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INTEGRATED SOLUTIONS TO IMPLICIT DIFFERENTIAL EQUATIONS

Abstract. This paper establishes m Wo. eompletely dlfferent ways that the abst.ract -

degenerate initial value problem d—(Mu(t)) + Lu(t) = f(t),O <t <7, Mu(0) =
‘Muyg, has always an integrated solution, provided that for all complex numhers Zin the
half-plane Rez > a > O the operator pencil P(z) = zM + L has a boanded inverse
from the Banach space X to D{L), endowed with the graph-norm, and its norm has
a polynomial growth there. Some applications to partial differential équations are
given. A Trotter-Kato type result is proved, too. '

1. Introduction
The main purpose of this paper is to show that the initial value problem

ay —(Mu(t))+Lu(t) fe),  0<t<r

(1.2) - Mu(0) = Mug,  uo€ D(L),

~ has alWays a “solution”, provided that it is understood as an integrated solution, even if (1.1),
(1.2) may be not salvable in strict sense since, e.g., (1. 1) ang (1.2} are not compatrble
Here L and M are two closed linear Operators from the complex Banach space Yto the' |
- (complex). Banach space X, f is a continuous funcuon from [0, 1-] into X and ug belongs to
- the domain D(L) of L. L
For our aim, it is not resmctwe to assume that ’D(L) is contamed into D(M) and L. .
has a bounded inverse. Henceforth we shall suppose that these propertles hold (besndes in-
Section 4 where we consider slrghtly more general hypotheses) In all of this paper we also .
shall. requlre that the ‘operator pencrl P(z) = zM + L has a bounded inverse P(z)? for any

zEE Rez>a>0

and there are K >0,m=40,1,.., such that
(P) |LP(2) ey < K(1+[2)", z€X,.

*Partially supported by M.UR.S.T. (Fondi 40%).
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| There are many concrete mteresting examples of operators satisfying (P) and we llSt :
some of them

EXAMPLE 1.1. Let L,M be two densely defined operators acting in the complex‘
Hnlbert space H = X =Y, with inner product <, > and induced norm || || such that M is
. non negatwe and selfadjoint in H, L and its adjoint L* 'fulﬁl

(8 o Re < Lu,u >2 collull?, ue 'D(L),,

(14 Re<IMf>zalflt feDE),

where co is a posluve constant

Assume further that for all z € £,, the adjomt operator of zM + L coincides with
ZM + L*. This happens, as it is well known, if M is b0unded for example. The estimate

Re < P(z)u u>> co||u||2,u € D(L),z € X,,
1mpltes that zM + L has a closed range and is one-to-one.
The hypothems (1.4) on the adjoint assures that zM + L has a bounded inverse and
P leex) < o™

I Mis bounded, we conclude that (P) holds with m = 1.
| If M is unbounded, more must be assumed in general, but if L itself is selfadjoint with
D(L1/2) c D(M) the estimate -
(1.5) l(eM + L)ul||lu]| = Re < (zM + L)u,u >>< Lu u >
o = “LlfgulI?’ _ u € D(L):
implies that S |
| | | AP~ £l 2 ||Ll./2P(2)_f1f||_2, feH, |
~ and therefore .
| “lllfllz > ||LY2P(2) 1)1,
 that is, there are Cy, C; > 0 with
IMP(z)~' fll < Cy ||LU2P(Z) 1J°||<C'2||f||, feH.

Herce, (P) is again satisfied with m = 1.

For an apphcatton to first order symmetric systems of partial differential equations, sce
Favini [9, pp.450-451) ‘The second case (M unbounded) covers various equations (1.1) where
- M, L are defined by suitable elliptic differential operators.
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EXAMPLE 1. 2 Let us suppose that s =0 is a polar singularity of (z+ ML~!)"1 =
L(zL+ M)‘ that is, there are k € N,& > 0,6 > 0, such that zL+M has a bounded inverse -
(€ L(X,Y)) for all 0 < |2| < ¢ and : :

IIL(zL + M)~ 1llr:(x) <8l 7F0< 2l <.

