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INTEGRATED SOLUTIONS TO IMPLICIT DIFFERENTI AL EQUATIONS 

Abstract. This paper establishes in two completely different ways that the abstract 

degenerate initial value problem —(Mu(t)) + Lu{t) = f(t),Q < t < r ,Mu(0) = 
Uh 

Muo, has always an integrated solution, provided that for ali complex numbers z in the 
half-plane Rez > a > 0 the operator pencil P(z) = zM + L has a bounded inverse 
from the Banach space X to T>(L), endowed with the graph-norm, and its norm has 
a polynomial growth there. Some applications to partial differential equations are 
given. A Trotter-Kato type result is proved, too. 

1. Introduction 

The main purpose of this paper is to show that the initial value problem 

(1.1) -(Mu(t)) + Lu(t) = f{t), 0<t<r, 

(1.2) Mu(0) = Mu0, uoeViL), 

has always a "solution", provided that it is understood as an integrated solution, even if (1.1), 
(1.2) may be not salvable in strict sense since, e.g., (1.1) and (1.2) are not compatible. 

Here L and M are two closed linear operators from the complex Banach space Yto the 
(complex) Banach space X, f is a continuous function from [0,7-] into X and uo belongs to 
the domain V(L) of L. 

For our aim, it is not restrictive to assume that T>(L) is contained into V(M) and L 
has a bounded inverse. Henceforth we shall suppose that these properties hold (besides in 
Section 4 where we consider slightly more general hypotheses). In ali of this paper we also 
shall require that the operator pencil P(z) = zM + L has a bounded inverse P(z)~x for any 

z G E 0 : Rez >a>0 

and there are K > 0, m == 0,1,..., such that 

*Partially supported by M.U.R.S.T. (Fondi 40%). 
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There are many concrete interesting examples of operators satisfying (P) and we list 
some of them. 

EXAMPLE 1.1. Let L, M be two densely defined operators acting in the complex 
Hilbert space H = X = Y, with inner product <, > and induced norm || ||, such that M is 
non negative and selfadjoint in H, L and its adjoint L* fulfil 

(1.3) Re <Lu,u>> c0||u||2, ueV(L), 

(1.4) i ?e<L*/ , />>c 0 | | / | | 2 , feV(L*), 

where c0 is a positive Constant. 

Assume further that for ali z G Ea, the adjoint operator of zM -f L coincides with 
~zM + L*. This happens, as it is well known, if M is bounded, for example. The estimate 

Re <P(z)u,u>> c0||u||2,u e V{L),z G E0, 

implies that zM + L has a closed range and is one-to-one. 

The hypothesis (1.4) on the adjoint assures that zM + L has a bounded inverse and 

' I I W W ) ^ 1 . -
If M is bounded, we conclude that (P) holds with m = 1. 

If M is unbounded, more must be assumed in general, but if L itself is selfadjoint with 
^(L1/2) C £>(M), the estimate 

||(«M + L)w|||H| >Re< (zM + L)u,u >><Lu,u > 
(1'5) =ll^1/2^ll2, ueV(L), 
implies that 

II/IIHPW-VII > \\L^P{z)-lf\\\ feH, 
and therefore 

co^ll/ll2 > \\Ll"P{z)-if\\\ 

that is, there are C\, Ci > 0 with 

HAfPW^/H^dllL^PCz)-1/!!^ Cali/Il, /Gif. 

Hence, (P) is again satisfìed with m = 1. 

For an application to first order symmetric systems of partial differential equations, see 
Favini [9, pp.450-451].The second case (M unbounded) covers various equations (1.1) where 
M,L are defined by suitable elliptic differential operators. 
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EXAMPLE 1.2. Let us suppose that z = 0 is a polar singularity of (z + ML~X)~X = 
L(zL + M) _ 1 , that is, there are k e N, e > 0,6 > 0, such that zL + M has a bounded inverse 
(e C(X,Y)) for ali 0 < \z\ < e and 

||L(*L -J- M)-l\\c{X) < 6\z\~\0 < \z\ < e. 

Hence assumption (P) holds with m = k - 1. 

