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0. Introduction. Consider a diffusion equation of the form

{ u(t,z) = Au(t,z) - V(x)u(t,z) (t >0,z RVN) 01)

(0, z) = f(z),

where the absorption term V € LL_(RV) is positive. In a previous article [2] we
studied asymptotic stability of the solutions of (0.1). Here we investigate how big
the absorption has to be in order that the equation (0.1) is exponentially stable in
LP-norm; i.e., given 1 < p < 0o, there exist M > 0, £ > 0 such that

lu(t, s < Me™ |\ flls (¢20)

forall f € LP(RV). This property does not depend on p. It does depend on the s'ize
of Vin a very specific way which we will describe in the following. We distinguish
two cases.

In Section 1 potentials in L! + L are considered. Let G denote the set of all
open subsets G of RN which contain arbitrarily large balls. Then the equation (0.1)
is exponentially stable if and only if

/ V(zr)dz =00 foralG€g (0.2)
G

Arbitrary positive potentials in L. (R™) are considered in Section 3. It is no
longer possible to describe exponential stability by the behavior of 1Vv on lmse balls
(unless N = 1). We replace G by the class O of all open sets 2 in R for which the
heat equation in L%(Q) with Dirichlet boundary conditions

w(t,z) = Au(t,z)  (t>0,z€Q);
u(t,-) € Hy() (t > 0); (0.3)
u(0,z) = f(z) (z € ),
—_
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is not exponentially stable. Formulated in a different way, an open set {2 C RN is
in O if and only if Poincaré’s inequality fails in H{(f2) (see also Section 2). One
always has G C O, but G # O if N > 2. In Section 3 we show that

/ Vdr =00 forall €O (0.4)
n

is a necessary condition for exponential stability of (0.1). We give an example of
an absorption term V € L} _ such that (0.2) is satisfied but f, Vdx = 0 for one
set  in ©. Thus condition (0.2) is no longer sufficient for exponential stability if
Vé¢L+ L™

All proofs given here are of analytic nature. Parallel to this work the second
author studies the problem by probabilistic methods (3]. In particular, it is proved
in [3] that condition (0.4) is also sufficient for exponential stability.

The above formulation of the problem is the most intuitive. As is well-known
(see Kato [8] and Voigt [13]) the problem is governed by a semigroup S = (5(t))i>0
on LP(R™) with generator A — V. This semigroup is frequently called a Schrédinger
semigroup even though it governs the heat equation with absorption (0.1), whereas
the Schrodinger equation is governed by (S(it))icr (p = 2). We refer to Simon’s
survey article [12] for further information about Schrédinger semigroups and their
relation to quantum mechanics. The fact that (0.1) is exponentially stable can be
reformulated by saying that the type of S is negative (see Section 1).

1. Potentials in L! + L. Let 1 < p < co. By T, = (Tp(t)):>0 we denote the
Gaussian semigroup on LP(R™) given by

(ﬂ@ﬁ@b%hﬁwﬁfﬂwam—u—wv«my

Note that T}, is a Cy-semigroup for 1 < p < oo and T, is weak®-continuous as the
adjoint semigroup of 71. By A, we denote the generator of Ty, i.e., D(A,) = {f €
L? : Af € LP}; A,f = Af (in the sense of distributions).

Let 0 < V € L} (RY). We define A, — V for 1 < p < oo as follows: let
D{Amin) = D(R") (the test functions on R") and Aginf = Af —V f. Then Amiq is
closable in LP(RV) and we set A, -V :=An, in LP(RY). Then A, — V generates
a holomorphic semigroup S, = (S,(t))¢>0 on LP(R") which we denote occasionally
by Sp(t) = et{4»=Y). Then

0SS, ()< Tt) (£20)

in the sense of positive operators; i.e., 0 < f € L” implies 0 < S,(t)f < Tp(t)f. The
semigroups S, interpolate; i.e.,

Sp()f =S(t)f (feLPNL, t>0) (1.1)

for 1 < p,q < o0, if one sets Sy(t) = S,(t)". The adjoint operator of A; — V is
denoted by A, ~ V. We refer to T. Kato [8] and J. Voigt [14) for all this.
If U = (U(t))e>0 is a Co-semigroup with generator A we denote by

w(A) = inf{w € R : sup,>p e ¥ |jU(t)]| < 00}
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the growth bound (or type) of U and by
5(A) = sup{Re) : A € 0(A)}

the spectral bound of A. One always has s(A) < w(A). The semigroup U or its
generator A is called ezponentially stable if w(A) < 0. This is the case if and only if
iU(t)|| <1 for some t > 0.