Hence assumption (P) holds with m = k — 1.

- It is then well known that one has the representatlon X=N (T’°) o R(T") where -
T =ML"!, and N(T), R(T) denote the kernel and the range of the operator T', respectively.
On the basis of this property a detailed study of (1.1), (1.2) has been done in Favini [10). For
another “algebraic” type approach to the problem in this situation, ilivoki_hg the Drazin inverse .
of a linear operator, we refer to the very recent paper by Nashed and Zhao [13].

"EXAMPLE 1.3. Maxwell’s equations

(1.6) : rotF _._%’ rotH = %?-+J

in R3, where E (respectively, H) denotes the electric (fesp , magnetic) field intensity, B (resp s
D) denotes the electric (resp magnetic) fiux densnty and J is the current density, when the

medium which fills the space is supposed to be linear, amsotroplc and nonhomogeneous, (that
is, D = c¢E,B = uH,J = ¢E + J, for some 3 x 3 matrices &(z), 4{z) and o(z),z € R,

~and .J' is a given forced current density), (1.6) reads ' - ' |

. o
) 2 (elyw) + Ewg—;‘; +¥ayw = gt,a) in f0,7] x R,
wi_th _ _ :

ey o oz) 0] . '
w=Em, <= 0] o= 0], o(t.5) = ~(7(t.2),0).

In the paper [16], by Yagl, (1.7).is fonnulated in the abstract form (1.1) by taking X = Y =
(L*(R?))®. Under the assumptions that €(z ), p(z) and a(z),z € R3, are real matrices the

components of which are bounded measurable functions in R®,e(z) is symmetrnc and =0 for o

every T € R3, there exist § > 0,~ > 0 such that
({ye(@) + o(2)}e, €) 2 62&3, € = (€1,6,8) € R®,
' =l ' :

uniformly in = € R®, p(z) is symmetric and > 6 > O uniformly in x € R3, if L, M are
defined by ' -

dv .
D) ={veX;) amp—eX}, Lv= Eaia—; + b(z)v,
j=1 i=1 .
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M=K? K the multlphcatlon operator by \/c(—:c then by formula 5. 12) in Yag: [16, p 404],

'(1 8) _ " Re <Lv v>> 6||‘v||2+)\0|lKv||2 ve D),

with Xo < —maz{y,1}. o tum, this reads |
 Re<Lv=JoMu,v >2Dlplf, veD(L).

Fix )\0 < —mam{7, 1} The change of variable v = e"‘“"v transforms (1 1) to

—(Mv(t)) + (L ~ XoMw(t) = e"°°-f(t-), 0<t<T
Argumg as in Example 1.1 and- takmg mto account (1 8), one deduces that
Re < Lv — AgMu -+ AMv,v >2 Sllvl’%, weD(E), Rex20,

- and ||(,\M + L~ AOM )v|| > 6[|v|| Vv € 'D(L) Re sufficiently large.

Always applying the argument in [16, p- 405}, we sce that if (AM+ L — XM ) =0
=M + L* ~ AoM)w =0, then w € D(L) and therefore

~ Re < L*w,w >= Re(A¢ — A)HKw]l2 Re <, Lw >> §||w||? 4+ Ao]| Kw||?
implies = _ _
o —ReAIIKwIF > 8l .
Since ReA > a > 0, we conclude that Kw=w=0 "
Hence, we deduce that (P) is verified with m = 1.
For other different approaches to this type of equations we refer to Duvaut and Lions [8] and
to Povoas [15] :

EXAMPLE 1 4, IfX=Y and M has a bounded mverse, (P) says that
||(Z + LM=1)- Ney < C(l +[2)™1, 2 € B,

- Itin fact sufﬁces to notice that (2 + LM~ -1 MP(z)‘“ =2~ YI - LP(z) 1} for all
2 € B,. Therefore —LM~! generates an mtegrated semigroup too, see [2] and [14]. We
also refer to the even more general theory of regularized semlgroups developed in Hneber
'Holdemeth and Neubrander {11, Theorem 34, p. 372].