It is then well known that one has the representation JY = N(Tk) © R(Th), where 
T = ML~X, and iV(T), i2(T) denote the kernel and the range of the operator T, respectively. 
On the basis of this property a detailed study of (1.1), (1.2) has been done in Favini [10]. For 
another "algebraic" type approach to the problem in this situation, invoking the Drazin inverse 
of a linear operator, we refer to the very recent paper by Nashed and Zhao [13]. 

(1.6) 

EXAMPLE 1.3. Maxwell's equations 

dB 
rotE = dt' 

rr 9D T 
rotH = -et+J> 

in R3, where E (respectively, H) denotes the electric (resp., magnetic) field intensity, B (resp., 
D) denotes the electric (resp., magnetic) flux density and J is the current density, when the 
medium which fills the space is supposed to be linear, anisotropie and nonhomogeneous, (that 
is, D = EE,B = [iH,J = oE + J', for some 3 x 3 matrices e{x), /J,(X) and a(x),x e R3, 
and J' is a given forced current density), (1.6) reads 

(1.7) — (c(x)w) + ^ai(x)— + b(x)w = g(t,x) i n ^ r j x f l 3 , 
di 

with 

w=(E,H), c(x) = 
e(x) 0 

0 fj,(x) 
b(x) = 

a(x) 0 
0 0 g(t,x) = -(J%x),0). 

In the paper [16], by Yagi, (1.7) is formulated in the abstract form (1.1) by taking X = Y = 
(L2(R3))6. Under the assumptions that s(x)ìfj,(x) and a(x),x e R3, are real matrices the 
components of which are bounded measurable functions in R3, e(x) is symmetric and > 0 for 
every x e R3, there exist 8 > 0,7 > 0 such that 

3 

({7«(*)+ »(*)}€.« >«£«? . € = tói,6,È»)6rf,
I 

uniformly in x e R3, ii(x) is symmetric and > 6 > 0 uniformly in x e R3, if L, M are 
defined by 

3 rt.- 3 

dxi J ' ~~ *-^. %dxi 
i=l i = l 
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M = K2, K the multiplication operator by y/c(x), then by formula (5.12) in Yagi [16, p.404], 

(1.8) Re < Lv,v >> 6\\v\\2 + A0||to>||2, v € V(L), 

with A0 < -maxfa,1}. In turn, this reads 

Re< Lv-X0Mv,v >> P||v||2, veV(L). 

Fix Ao < —maxfa, 1}. The change of variable u = e~Xotv transforms (1.1) to 

^-(Mv{t)) + (L - XoM)v(t) = eAo7W, 0 < t < r. 
al 

Arguing as in Example 1.1 and taking into account (1.8), one deduces that 

Re<Lv- X0Mv + XMv, v >> 6|M|2, v € V(L), ReX > 0, 

and ||(AM + L - A0M)w|| > 6\\v\\, Vv € 2>(L), ReX sufficiente large. 
Always applying the argument in [16, p. 405], we see that if (XM + L — XQM)*W = 0 
= (XM + L* - X0M)w = 0, then w e V(L) and therefore 

Re < L*w,w>= Re(X0 - X)\\Kw\\2 = Re < w,Lw >> 6\\w\\2 + A 0 | | J M | 2 

implies 

-.ReAIIX^II2^^^!!2. 

Since ReX > a > 0, we conclude that Kw = w — 0. 

Hence, we deduce that (P) is verified with m — 1. 

For other different approaches to this type of equations we refer to Duvaut and Lions [8] and 
to Povoas [15]. 

EXAMPLE 1.4. If X = Y and M has a bounded inverse, (P) says that 

\\(z + L M - 1 ) - 1 ^ ) < C(l + \z\r~\z € Efl. 

It in fact suffices to notice that (z + L M - 1 ) - 1 = MP(z) - 1 = z~x{I - LP(z) -1}, for ali 
z e Ea. Therefore —LM'1 generates an integrated semigroup too, see [2] and [14]. We 
also refer to the even more general theory of regularized semigroups developed in Hieber, 
Holderrieth and Neubrander [11, Theorem 3.4, p.372]. 