Definition 1.1. Let G C RY. We say that G contains arbitrarily large balls if for
any r > 0 there exists x € RY such that the ball B(z,r):= {y € RN : |z — y| < 7}
is included in G. By G we denote the set of all open subsets of RY which contain
arbitrarily large balls.

Theorem 1.2. Let 0 <V € L' + L*®. The following are equivalent:

(i) s(Ap — V) <0 for some p € [1,00);
(i) 1Sp(t)ll < 1 for allt >0, p € [1,00);
(iii) o Vdz =00 forallG € G.

Remark 1.3. It is known that s(A, — V) = w(Ap, — V) for all p € [1,00); see
Simon [11], Hempel-Voigt [7] and Voigt [13]. We will not use this fact for the proof
of Theorem 1.2.

Proposition 1.4. Let 0 <V € L. _(RN). The following are equivalent:

lo¢

(i) There exist T > 0, ¢ > 0 such that fB(”) V(y)dy > c for allz € RV,
(ii) There exists ¢ > 0 such that [,V (y)dy > c for allG € G.
(iii) liminf fB(: ) V(z)dz > 0 whenever z, € RN, rn > 0 such that

lim r, = 00.
n—oo

(iv) foV(z)dz = o0 for all G €G.
Proof: (i) = (iv). Assume (i) and let G € G. For n € N thereexist z,, -+ ,Zn € RN
n

such that B(z;,r) N B(z;,r) =0 if i # j and U B(z;,r) C G. Hence

i=1

n
/dezZ/ Vdz>n-c
G i=1 Y B(zir)

Consequently, [, Vdz = oco.

(iv) = (ii) trivial. N

(i) = (iii). If (iii) is false, then there exist z, € R" and rn — oo such that
fB(:c..,r..) Vdz <2 " Let G = U B(Zn,mn) € G. Then [; Vdz <27™. So (ii)

n>m

does not hold.

(ili) = (i) this is clear. [

Spectral bound and growth bound can be easily described for operators associated
with forms.



1012 WOLFGANG ARENDT AND CHARLES J.K. BATTY

Let H be a Hilbert space and a a positive, symmetric closed form with dense
domain D(a). Let A be the operator associated with a, i.e.,

D(A) = {u € D(a) : there exists v € H such that a(u,¢) = (v | 9)g
for all p € D(a)},
Au=v.

Then A is self-adjoint and form positive, so —A generates a Cp-semigroup U of
self-adjoint operators. Moreover, D(A) is dense in the Hilbert space (D(a), || - |la),
where

ol = (o w)a + o) .

It can easily be seen from the spectral theorem that

s(~A) = w(-A) = inf{(Au | W)y : u € D(A), llull = 1}
= inf{a(u,u) : u € D(a), llulla = 1}
= inf{a(u,u) : u € D, lully = 1}

for any form-core D of a.
The operator A, — V (V € L (RV)) is associated with the closure of the form
b on L%(R¥) given by

b(u,v)= | VuVv+ / Vuy, D(b) = C*RY) =: D(RV),
RN RN
Hence
—3(Ag — V) = inf { /(Vu)2 + / Vul:u @ DRY), JlullL2 = 1}. (1.2)

Lemma 1.5. Letz, € RY, r, >0, and nlim T = 00. Then there exists a sequence
— 00
(vn) C CSO(RN) such that suppvn C B(Zn,Tn), ||[vnllL2 =1, nlingo "VUn"L’(RN)N =
0 and lim ||vp]leo = 0.
n—oo

Proof: Let u € D(B(0,1)) such that [uZdz = 1. Let wy(z) = n~N/2u(n"'z).
Then wy € D(B(0,n)), [lwallLz = 1, |walloo — 0 and

/(Vw,.)zdz —0 (n— o00).