On the other hand (see Chazaram [6, p.403} and [3 Section 4]), this means that -LM™!
generates a dnstnbuuon semigroup with exponennal growth.

~ The main result motivating this paper is contained in Section 2. In Section 3 we
establish the continuous dependence of the integrated solution to (1.1) on the operators L and
M, generalrzmg Trotter-Kato theorem for Co-senugroups This theorem has to be compared
with the one by Busenberg and Wu [5] on integrated semigroups and is obtained using a very
‘recent convergence property establlshed in Barbu and Favini [4]. In Section 4, on the basis
of a complex Laplace representation theorem due to Arendt and Kellermann [3], we grve a
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shghtly different version of Theorem 2. 1, obtaining a little bit morc regulartty Morcover in

this latter approach it is not needed that L is mvorttblc A smular approach is also usecl by' R

~ Abdelaziz ancl Neubrander [1], but their results are different from ours.

2. Integrated solutions to '(1.1-),-(1.'2)

- Tor begi'n with we formulato a previous existénce and uniqU'eness theorem rel‘ative to B
(L.1), (1.2) obtained in Favini [9], generali izing the Operatt onal method by Da Prato and Grtsvard '
[7] concerning parabolic equattons

ProposITiON 2.1. Let us assume (P). If f € C™+2([o, 7]; X ) fU)(O) = 0 for
J=0,1,..,m+1, and Mug € R(T™*2), with T = ML~ then (1.1), (1.2) has a unique
strict solution.

By a strict solution u of (1.1), (1.2) we mean a function u € C([O 7]; D(L}) such that
Mu e C)([0, 7); X) and (1.1), (1.2) hold.
Of course, if & € N U {0}, C*)([0,7]; X) denotes the set of all k-times continuously
differentiable X-valued functions on [0,7]. We let CO([0,7); X) = C([0,7]; X) and -
¢, 71 X) = 0B (o, 71 X). |

One sees that in general both regularity (for arbitrary h ancl compattbtltty relattons_
between f(J)(O) and uo, for some 7, are necessary to have a solution, even if (1.1)is required
to hold for ¢t > 0. Nevertheless it is a well known fact in applied mathematics, for example,
in control theory, that also not compatible systems (1.1), (1.2) allow a corresponding “answer”
w in some wo'ak sense. Our aim is to clarify the meaning of this answer.

If M = I, the identity operator in X = Y, the notion of integrated solution to (1.1),

(1.2) has been introduced guaranteelng that it exists for all f € C([0,7]; X) and any Uo € X
see [2, 3, 12].

“We shall prcqent an analogous definition of k-mtegrated solutmn to (1.1), (1. 2), :
k=0,1,. , and we shall show that undcr (P) it always exists, whatever are fand uo € X,
see [2, 3, 12] - o

In order to motivate our notion of integrated solution, we observe that if » is a strict

“solution of (1.1}, (1.2), the posmon ' |
t

ul(t)=/ u(s)ds
0

t
un(t) = / wk_1(s)ds, k=23,
i _

and

leads to the relation

21)  Mug(t) = /Luk(s ds+k'Muo+fk+1(t) k=12,
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where fk+1(t) t(t ) ~——f(s)ds .

- On the other hand if we mtrocluce Luk(t) = vk(t),T ML“ e l) can also be
written as :

. . ) ] . ¢ :
(22) - Tw(t)= "[ vi(s)ds i 7 wo + fk+1(t): k=1,23,..,
With wo = M‘uo
We are in a position to introduce

DEFINITION 2.1. A funcuon u € C([0, 7]; D(L)) such that (2.1) holds (wuh u mstead _
of ug), is a k—mtegrated solution of (1.1), (1.2).