On the other hand, (see Chazarain [6, p.403] and [3, Section 4]), this means that -LM-1 

generates a distributi on semigroup with exponential growth. 

The main result motivating this paper is contained in Section 2. In Section 3 we 
establish the continuous dependence of the integrated solution to (1.1) on the operators L and 
M, generalizing Trotter-Kato theorem for Co-semigroups. This theorem has to be compared 
with the one by Busenberg and Wu [5] on integrated semigroups and is obtained using a very 
recent convergence property established in Barbu and Favini [4]. In Section 4, on the basis 
of a complex Laplace representation theorem due to Arendt and Kellermann [3], we give a 

file:///z/r~/z
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slightly different version of Theorem 2.1, obtaining a little bit more regularity. Moreover, in 
this latter approach it is not needed that L is invertible. A similar approach is also used by 
Abdelaziz and Neubrander [1], but their results are different from ours. 

2. Integrateci solutions to (1.1), (1.2) 

To begin with, we formulate a previous existence and uniqueness theorem relative to 
(1.1), (1.2) obtained in Favini [9], generalizing the operational method by Da Prato and Grisvard 
[7] concerning parabolic equations. 

PROPOSITION 2.1. Let us assume (P). If f e C^m+2\[0,T];X):f^(0) = 0 for 
j = 0,1,..;., m + 1, and Mu0 e R(Tm+2), with T = ML~l, then (1.1), (1.2) has a unique 
strict solution. 

By a strict solution u of (1.1), (1.2) we mean a function u e C([0, r\\V(L)) such that 
Mu e CM([0,T];X) and (1.1), (1.2) hold. 

Of course, if k e NU {0}, C(h\[0, T]\X) denotes the set of ali fc-times continuously 
differentiable X-valued functions on [0,r]. We let C(°)([0,r];X) = C([0,V];X) and 
C7M'([0,T];Jf)=n^ fc)([Q fr];X). 

• : k 

One sees that in general both regularity (for arbitrary / ) and compatibility relations 
between /^ (O) and u0, for some j , are necessary to have a solution, even if (1.1) is required 
to hold for t > 0. Nevertheless it is a well known fact in applied mathematics, for example, 
in control theory, that also not compatible systems (1.1), (1.2) allow a corresponding "answer" 
u in some weak sense. Our aim is to clarify the meaning of this answer. 

If M — / , the identity operator in X = Yt the notion of integrated solution to (1.1), 
(1.2) has been introduced guaranteeing that it exists for ali •/ e C([0,r];X) and any u0 e X, 
see[2, 3, 12]. 

We shall present an analogous deflnition of fc-integrated solution to (1.1), (1.2), 
k = 0,1,..., and we shall show that under (P) it always exists, whatever are / and UQ e X, 
see[2,3, 12]. 

In order to motivate our notion of integrated solution, we observe that if u is a strict 
solution of (1.1), (1.2), the positi on 

u\(t) — / u(s)ds 
Jo 

and 

uk(t) = / uk-i(s)ds, k = 2,3,... 
Jo 

leads to the relation 

(2.1) Muk(t) = - J Ìixfc(fl)(tó + ^Aftio + /fc+i(*), -k = 1,2,..., 
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where /fc+iW = So fe, ^ d a • 

On the other hand, if we introduce Luk(t) = Vk(t),T = ML"1, (2.1) can also be 
written as 

(2.2) Tvk(t) = - vk(s)ds+—w0 + fk+1(t)ì k = 1,2,3,..., 

with wo = M^o-
We are in a position to introduce 

DEFINITION 2.1. A function ueC( [0, r] ; X>(L)) swdi r̂ iar (2.1) holds (with u instead 
ofuf-), is a k-integrated solution of(l.l), (1.2). 