By a translation one obtains v, € D(B(zn,r,)) with the desired properties. [

Proof of Theorem 1.2: (i) = (iii). Let p € [1, 00) such that s(A, — V) <0. Let
A > s(Ap — V), % + % = 1. Since A, — V is selfadjoint, it follows that A € g(Aq —
V) and R(A\, Ay — V) = R(A\,Ap, — V)’ > 0. Furthermore, from the interpolation
property (1.1), it follows that R(A, A, — V) and R(}, Ap — V) coincide on LP N LA.
With the help of the Riesz-Thorin theorem one concludes that A € g(A; — V') and
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R(A.A; -V > 0. Since A > 5(Ap — V') was arbitrary we obtain that s(Az~V) < 0

(see 9. C-III Theorem 1.1}).
It follows from (1.2) that

C.:inf{/(Vu)z+/Vu2:ue‘D(RN),/u’=l}>0.

Let G < G. Choosing v, € D(RY) as in Lemma 1.5, we obtain

o<Cs/G(vun)2+/Gvu3, g/c(vv,.)’+/cv-;jv,.11;.

Since
lim [ (Vea)2=0
n—eoQ G
and
lim [|vali3, =0
n—oo
it follows that

/Vzoo.
G

(iii) = (i). Let 0 < V &€ L! + L™ such that
/V=co foral G € G.
G

Since
O < Ct(A,_VI) < e‘(Ap_v‘l)

if 0 < V3 < V4, we can assume that V € L®(R"). By the variation of constants

formula we have

Sxc(t)l = T (t)1 — /t To(t — 9)VSx(s)lds =1~ me(f ~ 3}V Sx(s)2dn
0

0
Iterating this once yields

Seit)l=1- /t Tx(3)Vds +/'Tw(t— a)V[) Too(s — 7)VSx(r)1drds. (L)
0 0

Let t > 0. We can assume that |V < 1. (In fact, ; -A\'V) implies V'by
AV where X & (0, 1). Since et(A1-¥) < eH(81-2V) (2 > 0), ||| < 1

Vi),

Since S, (3)1 < Too(s)1 = 1 and V < [|V ]l 1, we have
/0t Too(t - 8)V /0’ T, (s — 1)V Sun(r)1drds
< Vil /otToo(t—s)V/O To (s - r)1drds
= Vi [ oTalt - )V ds = Vs [a-amatovas

< Vit /0 T (s)Vda.
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Using (1.3) we obtain

Seo(t)1 <1 - / ‘ Too(8)V ds + ]V lloo f t Too(s)V ds.
0 0

Thus .
Su(t)1<1~(1— t||V||°°)/O‘ T (s)V ds. (1.9)

Now

Tu@V)@) = [ pie -9V,
where p,(z) = (478)~N/2 exp(—22/4s). By hypothesis, there exist ¢ > 0, r > 0 such
that
/ V(y)dy>c forallz € RV
B(z,r)

(see Proposition 1.4). Let £ = Ii?<f ps(2) > 0. Then
z|<r
0<a<t

(Too(s)V)(z)26-c (zeRY, 0<s<t).

Hence

t
/ (Too(8)V)(z)ds > te-c for all z € RV,
0

It follows from (1.4) that (Seo(t)1)(z) < 1~ (1 — t||V]leo)tec (z € RY) and so
ISs (Ml = §Soo(t)l = 1Seo(t)1fj= < 1. Moreover, from the Riesz-Thorin theorem,
it follows that ||S,(t)|| < 1 for all p € [1, 00]. So (ii) is proved. The implication (ii)
= (i) is obvious. O

Theorem 1.8. Let @ C RY be open. The following are equivalent:

(i) Q2 almost contains large balls (i.c., there exist x,, € RV, r, — 0o such that
mes (B(zn,rn)\T) — 0 (n — o0)).