Eqmvalently, we could say that u is a. k-mtegratecl soluuon to (1. 1) (12)ifv=Luis
a k-mtegrated solutlon to :

@y (Tv(t))—#v(t)+f(t) ost<r,
(24) . -n@:w;

"REMARK 2.2. One could think of an alternative definition of integrated solution to
(1. 1), (1.2), in more strict analogy to the case of M=I, wcakmg the (apparently restrictive)
- assumption that the function u in Definition 2.1 belongs to C([0,7]; D(L)). Precisely, we
would ‘require that u € C([O 71;Y),u(t) € D(M) for all t € [0 7], Mu € C([O 7-] X) and

@m - ﬂhmh—g[qg@+mw+nﬂm

 IfS= L“lM (€ E(Y)) (2.5) reads eqmvalently

. .
@6 = Su)=- f w(s)ds + 1 S+ L fusa®).
* Notice that the integral [, u(s)ds € D(L). _Hence.equauon (_2.6) is considered in the space
D(L), endowed wnth the graph norm. : :
- But as an operator from D(L) into itself, the operator S satisfies exactly assumption
(P) since - S _
S+ DMl = IEPE)” 1Lf1|x <C(1+|zl)"‘||fllvu,),
for all fe ’D(L) and 2 € L,.

1t follows that the two definitions are in fact eqmvalent

We have

_ THEOREM 2.1. Letus assume (P). If k > m + 3, then (1.1), (1.2) has a unique
k-integrated solution u for all f € C([0, 7}, X). and uo € D(L).
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Proof We need to show that (2 3), (24) has a umque k-mtegrated solution. To '
' accomphsh this, we remark that if v = v(t) is a strict solution to the problem :

d. ... g1

(2.?) B &T’U(f{) = —v(t) + e ’wo+fk(t), 0 St.s T
(2.8) To(0) = 0

then such a solutlon satisfies the mtegral equation (2.2) and conversely.

To solve (2.7), (2.8) it suffices to apply Proposition 21 with the nonhomogeneous
function F'(t) given by

tk—l
<t<T.
F(t) = goqyywo + felt),  0<t<r
Since for each j =0,1,...,m + 1, one has
' ' gh=1-j t (- )k- -3
D4y = —— ~ 7
FY(t) Fo1o j),wo-l- e )|f(s)ds,

assumpuon k > m + 3 implies that in fact F(-’)(O) 0,4 =0,1,.., m +1, and this allows to
use Proposition 2.1 to treat (2.7), (2.8). =

REMARK 2.3. If the function v(t) satisfying (2.7) is k-times continuously differentiable
on {0, 7], then v®)(2) = z(¢) fulfils (2 3), in fact, deriving both the members of (2.2) we infer-

| Tv(3>(t)——v(3"1)(t)+( o 'wo+f (t= k_ f(s)ds, F=1,2,..k

and hence a further derivation gives the result, However in general no 1n1t1al condmon to
2(t) can be prescrlbed

_ REMARK 2.4. To precnse furthermore last affirmation contained in the remark above,
we point out that even if no strict solution to (1.1) (1.2) could exist, accordmg to Theorem 2.1
all possible solutions to (1 1) are to be sought among its mtegrated solutions.More precnsely,
denote by uy the k- mtegrated solution to (1.1), (1.2) where k > m+ 3. Then by the deﬁnltlon
it is clear that, whenever a strict solution « exists, one has u = 'u.( ) However, in contrast to

 the case M = I, (see [2]), it can happen that w13 € C2)([0,7];Y) but there does not exlst

a strict solution. See Example 2.2 below. :

In fact, we illustrate Remarks 2.3 and 2.4 in the same tlime giving two very simple |
examples.

EXAMPLE 2.1. Let f,g € C([0, 7];C). Then it is easily seen that the algebraic-
differential system

£ (8 SN --[]+[2]. osesr
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has the 's.'trlct-' solution - | |
u(t) = ~4(u(0) + 9(0)) ~ (5) + / e=(=)(§(s) + g(s))ds,
| v(t) g(t), -0 < t < T ' o

‘We are clearly in the situalion of assumption (P) with m =0,k =3,
In this case the 3-integrated solution {x(t),y(t)) to the problem is given by -

o
) = /0 ) gapas,

while -
(a:(t+y(t))’=—x(t)+—(x(0)+y(0))+ f =) fepas
l_e.a_c'ls to o |
(=) + y(t)_)’<3’)"— (a(6) + ) + 1O + 9(6),

that is, | |
CORPORES etz +9)® (0) + f &= (f(s) + 9(s))ds .