Equivalently, we could say that u is a fc-integrated solution to (1.1), (1.2) if v = Lu is 
a fc-integrated solution to 

(2.3) ^ ( r « W ) = -*(*)+ /(*), o<t<r, 

(2.4) Tv(0) = wQ : 

REMARK 2.2. One could think of an alternative definition of integrated solution to 
(1.1), (1.2), in more strict analogy to the case of M=I, weaking the (apparently restrictive) 
assumption that the function u in Definition 2.1 belongs to C([0,r]\V(L)). Precisely, we 
would require that u e C([0,r]; Y),u(t) e V{M) for all't € [0,r], Mu eC([0,r];X) and 

/"' tk 

(2.5) Mu{t) = -L u(s)ds + -WQ + A + i ( t ) . 

If 5 = / / - ^ ( e £(YJ), (2.5) reads equivalente 

(2.6) ' Su(t) = - f u(s)ds + ^5wo + Ì_17fc+i(<) • 

Notice that the integrai /0 u(s)ds e T>{L). Hence equation (2.6) is considered in the spàce 
X>(L), endowed with the graph norm. 

But as an operator from T>(L) into itself, the operator S satisfies exactly assumption 
(P), since 

\\(zS + / rVlbcL) = \\LP(z)-lLf\\x < C{1 •+ \z\)m\\f\\v(L), 

for ali / € V{L) and z e E0. 

It follows that the two definitions are in fact equivalent. 

We have 

THEOREM 2.1. Let us assume (P). If k > m + 3, then (1.1), (1.2) has a unique 
k-integrated solution u for ali f e C([0, r]; X) and UQ e V(L). 
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Proof. We need to show that (2.3), (2.4) has a unique fc-integrated solution. To 
accomplish this, we remark that if v = v(t) is a strict solution to the problem 

(2.7) jTv{t) = -v(t) + jlzjyw° + /fc W' °<t<r, 

(2.8) Tv(0) = 0, 

then such a solution satisfies the integrai equation (2.2) and conversely. 

To solve (2.7), (2.8) it suffìces to apply Propositi on 2.1 with the nonhomogenéous 
function F(t) given by 

F(t) = 
yk-1 

wo + fk(t), 0 <t <r 

l 
1 (t - s)*-1--* 

Since for each j = 0,1,..., ra + 1, one has 

assumption k > m + 3 implies that in fact F^')(0) = 0, j == 0,1,..., m + 1, and this allows to 
use Proposition 2.1 to treat (2.7), (2.8). • 

REMARK 2.3. If the function v(t) satisfying (2.7) is /c-times continuously differentiable 
on [0, r], then v^k\t) = z(t) flilfils (2.3); in fact, deriving both the members of (2.2) we infer 

Tv^(t) = -v^'1)(t) + j - l , 2 , . . , / c 

and hence a further derivation gives the resuit. However, in general, no initial condition to 
z(t) can be prescribed... 

REMARK 2.4. To precise furthermore last affirmation contained in the remark above, 
we point out that even if no strict solution to (1.1) (1.2) could exist, according to Theorem 2.1 
ali possible solutions to (1.1) are to be sought among its integrated solutions.More precisely, 
denote by Uk the /c-integrated solution to (1.1), (1.2) where k > m-\-3. Then by the definition 

(k) it is clear that, whenever a strict solution u exists, one has u=-u\'. However, in contrast to 
the case M — I, (see [2]), it can happen that um+3 e C(°°)([0, r); Y) but there does not exist 
a strict solution. See Example 2.2 below. 

In fact, we illustrate Remarks 2.3 and 2.4 in the same Urne giving two very simple 
examples. 

EXAMPLE 2.1. Let /,.</ e C([0,r];C). Then it is easily seen that the algebraic-
differential system 

d_(\\ il U(t)]\ _UW 
dt\ 0 0 v(i) ì v(t) + 

r./(oi 
9(t) 

0<t<T, 
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has the strict solution 

u(t) = e-*K0) + g(Q)) - g(t) + / e-^~s\f(s) + g(s))ds , 
Jo 

v(t) = g(t), 0 < t < T . 

We are clearly in the situation of assumption (P) with m = 0, k = 3. 
In this case the 3-integrated solution (x(t),y(t)) to the problem is given by 

y(t) = / 
JO 

' (t " *)2 
g(s)ds, 

while 

leads to 

that is, 

(x(t + *,(*))' = -x(t) + |-(±(0) + 2/(0)) + - jf ' .S-^L/( . )d . 