(i) There ezist z, € RN, r, > 0 such that r, — 00 (n — 00) and
supmes (B(zq,Ta)\2) < 00.
neN
(iil) 8(A —klge) =0 for allk @ N.
(iv) 8(A-V)=0 for all0 <V € L 4 L™ satisfying JoVdz < .
Here 8(A — V) = s(A, — V), which is independent of p € 1, 00] (see Remark 1.3).
Proof: (i) = (ii) this is trivial.
(ii) = (iv). By hypothesis there exist balls B(z,,r,) such that nl'i.ngo T = 00,
ilelgmes(B(z,.,rn\ﬂ) =: M < co. Using Lemma 1.5 we find v, € D(RY) satisfying
8upp vn C B(Tn,Tn), |lvalla =1, nli_I.lgo “V'-’n"(l,’)” =0, and nli_{%o lvalloc = 0.
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Let 0 < Vi € L', 0 < Vo € L™ such that V = V; + V., and suppose that
JqV dz < co. Then

limsup(/(Vv,,)2 + /Vvﬁ): limsup/Vv,";
n—oo n—oo
<timsup ( [ V)unlle + msup ( [ )lonl + timsup [ (Veoo?)

<[IVeolloo limsup [[va i3, mes (B(zn,mn)\Q) = 0.

Hence s(A — V) =0 by (1.2).
(iv) = (iii) this is trivial.
(iii) = (i). If (i) does not hold, then for any sequence of balls B(z,,,) with

lim r, = oo one has h'{n inf mes (B(zy,Ts)\ §?) > 0. Hence
n—oo -— 00

n-—oo

liminfk/ 1g:dz >0 (k> 0).
B(Zn,Tn)

By Proposition 1.4 and Theorem 1.2 this implies s(A — klq:) <O forallk >0. O
Definition 1.7. Let ¢ > 0. A measurable set E C R¥ satisfies inequality M(c) if

[ 4 < clullzqn Vulsamn (M(e)
E

for all u € D(RN). By M we denote the set of all measurable subsets E of RV for
which there exists ¢ > 0 such that M(c) holds.
A set of the form

{z = (21, " ,2N) eRY :a<z; <b},
where ~00 < a < b < oo and j € {1,---, N} or a rotation and translation of such

a set is called a strip of width b —a.
Proposition 1.8. Let S be a strip of width c > 0, then S satisfies M(c).

Proof: (a)(*) Let u € D(R). Then
T

u(z)? = f;(u(y)Q)’dy = 2/ uu' dy;

—00

and 00

u(z)? = —/:o(u2)’dy = —2/3 uu'dy.

z 00 +00
u(z)? = / wi'dy - / widy < j | dy < el oyl acey-
) i

—00 o

(This proof is due to Ph. Bénilan and replaces a more complicated one of the authors.
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Consequently, ,
f w(z)?dz < (b — o) |ullLagyl¥ |2k,
a

which finishes the proof for N = 1.
(b) Let N > 1 and assume (without loss of generality) that E = {z : a < z; < b}.
Then by (a)

/bu(:cl,:r’)zdxl < (b—a.)(/nu(a:l,:z:’)2 dxl)%('/kaa—;(xl,a:’)gdxl)%

for all z’ @ RV 1. Integration with respect to z’ yields with the help of the Cauchy-
Schwarz inequality

Ou
[ s < 0= o) lulown - Dz < (6= )l [Vl oy
Corollary 1.9. Let S; be a strip of width ¢; (j € N). If 332, ¢j < 0o, then

Q=JSjeM.
JEN
Theorem 1.2 shows that the size of V for large r is responsible for exponential

stability. This is made more precise in the next result which shows that the part of
V on a strip does not matter.

Theorem 1.10. Let 0 <V € L' + L™ such that s(A; — V) < 0. If E € M, then
s(Ag — V - 1g.) < 0, where E° = RV\E.

Proof: By hypothesis

O<A=inf{/(Vu)2+/Vu2:/uzzl, ueD(RN)}.