“Therefore, u( ) = 2 (t) o(t) = y®(t) solves umquely the initial-value prohlem with given
. (0) _ |

EXAMPLE 2. 2 ~Given f, g € C(o, 7'] C), uo,vu & C, the 4-integrated solution (x,y)
to the problem _

I (| ] B o e R P
210) w0 =w, - |

(bbser\f?in'g- that here m =1, k= 4) is char_actmized by means of the relations

8 = ﬁ ' t( 3)3 |

V) = -alt)+ oo+ [ S5 g(s)ds,
t(s . )3

v = | G g (s)as,

$o that the unique strict solution of (2.9), (2.10) exists iff vo = g(0) and g € C(l)([() 7]; C);
 then it in fact coincides with (x()(¢), ¥ (t)) | |
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3. A Trofter-Kato type theorem |

Suppcisé we ate given a 'se'quence of linear operators Ly, Mn,neN, L ‘M, sich that
(Q) (P) holds for all pazr.r (Ln, M, ) and (L, M ), n € N, wzm constants a,m and K

mdependent of n.
R) Tp=ML;1= T MLt strongly in £(X) as n = oo,

| Tt is proved very recently in Barbu and Favini (41 that (Q) and (R) imply that
' n(zM +Lp)~' = L(zM + L)

strongly in L',(X) as n— oo for all z € ,.

‘Let us consnder the approxlmatmg problcms _
(3.1)a. a—(Mnuﬂ(t)) + Loun(t) = fa(8),0 St<T,
(3.2)n Mpun(0) = won(= Mnton), ton € D(Ln),

where f,, € C([0, 7); X). Denote by up, = un(-), u = u(-), the k-intégrated _solu_tibns to (3.1)5, h
(3.2)5, and (1.1), (1.2), respectively, with k& > m + 3, whose existence has been established in
section 2. We have

'THEOREM 3.1. Under (Q) and (R), if wo, — wo in X nd fus ‘i ——

asn — oo, then forall 0 <t < 7, 1,;u.,,(t)—a»L'u(t) in X asn — oo,

Proof. Let wy, be the k-integrated solution to the problem

(3.3)n 3 Ty +o) = fa),  0<i<T,
(3.4)n _T;,w(O) = Woy , '
and thus T, w, (0} = 0 and
d i . . '- o _ tk_l' . (t_s)k 1
(3..5),, E(l},wﬂ)(t) T wa(t) = s 1),won + A (k I ——r—fn(8)ds .
~Assumption k 2 m + 3 enables us to deduce that
| | tk -1 t(t— s)k;x -

is (ni + 2)-times continuously differentiable and (see notation in the proof of 'Ihconfem 2.1),
Fi0) = FO(0) =0, =0,1,..,m +1, |
FUY umformly on [0,7] as n — 00,5 =0,1,...,m +2.

In view of Theorem 4 in Barbu and Favini [4] we infer that Tj,awn (t) — Tv(t)in X asn — oo, .

where v(-) is the strict solution to (2.7), (2.8), thus concludmg the proof of the theorem [
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EXAMPLE 3.1. Letus return to Example 2.1, Therefore we have’ two closed hnear
operators LM acting in the complex Hilbert space H such that ( <, > and || || denote the
- innér product and the norm in H generated by it)

-_-_(35) Re<Lu u>>60”u||2 'Re<L*f,f>>cO”f||9

for all u € D(L) fe€ ’D(L*) where co-is a positive constant. Moreover we assume that
Me C(H) is selfadjomt and nonnegaUve We also suppose to have a family of linear
operators Lﬂ, M, néeN, satisfying : :

(36)  Re<Lnuu>> cguuu2  Re< Lif,f >> eollfII%, |
forallu e D(Ly), f € D('L,“;) anid the same positive constant cg as in (3.5), independent of n,
(3.7 M, & £(H) selfadjoint and nonnegative for . € N, |

(3.8) M, — M and L7' — L™ strongly in £{H) as n — oo.