((*(*) + y(t))W)' - (x(t) + 2/«)(3) + /(ti 4- p(t), 

(̂ W + J/W){3) = «-'(. + y)^(0) + / ' e - ^ ^ / f s ) -(- ff(S))è . 
Jo 

Therefore, u(t) = x^3\t),v(t) = y^3\t) solves uniquely the initial-value problem with given 
ti(O). 

EXAMPLE 2.2. Given f,g e C([0,r];C),w0, v0 e C, the 4-integrated solution (x, y) 
to the problem 

(2.9) 

(2.10) 

d_ /ro ì 

dt \[0 0 

v(0) = v0l 

u(t) 
v(t) 

u(t) 
v(t) + 

f(t) 
9{t) 

0<t < r , 

(observing that here m = 1, k = 4) is characterized by means of the relations 

'3 ''(t-s)3 

y\t) = -*(*) + -t/o + y ^-^-/(a)A»i 

y(t) = £X-^-g(s)ds, 

so that the unique strict solution of (2.9), (2.10) exists iff v0 =. #(0) and g e C^([0,T];C); 

then it in fact coincides with (x^(^),2/^(t)). 
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3. A Trotter-Kato type theorem 

Suppose we are given a sequence of linear operators Ln, Mn , n G N, L, M, such that 

(Q) (P) holds for ali pairs (Ln, Mn) and (L, M), n e N, with constants a, m and K 
independent of n. 

(R) Tn = MnL'1 -+T= ML~X strongly in C(X) as n -* oo. 

It is proved very recently in Barbu and Favini [4] that (Q) and (R) imply that 

Ln(zMn + L^-1 -» L(zM + L)"1 

strongly in C(X) as n —• oo for ali z e E a . 

Let us consider the approximating problems 

(3 .1) n S ( M n T 4 n ( t j ) . + Lnfin(*) = / n W , 0 < t < r l 

(3 .2) n M n U n (0) = W0n(= MnW0n), ^On € X>(Ln) , 

where fn € C([0, r]; X). Denoteby iin — wn(-), u — u{')> the fc-integrated solutions to (3.1)n, 
(3.2)„ and (1.1), (1.2), respectively, with k > ra + 3, whose existence has been established in 
section 2. We have 

THEOREM 3.1. Under (Q) and (R), ifw0n —• ^o in X and fn -* / w C([0, r]; X) 
as n —> oo, thenfor allO <t <r, Lnun(t) —> Lu(t) in X as n —• oo. 

Proof. Let w nbe the fc-integrated solution to the problem 

(3.3)n . • -(Tnw){t) + w(t)=fn(t), 0<t<r, 

(3.4)n Tnw(0) = w0n , 

and thus Tnwn(0) == 0 and 

d tfc_1 t% (t- s) fc_1 

(3..5)n - (T n«; n)( t ) + wn(t) - ( f e _ 1 ) ! ^ 0 n + j fkJi\VMs)da . 

Assumption fc > m + 3. enables us to deduce that 

tk~x f* (t- s)^1 

is (m + 2)-times continuously differentiable and (see notation in the proof of Theorem 2.1), 

F^)(0) = F ^ ( 0 ) = 0 , j = 0 , l , . . . , m + l , 

F^ —• F^ uniformly on [0, r] as n —• oo,j = 0,1,. . . , m + 2 . 