As a consequence of Theorem 1.2 s(A3 - V) < 0 if and only if s(A; -V —V3) <0,
where 0 < V3 € L}(RV). So we can assume that V @ L°(R"). Let u € D(RV) such

tha.tfu2=1.1f
/ Vuzsi\-,
E 2

then

If not, then using inequality M(c) we have

2 < /E Vel < [Viloo - /E w < Vlleo e (/.,N(V")z)%'

/(Vu)2 + /VlEeu2 > xmn{%, (m—z)z}

Hence
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2. Poincaré sets. Let 2 C R¥ be an open set. By Aq we denote the Dirichlet-
Laplacian on L*(Q); i.e., Aq is defined by D(Aq) = {u @ HY(Q) : Au € L)}
(where Au is understood in the sense of distributions), Aqu = Au (u € D(Ag)).
The operator Agq is associated with the form a : H§(Q) x H}(Q2) — R given by

a(u,v) =/Vquda:.
0

Hence
Aq = —w(Aq) = —3(Aq)
=inf{/n(Vu)2dx:ue Hi (), /nuz =1}
= inf{ /n (Va)ldz : u € D(Q), /n w? =1} (cf. Section 1).
Note that

Aq /n uldr < /n (Vu)2dz  (u€e H}(Q)) (2.1)

(Poincaré’s inequality). If Q is bounded, then Aq is the smallest eigenvalue of —Aq.
Definition 2.1. An open subset Q of RY is a Poincaré set if s(Aq) < 0. By P we
denote the set of all open Poincaré sets in RV,

It is immediately clear from the definitions that an open set Q is in P whenever
it is in M.
Proposition 2.2. Let Q ¢ RN be open. Consider the following assertions:

(i) Q contains arbitrarily large balls.

(i) Q¢ P.

(iii) Q almost contains large balls.
Then (i) = (ii) = (iii).
Proof: (i) = (ii) follows from Lemma 1.5.

(ii) = (iii) Suppose that £ does not almost contain large balls. Then by Theorem
1.6 s(A - k1<) < O for some k € N. Thus

0 < —s(A ~ klge) =inf{/RN(Vu)2+k/ncu2:ueD(RN), /RN vz =1}
Sinf{/(Vu)z:uE'D(Q), /u2=1}
= —s(Agq). a

The next proposition shows that (i) <= (ii) if N = 1. We will seeNthat (ii) & (i) if
N > 2. For any N > 1, (iii) # (ii). In fact, @ = {(z1,... ,zN) ERY : 2, ¢ Z} € P,
but Q almost contains large balls.
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Proposition 2.3. Let @ C R be open. Then Q is a Poincaré set if and only if
¢:=sup{b-a: (a,b) C N} < c0.

In that case A\q = ’7';-

Proof: If @ = (0,¢), then it is easy to see that A\q = ’—;;- (with eigenfunction
sin 7z) using translation A p) = Z'F_t—zyy So assume that b — a < ¢ whenever
(a,b) C Q. Let u € D(?). Then u = Z; , uj, where u; € D(aj,b;), (aj,b;) C Q,
(aj,b;) N (ai,bi) =¢ (i #j); 4,5 =1,...n. Hence

j=1"%

Thus Aq 2 %. O

In order to show that (ii) 7 (i) in Proposition 3.2 if N > 2 we need the following
lemma.

Lemma 2.4. Let N > 2, z € RY. Let € > 0. Then there ezists n € D(RV) such
that ||Inllgr < € and n(y) =1 for y € B(z,r) and for some r > 0 and n(y) =0 for
ly -zl >3
Proof: We can assume z = 0.

a) N > 3. Choose ¥ € D(RN) such that ¥(y) = 1 for |y| < 1 and ¥(y) = O for
|yl = 2. Then for n € N, d:,.(y) = 9(ny) defines a function satisfying ¥n(y) = 1 for
lyl < &, ¥aly) =0 for Jy| >

.._na

/zbﬁdy = ;l-lﬁ/z/zzdy, /(gﬁ:)z nz‘"/(%)z.

So 'll.l_lﬂ) |¥n]lgr = 0 and the proof is finished in that case.

b) N = 2. Let ¢ € C*(R%\{0}) such that ¥(zx) > 0 (z € R?), ¥(z) = O for
lz| > 1 and ¥(z) = (log 1%[)1/4 for 0 < |z| < §. Then ¢ € H'(R?) (cf. [4, IX
Remark 17, p. 170]).

Let Yn(z) = inf{y)(c), n}. Then yn € H'(R"); in fact, FE2 = lyy(s)<n) 52, and
0 [nlln < Wil (c£. [5, IV §7 Prop. 6]).