Since we know from Example 2 1 that for fixed & > 0, P(z) =

- zM+ L, P, (z) = zMﬂ + Ln,n €N, have bounded inverses; with

\P(2)~ 1”£(H) <c3t . HPa(2) " ey <ely " z€%,, neN,
the identity o ‘

| Po(2)™! = I — zMpPo(2)™"

 implies that - -
1 Pa(#)leqary < 1+ ol Ky,

where K, =_ supnéN ||Mn-| lcary < oo. Therefore Theorem 3.1 can be applied with m = 1,

' 4 A dlfferent approach

In this - section we present a completely different approach by Laplace transform_
_tochnlques similar to those applied in [2, 3] for integrated semigroups, which . has been also
" used by Abdelaziz and Neubrander [1, Sectlon 2] for the degenerate Cauchy problem We
obtam a slightly more general version of Theorem 2.1: L is not necessarily invertible and we

win some regulanty

et Y, X be Banach spaces and L be a closecl lmear operator from Y into X with
'domarn.'D(L). Let M € L(D(L), X), where ’D(L) is considered with the graph norm.

THEOREM 4.1, Assume that there exist a > O 08«1 such that P(z) =zM + L
is invertible for Rez > o and '

(4. 1') PE Mg, D) < K(1+[2))™®,  Rez>a,
whereme{ 1 0,1,..}.
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Then, given uo € D(L), there exists a unigue (m+ 2)-times integrated solution of (LD,
(1.2). . . . . N

REMARK. If L is 1nvert1ble then the graph norm is equlvalem to ||z| ID(L) = HL:z:“ 'x
and thus (4.1) is equivalent to (P).

For the proot‘ we use the followmg result from (2, Proposmon 3.1}

PRDPOSI-TION 4.2. Let a >0,0<B8<,k> O,m € {-1,0,1,..}. Lét Z be a _' |
Banach space and assume that P : {z € C; Rez > a} — Z is holomorphic satisfying

IP()l|z < Cls™*®,  Rez>a.

Then there exists a continuous function S : [0,00) — Z such that

(a) | sup |le"“tS(t)||lz <0  forall w>a,

_ >0 : : _

(b) 5(0) =

(e) P(z) = z™12 f e~ *tS(t)dt, Re z > a.

_ Proof of Theorem 4.1. By Pro'pDSiHOH 42 there exists a continuous fanction § :
[0, 00) — L{X, D(L}) such that '

(4.2) sup lle™ Sllecx,py <00,  w>a,
(43) 5(0) =0, -
foo -
(4.4) P(A)1 = A+ f eMS(H)dt,  A>a.
, &

Observe that ¢ — LS(t) and ¢ — MS(t) afclcontinuous functions from [0, 00) into £(X) and I
supe “Y|LS(t)leexy <00,  supe U IMS@)lex) <00,  w>a. |
20 _ ¢20 _ _

Let A > a. Denote by I € £(X) the identity o:_l-X.
. Then '

oo m+2
A3 / Al = (M + L)PO)-!
0 {m + 2)!
oD = o}
_ ymi3 f e MMS()dt + A2 / e MLS(t)dt
0 0

g3 / " eMS() + ] LS(s)ds)dt.
) 0 0 ’

A Y { (::;!I - MS(t) - A t LS(s)ds} dt=0

Hence
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fé_r' all A>a It follows from the uniqueiess theorem for Laplace transforms that

P | O - -
RN - /0 LS(s)ds}t - Ms(t) - ml t20.
~Now let f € C(10,7); X), uo € D(L). Define |
(4. 6) . _ u.( i) = .(t)'Muo-}-/“'S s)f(t—s)d:s-, o<,

: We show that = is an (m +2)-mtegrated solution, 1e u satisfies (2.1) for k=m + 2. Indeed, |
u € C‘([O 7] D(L)) and by 4.5), .