In view of Theorem 4 in Barbu and Favini [4] we infer that.Tnu/n(t) —*• Tv(t) in X as n —*• oo, 
where t/(«) is the strict solution to (2.7), (2.8), thus concluding the proof of the theorem. • 
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EXAMPLE 3.1. Let us return to Example 2.1. Therefore we have two closed linear 
operators L,M acting in the complex Hilbert space H such that (< , > and || || denote the 
inner product and the norm in H generated by it) 

(3.5) Re < Lu,u >> c0\\u\\2, Re < L*f,f >> c0\\f\\
2, 

for ali u e V(L),f e T>(L*), where c0 is a positive Constant. Moreover, we assume that 
M e C{H) is selfadjoint and nonnegative. We also suppose to have a family of linear 
operators Ln, Mn,n e N, satisfying 

(3.6) Re < Lnu,u >> c0\\u\\2, Re < L*nf,f>> c0 | | / | |2 , 

for ali u e T>(Ln), f e T>(L^) and the same positive Constant c0 as in (3.5), independent of n, 

(3.7) Mn € £(H) selfadjoint and nonnegative for n e N, 

(3.8) Mn-*M and L"1 - • L _ 1 strongly in C{H) as n —* oo . 

Since we know from Example 2.1 that for flxed a > 0, P(z) = 
zM + L, Pn{z) = zMn -f- Ln, n e N, have bounded inverses, with 

l i n O ^ l k f O ^ C b 1 , WPnizr'WdH) <Co\ zeXa, n G N , 

the identity 

LnPniz)-1 = I ~ zMnPniz)-1 

implies that 

where I<x = supnGj^ ||Mn||£(//) < oo. Therefore Theorem 3.1 can be applied with m = 1. 

4. A different approach 

In this section we present a completely different approach by Laplace transform 
techniques similar to those applied in [2, 3] for integrated semigroups, whichhas been also 
used by Abdelaziz and Neubrander [1, Section 2] for the degenerate Cauchy problem. We 
obtain a slightly more general version of Theorem 2.1: L is not necessarily invertible and we 
win some regularity. 

Let Y, X be Banach spaces and L be a closed linear operator from Y into X with 
domain. V(L). Let M e £(V(L),X), where V(L) is considered with the graph norm. 

THEOREM 4.1. Assume that there exist a > 0,0 < (3 < 1 such that P(z) = zM + L 

is invertible for Rez > a and 

(4-1) • I j ^ W - ^ I ^ ^ L ^ ^ l + H r ^ , Rez>a, 

where me {—1,0,1,...}. 
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Then, given UQ e T)(L), there exists a unique (m + 2)-times integrated solution of(l.l), 
(1.2). 

REMARK. If L is invertible, then the graph norm is equivalent to |H|E>(L) = ||£a?|U 
and thus (4.1) is equivalent to (P). 

For the proof we use the following result from [2, Proposition 3.1]. 

PROPOSITION 4.2. Let a > 0,0 < (3 < l,k > 0,m e {-1,0,1,...}. Let Z be a 
Banach space and assume that P : {z e C; Rez > a} —» Z is holomorphic satisfying 

\\P(z)\\z<C\z\m+P, Rez>a. 

Then there exists a continuous function S : [0, oo) —• Z such that 

(a) sup\\e~wtS(t)\\z < oo for ali w > a , 
t>o 

(*) S(0) = 0, 
/•OO 

(e) P(z) = zm+2 / e-ztS(t)dt, Rez>a. 
Jo 

Proof of Theorem 4.1. By Proposition 4.2 there exists a continuous function S : 
[0,oo) -+ £(X,V(L)) such that 

(4.2) sup \\e-wtS{t)\\C(x,v(L)) < oo, w > a, 
t>o 

(4.3) 5 (0) -=0, ' 
/•OO 

(4.4) P(A)-1 = Am+2 / e-MS(t)dt, \>a. 
Jo 

Observe that t —+ LS(t) and t —>• MS(t) are continuous functions from [0, oo) into C(X) and 

snpe-wt\\L'S{t)\\c{x) < oo, supe—%\\MS(t)\\c{x) < oo, w > a . 
t>0 t>0 

Let A > a. Denote by I e C{X) the identity o n l . 