There exist r, € (0, s) such that ¥, (z) = n for |z| < 2r,. Let p, € D(R?) such
that [, pn(y)dy = 1 and pa(y) = 0 if |y| > ry. Then T = 1o * Yn € D(R?)

and 7a(z) = 1 for |z| < rn. Moreover, |falla1gey < Llvaller < LYl — 0
(n—00). O

Example 2.5. (the Swiss cheese): Let N > 2. For z € ZV let r, > 0 such that
lim r, = 0. Define 2 = RN\ U B(z,r,). Then Q ¢ P.

|z|—o0
2€2N

R(}evmark. However, 2 does not contain large balls. So (ii) # (i) in Proposition 2.2
if N> 2.
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Proof: Let € > 0. We have to show that there exists ¢ € D(R), ¥ # 0, such that
IVl Lyn < ell9llLa-

There exists p € D(RN) such that [|p||z2 = 1, IV@ll(L2y~v < €, and the same
remains true if ¢ is replaced by . given by w-(y) = p(z — y) (z,y € RV). So it
suffices to show that

inf{||pz — Yllm: : ¥ € D), z € RV} = 0. (2.2)

There exists ¢ > 0 such that ||n¢z||z1 < c|jn|lg: for all n @ D(RY), z € RV,

Let k¥ € N such that suppy C B(0, k). There exists £ € N such that for any
z € RN there are at most £ numbers z € ZV such that B(z, k) N B(z,r;) #0.

Let 6 > 0 be arbitrary. We observe that lim|;|_,, max{r, : B(z, k) N B(z,r,) #
0} = 0. So by Lemma 2.4, fixing z with |z| sufficiently large, there exists n @ D(RV)
such that ||n||g: < 6 and n =1 on B(z,r,) whenever B(z,r;) N B(z, k) # 0. Since
suppp, C B(z,k), it follows that ¢ = ¢, — np, € D(Q) and || — pzllm =
Impzlis < cllnlly: < 6. O
Remark 2.6. Lemma, 2.4 implies that for N > 2, H}(Q) = H}(Q\{a}) for any open
set 2 C RV and a € Q (cf. [4, IX.4 Remark 18, p. 171]). In fact, let ¢ € D(R). For
e > 0 there exists n € D(RV) such that n = 1 in a neighborhood of a and ||n]| g1(q) <
e. Sop(1-n) € D(N\{a}) and |lp—~p(1-n)l|u2 = |l 2 < const ||n||y: < conste,
where the constant does not depend on 7. So the completion of D(2\{a}) and D(R2)
with respect to H! are the same.

3. Potentials in L] (RV). In this section we investigate exponential stability
of heatflow with arbitrary positive absorption in LL_(R™). The following theorem
is the main result. A necessary condition is established which is stronger then
condition (iii) of Theorem 1.2.

Theorem 3.1. Let0< V @ L} (RN). If s(A - V) <0, then

/de:oo
9!

for every open set 2 c RN which is not a Poincaré set.

Remark. Here s(A — V) = s(8, — V) = w(Ap — V) which is independent of
P € (1, 00).

Theorem 3.1 in conjunction with Example 2.5 shows that the characterization
given in Section 1 (Theorem 1.2) is no longer valid if V ¢ L' + L*. In fact, suppose
that N > 2 and let ¢ RM be the Swiss cheese of Example 2.5. Then Q ¢ P. Let
0<V e L} (RV)such that Vg = 0. It follows from Theorem 3.1 that s(A-V') = 0.
However, choosing V such that Vig = 0 but [, Vdz = 1 for every “hole” H C R™\€2
we have [, Vdz =oo forall Ging.

For the proof of Theorem 3.1 we need some preparation. If Q;,Q; € P, then,
in general, R, U, ¢ P (for example, R = 2, U ¢ P for () = R\2Z e P m;,d
0, = R\2Z+1 € P). However, letting B® = {z € R" : dist (z, B) < 6} for B C R",
6 >0, the following holds.
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Proposition 3.2. Let Q€ P and let B C RN be open such that B% € M for some
6§>0. ThenQUBEP.

Proof: Assume that QU B ¢ P. Then there exist un, € D(2 U B) such that

/uf, =1, nlingo (Vug)?dz = 0.

