let u e Z>(R) and n e Z. Choose x0 € [nfc, (n + l)fc] such that 

|u(x0)| = inf{|u(x)| : nk < x < (n + 1)*}. 
Then 

u(y)'dy\^ 
'Xo ' V JlQ 

u(x)2 = («(xo) + jf «'(») dj,) 2 < (|ti(x0)| + \x - x0 |* ( J * u'(y)2 dy)* )'' 

< 2u(xo)2 + 2\x — io| fXu'{y)2dy 
J Xo 

f(n+l)k 
< 2u(x0)2 + 2k u'(y)2dy {nk<x<(n+ 1)A). 

Jnk 
Consequently, 

rk(n+l) An+l)k 
/ u{x)2dx < 2ku(x0)2 + 2k2 / u'(y)2dy 

Jkn Jnk 
2k / • * ("+! ) / - (n+1)* 

< -U(x0)2 / V(y) dy + 2k2 / u'{y)2dy 
a Jkn Jnk 

< - / u(y)2V(y)dy + 2k2 u'(y)2dy. 
" Jkn Jnk 

Summing over n yields with 0 = max{^, 2k2}, 

J ^ u ( y ) 2 d y < ( 3 [ J^V + J^'2}-
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Thus, inf{ /u' 2 + / u 2 V : / u 2 = l , u e V(R)} > • 
Next we consider Theorem 1.10 for general potentials. 

Example 3.6. Let N = 1. There exist E G M and 0 < V G ^ ( R ) such that 
s( A 2 - V ) < Obut S(A-VIEC) = 0 and so (in view of Theorem 1.10) s(A-V f c) = 0 

oo 
for all k G N, with Vk = inf{V, k}. In fact, let E = ( J [2n, 2n+r„], where 0 < r„ < 1. 

n=l 
Let V(x) = £ if x G [2n, 2n + r„] and V = 0 on R \E . Then, fG Vdx = oo for aU 
G G g and s o ^ s ^ - V) < 0. If YZLi r" < t h e n E e M (by Corollary 1.9). 

The preceding example shows that alteration of V on a set in M may change 
the property of exponential stability. However, we have the following theorem. 
Theorem 3.7. Let 0 < V G L}oc(RN) such that s(A - V) < 0. Let B C RN be 
measurable such that B6 G M for some 6 > 0. Then s(A - VlBc) < 0. 

Proof: Since s(A2 — V) < 0, there exists c > 0 such that 

||u||2a = j u2 < c(J(Vu)2 + Jvu2} for aU u G V(RN). 

Assume that s(A2 - VlB^) = 0. Then there exist un G V(RN) such that 

Ju2
n = 1, + 0 (n —• oo). 

Since B6 G M, 

/ ^ < c o n s t ( / (Vtin)2)* —> 0 (n —• oo). (3.1) 

Let <p G C°°(Rn) such that (p = 1 on and <p = 0 on B and (V<?)2 G 
(cf. proof of Proposition 3.2). Then 

/ U2 < f (vmn)2 < c{ / (V^t in ) ) 2 + / 
JKN\B> JR~ 1 J J ' 

< c{2 J ( V v ) 2 u 2 + 2 J <fi2(Vun)2 + J V u 2 } 
< c f 2 [ u2||(Vv)2||oo + 2 /(V«n)2 • + llv2|l=o / V u 2 } - 0 

J B « \ B J J B C 

by (3.1). This together with (3.1) contradicts that / u 2 = 1. 

Remark. If B is included in a finite union of strips, then B6 G M for all 6 > 0. 
We conclude with a similar result for the special potential V = el. 

Proposition 3.8. Let FT C RN be open such that SI6 € V for some 6 > 0. Then 
S(A2 — £\qc) < 0 for all e > 0. 

Proof: Assume that s(A2 - elnO = 0. Then there exist un G V(RN) such that 

Ju2
n = 1 and j{Vun)2+e j^u2

n-+ 0 ( n o o ) . 
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Let <p € C°°(RN) such that <p,(Vy>)2 e L°°, ip = 1 on fi and tp = 0 on RN\ns. 

Then 

J ul < J i < p u n ) 2 < const ( J V(^un)2) 

< 2 const ^ j(V<p)2u2
n + / ^ ( V u n ) 2 ) 

< 2 c o n s t ( j ^ u 2 | | ( V ^ ) 2 | | 0 0 + j { V O ^ u ) - 0. 

This leads to a contradiction since 

[ u2 —> 0 (n —> oo) 

and 

Remark. The hypothesis on fi in Proposition 3.8 is weaker than that in Theorem 
3.7. In fact, for Q c R it is easy to see that Q,6 e M for some 6 > 0 if and only if 
H is bounded. 
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