Then 
/•OO fTU+2 

Am+3 / -\t dtl = I = (\M + L)P(X)-1 

Jo (m + 2)! V ' V } 

/•OO /«OO 

= Am+3 / e-MMS(t)dt + Am+2 / e~xtLS(t)dt 
Jo Jo 

/•oo /»£ 

- Am+3 / e'AÉ{M5(t) + / LS(s)ds}dt. 
Jo Jo 

Hence 
/«oo f a.m+2 rt -\ 
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for ali A > a. It follows from the uniqueness theorem for Laplace transforms that 

't +m+2 

J, t>0. (4.5) - j LS(s)ds}dt = MS(t) 

Now let / e C([0,r];X),u0 e V(L). Define 

(4.6) u{t) = S{t)Mu0 + / S(s)f(t - s)ds, 0 < t < r . 
Jo 

We show that u is an (ra + 2)-integrated solution, i.e., u satisfies (2.1) for k = m-f 2. Indeed, 
u e C( [0 ,T] ;£>(L)) and by (4.5), 

Mu{t) = MS{t)Mu0+ f MS{s)f(t-s)ds 
Jo 

= - / LS(*)Muo<fa + 7 ri^Mu0- / LS(r)f(t - s)drds + fm+3(t) . 
Jo (ra + 2j! y0 y0 

Thus, in order to show (2.1), it suffices to show that 

/•£ /•£ pt ps 

(4.7) / Lu(s)ds= LS(s)Mu0ds+ / LS{r)f(t-s)drds. 
Jo Jo Jo Jo 

By (4.6) we have 

/ Lw(s)rfs= /" LS(s)Mu0ds+ [ L [ S(r)f{s-r)drds. 
Jo Jo Jo Jo 

Now (4.7) follows since by Fubini's theorem 

pt ps pt pt 

ÌLI S{r)f{s - r)drds = I I LS{r)f{s- r)dsdr 
Jo Jo Jo Jr 

= [ [ LS(r)f(s)dsdr = [ f LS(t-r)f(s)dsdr 
Jo Js Jo Jo 

= f f LS(t-r)f(s)drds= f [ LS(r)f(s)drds 
Jo Js Jo Jo 

= I f LS(r)f(t-s)drds. 
Jo Jo 

This finishes the proof of existence. 

Before proving uniqueness, we establish some commutation properties. For \,n>a, 
A^/f, one has 

P ( A ) " 1 - P ( M ) - 1
 = P^T±{fÀM + L _ ( A M + L)}p(A ,)-i = P(A)"1MP(/.)-1 . 

fi — A fi — A 

Consequently, 

(4.8) P (A)- 1 MP(/z ) - 1 -P(^ )" 1 MP(A)- 1 , \fi>a. 
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Fix fj, > a. Then for ali A > a, 
/•oo 

yn+2 / e-^1S'( i)MP(/ i)-1^ = P(A)-1MP(/z)-1 

/•oo 

= P(/x)~1MP(A)-1 - Am + 2 / e~xtP{^)-lMS{t)dt. 
./o 

Thus, by the uniqueness theorem, 

(4.9) S(t)MP(fi)-1 = P(^)-1MS(t), / i > o . 

Let y e T>(L). Let fi> a,x = P(y)y. Then by (4.9), 

(A*M + L)S{t)My = ( / Ì M + L)S{t)MP{ii)-lx = M5(t)a; = MS{t)(fiM + L)y . 

Hence 

(4.10) LS{t)My = MS{t)Ly, yeV(L). 

It follows from (4.5) that 
j / m + l 

(4.11) _ W S ( t ) = _ L S ( t ) + _ _ _ / , t > 0 . 

Now let it e C([0, r]; X>(L)) be an (m + 2)-integrated solution. Then 
(4.12) TMu(t) = ~Lu{t) + — — - M u o + / m + 2 (0 , * € [0, r]. 

ut [m + 1 j ! 

Fix 0 < t < r. For s €.[0,t] let w(s) = MS(* - s)M«(s). Then 

w\s) = LS{t - s)Mu(s) - V LrTrMu{s) + M5(t - s)-f(Mu(s)) (by (4.11)) 
(ra + 1)! <xs 

= LS(i - a.)Afti(«.) - -, J——Mu(s) - MS(t - s)Lu(s) 
[m + 1)! 

s m + l 
+ j—p^MS(t-s)Mu0 + MS(t-s)fTn+2(s) (by(4.12)) 

- y ^ Mu{s) + - —-MS(t - s)Mu0 
(m + l)! v ' (m + l)! 