Let 6§ > 0 such that B® € M and choose p € C®(RY) such that ¢ = 1 on

RN\B?’ and ¢ = 0 on B¢ for some € > 0 and sup |Vo(z)|? < oo (one may take
z€RN

@ = 1 - 1ge/2 % p, where p € D(B(0,6/2)) such that [ p =1). Then, since B’ € M,
/ u2 < const ||Vun||a@yyy =0 (n — 00).
B¢

Hence
2 =1.

lim u,

n—00 Ja\ B¢

Note that pu, € D(R). Since 2 € P we obtain,

2 _ 2 2 2
[y 1= [t < [ (o) < const [ (T
< 2const [ [(Vi)ud + *(Vun))
0

< 2 const |(Ve)?/leo / w2 + 2 const [|p%loe / (V)2 — 0 (n — 0o).
B¢ [?]
This is a contradiction since

lim wi=1 O
n—oo n\Bg

Corollary 3.3. Let Q € P and let Q C RN be open. If Q is contained in a strip,
then QU € P.

Lemma 3.4. Let Q@ C RN be open such that Q ¢ P. Then there exist bounded open
sets U, C Q2 such that Q, is of class C*, dist(Q,,Q;) > 1 forj=1,...,n—-1,
n € N and lim,_.o 3(Aq,) = 0.
Consequently, there exist un € H5(Q0n) such that |lun(lL3q,) = 1, Atn = —Anla
with A, = —s(Aq,,). Moreover, u, € L*(Q,) and sup ||un)co < 0.
neN

Proof: Let €, | 0. There exists v € D(2) such that

/v2 =1, /(V’v)2 < €.

Let Q) = {z € Q: v(z) # 0}. Then Q, is a bounded open set of class C* such that
Al < €.
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Assume that n € Nand Q,,... , 1, are constructed such that €, is bounded open

of class C*°, dist (€2;,9;) > 1 for ¢,j € {1,... ,n}, i # j and Aj<€,i=1,...n
Let

K= {:c € RV : dist (z, LnJ Q;)< 1}.
j=1

Then K is compact. So it follows from Corollary 3.3 that = Q\K ¢ P. Conse-
quently, there exists v € D(2) such that

/U2 = 1, /(Vv)z < En4l-

Let 2,41 = {z : v(z) # 0}. Then R, is a bounded open set of class C*° and
dist (n+1,9;) > 1 for j = 1...n. We have proved the first assertion.
Since Aq, has compact resolvent, there exist u, € D(Agq,) such that

Aun = —Antin, "u'ﬂ”L2 =L

It remains to show that sup ||up|lec < 00. Let
neN

0= OQ,-
i=1

and k > & Then u, € D(AY) and [|AZu,|| = AT (m=0,... , k). Hence (un)nen
is bounded in D(AJ) for the graph norm. But D(Af) — H?*(0) — L*(0), see
[4, Théoréme IX.25 and Corollary IX.15]. O

Proof of Theorem 3.1: Assume that there exists O C R" open such that O ¢ P
and [, V < co. By Lemma 3.4 there exist open sets {2, C O such that QN =0
for n # m and there exist u, € H3(Q2,) N L such that

[=1 [@u)=0 (n=o)

and M :=sup,¢p [[tnllooc < 00. Consequently,

/(Vu,.)2+/Vuf,5/(Vun)2+M2/n“V—»0 (n = 00)

since

Z/ V_<_/V<oo.
n=1 1, o
O

Hence 8(A2 - V) =0 by (]__2)
If N =1, then Theorem 1.2 also holds for general potentials.
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Theorem 3.5. Let N =1 and 0 <V € L} (R). The following are equivalent
(i) s(A-V)<0.
(i) There ezist k € N, a > 0 such that [*T¥Vdy> a forallz € R.
(iii) [V dy=o00 foralGeg.