Mu(t) = MS(t) Muo + f MS_(S) flt ~s)ds
m+2
mro
Thus, in order to show (2 1}, it suffices to show that

(4.7) / Lu(s)ds = f LS(s)Muods + / / . LS(r)f(t — s)drds .

By “. 6) we have

t 8
/ LS(s) Mugds + /0 /0 LS(r)f{t — s)drds + fmss(t)

f Lu(s) ds—f LS(s)Muods—l-f L/ S(r)f(s-—r)drds

_Now (4 7) follows since by Fubini’s theorem

_- fo L /0 S(r}f(s ~ r)drds = f; ft LS()f(s = r)dsdr

- f ‘ / T Ls(r) Seyasir - / t_ / " LS(t - r)f(s)dsdr

/ / LS(t = r)f(s)drds = /Ot Ot SLS(r)f(s)drds

= /0 /0 LS(r)f(t — s)drds .

This finishes the proof of existence.
| Before proving uniqueness, we establish some commuiation properties. For A\, u > a,
A # p, one has | |
PO Pt PN
p—=XA  p=2
Consequently, | |
(4.8) -~ P)TIMP(u)T = PUs)TtMP(N)TY, A p>ae.

{uM + L= (AM + L)}P()™" = PO) " MP ()"
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Fix p > a. Then for all A > q, | |
A +2 /0 m e—*fs(t)MP'(u)"ldt = P(J_\)_“MP(,“)—'1
= P(p) M P())~1 = Amt2 /0 ” e~ MP(p)TIMS(t)dt
Thus, by the uniquenéSs theorem, | |
(49 SOMP() ™ = P(a)'MS®),  p>a.
Lety € D(L). Let s > a, © = P(u)y. Then by (49), |
(uM + L)S(t)My = (uM + LYSE)MP() 'z = MS(t)z = MS(E)(uM + L)y .
Hence o | |
(4.10) | LSW)My = MSWt)Ly, yeD(L).

It follows from (4.5) that
d . tm+1

(4.11) M8 =-L8@) + 5, >0,

(m+ 1)1

Now let u € C([O 7]; D (L)) be an (m -+ 2)-integrated solution. Then

m+1
412) M) = ~Lat) + Mo ), €07}
Fix 0 <t < 7. For 5 € 0,t] let w(s) = MS(t — s)Mu(s). Then | |
w'(s) = LS(t ~ s)Mu(s) : —(—t(;sT)TiMu(s) + MS(t - s)——-(Mu(s)) (by (4.11))
m+1 '
= LS(t -~ s)Mu(s) - -(—(N%Mu(s) MS(t — S)Lu( ) _
.m+l ) .
(—'-’j-i-)-MS(t )Mo + MS(t = $)fmia(s)  (by (4:12)
ft - s)m+1 m+1
—mMu(s)+ o +1)'MS(t 8)Muy
+ MS(t — s)fmi2(s) (by (4.10)).

Hence

0 =.w(t) —w(0) = /0 w'(s)ds = —/0 %Mu(s)ds

¢ gmtl t _
" fo (m+ -]L)IMS(t = 8)Muods + fo MS(t = s)fm+2(s)ds .

Differentiating (m + 2)-times yields

(4.13) (Mu)(t) = MS(t)Muo + fo ! MS(s)f(t — s)ds.
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It‘ M isin jective this implies that Uy is given by (4. 6) and uniqueness is proved In order to prove
' umqueness in the general case, let uj,uq be two soluuons of @.1) for some k€ {O 1,2,..}
Let % =uj —u3. Thén u € C([{} -r] D(L)) and :

M'u,(t)= - / Lu(s)d;,}tle' [0,_'«r].

Moreover, it follows from (4.13) that Mu(t) = 0. Hence Lu(t) O,te [O 7].

It follows that for A > a, ()\M + L)u(t) =0,t € [0, 1-] Since AM + L is invertible
one conclude that u(t) = 0 on [0, 7).
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