+ MS(t-s)fm+2(s) (by(4.10)) 

Hence 
ft pt / . _ \ ro+l 

0 = w(t)-w(0)= / w'(s)ds = - 1-. -l—-Mu{s)ds 
Jo Jo ( m + l ) ! 

/ T -—-MS{t-s)Muods+ MS(t-s)fm+2{s)di 

Jo (m + l j ! ,y0 
+ 

Differentiating (m + 2)-times yields 

(4.13) (Mu)(t) = MS{t)Mu0 + / MS(s)f(t - s)di 
Jo 



328 W Arendt - A. Favini 

If M is injective, this implies that u is given by (4.6) and uniqueness is proved. In order to prove 
uniqueness in the general case, let MI, U^ be two solutions of (2.1) for some k e {0,1,2,...}. 
Let u = ui - u2. Then u e C([0,T];Z>(L)) and 

Mu{t) = - f Lu{s)ds,t e [0,r] 
Jo 

Moreover, it follows from (4.13) that Mu(t) = 0. Hence Lu(t) =0,te [0,r]. 

It follows that for X > a, (XM -f L)u(t) = 0, t e [0, r]. Since XM + L is invertible 
one conclude that it(£) = 0 on [0, r]. • 

REFERENCES 

ABDELAZIZ N.H., NEUBRANDER F., Degenerate abstract Cauchy problems, Seminar Notes in 
Functional Analysis and PDE, Louisiana State University 91-92. 
ARENDT W., Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 
327-352. 
ARENDT W., KELLERMANN H., Integrated solutions of Volterra integrodifferential equations and 
applications, in "Volterra integro-differential equations in Banach spaces and applications" (Eds. Da 
Prato, Iannelli), Pitman R f̂M 190, Longman,(1989), 21-51. 
BARBU V., FAVINI A., Convergence of solutions of implicit differential equations, to appear. 
BUSENBERG S., W U B., Convergence theorems for integrated semigroups, Diff. Int. Eqs. 5 
(1992), 509-520. 
CHAZARAIN J., Problèmes de Cauchy abstraites et applications à quelques problèmes mixtes, J. 
Funct. Anal. 7 (1971), 386-446. 
DA PRATO G., GRISVARD P., Sommes d'opérateurs linéaires et equations dijférentielles 
opérationnelles, J. Math. Pures Appi. 54 (1975), 305-387. 
DUVAUT G., LIONS J.L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972. 
FAVINI A., An operational methodfor abstract degenerate evolution equations ofhyperbolic type, 
J. Funct. Anal. 76 (1988), 432-456. 
FAVINI A., Abstract singular equations and applications, J. Math. Anal. Appi. 116 (1986), 
286-308. 
HIEBER M., HOLDERRIETH A., NEUBRANDER F., Regularized semigroups andsystems of linear 
partial differential equations, Ann. Scuola Normale Sup. Pisa 19 (1992), 363-379. 
KELLERMANN H., HIEBER M., Integrated semigroups, J. Funct. Anal. 84 (1989), 160-180. 
NASHED M.Z., ZHAO Y., The Drazin inverse for singular evolution equations and partial 
differential eqations, in "Recent trends in differential equations " (Ed. R.P. Agarwal), World 
Scientific, (1992), 441-456. 
NEUBRANDER F., Integrated semigroups and their applications to the abstract Cauchy problem, 
Pac. J. Math. 135 (1988), 111-155. 
POVOAS M., On some singular hyperbolic evolution equations, J. Math. Pures Appi. 60 (1981), 
133-192. 
YAGI A., Generation theorems of semigroup for multivalued linear operators, Osaka J. Math. 28 
(1991), 385-410. 



Integrateci solutions to ìmpìicit differential equations 329 

Wolfgang ARENDT 
Equipe de Mathématiques, Université de Franche Comté 
25030 Besangon Cedex, France. 

Angelo FAVINI 
Dipartimento di Matematica, Università di Bologna 
40127 Bologna, Italy. 

Lavoro pervenuto in redazione il 20.11.1993. 