Proof: (i) = (iii) follows from Theorem 3.1.
(iii) = (ii). If (ii) does not hold, there exist z, € R such that

Tn+n
f Vdy< 2™ (neN).
z

n—"N
Then
G= U(zn—nazn+n)€g
neN
but
/ Vdy < 1.
G

(ii) = (i). There exist k € N and a > 0 such that

(n+1)k
/ Viyddy>a forallneZ.
nk

Let u € D(R) and n € Z. Choose z; € [nk, (n + 1)k] such that
|u(zo)] = inf{|u(z)| : nk < z < (n + 1)k}.
Then

) = (o) + [ ) ds)” < (uteol + b —2ol? ([ way)*)’

zo

< 2u(z0)? +2lz — zo| | w(y)dy
zo
(n+1)k
< 2u(zo)? + 2k/ u'(yPdy (nk <z < (n+1)k)
k

n

Consequently,
k{n+1) (n+1)k
/ u(z)?dr < 2ku(zo)® + 2k2/ u'(y)*dy
kn nk

2% ) k(n+1) (n+1)k

< —;u(mo) / V(y)dy + 2k2/ u'(y)%dy

kn nk

o2k [k(n+l) 2 (n+1)k

<= u(y)*V(y) dy + 2k* f u'(y)*dy.

kn nk

Summing over n yields with 3 = max{%'i, 2k?},

Au(y)Qdysﬁ{Lu2V+Lu'2}.
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Thus, inf{ [ 4% + [u?V: [u? =1, ue D(R)} > 3 O
Next we consider Theorem 1.10 for general potentials.

Example 3.6. Let N = 1. There exist E € M and 0 < V € L} _(R) such that
$(A2—V) < 0but s(A—-V1g:) = 0 and so (in view of Theorem 1.10) s(A - Vi) =0

for all k € N, with Vi = inf{V, k}. In fact, let E = |_J [2n, 2n+r,], where 0 < r,, < 1.

n=1

Let V(z) = L if z € [2n,2n + r,]) and V = 0 on R\E. Then, [, Vdz = oo for all
GeGandsos(A;—-V)<0.If Y07 | rn < 00, then E € M (by Corollary 1.9).

The preceding example shows that alteration of V on a set in M may change
the property of exponential stability. However, we have the following theorem.

Theorem 3.7. Let 0 < V € L} _(RV) such that s(A — V) < 0. Let B C RV be
measurable such that B¢ € M for some 6§ > 0. Then s(A — V1p:) <0.

Proof: Since s(A; — V) < 0, there exists ¢ > 0 such that

lulZa = /u2 < c(/(Vu)2 + /Vuz) for all u € D(RY).
Assume that s(Az — V1g<) = 0. Then there exist u, € D(R") such that
/uﬁ:l, /(Vun)2+/ Vu?‘—bo (n—;oo)
Since BS € M,
2 2\}
/ u, < const( (Vuy) ) —0 (n— o00). (3.1)
B¢

Let ¢ € C°(R¥) such that ¢ = 1 on R¥\B? and ¢ = 0 on B and ¢, (Vy)? € L™
(cf. proof of Proposition 3.2). Then

Jorg < L o < of [T + [ vigw?)
< c{2 / (Vo)u2 +2 / ©*(Vua)? + / v¢2u§}
<efof | ITen +2[(Tun)" ol + el [ vaz}—o

by (3.1). This together with (3.1) contradicts that [u3 = 1.

Remark. If B is included in a finite union of strips, then B® € M for all § > 0.
We conclude with a similar result for the special potential V = €1.

Proposition 3.8. Let 2 C RN be open such that Q° € P for some 6§ > 0. Then
$(A; — €lq.) <0 for alle > 0.

Proof: Assume that s(Az — €lge) = 0. Then there exist u, € D(RY) such that

/uﬁzl and /(Vu,‘)2+€/ncu3;—’0 (n — o0).
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Let ¢ € C®(RM) such that ¢, (V)2 € L®, o =1 0n Q and ¢ = 0 on RN\QS.

Then
/n up < / (pun)? Sconst( / V(spun)z)
< 2const(/(V<p)2u,2, + /<P2(Vun)2)

< 2const( [ w20 oo+ [(Fun)lp?llc) 0,
a5\
This leads to a contradiction since

w2 50 (n— o0)
L

/uﬁ=l.

Remark. The hypothesis on {2 in Proposition 3.8 is weaker than that in Theorem
3.7. In fact, for @ C R it is easy to see that 2° € M for some 6 > 0 if and only if
2 is bounded.

and
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